Merge branch 'linus' into tracing/core
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "# compressed entry header\n");
32         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
41                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213         RB_LEN_TIME_EXTEND = 8,
214         RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219         return event->type_len == RINGBUF_TYPE_PADDING
220                         && event->time_delta == 0;
221 }
222
223 static inline int rb_discarded_event(struct ring_buffer_event *event)
224 {
225         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
226 }
227
228 static void rb_event_set_padding(struct ring_buffer_event *event)
229 {
230         event->type_len = RINGBUF_TYPE_PADDING;
231         event->time_delta = 0;
232 }
233
234 static unsigned
235 rb_event_data_length(struct ring_buffer_event *event)
236 {
237         unsigned length;
238
239         if (event->type_len)
240                 length = event->type_len * RB_ALIGNMENT;
241         else
242                 length = event->array[0];
243         return length + RB_EVNT_HDR_SIZE;
244 }
245
246 /* inline for ring buffer fast paths */
247 static unsigned
248 rb_event_length(struct ring_buffer_event *event)
249 {
250         switch (event->type_len) {
251         case RINGBUF_TYPE_PADDING:
252                 if (rb_null_event(event))
253                         /* undefined */
254                         return -1;
255                 return  event->array[0] + RB_EVNT_HDR_SIZE;
256
257         case RINGBUF_TYPE_TIME_EXTEND:
258                 return RB_LEN_TIME_EXTEND;
259
260         case RINGBUF_TYPE_TIME_STAMP:
261                 return RB_LEN_TIME_STAMP;
262
263         case RINGBUF_TYPE_DATA:
264                 return rb_event_data_length(event);
265         default:
266                 BUG();
267         }
268         /* not hit */
269         return 0;
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  */
276 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277 {
278         unsigned length = rb_event_length(event);
279         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280                 return length;
281         length -= RB_EVNT_HDR_SIZE;
282         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284         return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287
288 /* inline for ring buffer fast paths */
289 static void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
293         /* If length is in len field, then array[0] has the data */
294         if (event->type_len)
295                 return (void *)&event->array[0];
296         /* Otherwise length is in array[0] and array[1] has the data */
297         return (void *)&event->array[1];
298 }
299
300 /**
301  * ring_buffer_event_data - return the data of the event
302  * @event: the event to get the data from
303  */
304 void *ring_buffer_event_data(struct ring_buffer_event *event)
305 {
306         return rb_event_data(event);
307 }
308 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
309
310 #define for_each_buffer_cpu(buffer, cpu)                \
311         for_each_cpu(cpu, buffer->cpumask)
312
313 #define TS_SHIFT        27
314 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
315 #define TS_DELTA_TEST   (~TS_MASK)
316
317 struct buffer_data_page {
318         u64              time_stamp;    /* page time stamp */
319         local_t          commit;        /* write committed index */
320         unsigned char    data[];        /* data of buffer page */
321 };
322
323 struct buffer_page {
324         struct list_head list;          /* list of buffer pages */
325         local_t          write;         /* index for next write */
326         unsigned         read;          /* index for next read */
327         local_t          entries;       /* entries on this page */
328         struct buffer_data_page *page;  /* Actual data page */
329 };
330
331 static void rb_init_page(struct buffer_data_page *bpage)
332 {
333         local_set(&bpage->commit, 0);
334 }
335
336 /**
337  * ring_buffer_page_len - the size of data on the page.
338  * @page: The page to read
339  *
340  * Returns the amount of data on the page, including buffer page header.
341  */
342 size_t ring_buffer_page_len(void *page)
343 {
344         return local_read(&((struct buffer_data_page *)page)->commit)
345                 + BUF_PAGE_HDR_SIZE;
346 }
347
348 /*
349  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350  * this issue out.
351  */
352 static void free_buffer_page(struct buffer_page *bpage)
353 {
354         free_page((unsigned long)bpage->page);
355         kfree(bpage);
356 }
357
358 /*
359  * We need to fit the time_stamp delta into 27 bits.
360  */
361 static inline int test_time_stamp(u64 delta)
362 {
363         if (delta & TS_DELTA_TEST)
364                 return 1;
365         return 0;
366 }
367
368 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
369
370 int ring_buffer_print_page_header(struct trace_seq *s)
371 {
372         struct buffer_data_page field;
373         int ret;
374
375         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376                                "offset:0;\tsize:%u;\n",
377                                (unsigned int)sizeof(field.time_stamp));
378
379         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
380                                "offset:%u;\tsize:%u;\n",
381                                (unsigned int)offsetof(typeof(field), commit),
382                                (unsigned int)sizeof(field.commit));
383
384         ret = trace_seq_printf(s, "\tfield: char data;\t"
385                                "offset:%u;\tsize:%u;\n",
386                                (unsigned int)offsetof(typeof(field), data),
387                                (unsigned int)BUF_PAGE_SIZE);
388
389         return ret;
390 }
391
392 /*
393  * head_page == tail_page && head == tail then buffer is empty.
394  */
395 struct ring_buffer_per_cpu {
396         int                             cpu;
397         struct ring_buffer              *buffer;
398         spinlock_t                      reader_lock; /* serialize readers */
399         raw_spinlock_t                  lock;
400         struct lock_class_key           lock_key;
401         struct list_head                pages;
402         struct buffer_page              *head_page;     /* read from head */
403         struct buffer_page              *tail_page;     /* write to tail */
404         struct buffer_page              *commit_page;   /* committed pages */
405         struct buffer_page              *reader_page;
406         unsigned long                   nmi_dropped;
407         unsigned long                   commit_overrun;
408         unsigned long                   overrun;
409         unsigned long                   read;
410         local_t                         entries;
411         u64                             write_stamp;
412         u64                             read_stamp;
413         atomic_t                        record_disabled;
414 };
415
416 struct ring_buffer {
417         unsigned                        pages;
418         unsigned                        flags;
419         int                             cpus;
420         atomic_t                        record_disabled;
421         cpumask_var_t                   cpumask;
422
423         struct mutex                    mutex;
424
425         struct ring_buffer_per_cpu      **buffers;
426
427 #ifdef CONFIG_HOTPLUG_CPU
428         struct notifier_block           cpu_notify;
429 #endif
430         u64                             (*clock)(void);
431 };
432
433 struct ring_buffer_iter {
434         struct ring_buffer_per_cpu      *cpu_buffer;
435         unsigned long                   head;
436         struct buffer_page              *head_page;
437         u64                             read_stamp;
438 };
439
440 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
441 #define RB_WARN_ON(buffer, cond)                                \
442         ({                                                      \
443                 int _____ret = unlikely(cond);                  \
444                 if (_____ret) {                                 \
445                         atomic_inc(&buffer->record_disabled);   \
446                         WARN_ON(1);                             \
447                 }                                               \
448                 _____ret;                                       \
449         })
450
451 /* Up this if you want to test the TIME_EXTENTS and normalization */
452 #define DEBUG_SHIFT 0
453
454 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
455 {
456         u64 time;
457
458         preempt_disable_notrace();
459         /* shift to debug/test normalization and TIME_EXTENTS */
460         time = buffer->clock() << DEBUG_SHIFT;
461         preempt_enable_no_resched_notrace();
462
463         return time;
464 }
465 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
466
467 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
468                                       int cpu, u64 *ts)
469 {
470         /* Just stupid testing the normalize function and deltas */
471         *ts >>= DEBUG_SHIFT;
472 }
473 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
474
475 /**
476  * check_pages - integrity check of buffer pages
477  * @cpu_buffer: CPU buffer with pages to test
478  *
479  * As a safety measure we check to make sure the data pages have not
480  * been corrupted.
481  */
482 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
483 {
484         struct list_head *head = &cpu_buffer->pages;
485         struct buffer_page *bpage, *tmp;
486
487         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
488                 return -1;
489         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
490                 return -1;
491
492         list_for_each_entry_safe(bpage, tmp, head, list) {
493                 if (RB_WARN_ON(cpu_buffer,
494                                bpage->list.next->prev != &bpage->list))
495                         return -1;
496                 if (RB_WARN_ON(cpu_buffer,
497                                bpage->list.prev->next != &bpage->list))
498                         return -1;
499         }
500
501         return 0;
502 }
503
504 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
505                              unsigned nr_pages)
506 {
507         struct list_head *head = &cpu_buffer->pages;
508         struct buffer_page *bpage, *tmp;
509         unsigned long addr;
510         LIST_HEAD(pages);
511         unsigned i;
512
513         for (i = 0; i < nr_pages; i++) {
514                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
515                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
516                 if (!bpage)
517                         goto free_pages;
518                 list_add(&bpage->list, &pages);
519
520                 addr = __get_free_page(GFP_KERNEL);
521                 if (!addr)
522                         goto free_pages;
523                 bpage->page = (void *)addr;
524                 rb_init_page(bpage->page);
525         }
526
527         list_splice(&pages, head);
528
529         rb_check_pages(cpu_buffer);
530
531         return 0;
532
533  free_pages:
534         list_for_each_entry_safe(bpage, tmp, &pages, list) {
535                 list_del_init(&bpage->list);
536                 free_buffer_page(bpage);
537         }
538         return -ENOMEM;
539 }
540
541 static struct ring_buffer_per_cpu *
542 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
543 {
544         struct ring_buffer_per_cpu *cpu_buffer;
545         struct buffer_page *bpage;
546         unsigned long addr;
547         int ret;
548
549         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
550                                   GFP_KERNEL, cpu_to_node(cpu));
551         if (!cpu_buffer)
552                 return NULL;
553
554         cpu_buffer->cpu = cpu;
555         cpu_buffer->buffer = buffer;
556         spin_lock_init(&cpu_buffer->reader_lock);
557         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
558         INIT_LIST_HEAD(&cpu_buffer->pages);
559
560         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
561                             GFP_KERNEL, cpu_to_node(cpu));
562         if (!bpage)
563                 goto fail_free_buffer;
564
565         cpu_buffer->reader_page = bpage;
566         addr = __get_free_page(GFP_KERNEL);
567         if (!addr)
568                 goto fail_free_reader;
569         bpage->page = (void *)addr;
570         rb_init_page(bpage->page);
571
572         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
573
574         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
575         if (ret < 0)
576                 goto fail_free_reader;
577
578         cpu_buffer->head_page
579                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
580         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
581
582         return cpu_buffer;
583
584  fail_free_reader:
585         free_buffer_page(cpu_buffer->reader_page);
586
587  fail_free_buffer:
588         kfree(cpu_buffer);
589         return NULL;
590 }
591
592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
593 {
594         struct list_head *head = &cpu_buffer->pages;
595         struct buffer_page *bpage, *tmp;
596
597         free_buffer_page(cpu_buffer->reader_page);
598
599         list_for_each_entry_safe(bpage, tmp, head, list) {
600                 list_del_init(&bpage->list);
601                 free_buffer_page(bpage);
602         }
603         kfree(cpu_buffer);
604 }
605
606 /*
607  * Causes compile errors if the struct buffer_page gets bigger
608  * than the struct page.
