[PATCH] RCU signal handling
[safe/jmp/linux-2.6] / kernel / signal.c
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *              Changes to use preallocated sigqueue structures
10  *              to allow signals to be sent reliably.
11  */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32
33 /*
34  * SLAB caches for signal bits.
35  */
36
37 static kmem_cache_t *sigqueue_cachep;
38
39 /*
40  * In POSIX a signal is sent either to a specific thread (Linux task)
41  * or to the process as a whole (Linux thread group).  How the signal
42  * is sent determines whether it's to one thread or the whole group,
43  * which determines which signal mask(s) are involved in blocking it
44  * from being delivered until later.  When the signal is delivered,
45  * either it's caught or ignored by a user handler or it has a default
46  * effect that applies to the whole thread group (POSIX process).
47  *
48  * The possible effects an unblocked signal set to SIG_DFL can have are:
49  *   ignore     - Nothing Happens
50  *   terminate  - kill the process, i.e. all threads in the group,
51  *                similar to exit_group.  The group leader (only) reports
52  *                WIFSIGNALED status to its parent.
53  *   coredump   - write a core dump file describing all threads using
54  *                the same mm and then kill all those threads
55  *   stop       - stop all the threads in the group, i.e. TASK_STOPPED state
56  *
57  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58  * Other signals when not blocked and set to SIG_DFL behaves as follows.
59  * The job control signals also have other special effects.
60  *
61  *      +--------------------+------------------+
62  *      |  POSIX signal      |  default action  |
63  *      +--------------------+------------------+
64  *      |  SIGHUP            |  terminate       |
65  *      |  SIGINT            |  terminate       |
66  *      |  SIGQUIT           |  coredump        |
67  *      |  SIGILL            |  coredump        |
68  *      |  SIGTRAP           |  coredump        |
69  *      |  SIGABRT/SIGIOT    |  coredump        |
70  *      |  SIGBUS            |  coredump        |
71  *      |  SIGFPE            |  coredump        |
72  *      |  SIGKILL           |  terminate(+)    |
73  *      |  SIGUSR1           |  terminate       |
74  *      |  SIGSEGV           |  coredump        |
75  *      |  SIGUSR2           |  terminate       |
76  *      |  SIGPIPE           |  terminate       |
77  *      |  SIGALRM           |  terminate       |
78  *      |  SIGTERM           |  terminate       |
79  *      |  SIGCHLD           |  ignore          |
80  *      |  SIGCONT           |  ignore(*)       |
81  *      |  SIGSTOP           |  stop(*)(+)      |
82  *      |  SIGTSTP           |  stop(*)         |
83  *      |  SIGTTIN           |  stop(*)         |
84  *      |  SIGTTOU           |  stop(*)         |
85  *      |  SIGURG            |  ignore          |
86  *      |  SIGXCPU           |  coredump        |
87  *      |  SIGXFSZ           |  coredump        |
88  *      |  SIGVTALRM         |  terminate       |
89  *      |  SIGPROF           |  terminate       |
90  *      |  SIGPOLL/SIGIO     |  terminate       |
91  *      |  SIGSYS/SIGUNUSED  |  coredump        |
92  *      |  SIGSTKFLT         |  terminate       |
93  *      |  SIGWINCH          |  ignore          |
94  *      |  SIGPWR            |  terminate       |
95  *      |  SIGRTMIN-SIGRTMAX |  terminate       |
96  *      +--------------------+------------------+
97  *      |  non-POSIX signal  |  default action  |
98  *      +--------------------+------------------+
99  *      |  SIGEMT            |  coredump        |
100  *      +--------------------+------------------+
101  *
102  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103  * (*) Special job control effects:
104  * When SIGCONT is sent, it resumes the process (all threads in the group)
105  * from TASK_STOPPED state and also clears any pending/queued stop signals
106  * (any of those marked with "stop(*)").  This happens regardless of blocking,
107  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
108  * any pending/queued SIGCONT signals; this happens regardless of blocking,
109  * catching, or ignored the stop signal, though (except for SIGSTOP) the
110  * default action of stopping the process may happen later or never.
111  */
112
113 #ifdef SIGEMT
114 #define M_SIGEMT        M(SIGEMT)
115 #else
116 #define M_SIGEMT        0
117 #endif
118
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125
126 #define SIG_KERNEL_ONLY_MASK (\
127         M(SIGKILL)   |  M(SIGSTOP)                                   )
128
129 #define SIG_KERNEL_STOP_MASK (\
130         M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
131
132 #define SIG_KERNEL_COREDUMP_MASK (\
133         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
134         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
135         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
136
137 #define SIG_KERNEL_IGNORE_MASK (\
138         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
139
140 #define sig_kernel_only(sig) \
141                 (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143                 (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145                 (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147                 (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
148
149 #define sig_user_defined(t, signr) \
150         (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&  \
151          ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153 #define sig_fatal(t, signr) \
154         (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155          (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159         void __user * handler;
160
161         /*
162          * Tracers always want to know about signals..