609  */
610 extern int ring_buffer_page_too_big(void);
611
612 #ifdef CONFIG_HOTPLUG_CPU
613 static int rb_cpu_notify(struct notifier_block *self,
614                          unsigned long action, void *hcpu);
615 #endif
616
617 /**
618  * ring_buffer_alloc - allocate a new ring_buffer
619  * @size: the size in bytes per cpu that is needed.
620  * @flags: attributes to set for the ring buffer.
621  *
622  * Currently the only flag that is available is the RB_FL_OVERWRITE
623  * flag. This flag means that the buffer will overwrite old data
624  * when the buffer wraps. If this flag is not set, the buffer will
625  * drop data when the tail hits the head.
626  */
627 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
628 {
629         struct ring_buffer *buffer;
630         int bsize;
631         int cpu;
632
633         /* Paranoid! Optimizes out when all is well */
634         if (sizeof(struct buffer_page) > sizeof(struct page))
635                 ring_buffer_page_too_big();
636
637
638         /* keep it in its own cache line */
639         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
640                          GFP_KERNEL);
641         if (!buffer)
642                 return NULL;
643
644         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
645                 goto fail_free_buffer;
646
647         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
648         buffer->flags = flags;
649         buffer->clock = trace_clock_local;
650
651         /* need at least two pages */
652         if (buffer->pages == 1)
653                 buffer->pages++;
654
655         /*
656          * In case of non-hotplug cpu, if the ring-buffer is allocated
657          * in early initcall, it will not be notified of secondary cpus.
658          * In that off case, we need to allocate for all possible cpus.
659          */
660 #ifdef CONFIG_HOTPLUG_CPU
661         get_online_cpus();
662         cpumask_copy(buffer->cpumask, cpu_online_mask);
663 #else
664         cpumask_copy(buffer->cpumask, cpu_possible_mask);
665 #endif
666         buffer->cpus = nr_cpu_ids;
667
668         bsize = sizeof(void *) * nr_cpu_ids;
669         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
670                                   GFP_KERNEL);
671         if (!buffer->buffers)
672                 goto fail_free_cpumask;
673
674         for_each_buffer_cpu(buffer, cpu) {
675                 buffer->buffers[cpu] =
676                         rb_allocate_cpu_buffer(buffer, cpu);
677                 if (!buffer->buffers[cpu])
678                         goto fail_free_buffers;
679         }
680
681 #ifdef CONFIG_HOTPLUG_CPU
682         buffer->cpu_notify.notifier_call = rb_cpu_notify;
683         buffer->cpu_notify.priority = 0;
684         register_cpu_notifier(&buffer->cpu_notify);
685 #endif
686
687         put_online_cpus();
688         mutex_init(&buffer->mutex);
689
690         return buffer;
691
692  fail_free_buffers:
693         for_each_buffer_cpu(buffer, cpu) {
694                 if (buffer->buffers[cpu])
695                         rb_free_cpu_buffer(buffer->buffers[cpu]);
696         }
697         kfree(buffer->buffers);
698
699  fail_free_cpumask:
700         free_cpumask_var(buffer->cpumask);
701         put_online_cpus();
702
703  fail_free_buffer:
704         kfree(buffer);
705         return NULL;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
708
709 /**
710  * ring_buffer_free - free a ring buffer.
711  * @buffer: the buffer to free.
712  */
713 void
714 ring_buffer_free(struct ring_buffer *buffer)
715 {
716         int cpu;
717
718         get_online_cpus();
719
720 #ifdef CONFIG_HOTPLUG_CPU
721         unregister_cpu_notifier(&buffer->cpu_notify);
722 #endif
723
724         for_each_buffer_cpu(buffer, cpu)
725                 rb_free_cpu_buffer(buffer->buffers[cpu]);
726
727         put_online_cpus();
728
729         free_cpumask_var(buffer->cpumask);
730
731         kfree(buffer);
732 }
733 EXPORT_SYMBOL_GPL(ring_buffer_free);
734
735 void ring_buffer_set_clock(struct ring_buffer *buffer,
736                            u64 (*clock)(void))
737 {
738         buffer->clock = clock;
739 }
740
741 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
742
743 static void
744 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
745 {
746         struct buffer_page *bpage;
747         struct list_head *p;
748         unsigned i;
749
750         atomic_inc(&cpu_buffer->record_disabled);
751         synchronize_sched();
752
753         for (i = 0; i < nr_pages; i++) {
754                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
755                         return;
756                 p = cpu_buffer->pages.next;
757                 bpage = list_entry(p, struct buffer_page, list);
758                 list_del_init(&bpage->list);
759                 free_buffer_page(bpage);
760         }
761         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
762                 return;
763
764         rb_reset_cpu(cpu_buffer);
765
766         rb_check_pages(cpu_buffer);
767
768         atomic_dec(&cpu_buffer->record_disabled);
769
770 }
771
772 static void
773 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
774                 struct list_head *pages, unsigned nr_pages)
775 {
776         struct buffer_page *bpage;
777         struct list_head *p;
778         unsigned i;
779
780         atomic_inc(&cpu_buffer->record_disabled);
781         synchronize_sched();
782
783         for (i = 0; i < nr_pages; i++) {
784                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
785                         return;
786                 p = pages->next;
787                 bpage = list_entry(p, struct buffer_page, list);
788                 list_del_init(&bpage->list);
789                 list_add_tail(&bpage->list, &cpu_buffer->pages);
790         }
791         rb_reset_cpu(cpu_buffer);
792
793         rb_check_pages(cpu_buffer);
794
795         atomic_dec(&cpu_buffer->record_disabled);
796 }
797
798 /**
799  * ring_buffer_resize - resize the ring buffer
800  * @buffer: the buffer to resize.
801  * @size: the new size.
802  *
803  * The tracer is responsible for making sure that the buffer is
804  * not being used while changing the size.
805  * Note: We may be able to change the above requirement by using
806  *  RCU synchronizations.
807  *
808  * Minimum size is 2 * BUF_PAGE_SIZE.
809  *
810  * Returns -1 on failure.
811  */
812 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
813 {
814         struct ring_buffer_per_cpu *cpu_buffer;
815         unsigned nr_pages, rm_pages, new_pages;
816         struct buffer_page *bpage, *tmp;
817         unsigned long buffer_size;
818         unsigned long addr;
819         LIST_HEAD(pages);
820         int i, cpu;
821
822         /*
823          * Always succeed at resizing a non-existent buffer:
824          */
825         if (!buffer)
826                 return size;
827
828         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
829         size *= BUF_PAGE_SIZE;
830         buffer_size = buffer->pages * BUF_PAGE_SIZE;
831
832         /* we need a minimum of two pages */
833         if (size < BUF_PAGE_SIZE * 2)
834                 size = BUF_PAGE_SIZE * 2;
835
836         if (size == buffer_size)
837                 return size;
838
839         mutex_lock(&buffer->mutex);
840         get_online_cpus();
841
842         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
843
844         if (size < buffer_size) {
845
846                 /* easy case, just free pages */
847                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
848                         goto out_fail;
849
850                 rm_pages = buffer->pages - nr_pages;
851
852                 for_each_buffer_cpu(buffer, cpu) {
853                         cpu_buffer = buffer->buffers[cpu];
854                         rb_remove_pages(cpu_buffer, rm_pages);
855                 }
856                 goto out;
857         }
858
859         /*
860          * This is a bit more difficult. We only want to add pages
861          * when we can allocate enough for all CPUs. We do this
862          * by allocating all the pages and storing them on a local
863          * link list. If we succeed in our allocation, then we
864          * add these pages to the cpu_buffers. Otherwise we just free
865          * them all and return -ENOMEM;
866          */
867         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
868                 goto out_fail;
869
870         new_pages = nr_pages - buffer->pages;
871
872         for_each_buffer_cpu(buffer, cpu) {
873                 for (i = 0; i < new_pages; i++) {
874                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
875                                                   cache_line_size()),
876                                             GFP_KERNEL, cpu_to_node(cpu));
877                         if (!bpage)
878                                 goto free_pages;
879                         list_add(&bpage->list, &pages);
880                         addr = __get_free_page(GFP_KERNEL);
881                         if (!addr)
882                                 goto free_pages;
883                         bpage->page = (void *)addr;
884                         rb_init_page(bpage->page);
885                 }
886         }
887
888         for_each_buffer_cpu(buffer, cpu) {
889                 cpu_buffer = buffer->buffers[cpu];
890                 rb_insert_pages(cpu_buffer, &pages, new_pages);
891         }
892
893         if (RB_WARN_ON(buffer, !list_empty(&pages)))
894                 goto out_fail;
895
896  out:
897         buffer->pages = nr_pages;
898         put_online_cpus();
899         mutex_unlock(&buffer->mutex);
900
901         return size;
902
903  free_pages:
904         list_for_each_entry_safe(bpage, tmp, &pages, list) {
905                 list_del_init(&bpage->list);
906                 free_buffer_page(bpage);
907         }
908         put_online_cpus();
909         mutex_unlock(&buffer->mutex);
910         return -ENOMEM;
911
912         /*
913          * Something went totally wrong, and we are too paranoid
914          * to even clean up the mess.
915          */
916  out_fail:
917         put_online_cpus();
918         mutex_unlock(&buffer->mutex);
919         return -1;
920 }
921 EXPORT_SYMBOL_GPL(ring_buffer_resize);
922
923 static inline void *
924 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
925 {
926         return bpage->data + index;
927 }
928
929 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
930 {
931         return bpage->page->data + index;
932 }
933
934 static inline struct ring_buffer_event *
935 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
936 {
937         return __rb_page_index(cpu_buffer->reader_page,
938                                cpu_buffer->reader_page->read);
939 }
940
941 static inline struct ring_buffer_event *
942 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
943 {
944         return __rb_page_index(cpu_buffer->head_page,
945                                cpu_buffer->head_page->read);
946 }
947
948 static inline struct ring_buffer_event *
949 rb_iter_head_event(struct ring_buffer_iter *iter)
950 {
951         return __rb_page_index(iter->head_page, iter->head);
952 }
953
954 static inline unsigned rb_page_write(struct buffer_page *bpage)
955 {
956         return local_read(&bpage->write);
957 }
958
959 static inline unsigned rb_page_commit(struct buffer_page *bpage)
960 {
961         return local_read(&bpage->page->commit);
962 }
963
964 /* Size is determined by what has been commited */
965 static inline unsigned rb_page_size(struct buffer_page *bpage)
966 {
967         return rb_page_commit(bpage);
968 }
969
970 static inline unsigned
971 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
972 {
973         return rb_page_commit(cpu_buffer->commit_page);
974 }
975
976 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
977 {
978         return rb_page_commit(cpu_buffer->head_page);
979 }
980
981 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
982                                struct buffer_page **bpage)
983 {
984         struct list_head *p = (*bpage)->list.next;
985
986         if (p == &cpu_buffer->pages)
987                 p = p->next;
988
989         *bpage = list_entry(p, struct buffer_page, list);
990 }
991
992 static inline unsigned
993 rb_event_index(struct ring_buffer_event *event)
994 {
995         unsigned long addr = (unsigned long)event;
996
997         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
998 }
999
1000 static int
1001 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1002              struct ring_buffer_event *event)
1003 {
1004         unsigned long addr = (unsigned long)event;
1005         unsigned long index;
1006
1007         index = rb_event_index(event);
1008         addr &= PAGE_MASK;
1009
1010         return cpu_buffer->commit_page->page == (void *)addr &&
1011                 rb_commit_index(cpu_buffer) == index;
1012 }
1013
1014 static void
1015 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1016                     struct ring_buffer_event *event)
1017 {
1018         unsigned long addr = (unsigned long)event;
1019         unsigned long index;
1020
1021         index = rb_event_index(event);
1022         addr &= PAGE_MASK;
1023
1024         while (cpu_buffer->commit_page->page != (void *)addr) {
1025                 if (RB_WARN_ON(cpu_buffer,
1026                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1027                         return;
1028                 cpu_buffer->commit_page->page->commit =
1029                         cpu_buffer->commit_page->write;
1030                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1031                 cpu_buffer->write_stamp =
1032                         cpu_buffer->commit_page->page->time_stamp;
1033         }
1034
1035         /* Now set the commit to the event's index */
1036         local_set(&cpu_buffer->commit_page->page->commit, index);
1037 }
1038
1039 static void
1040 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1041 {
1042         /*
1043          * We only race with interrupts and NMIs on this CPU.
1044          * If we own the commit event, then we can commit
1045          * all others that interrupted us, since the interruptions
1046          * are in stack format (they finish before they come
1047          * back to us). This allows us to do a simple loop to
1048          * assign the commit to the tail.
1049          */
1050  again:
1051         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1052                 cpu_buffer->commit_page->page->commit =
1053                         cpu_buffer->commit_page->write;
1054                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1055                 cpu_buffer->write_stamp =
1056                         cpu_buffer->commit_page->page->time_stamp;
1057                 /* add barrier to keep gcc from optimizing too much */
1058                 barrier();
1059         }
1060         while (rb_commit_index(cpu_buffer) !=
1061                rb_page_write(cpu_buffer->commit_page)) {
1062                 cpu_buffer->commit_page->page->commit =
1063                         cpu_buffer->commit_page->write;
1064                 barrier();
1065         }
1066
1067         /* again, keep gcc from optimizing */
1068         barrier();
1069
1070         /*
1071          * If an interrupt came in just after the first while loop
1072          * and pushed the tail page forward, we will be left with
1073          * a dangling commit that will never go forward.
1074          */
1075         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1076                 goto again;
1077 }
1078
1079 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1080 {
1081         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1082         cpu_buffer->reader_page->read = 0;
1083 }
1084
1085 static void rb_inc_iter(struct ring_buffer_iter *iter)
1086 {
1087         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1088
1089         /*
1090          * The iterator could be on the reader page (it starts there).
1091          * But the head could have moved, since the reader was
1092          * found. Check for this case and assign the iterator
1093          * to the head page instead of next.
1094          */
1095         if (iter->head_page == cpu_buffer->reader_page)
1096                 iter->head_page = cpu_buffer->head_page;
1097         else
1098                 rb_inc_page(cpu_buffer, &iter->head_page);
1099
1100         iter->read_stamp = iter->head_page->page->time_stamp;
1101         iter->head = 0;
1102 }
1103
1104 /**
1105  * ring_buffer_update_event - update event type and data
1106  * @event: the even to update
1107  * @type: the type of event
1108  * @length: the size of the event field in the ring buffer
1109  *
1110  * Update the type and data fields of the event. The length
1111  * is the actual size that is written to the ring buffer,
1112  * and with this, we can determine what to place into the
1113  * data field.
1114  */
1115 static void
1116 rb_update_event(struct ring_buffer_event *event,
1117                          unsigned type, unsigned length)
1118 {
1119         event->type_len = type;
1120
1121         switch (type) {
1122
1123         case RINGBUF_TYPE_PADDING:
1124         case RINGBUF_TYPE_TIME_EXTEND:
1125         case RINGBUF_TYPE_TIME_STAMP:
1126                 break;
1127
1128         case 0:
1129                 length -= RB_EVNT_HDR_SIZE;
1130                 if (length > RB_MAX_SMALL_DATA)
1131                         event->array[0] = length;
1132                 else
1133                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1134                 break;
1135         default:
1136                 BUG();
1137         }
1138 }
1139
1140 static unsigned rb_calculate_event_length(unsigned length)
1141 {
1142         struct ring_buffer_event event; /* Used only for sizeof array */
1143
1144         /* zero length can cause confusions */
1145         if (!length)
1146                 length = 1;
1147
1148         if (length > RB_MAX_SMALL_DATA)
1149                 length += sizeof(event.array[0]);
1150
1151         length += RB_EVNT_HDR_SIZE;
1152         length = ALIGN(length, RB_ALIGNMENT);
1153
1154         return length;
1155 }
1156
1157
1158 static struct ring_buffer_event *
1159 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1160              unsigned long length, unsigned long tail,
1161              struct buffer_page *commit_page,
1162              struct buffer_page *tail_page, u64 *ts)
1163 {
1164         struct buffer_page *next_page, *head_page, *reader_page;
1165         struct ring_buffer *buffer = cpu_buffer->buffer;
1166         struct ring_buffer_event *event;
1167         bool lock_taken = false;
1168         unsigned long flags;
1169
1170         next_page = tail_page;
1171
1172         local_irq_save(flags);
1173         /*
1174          * Since the write to the buffer is still not
1175          * fully lockless, we must be careful with NMIs.
1176          * The locks in the writers are taken when a write
1177          * crosses to a new page. The locks protect against
1178          * races with the readers (this will soon be fixed
1179          * with a lockless solution).
1180          *
1181          * Because we can not protect against NMIs, and we
1182          * want to keep traces reentrant, we need to manage
1183          * what happens when we are in an NMI.
1184          *
1185          * NMIs can happen after we take the lock.
1186          * If we are in an NMI, only take the lock
1187          * if it is not already taken. Otherwise
1188          * simply fail.
1189          */
1190         if (unlikely(in_nmi())) {
1191                 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1192                         cpu_buffer->nmi_dropped++;
1193                         goto out_reset;
1194                 }
1195         } else
1196                 __raw_spin_lock(&cpu_buffer->lock);
1197
1198         lock_taken = true;
1199
1200         rb_inc_page(cpu_buffer, &next_page);
1201
1202         head_page = cpu_buffer->head_page;
1203         reader_page = cpu_buffer->reader_page;
1204
1205         /* we grabbed the lock before incrementing */
1206         if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1207                 goto out_reset;
1208
1209         /*
1210          * If for some reason, we had an interrupt storm that made
1211          * it all the way around the buffer, bail, and warn
1212          * about it.
1213          */
1214         if (unlikely(next_page == commit_page)) {
1215                 cpu_buffer->commit_overrun++;
1216                 goto out_reset;
1217         }
1218
1219         if (next_page == head_page) {
1220                 if (!(buffer->flags & RB_FL_OVERWRITE))
1221                         goto out_reset;
1222
1223                 /* tail_page has not moved yet? */
1224                 if (tail_page == cpu_buffer->tail_page) {
1225                         /* count overflows */
1226                         cpu_buffer->overrun +=
1227                                 local_read(&head_page->entries);
1228
1229                         rb_inc_page(cpu_buffer, &head_page);
1230                         cpu_buffer->head_page = head_page;
1231                         cpu_buffer->head_page->read = 0;
1232                 }
1233         }
1234
1235         /*
1236          * If the tail page is still the same as what we think
1237          * it is, then it is up to us to update the tail
1238          * pointer.
1239          */
1240         if (tail_page == cpu_buffer->tail_page) {
1241                 local_set(&next_page->write, 0);
1242                 local_set(&next_page->entries, 0);
1243                 local_set(&next_page->page->commit, 0);
1244                 cpu_buffer->tail_page = next_page;
1245
1246                 /* reread the time stamp */
1247                 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1248                 cpu_buffer->tail_page->page->time_stamp = *ts;
1249         }
1250
1251         /*
1252          * The actual tail page has moved forward.
1253          */
1254         if (tail < BUF_PAGE_SIZE) {
1255                 /* Mark the rest of the page with padding */
1256                 event = __rb_page_index(tail_page, tail);
1257                 rb_event_set_padding(event);
1258         }
1259
1260         /* Set the write back to the previous setting */
1261         local_sub(length, &tail_page->write);
1262
1263         /*
1264          * If this was a commit entry that failed,
1265          * increment that too
1266          */
1267         if (tail_page == cpu_buffer->commit_page &&
1268             tail == rb_commit_index(cpu_buffer)) {
1269                 rb_set_commit_to_write(cpu_buffer);
1270         }
1271
1272         __raw_spin_unlock(&cpu_buffer->lock);
1273         local_irq_restore(flags);
1274
1275         /* fail and let the caller try again */
1276         return ERR_PTR(-EAGAIN);
1277
1278  out_reset:
1279         /* reset write */
1280         local_sub(length, &tail_page->write);
1281
1282         if (likely(lock_taken))
1283                 __raw_spin_unlock(&cpu_buffer->lock);
1284         local_irq_restore(flags);
1285         return NULL;
1286 }
1287
1288 static struct ring_buffer_event *
1289 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1290                   unsigned type, unsigned long length, u64 *ts)
1291 {
1292         struct buffer_page *tail_page, *commit_page;
1293         struct ring_buffer_event *event;
1294         unsigned long tail, write;
1295
1296         commit_page = cpu_buffer->commit_page;
1297         /* we just need to protect against interrupts */
1298         barrier();
1299         tail_page = cpu_buffer->tail_page;
1300         write = local_add_return(length, &tail_page->write);
1301         tail = write - length;
1302
1303         /* See if we shot pass the end of this buffer page */
1304         if (write > BUF_PAGE_SIZE)
1305                 return rb_move_tail(cpu_buffer, length, tail,
1306                                     commit_page, tail_page, ts);
1307
1308         /* We reserved something on the buffer */
1309
1310         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1311                 return NULL;
1312
1313         event = __rb_page_index(tail_page, tail);
1314         rb_update_event(event, type, length);
1315
1316         /* The passed in type is zero for DATA */
1317         if (likely(!type))
1318                 local_inc(&tail_page->entries);
1319
1320         /*
1321          * If this is a commit and the tail is zero, then update
1322          * this page's time stamp.