163          */
164         if (t->ptrace & PT_PTRACED)
165                 return 0;
166
167         /*
168          * Blocked signals are never ignored, since the
169          * signal handler may change by the time it is
170          * unblocked.
171          */
172         if (sigismember(&t->blocked, sig))
173                 return 0;
174
175         /* Is it explicitly or implicitly ignored? */
176         handler = t->sighand->action[sig-1].sa.sa_handler;
177         return   handler == SIG_IGN ||
178                 (handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180
181 /*
182  * Re-calculate pending state from the set of locally pending
183  * signals, globally pending signals, and blocked signals.
184  */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187         unsigned long ready;
188         long i;
189
190         switch (_NSIG_WORDS) {
191         default:
192                 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193                         ready |= signal->sig[i] &~ blocked->sig[i];
194                 break;
195
196         case 4: ready  = signal->sig[3] &~ blocked->sig[3];
197                 ready |= signal->sig[2] &~ blocked->sig[2];
198                 ready |= signal->sig[1] &~ blocked->sig[1];
199                 ready |= signal->sig[0] &~ blocked->sig[0];
200                 break;
201
202         case 2: ready  = signal->sig[1] &~ blocked->sig[1];
203                 ready |= signal->sig[0] &~ blocked->sig[0];
204                 break;
205
206         case 1: ready  = signal->sig[0] &~ blocked->sig[0];
207         }
208         return ready != 0;
209 }
210
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215         if (t->signal->group_stop_count > 0 ||
216             (freezing(t)) ||
217             PENDING(&t->pending, &t->blocked) ||
218             PENDING(&t->signal->shared_pending, &t->blocked))
219                 set_tsk_thread_flag(t, TIF_SIGPENDING);
220         else
221                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222 }
223
224 void recalc_sigpending(void)
225 {
226         recalc_sigpending_tsk(current);
227 }
228
229 /* Given the mask, find the first available signal that should be serviced. */
230
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
233 {
234         unsigned long i, *s, *m, x;
235         int sig = 0;
236         
237         s = pending->signal.sig;
238         m = mask->sig;
239         switch (_NSIG_WORDS) {
240         default:
241                 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242                         if ((x = *s &~ *m) != 0) {
243                                 sig = ffz(~x) + i*_NSIG_BPW + 1;
244                                 break;
245                         }
246                 break;
247
248         case 2: if ((x = s[0] &~ m[0]) != 0)
249                         sig = 1;
250                 else if ((x = s[1] &~ m[1]) != 0)
251                         sig = _NSIG_BPW + 1;
252                 else
253                         break;
254                 sig += ffz(~x);
255                 break;
256
257         case 1: if ((x = *s &~ *m) != 0)
258                         sig = ffz(~x) + 1;
259                 break;
260         }
261         
262         return sig;
263 }
264
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
266                                          int override_rlimit)
267 {
268         struct sigqueue *q = NULL;
269
270         atomic_inc(&t->user->sigpending);
271         if (override_rlimit ||
272             atomic_read(&t->user->sigpending) <=
273                         t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274                 q = kmem_cache_alloc(sigqueue_cachep, flags);
275         if (unlikely(q == NULL)) {
276                 atomic_dec(&t->user->sigpending);
277         } else {
278                 INIT_LIST_HEAD(&q->list);
279                 q->flags = 0;
280                 q->user = get_uid(t->user);
281         }
282         return(q);
283 }
284
285 static inline void __sigqueue_free(struct sigqueue *q)
286 {
287         if (q->flags & SIGQUEUE_PREALLOC)
288                 return;
289         atomic_dec(&q->user->sigpending);
290         free_uid(q->user);
291         kmem_cache_free(sigqueue_cachep, q);
292 }
293
294 static void flush_sigqueue(struct sigpending *queue)
295 {
296         struct sigqueue *q;
297
298         sigemptyset(&queue->signal);
299         while (!list_empty(&queue->list)) {
300                 q = list_entry(queue->list.next, struct sigqueue , list);
301                 list_del_init(&q->list);
302                 __sigqueue_free(q);
303         }
304 }
305
306 /*
307  * Flush all pending signals for a task.
308  */
309
310 void
311 flush_signals(struct task_struct *t)
312 {
313         unsigned long flags;
314
315         spin_lock_irqsave(&t->sighand->siglock, flags);
316         clear_tsk_thread_flag(t,TIF_SIGPENDING);
317         flush_sigqueue(&t->pending);
318         flush_sigqueue(&t->signal->shared_pending);
319         spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321
322 /*
323  * This function expects the tasklist_lock write-locked.