1323          */
1324         if (!tail && rb_is_commit(cpu_buffer, event))
1325                 cpu_buffer->commit_page->page->time_stamp = *ts;
1326
1327         return event;
1328 }
1329
1330 static int
1331 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1332                   u64 *ts, u64 *delta)
1333 {
1334         struct ring_buffer_event *event;
1335         static int once;
1336         int ret;
1337
1338         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1339                 printk(KERN_WARNING "Delta way too big! %llu"
1340                        " ts=%llu write stamp = %llu\n",
1341                        (unsigned long long)*delta,
1342                        (unsigned long long)*ts,
1343                        (unsigned long long)cpu_buffer->write_stamp);
1344                 WARN_ON(1);
1345         }
1346
1347         /*
1348          * The delta is too big, we to add a
1349          * new timestamp.
1350          */
1351         event = __rb_reserve_next(cpu_buffer,
1352                                   RINGBUF_TYPE_TIME_EXTEND,
1353                                   RB_LEN_TIME_EXTEND,
1354                                   ts);
1355         if (!event)
1356                 return -EBUSY;
1357
1358         if (PTR_ERR(event) == -EAGAIN)
1359                 return -EAGAIN;
1360
1361         /* Only a commited time event can update the write stamp */
1362         if (rb_is_commit(cpu_buffer, event)) {
1363                 /*
1364                  * If this is the first on the page, then we need to
1365                  * update the page itself, and just put in a zero.
1366                  */
1367                 if (rb_event_index(event)) {
1368                         event->time_delta = *delta & TS_MASK;
1369                         event->array[0] = *delta >> TS_SHIFT;
1370                 } else {
1371                         cpu_buffer->commit_page->page->time_stamp = *ts;
1372                         event->time_delta = 0;
1373                         event->array[0] = 0;
1374                 }
1375                 cpu_buffer->write_stamp = *ts;
1376                 /* let the caller know this was the commit */
1377                 ret = 1;
1378         } else {
1379                 /* Darn, this is just wasted space */
1380                 event->time_delta = 0;
1381                 event->array[0] = 0;
1382                 ret = 0;
1383         }
1384
1385         *delta = 0;
1386
1387         return ret;
1388 }
1389
1390 static struct ring_buffer_event *
1391 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1392                       unsigned type, unsigned long length)
1393 {
1394         struct ring_buffer_event *event;
1395         u64 ts, delta;
1396         int commit = 0;
1397         int nr_loops = 0;
1398
1399  again:
1400         /*
1401          * We allow for interrupts to reenter here and do a trace.
1402          * If one does, it will cause this original code to loop
1403          * back here. Even with heavy interrupts happening, this
1404          * should only happen a few times in a row. If this happens
1405          * 1000 times in a row, there must be either an interrupt
1406          * storm or we have something buggy.
1407          * Bail!
1408          */
1409         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1410                 return NULL;
1411
1412         ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1413
1414         /*
1415          * Only the first commit can update the timestamp.
1416          * Yes there is a race here. If an interrupt comes in
1417          * just after the conditional and it traces too, then it
1418          * will also check the deltas. More than one timestamp may
1419          * also be made. But only the entry that did the actual
1420          * commit will be something other than zero.
1421          */
1422         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1423             rb_page_write(cpu_buffer->tail_page) ==
1424             rb_commit_index(cpu_buffer)) {
1425
1426                 delta = ts - cpu_buffer->write_stamp;
1427
1428                 /* make sure this delta is calculated here */
1429                 barrier();
1430
1431                 /* Did the write stamp get updated already? */
1432                 if (unlikely(ts < cpu_buffer->write_stamp))
1433                         delta = 0;
1434
1435                 if (test_time_stamp(delta)) {
1436
1437                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1438
1439                         if (commit == -EBUSY)
1440                                 return NULL;
1441
1442                         if (commit == -EAGAIN)
1443                                 goto again;
1444
1445                         RB_WARN_ON(cpu_buffer, commit < 0);
1446                 }
1447         } else
1448                 /* Non commits have zero deltas */
1449                 delta = 0;
1450
1451         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1452         if (PTR_ERR(event) == -EAGAIN)
1453                 goto again;
1454
1455         if (!event) {
1456                 if (unlikely(commit))
1457                         /*
1458                          * Ouch! We needed a timestamp and it was commited. But
1459                          * we didn't get our event reserved.
1460                          */
1461                         rb_set_commit_to_write(cpu_buffer);
1462                 return NULL;
1463         }
1464
1465         /*
1466          * If the timestamp was commited, make the commit our entry
1467          * now so that we will update it when needed.
1468          */
1469         if (commit)
1470                 rb_set_commit_event(cpu_buffer, event);
1471         else if (!rb_is_commit(cpu_buffer, event))
1472                 delta = 0;
1473
1474         event->time_delta = delta;
1475
1476         return event;
1477 }
1478
1479 #define TRACE_RECURSIVE_DEPTH 16
1480
1481 static int trace_recursive_lock(void)
1482 {
1483         current->trace_recursion++;
1484
1485         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1486                 return 0;
1487
1488         /* Disable all tracing before we do anything else */
1489         tracing_off_permanent();
1490
1491         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1492                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1493                     current->trace_recursion,
1494                     hardirq_count() >> HARDIRQ_SHIFT,
1495                     softirq_count() >> SOFTIRQ_SHIFT,
1496                     in_nmi());
1497
1498         WARN_ON_ONCE(1);
1499         return -1;
1500 }
1501
1502 static void trace_recursive_unlock(void)
1503 {
1504         WARN_ON_ONCE(!current->trace_recursion);
1505
1506         current->trace_recursion--;
1507 }
1508
1509 static DEFINE_PER_CPU(int, rb_need_resched);
1510
1511 /**
1512  * ring_buffer_lock_reserve - reserve a part of the buffer
1513  * @buffer: the ring buffer to reserve from
1514  * @length: the length of the data to reserve (excluding event header)
1515  *
1516  * Returns a reseverd event on the ring buffer to copy directly to.
1517  * The user of this interface will need to get the body to write into
1518  * and can use the ring_buffer_event_data() interface.
1519  *
1520  * The length is the length of the data needed, not the event length
1521  * which also includes the event header.
1522  *
1523  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1524  * If NULL is returned, then nothing has been allocated or locked.
1525  */
1526 struct ring_buffer_event *
1527 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1528 {
1529         struct ring_buffer_per_cpu *cpu_buffer;
1530         struct ring_buffer_event *event;
1531         int cpu, resched;
1532
1533         if (ring_buffer_flags != RB_BUFFERS_ON)
1534                 return NULL;
1535
1536         if (atomic_read(&buffer->record_disabled))
1537                 return NULL;
1538
1539         /* If we are tracing schedule, we don't want to recurse */
1540         resched = ftrace_preempt_disable();
1541
1542         if (trace_recursive_lock())
1543                 goto out_nocheck;
1544
1545         cpu = raw_smp_processor_id();
1546
1547         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1548                 goto out;
1549
1550         cpu_buffer = buffer->buffers[cpu];
1551
1552         if (atomic_read(&cpu_buffer->record_disabled))
1553                 goto out;
1554
1555         length = rb_calculate_event_length(length);
1556         if (length > BUF_PAGE_SIZE)
1557                 goto out;
1558
1559         event = rb_reserve_next_event(cpu_buffer, 0, length);
1560         if (!event)
1561                 goto out;
1562
1563         /*
1564          * Need to store resched state on this cpu.
1565          * Only the first needs to.
1566          */
1567
1568         if (preempt_count() == 1)
1569                 per_cpu(rb_need_resched, cpu) = resched;
1570
1571         return event;
1572
1573  out:
1574         trace_recursive_unlock();
1575
1576  out_nocheck:
1577         ftrace_preempt_enable(resched);
1578         return NULL;
1579 }
1580 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1581
1582 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1583                       struct ring_buffer_event *event)
1584 {
1585         local_inc(&cpu_buffer->entries);
1586
1587         /* Only process further if we own the commit */
1588         if (!rb_is_commit(cpu_buffer, event))
1589                 return;
1590
1591         cpu_buffer->write_stamp += event->time_delta;
1592
1593         rb_set_commit_to_write(cpu_buffer);
1594 }
1595
1596 /**
1597  * ring_buffer_unlock_commit - commit a reserved
1598  * @buffer: The buffer to commit to
1599  * @event: The event pointer to commit.
1600  *
1601  * This commits the data to the ring buffer, and releases any locks held.
1602  *
1603  * Must be paired with ring_buffer_lock_reserve.
1604  */
1605 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1606                               struct ring_buffer_event *event)
1607 {
1608         struct ring_buffer_per_cpu *cpu_buffer;
1609         int cpu = raw_smp_processor_id();
1610
1611         cpu_buffer = buffer->buffers[cpu];
1612
1613         rb_commit(cpu_buffer, event);
1614
1615         trace_recursive_unlock();
1616
1617         /*
1618          * Only the last preempt count needs to restore preemption.
1619          */
1620         if (preempt_count() == 1)
1621                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1622         else
1623                 preempt_enable_no_resched_notrace();
1624
1625         return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1628
1629 static inline void rb_event_discard(struct ring_buffer_event *event)
1630 {
1631         /* array[0] holds the actual length for the discarded event */
1632         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1633         event->type_len = RINGBUF_TYPE_PADDING;
1634         /* time delta must be non zero */
1635         if (!event->time_delta)
1636                 event->time_delta = 1;
1637 }
1638
1639 /**
1640  * ring_buffer_event_discard - discard any event in the ring buffer
1641  * @event: the event to discard
1642  *
1643  * Sometimes a event that is in the ring buffer needs to be ignored.
1644  * This function lets the user discard an event in the ring buffer
1645  * and then that event will not be read later.
1646  *
1647  * Note, it is up to the user to be careful with this, and protect
1648  * against races. If the user discards an event that has been consumed
1649  * it is possible that it could corrupt the ring buffer.
1650  */
1651 void ring_buffer_event_discard(struct ring_buffer_event *event)
1652 {
1653         rb_event_discard(event);
1654 }
1655 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1656
1657 /**
1658  * ring_buffer_commit_discard - discard an event that has not been committed
1659  * @buffer: the ring buffer
1660  * @event: non committed event to discard
1661  *
1662  * This is similar to ring_buffer_event_discard but must only be
1663  * performed on an event that has not been committed yet. The difference
1664  * is that this will also try to free the event from the ring buffer
1665  * if another event has not been added behind it.
1666  *
1667  * If another event has been added behind it, it will set the event
1668  * up as discarded, and perform the commit.
1669  *
1670  * If this function is called, do not call ring_buffer_unlock_commit on
1671  * the event.
1672  */
1673 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1674                                 struct ring_buffer_event *event)
1675 {
1676         struct ring_buffer_per_cpu *cpu_buffer;
1677         unsigned long new_index, old_index;
1678         struct buffer_page *bpage;
1679         unsigned long index;
1680         unsigned long addr;
1681         int cpu;
1682
1683         /* The event is discarded regardless */
1684         rb_event_discard(event);
1685
1686         /*
1687          * This must only be called if the event has not been
1688          * committed yet. Thus we can assume that preemption
1689          * is still disabled.
1690          */
1691         RB_WARN_ON(buffer, !preempt_count());
1692
1693         cpu = smp_processor_id();
1694         cpu_buffer = buffer->buffers[cpu];
1695
1696         new_index = rb_event_index(event);
1697         old_index = new_index + rb_event_length(event);
1698         addr = (unsigned long)event;
1699         addr &= PAGE_MASK;
1700
1701         bpage = cpu_buffer->tail_page;
1702
1703         if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1704                 /*
1705                  * This is on the tail page. It is possible that
1706                  * a write could come in and move the tail page
1707                  * and write to the next page. That is fine
1708                  * because we just shorten what is on this page.
1709                  */
1710                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1711                 if (index == old_index)
1712                         goto out;
1713         }
1714
1715         /*
1716          * The commit is still visible by the reader, so we
1717          * must increment entries.
1718          */
1719         local_inc(&cpu_buffer->entries);
1720  out:
1721         /*
1722          * If a write came in and pushed the tail page
1723          * we still need to update the commit pointer
1724          * if we were the commit.
1725          */
1726         if (rb_is_commit(cpu_buffer, event))
1727                 rb_set_commit_to_write(cpu_buffer);
1728
1729         trace_recursive_unlock();
1730
1731         /*
1732          * Only the last preempt count needs to restore preemption.
1733          */
1734         if (preempt_count() == 1)
1735                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1736         else
1737                 preempt_enable_no_resched_notrace();
1738
1739 }
1740 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1741
1742 /**
1743  * ring_buffer_write - write data to the buffer without reserving
1744  * @buffer: The ring buffer to write to.
1745  * @length: The length of the data being written (excluding the event header)
1746  * @data: The data to write to the buffer.
1747  *
1748  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1749  * one function. If you already have the data to write to the buffer, it
1750  * may be easier to simply call this function.
1751  *
1752  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1753  * and not the length of the event which would hold the header.
1754  */
1755 int ring_buffer_write(struct ring_buffer *buffer,
1756                         unsigned long length,
1757                         void *data)
1758 {
1759         struct ring_buffer_per_cpu *cpu_buffer;
1760         struct ring_buffer_event *event;
1761         unsigned long event_length;
1762         void *body;
1763         int ret = -EBUSY;
1764         int cpu, resched;
1765
1766         if (ring_buffer_flags != RB_BUFFERS_ON)
1767                 return -EBUSY;
1768
1769         if (atomic_read(&buffer->record_disabled))
1770                 return -EBUSY;
1771
1772         resched = ftrace_preempt_disable();
1773
1774         cpu = raw_smp_processor_id();
1775
1776         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1777                 goto out;
1778
1779         cpu_buffer = buffer->buffers[cpu];
1780
1781         if (atomic_read(&cpu_buffer->record_disabled))
1782                 goto out;
1783
1784         event_length = rb_calculate_event_length(length);
1785         event = rb_reserve_next_event(cpu_buffer, 0, event_length);
1786         if (!event)
1787                 goto out;
1788
1789         body = rb_event_data(event);
1790
1791         memcpy(body, data, length);
1792
1793         rb_commit(cpu_buffer, event);
1794
1795         ret = 0;
1796  out:
1797         ftrace_preempt_enable(resched);
1798
1799         return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(ring_buffer_write);
1802
1803 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1804 {
1805         struct buffer_page *reader = cpu_buffer->reader_page;
1806         struct buffer_page *head = cpu_buffer->head_page;
1807         struct buffer_page *commit = cpu_buffer->commit_page;
1808
1809         return reader->read == rb_page_commit(reader) &&
1810                 (commit == reader ||
1811                  (commit == head &&
1812                   head->read == rb_page_commit(commit)));
1813 }
1814
1815 /**
1816  * ring_buffer_record_disable - stop all writes into the buffer
1817  * @buffer: The ring buffer to stop writes to.
1818  *
1819  * This prevents all writes to the buffer. Any attempt to write
1820  * to the buffer after this will fail and return NULL.
1821  *
1822  * The caller should call synchronize_sched() after this.
1823  */
1824 void ring_buffer_record_disable(struct ring_buffer *buffer)
1825 {
1826         atomic_inc(&buffer->record_disabled);
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1829
1830 /**
1831  * ring_buffer_record_enable - enable writes to the buffer
1832  * @buffer: The ring buffer to enable writes
1833  *
1834  * Note, multiple disables will need the same number of enables
1835  * to truely enable the writing (much like preempt_disable).
1836  */
1837 void ring_buffer_record_enable(struct ring_buffer *buffer)
1838 {
1839         atomic_dec(&buffer->record_disabled);
1840 }
1841 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1842
1843 /**
1844  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1845  * @buffer: The ring buffer to stop writes to.
1846  * @cpu: The CPU buffer to stop
1847  *
1848  * This prevents all writes to the buffer. Any attempt to write
1849  * to the buffer after this will fail and return NULL.
1850  *
1851  * The caller should call synchronize_sched() after this.
1852  */
1853 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1854 {
1855         struct ring_buffer_per_cpu *cpu_buffer;
1856
1857         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1858                 return;
1859
1860         cpu_buffer = buffer->buffers[cpu];
1861         atomic_inc(&cpu_buffer->record_disabled);
1862 }
1863 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1864
1865 /**
1866  * ring_buffer_record_enable_cpu - enable writes to the buffer
1867  * @buffer: The ring buffer to enable writes
1868  * @cpu: The CPU to enable.
1869  *
1870  * Note, multiple disables will need the same number of enables
1871  * to truely enable the writing (much like preempt_disable).
1872  */
1873 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1874 {
1875         struct ring_buffer_per_cpu *cpu_buffer;
1876
1877         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1878                 return;
1879
1880         cpu_buffer = buffer->buffers[cpu];
1881         atomic_dec(&cpu_buffer->record_disabled);
1882 }
1883 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1884
1885 /**
1886  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1887  * @buffer: The ring buffer
1888  * @cpu: The per CPU buffer to get the entries from.
1889  */
1890 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1891 {
1892         struct ring_buffer_per_cpu *cpu_buffer;
1893         unsigned long ret;
1894
1895         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1896                 return 0;
1897
1898         cpu_buffer = buffer->buffers[cpu];
1899         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1900                 - cpu_buffer->read;
1901
1902         return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1905
1906 /**
1907  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1908  * @buffer: The ring buffer
1909  * @cpu: The per CPU buffer to get the number of overruns from
1910  */
1911 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1912 {
1913         struct ring_buffer_per_cpu *cpu_buffer;
1914         unsigned long ret;
1915
1916         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1917                 return 0;
1918
1919         cpu_buffer = buffer->buffers[cpu];
1920         ret = cpu_buffer->overrun;
1921
1922         return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1925
1926 /**
1927  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1928  * @buffer: The ring buffer
1929  * @cpu: The per CPU buffer to get the number of overruns from
1930  */
1931 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1932 {
1933         struct ring_buffer_per_cpu *cpu_buffer;
1934         unsigned long ret;
1935
1936         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1937                 return 0;
1938
1939         cpu_buffer = buffer->buffers[cpu];
1940         ret = cpu_buffer->nmi_dropped;
1941
1942         return ret;
1943 }
1944 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1945
1946 /**
1947  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1948  * @buffer: The ring buffer
1949  * @cpu: The per CPU buffer to get the number of overruns from
1950  */
1951 unsigned long
1952 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1953 {
1954         struct ring_buffer_per_cpu *cpu_buffer;
1955         unsigned long ret;
1956
1957         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1958                 return 0;
1959
1960         cpu_buffer = buffer->buffers[cpu];
1961         ret = cpu_buffer->commit_overrun;
1962
1963         return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1966
1967 /**
1968  * ring_buffer_entries - get the number of entries in a buffer
1969  * @buffer: The ring buffer
1970  *
1971  * Returns the total number of entries in the ring buffer
1972  * (all CPU entries)
1973  */
1974 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1975 {
1976         struct ring_buffer_per_cpu *cpu_buffer;
1977         unsigned long entries = 0;
1978         int cpu;
1979
1980         /* if you care about this being correct, lock the buffer */
1981         for_each_buffer_cpu(buffer, cpu) {
1982                 cpu_buffer = buffer->buffers[cpu];
1983                 entries += (local_read(&cpu_buffer->entries) -
1984                             cpu_buffer->overrun) - cpu_buffer->read;
1985         }
1986
1987         return entries;
1988 }
1989 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1990
1991 /**
1992  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1993  * @buffer: The ring buffer
1994  *
1995  * Returns the total number of overruns in the ring buffer
1996  * (all CPU entries)
1997  */
1998 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1999 {
2000         struct ring_buffer_per_cpu *cpu_buffer;
2001         unsigned long overruns = 0;
2002         int cpu;
2003
2004         /* if you care about this being correct, lock the buffer */
2005         for_each_buffer_cpu(buffer, cpu) {
2006                 cpu_buffer = buffer->buffers[cpu];
2007                 overruns += cpu_buffer->overrun;
2008         }
2009
2010         return overruns;
2011 }
2012 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2013
2014 static void rb_iter_reset(struct ring_buffer_iter *iter)
2015 {
2016         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2017
2018         /* Iterator usage is expected to have record disabled */
2019         if (list_empty(&cpu_buffer->reader_page->list)) {
2020                 iter->head_page = cpu_buffer->head_page;
2021                 iter->head = cpu_buffer->head_page->read;
2022         } else {
2023                 iter->head_page = cpu_buffer->reader_page;
2024                 iter->head = cpu_buffer->reader_page->read;
2025         }
2026         if (iter->head)
2027                 iter->read_stamp = cpu_buffer->read_stamp;
2028         else
2029                 iter->read_stamp = iter->head_page->page->time_stamp;
2030 }
2031
2032 /**
2033  * ring_buffer_iter_reset - reset an iterator
2034  * @iter: The iterator to reset
2035  *
2036  * Resets the iterator, so that it will start from the beginning
2037  * again.
2038  */
2039 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2040 {
2041         struct ring_buffer_per_cpu *cpu_buffer;
2042         unsigned long flags;
2043
2044         if (!iter)
2045                 return;
2046
2047         cpu_buffer = iter->cpu_buffer;
2048
2049         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2050         rb_iter_reset(iter);
2051         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2052 }
2053 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2054
2055 /**
2056  * ring_buffer_iter_empty - check if an iterator has no more to read
2057  * @iter: The iterator to check
2058  */
2059 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2060 {
2061         struct ring_buffer_per_cpu *cpu_buffer;
2062
2063         cpu_buffer = iter->cpu_buffer;
2064
2065         return iter->head_page == cpu_buffer->commit_page &&
2066                 iter->head == rb_commit_index(cpu_buffer);
2067 }
2068 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2069
2070 static void
2071 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2072                      struct ring_buffer_event *event)
2073 {
2074         u64 delta;
2075
2076         switch (event->type_len) {
2077         case RINGBUF_TYPE_PADDING:
2078                 return;
2079
2080         case RINGBUF_TYPE_TIME_EXTEND:
2081                 delta = event->array[0];
2082                 delta <<= TS_SHIFT;
2083                 delta += event->time_delta;
2084                 cpu_buffer->read_stamp += delta;
2085                 return;
2086
2087         case RINGBUF_TYPE_TIME_STAMP:
2088                 /* FIXME: not implemented */
2089                 return;
2090
2091         case RINGBUF_TYPE_DATA:
2092                 cpu_buffer->read_stamp += event->time_delta;
2093                 return;
2094
2095         default:
2096                 BUG();
2097         }
2098         return;
2099 }
2100
2101 static void
2102 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2103                           struct ring_buffer_event *event)
2104 {
2105         u64 delta;
2106
2107         switch (event->type_len) {
2108         case RINGBUF_TYPE_PADDING:
2109                 return;
2110
2111         case RINGBUF_TYPE_TIME_EXTEND:
2112                 delta = event->array[0];
2113                 delta <<= TS_SHIFT;
2114                 delta += event->time_delta;
2115                 iter->read_stamp += delta;
2116                 return;
2117
2118         case RINGBUF_TYPE_TIME_STAMP:
2119                 /* FIXME: not implemented */
2120                 return;
2121
2122         case RINGBUF_TYPE_DATA:
2123                 iter->read_stamp += event->time_delta;
2124                 return;
2125
2126         default:
2127                 BUG();
2128         }
2129         return;
2130 }
2131
2132 static struct buffer_page *
2133 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2134 {
2135         struct buffer_page *reader = NULL;
2136         unsigned long flags;
2137         int nr_loops = 0;
2138
2139         local_irq_save(flags);
2140         __raw_spin_lock(&cpu_buffer->lock);
2141
2142  again:
2143         /*
2144          * This should normally only loop twice. But because the
2145          * start of the reader inserts an empty page, it causes
2146          * a case where we will loop three times. There should be no
2147          * reason to loop four times (that I know of).
2148          */
2149         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2150                 reader = NULL;
2151                 goto out;
2152         }
2153
2154         reader = cpu_buffer->reader_page;
2155
2156         /* If there's more to read, return this page */
2157         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2158                 goto out;
2159
2160         /* Never should we have an index greater than the size */
2161         if (RB_WARN_ON(cpu_buffer,
2162                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2163                 goto out;
2164
2165         /* check if we caught up to the tail */
2166         reader = NULL;
2167         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2168                 goto out;
2169
2170         /*
2171          * Splice the empty reader page into the list around the head.
2172          * Reset the reader page to size zero.
2173          */
2174
2175         reader = cpu_buffer->head_page;
2176         cpu_buffer->reader_page->list.next = reader->list.next;
2177         cpu_buffer->reader_page->list.prev = reader->list.prev;
2178
2179         local_set(&cpu_buffer->reader_page->write, 0);
2180         local_set(&cpu_buffer->reader_page->entries, 0);
2181         local_set(&cpu_buffer->reader_page->page->commit, 0);
2182
2183         /* Make the reader page now replace the head */
2184         reader->list.prev->next = &cpu_buffer->reader_page->list;
2185         reader->list.next->prev = &cpu_buffer->reader_page->list;
2186
2187         /*
2188          * If the tail is on the reader, then we must set the head
2189          * to the inserted page, otherwise we set it one before.
2190          */
2191         cpu_buffer->head_page = cpu_buffer->reader_page;
2192
2193         if (cpu_buffer->commit_page != reader)
2194                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2195
2196         /* Finally update the reader page to the new head */
2197         cpu_buffer->reader_page = reader;
2198         rb_reset_reader_page(cpu_buffer);
2199
2200         goto again;
2201
2202  out:
2203         __raw_spin_unlock(&cpu_buffer->lock);
2204         local_irq_restore(flags);
2205
2206         return reader;
2207 }
2208
2209 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2210 {
2211         struct ring_buffer_event *event;
2212         struct buffer_page *reader;
2213         unsigned length;
2214
2215         reader = rb_get_reader_page(cpu_buffer);
2216
2217         /* This function should not be called when buffer is empty */
2218         if (RB_WARN_ON(cpu_buffer, !reader))
2219                 return;
2220
2221         event = rb_reader_event(cpu_buffer);
2222
2223         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2224                         || rb_discarded_event(event))
2225                 cpu_buffer->read++;
2226
2227         rb_update_read_stamp(cpu_buffer, event);
2228
2229         length = rb_event_length(event);
2230         cpu_buffer->reader_page->read += length;
2231 }
2232
2233 static void rb_advance_iter(struct ring_buffer_iter *iter)
2234 {
2235         struct ring_buffer *buffer;
2236         struct ring_buffer_per_cpu *cpu_buffer;
2237         struct ring_buffer_event *event;
2238         unsigned length;
2239
2240         cpu_buffer = iter->cpu_buffer;
2241         buffer = cpu_buffer->buffer;
2242
2243         /*
2244          * Check if we are at the end of the buffer.
2245          */
2246         if (iter->head >= rb_page_size(iter->head_page)) {
2247                 if (RB_WARN_ON(buffer,
2248                                iter->head_page == cpu_buffer->commit_page))
2249                         return;
2250                 rb_inc_iter(iter);
2251                 return;
2252         }
2253
2254         event = rb_iter_head_event(iter);
2255
2256         length = rb_event_length(event);
2257
2258         /*
2259          * This should not be called to advance the header if we are
2260          * at the tail of the buffer.
2261          */
2262         if (RB_WARN_ON(cpu_buffer,
2263                        (iter->head_page == cpu_buffer->commit_page) &&
2264                        (iter->head + length > rb_commit_index(cpu_buffer))))
2265                 return;
2266
2267         rb_update_iter_read_stamp(iter, event);
2268
2269         iter->head += length;
2270
2271         /* check for end of page padding */
2272         if ((iter->head >= rb_page_size(iter->head_page)) &&
2273             (iter->head_page != cpu_buffer->commit_page))
2274                 rb_advance_iter(iter);
2275 }
2276
2277 static struct ring_buffer_event *
2278 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2279 {
2280         struct ring_buffer_per_cpu *cpu_buffer;
2281         struct ring_buffer_event *event;
2282         struct buffer_page *reader;
2283         int nr_loops = 0;
2284
2285         cpu_buffer = buffer->buffers[cpu];
2286
2287  again:
2288         /*
2289          * We repeat when a timestamp is encountered. It is possible
2290          * to get multiple timestamps from an interrupt entering just
2291          * as one timestamp is about to be written. The max times
2292          * that this can happen is the number of nested interrupts we
2293          * can have.  Nesting 10 deep of interrupts is clearly
2294          * an anomaly.
2295          */
2296         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2297                 return NULL;
2298
2299         reader = rb_get_reader_page(cpu_buffer);
2300         if (!reader)
2301                 return NULL;
2302
2303         event = rb_reader_event(cpu_buffer);
2304
2305         switch (event->type_len) {
2306         case RINGBUF_TYPE_PADDING:
2307                 if (rb_null_event(event))
2308                         RB_WARN_ON(cpu_buffer, 1);
2309                 /*
2310                  * Because the writer could be discarding every
2311                  * event it creates (which would probably be bad)
2312                  * if we were to go back to "again" then we may never
2313                  * catch up, and will trigger the warn on, or lock
2314                  * the box. Return the padding, and we will release
2315                  * the current locks, and try again.
2316                  */
2317                 rb_advance_reader(cpu_buffer);
2318                 return event;
2319
2320         case RINGBUF_TYPE_TIME_EXTEND:
2321                 /* Internal data, OK to advance */
2322                 rb_advance_reader(cpu_buffer);
2323                 goto again;
2324
2325         case RINGBUF_TYPE_TIME_STAMP:
2326                 /* FIXME: not implemented */
2327                 rb_advance_reader(cpu_buffer);
2328                 goto again;
2329
2330         case RINGBUF_TYPE_DATA:
2331                 if (ts) {
2332                         *ts = cpu_buffer->read_stamp + event->time_delta;
2333                         ring_buffer_normalize_time_stamp(buffer,
2334                                                          cpu_buffer->cpu, ts);
2335                 }
2336                 return event;
2337
2338         default:
2339                 BUG();
2340         }
2341
2342         return NULL;
2343 }
2344 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2345
2346 static struct ring_buffer_event *
2347 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2348 {
2349         struct ring_buffer *buffer;
2350         struct ring_buffer_per_cpu *cpu_buffer;
2351         struct ring_buffer_event *event;
2352         int nr_loops = 0;
2353
2354         if (ring_buffer_iter_empty(iter))
2355                 return NULL;
2356
2357         cpu_buffer = iter->cpu_buffer;
2358         buffer = cpu_buffer->buffer;
2359
2360  again:
2361         /*
2362          * We repeat when a timestamp is encountered. It is possible
2363          * to get multiple timestamps from an interrupt entering just
2364          * as one timestamp is about to be written. The max times
2365          * that this can happen is the number of nested interrupts we
2366          * can have. Nesting 10 deep of interrupts is clearly
2367          * an anomaly.
2368          */
2369         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2370                 return NULL;
2371
2372         if (rb_per_cpu_empty(cpu_buffer))
2373                 return NULL;
2374
2375         event = rb_iter_head_event(iter);
2376
2377         switch (event->type_len) {
2378         case RINGBUF_TYPE_PADDING:
2379                 if (rb_null_event(event)) {
2380                         rb_inc_iter(iter);
2381                         goto again;
2382                 }
2383                 rb_advance_iter(iter);
2384                 return event;
2385
2386         case RINGBUF_TYPE_TIME_EXTEND:
2387                 /* Internal data, OK to advance */
2388                 rb_advance_iter(iter);
2389                 goto again;
2390
2391         case RINGBUF_TYPE_TIME_STAMP:
2392                 /* FIXME: not implemented */
2393                 rb_advance_iter(iter);
2394                 goto again;
2395
2396         case RINGBUF_TYPE_DATA:
2397                 if (ts) {
2398                         *ts = iter->read_stamp + event->time_delta;
2399                         ring_buffer_normalize_time_stamp(buffer,
2400                                                          cpu_buffer->cpu, ts);
2401                 }
2402                 return event;
2403
2404         default:
2405                 BUG();
2406         }
2407
2408         return NULL;
2409 }
2410 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2411
2412 /**
2413  * ring_buffer_peek - peek at the next event to be read
2414  * @buffer: The ring buffer to read
2415  * @cpu: The cpu to peak at
2416  * @ts: The timestamp counter of this event.
2417  *
2418  * This will return the event that will be read next, but does
2419  * not consume the data.
2420  */
2421 struct ring_buffer_event *
2422 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2423 {
2424         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2425         struct ring_buffer_event *event;
2426         unsigned long flags;
2427
2428         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2429                 return NULL;
2430
2431  again:
2432         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2433         event = rb_buffer_peek(buffer, cpu, ts);
2434         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2435
2436         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2437                 cpu_relax();
2438                 goto again;
2439         }
2440
2441         return event;
2442 }
2443
2444 /**
2445  * ring_buffer_iter_peek - peek at the next event to be read
2446  * @iter: The ring buffer iterator
2447  * @ts: The timestamp counter of this event.
2448  *
2449  * This will return the event that will be read next, but does
2450  * not increment the iterator.
2451  */
2452 struct ring_buffer_event *
2453 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2454 {
2455         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2456         struct ring_buffer_event *event;
2457         unsigned long flags;
2458
2459  again:
2460         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2461         event = rb_iter_peek(iter, ts);
2462         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2463
2464         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2465                 cpu_relax();
2466                 goto again;
2467         }
2468
2469         return event;
2470 }
2471
2472 /**
2473  * ring_buffer_consume - return an event and consume it
2474  * @buffer: The ring buffer to get the next event from
2475  *
2476  * Returns the next event in the ring buffer, and that event is consumed.
2477  * Meaning, that sequential reads will keep returning a different event,
2478  * and eventually empty the ring buffer if the producer is slower.
2479  */
2480 struct ring_buffer_event *
2481 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2482 {
2483         struct ring_buffer_per_cpu *cpu_buffer;
2484         struct ring_buffer_event *event = NULL;
2485         unsigned long flags;
2486
2487  again:
2488         /* might be called in atomic */
2489         preempt_disable();
2490
2491         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2492                 goto out;
2493
2494         cpu_buffer = buffer->buffers[cpu];
2495         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2496
2497         event = rb_buffer_peek(buffer, cpu, ts);
2498         if (!event)
2499                 goto out_unlock;
2500
2501         rb_advance_reader(cpu_buffer);
2502
2503  out_unlock:
2504         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2505
2506  out:
2507         preempt_enable();
2508
2509         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2510                 cpu_relax();
2511                 goto again;
2512         }
2513
2514         return event;
2515 }
2516 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2517
2518 /**
2519  * ring_buffer_read_start - start a non consuming read of the buffer
2520  * @buffer: The ring buffer to read from
2521  * @cpu: The cpu buffer to iterate over
2522  *
2523  * This starts up an iteration through the buffer. It also disables
2524  * the recording to the buffer until the reading is finished.
2525  * This prevents the reading from being corrupted. This is not
2526  * a consuming read, so a producer is not expected.
2527  *
2528  * Must be paired with ring_buffer_finish.
2529  */
2530 struct ring_buffer_iter *
2531 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2532 {
2533         struct ring_buffer_per_cpu *cpu_buffer;
2534         struct ring_buffer_iter *iter;
2535         unsigned long flags;
2536
2537         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2538                 return NULL;
2539
2540         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2541         if (!iter)
2542                 return NULL;
2543
2544         cpu_buffer = buffer->buffers[cpu];
2545
2546         iter->cpu_buffer = cpu_buffer;
2547
2548         atomic_inc(&cpu_buffer->record_disabled);
2549         synchronize_sched();
2550
2551         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2552         __raw_spin_lock(&cpu_buffer->lock);
2553         rb_iter_reset(iter);
2554         __raw_spin_unlock(&cpu_buffer->lock);
2555         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2556
2557         return iter;
2558 }
2559 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2560
2561 /**
2562  * ring_buffer_finish - finish reading the iterator of the buffer
2563  * @iter: The iterator retrieved by ring_buffer_start
2564  *
2565  * This re-enables the recording to the buffer, and frees the
2566  * iterator.
2567  */
2568 void
2569 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2570 {
2571         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2572
2573         atomic_dec(&cpu_buffer->record_disabled);
2574         kfree(iter);
2575 }
2576 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2577
2578 /**
2579  * ring_buffer_read - read the next item in the ring buffer by the iterator
2580  * @iter: The ring buffer iterator
2581  * @ts: The time stamp of the event read.
2582  *
2583  * This reads the next event in the ring buffer and increments the iterator.
2584  */
2585 struct ring_buffer_event *
2586 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2587 {
2588         struct ring_buffer_event *event;
2589         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2590         unsigned long flags;
2591
2592  again:
2593         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2594         event = rb_iter_peek(iter, ts);
2595         if (!event)
2596                 goto out;
2597
2598         rb_advance_iter(iter);
2599  out:
2600         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2601
2602         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2603                 cpu_relax();
2604                 goto again;
2605         }
2606
2607         return event;
2608 }
2609 EXPORT_SYMBOL_GPL(ring_buffer_read);
2610
2611 /**
2612  * ring_buffer_size - return the size of the ring buffer (in bytes)
2613  * @buffer: The ring buffer.
2614  */
2615 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2616 {
2617         return BUF_PAGE_SIZE * buffer->pages;
2618 }
2619 EXPORT_SYMBOL_GPL(ring_buffer_size);
2620
2621 static void
2622 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2623 {
2624         cpu_buffer->head_page
2625                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2626         local_set(&cpu_buffer->head_page->write, 0);
2627         local_set(&cpu_buffer->head_page->entries, 0);
2628         local_set(&cpu_buffer->head_page->page->commit, 0);
2629
2630         cpu_buffer->head_page->read = 0;
2631
2632         cpu_buffer->tail_page = cpu_buffer->head_page;
2633         cpu_buffer->commit_page = cpu_buffer->head_page;
2634
2635         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2636         local_set(&cpu_buffer->reader_page->write, 0);
2637         local_set(&cpu_buffer->reader_page->entries, 0);
2638         local_set(&cpu_buffer->reader_page->page->commit, 0);
2639         cpu_buffer->reader_page->read = 0;
2640
2641         cpu_buffer->nmi_dropped = 0;
2642         cpu_buffer->commit_overrun = 0;
2643         cpu_buffer->overrun = 0;
2644         cpu_buffer->read = 0;
2645         local_set(&cpu_buffer->entries, 0);
2646
2647         cpu_buffer->write_stamp = 0;
2648         cpu_buffer->read_stamp = 0;
2649 }
2650
2651 /**
2652  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2653  * @buffer: The ring buffer to reset a per cpu buffer of
2654  * @cpu: The CPU buffer to be reset
2655  */
2656 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2657 {
2658         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2659         unsigned long flags;
2660
2661         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2662                 return;
2663
2664         atomic_inc(&cpu_buffer->record_disabled);
2665
2666         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2667
2668         __raw_spin_lock(&cpu_buffer->lock);
2669
2670         rb_reset_cpu(cpu_buffer);
2671
2672         __raw_spin_unlock(&cpu_buffer->lock);
2673
2674         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2675
2676         atomic_dec(&cpu_buffer->record_disabled);
2677 }
2678 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2679
2680 /**
2681  * ring_buffer_reset - reset a ring buffer
2682  * @buffer: The ring buffer to reset all cpu buffers
2683  */
2684 void ring_buffer_reset(struct ring_buffer *buffer)
2685 {
2686         int cpu;
2687
2688         for_each_buffer_cpu(buffer, cpu)
2689                 ring_buffer_reset_cpu(buffer, cpu);
2690 }
2691 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2692
2693 /**
2694  * rind_buffer_empty - is the ring buffer empty?
2695  * @buffer: The ring buffer to test
2696  */
2697 int ring_buffer_empty(struct ring_buffer *buffer)
2698 {
2699         struct ring_buffer_per_cpu *cpu_buffer;
2700         int cpu;
2701
2702         /* yes this is racy, but if you don't like the race, lock the buffer */
2703         for_each_buffer_cpu(buffer, cpu) {
2704                 cpu_buffer = buffer->buffers[cpu];
2705                 if (!rb_per_cpu_empty(cpu_buffer))
2706                         return 0;
2707         }
2708
2709         return 1;
2710 }
2711 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2712
2713 /**
2714  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2715  * @buffer: The ring buffer
2716  * @cpu: The CPU buffer to test
2717  */
2718 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2719 {
2720         struct ring_buffer_per_cpu *cpu_buffer;
2721         int ret;
2722
2723         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2724                 return 1;
2725
2726         cpu_buffer = buffer->buffers[cpu];
2727         ret = rb_per_cpu_empty(cpu_buffer);
2728
2729
2730         return ret;
2731 }
2732 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2733
2734 /**
2735  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2736  * @buffer_a: One buffer to swap with
2737  * @buffer_b: The other buffer to swap with
2738  *
2739  * This function is useful for tracers that want to take a "snapshot"
2740  * of a CPU buffer and has another back up buffer lying around.
2741  * it is expected that the tracer handles the cpu buffer not being
2742  * used at the moment.
2743  */
2744 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2745                          struct ring_buffer *buffer_b, int cpu)
2746 {
2747         struct ring_buffer_per_cpu *cpu_buffer_a;
2748         struct ring_buffer_per_cpu *cpu_buffer_b;
2749         int ret = -EINVAL;
2750
2751         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2752             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2753                 goto out;
2754
2755         /* At least make sure the two buffers are somewhat the same */
2756         if (buffer_a->pages != buffer_b->pages)
2757                 goto out;
2758
2759         ret = -EAGAIN;
2760
2761         if (ring_buffer_flags != RB_BUFFERS_ON)
2762                 goto out;
2763
2764         if (atomic_read(&buffer_a->record_disabled))
2765                 goto out;
2766
2767         if (atomic_read(&buffer_b->record_disabled))
2768                 goto out;
2769
2770         cpu_buffer_a = buffer_a->buffers[cpu];
2771         cpu_buffer_b = buffer_b->buffers[cpu];
2772
2773         if (atomic_read(&cpu_buffer_a->record_disabled))
2774                 goto out;
2775
2776         if (atomic_read(&cpu_buffer_b->record_disabled))
2777                 goto out;
2778
2779         /*
2780          * We can't do a synchronize_sched here because this
2781          * function can be called in atomic context.
2782          * Normally this will be called from the same CPU as cpu.
2783          * If not it's up to the caller to protect this.
2784          */
2785         atomic_inc(&cpu_buffer_a->record_disabled);
2786         atomic_inc(&cpu_buffer_b->record_disabled);
2787
2788         buffer_a->buffers[cpu] = cpu_buffer_b;
2789         buffer_b->buffers[cpu] = cpu_buffer_a;
2790
2791         cpu_buffer_b->buffer = buffer_a;
2792         cpu_buffer_a->buffer = buffer_b;
2793
2794         atomic_dec(&cpu_buffer_a->record_disabled);
2795         atomic_dec(&cpu_buffer_b->record_disabled);
2796
2797         ret = 0;
2798 out:
2799         return ret;
2800 }
2801 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2802
2803 /**
2804  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2805  * @buffer: the buffer to allocate for.
2806  *
2807  * This function is used in conjunction with ring_buffer_read_page.
2808  * When reading a full page from the ring buffer, these functions
2809  * can be used to speed up the process. The calling function should
2810  * allocate a few pages first with this function. Then when it
2811  * needs to get pages from the ring buffer, it passes the result
2812  * of this function into ring_buffer_read_page, which will swap
2813  * the page that was allocated, with the read page of the buffer.
2814  *
2815  * Returns:
2816  *  The page allocated, or NULL on error.
2817  */
2818 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2819 {
2820         struct buffer_data_page *bpage;
2821         unsigned long addr;
2822
2823         addr = __get_free_page(GFP_KERNEL);
2824         if (!addr)
2825                 return NULL;
2826
2827         bpage = (void *)addr;
2828
2829         rb_init_page(bpage);
2830
2831         return bpage;
2832 }
2833 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2834
2835 /**
2836  * ring_buffer_free_read_page - free an allocated read page
2837  * @buffer: the buffer the page was allocate for
2838  * @data: the page to free
2839  *
2840  * Free a page allocated from ring_buffer_alloc_read_page.
2841  */
2842 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2843 {
2844         free_page((unsigned long)data);
2845 }
2846 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2847
2848 /**
2849  * ring_buffer_read_page - extract a page from the ring buffer
2850  * @buffer: buffer to extract from
2851  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2852  * @len: amount to extract
2853  * @cpu: the cpu of the buffer to extract
2854  * @full: should the extraction only happen when the page is full.
2855  *
2856  * This function will pull out a page from the ring buffer and consume it.
2857  * @data_page must be the address of the variable that was returned
2858  * from ring_buffer_alloc_read_page. This is because the page might be used
2859  * to swap with a page in the ring buffer.
2860  *
2861  * for example:
2862  *      rpage = ring_buffer_alloc_read_page(buffer);
2863  *      if (!rpage)
2864  *              return error;
2865  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2866  *      if (ret >= 0)
2867  *              process_page(rpage, ret);
2868  *
2869  * When @full is set, the function will not return true unless
2870  * the writer is off the reader page.
2871  *
2872  * Note: it is up to the calling functions to handle sleeps and wakeups.
2873  *  The ring buffer can be used anywhere in the kernel and can not
2874  *  blindly call wake_up. The layer that uses the ring buffer must be
2875  *  responsible for that.
2876  *
2877  * Returns:
2878  *  >=0 if data has been transferred, returns the offset of consumed data.
2879  *  <0 if no data has been transferred.
2880  */
2881 int ring_buffer_read_page(struct ring_buffer *buffer,
2882                           void **data_page, size_t len, int cpu, int full)
2883 {
2884         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2885         struct ring_buffer_event *event;
2886         struct buffer_data_page *bpage;
2887         struct buffer_page *reader;
2888         unsigned long flags;
2889         unsigned int commit;
2890         unsigned int read;
2891         u64 save_timestamp;
2892         int ret = -1;
2893
2894         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2895                 goto out;
2896
2897         /*
2898          * If len is not big enough to hold the page header, then
2899          * we can not copy anything.
2900          */
2901         if (len <= BUF_PAGE_HDR_SIZE)
2902                 goto out;
2903
2904         len -= BUF_PAGE_HDR_SIZE;
2905
2906         if (!data_page)
2907                 goto out;
2908
2909         bpage = *data_page;
2910         if (!bpage)
2911                 goto out;
2912
2913         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2914
2915         reader = rb_get_reader_page(cpu_buffer);
2916         if (!reader)
2917                 goto out_unlock;
2918
2919         event = rb_reader_event(cpu_buffer);
2920
2921         read = reader->read;
2922         commit = rb_page_commit(reader);
2923
2924         /*
2925          * If this page has been partially read or
2926          * if len is not big enough to read the rest of the page or
2927          * a writer is still on the page, then
2928          * we must copy the data from the page to the buffer.
2929          * Otherwise, we can simply swap the page with the one passed in.
2930          */
2931         if (read || (len < (commit - read)) ||
2932             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2933                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2934                 unsigned int rpos = read;
2935                 unsigned int pos = 0;
2936                 unsigned int size;
2937
2938                 if (full)
2939                         goto out_unlock;
2940
2941                 if (len > (commit - read))
2942                         len = (commit - read);
2943
2944                 size = rb_event_length(event);
2945
2946                 if (len < size)
2947                         goto out_unlock;
2948
2949                 /* save the current timestamp, since the user will need it */
2950                 save_timestamp = cpu_buffer->read_stamp;
2951
2952                 /* Need to copy one event at a time */
2953                 do {
2954                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2955
2956                         len -= size;
2957
2958                         rb_advance_reader(cpu_buffer);
2959                         rpos = reader->read;
2960                         pos += size;
2961
2962                         event = rb_reader_event(cpu_buffer);
2963                         size = rb_event_length(event);
2964                 } while (len > size);
2965
2966                 /* update bpage */
2967                 local_set(&bpage->commit, pos);
2968                 bpage->time_stamp = save_timestamp;
2969
2970                 /* we copied everything to the beginning */
2971                 read = 0;
2972         } else {
2973                 /* update the entry counter */
2974                 cpu_buffer->read += local_read(&reader->entries);
2975
2976                 /* swap the pages */
2977                 rb_init_page(bpage);
2978                 bpage = reader->page;
2979                 reader->page = *data_page;
2980                 local_set(&reader->write, 0);
2981                 local_set(&reader->entries, 0);
2982                 reader->read = 0;
2983                 *data_page = bpage;
2984         }
2985         ret = read;
2986
2987  out_unlock:
2988         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2989
2990  out:
2991         return ret;
2992 }
2993 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
2994
2995 static ssize_t
2996 rb_simple_read(struct file *filp, char __user *ubuf,
2997                size_t cnt, loff_t *ppos)
2998 {
2999         unsigned long *p = filp->private_data;
3000         char buf[64];
3001         int r;
3002
3003         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3004                 r = sprintf(buf, "permanently disabled\n");
3005         else
3006                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3007
3008         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3009 }
3010
3011 static ssize_t
3012 rb_simple_write(struct file *filp, const char __user *ubuf,
3013                 size_t cnt, loff_t *ppos)
3014 {
3015         unsigned long *p = filp->private_data;
3016         char buf[64];
3017         unsigned long val;
3018         int ret;
3019
3020         if (cnt >= sizeof(buf))
3021                 return -EINVAL;
3022
3023         if (copy_from_user(&buf, ubuf, cnt))
3024                 return -EFAULT;
3025
3026         buf[cnt] = 0;
3027
3028         ret = strict_strtoul(buf, 10, &val);
3029         if (ret < 0)
3030                 return ret;
3031
3032         if (val)
3033                 set_bit(RB_BUFFERS_ON_BIT, p);
3034         else
3035                 clear_bit(RB_BUFFERS_ON_BIT, p);
3036
3037         (*ppos)++;
3038
3039         return cnt;
3040 }
3041
3042 static const struct file_operations rb_simple_fops = {
3043         .open           = tracing_open_generic,
3044         .read           = rb_simple_read,
3045         .write          = rb_simple_write,
3046 };
3047
3048
3049 static __init int rb_init_debugfs(void)
3050 {
3051         struct dentry *d_tracer;
3052
3053         d_tracer = tracing_init_dentry();
3054
3055         trace_create_file("tracing_on", 0644, d_tracer,
3056                             &ring_buffer_flags, &rb_simple_fops);
3057
3058         return 0;
3059 }
3060
3061 fs_initcall(rb_init_debugfs);
3062
3063 #ifdef CONFIG_HOTPLUG_CPU
3064 static int rb_cpu_notify(struct notifier_block *self,
3065                          unsigned long action, void *hcpu)
3066 {
3067         struct ring_buffer *buffer =
3068                 container_of(self, struct ring_buffer, cpu_notify);
3069         long cpu = (long)hcpu;
3070
3071         switch (action) {
3072         case CPU_UP_PREPARE:
3073         case CPU_UP_PREPARE_FROZEN:
3074                 if (cpu_isset(cpu, *buffer->cpumask))
3075                         return NOTIFY_OK;
3076
3077                 buffer->buffers[cpu] =
3078                         rb_allocate_cpu_buffer(buffer, cpu);
3079                 if (!buffer->buffers[cpu]) {
3080                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3081                              cpu);
3082                         return NOTIFY_OK;
3083                 }
3084                 smp_wmb();
3085                 cpu_set(cpu, *buffer->cpumask);
3086                 break;
3087         case CPU_DOWN_PREPARE:
3088         case CPU_DOWN_PREPARE_FROZEN:
3089                 /*
3090                  * Do nothing.
3091                  *  If we were to free the buffer, then the user would
3092                  *  lose any trace that was in the buffer.
3093                  */
3094                 break;
3095         default:
3096                 break;
3097         }
3098         return NOTIFY_OK;
3099 }
3100 #endif