324  */
325 void __exit_sighand(struct task_struct *tsk)
326 {
327         struct sighand_struct * sighand = tsk->sighand;
328
329         /* Ok, we're done with the signal handlers */
330         tsk->sighand = NULL;
331         if (atomic_dec_and_test(&sighand->count))
332                 sighand_free(sighand);
333 }
334
335 void exit_sighand(struct task_struct *tsk)
336 {
337         write_lock_irq(&tasklist_lock);
338         rcu_read_lock();
339         if (tsk->sighand != NULL) {
340                 struct sighand_struct *sighand = rcu_dereference(tsk->sighand);
341                 spin_lock(&sighand->siglock);
342                 __exit_sighand(tsk);
343                 spin_unlock(&sighand->siglock);
344         }
345         rcu_read_unlock();
346         write_unlock_irq(&tasklist_lock);
347 }
348
349 /*
350  * This function expects the tasklist_lock write-locked.
351  */
352 void __exit_signal(struct task_struct *tsk)
353 {
354         struct signal_struct * sig = tsk->signal;
355         struct sighand_struct * sighand;
356
357         if (!sig)
358                 BUG();
359         if (!atomic_read(&sig->count))
360                 BUG();
361         rcu_read_lock();
362         sighand = rcu_dereference(tsk->sighand);
363         spin_lock(&sighand->siglock);
364         posix_cpu_timers_exit(tsk);
365         if (atomic_dec_and_test(&sig->count)) {
366                 posix_cpu_timers_exit_group(tsk);
367                 if (tsk == sig->curr_target)
368                         sig->curr_target = next_thread(tsk);
369                 tsk->signal = NULL;
370                 __exit_sighand(tsk);
371                 spin_unlock(&sighand->siglock);
372                 flush_sigqueue(&sig->shared_pending);
373         } else {
374                 /*
375                  * If there is any task waiting for the group exit
376                  * then notify it:
377                  */
378                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
379                         wake_up_process(sig->group_exit_task);
380                         sig->group_exit_task = NULL;
381                 }
382                 if (tsk == sig->curr_target)
383                         sig->curr_target = next_thread(tsk);
384                 tsk->signal = NULL;
385                 /*
386                  * Accumulate here the counters for all threads but the
387                  * group leader as they die, so they can be added into
388                  * the process-wide totals when those are taken.
389                  * The group leader stays around as a zombie as long
390                  * as there are other threads.  When it gets reaped,
391                  * the exit.c code will add its counts into these totals.
392                  * We won't ever get here for the group leader, since it
393                  * will have been the last reference on the signal_struct.
394                  */
395                 sig->utime = cputime_add(sig->utime, tsk->utime);
396                 sig->stime = cputime_add(sig->stime, tsk->stime);
397                 sig->min_flt += tsk->min_flt;
398                 sig->maj_flt += tsk->maj_flt;
399                 sig->nvcsw += tsk->nvcsw;
400                 sig->nivcsw += tsk->nivcsw;
401                 sig->sched_time += tsk->sched_time;
402                 __exit_sighand(tsk);
403                 spin_unlock(&sighand->siglock);
404                 sig = NULL;     /* Marker for below.  */
405         }
406         rcu_read_unlock();
407         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
408         flush_sigqueue(&tsk->pending);
409         if (sig) {
410                 /*
411                  * We are cleaning up the signal_struct here.
412                  */
413                 exit_thread_group_keys(sig);
414                 kmem_cache_free(signal_cachep, sig);
415         }
416 }
417
418 void exit_signal(struct task_struct *tsk)
419 {
420         atomic_dec(&tsk->signal->live);
421
422         write_lock_irq(&tasklist_lock);
423         __exit_signal(tsk);
424         write_unlock_irq(&tasklist_lock);
425 }
426
427 /*
428  * Flush all handlers for a task.
429  */
430
431 void
432 flush_signal_handlers(struct task_struct *t, int force_default)
433 {
434         int i;
435         struct k_sigaction *ka = &t->sighand->action[0];
436         for (i = _NSIG ; i != 0 ; i--) {
437                 if (force_default || ka->sa.sa_handler != SIG_IGN)
438                         ka->sa.sa_handler = SIG_DFL;
439                 ka->sa.sa_flags = 0;
440                 sigemptyset(&ka->sa.sa_mask);
441                 ka++;
442         }
443 }
444
445
446 /* Notify the system that a driver wants to block all signals for this
447  * process, and wants to be notified if any signals at all were to be
448  * sent/acted upon.  If the notifier routine returns non-zero, then the
449  * signal will be acted upon after all.  If the notifier routine returns 0,
450  * then then signal will be blocked.  Only one block per process is
451  * allowed.  priv is a pointer to private data that the notifier routine
452  * can use to determine if the signal should be blocked or not.  */
453
454 void
455 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
456 {
457         unsigned long flags;
458
459         spin_lock_irqsave(&current->sighand->siglock, flags);
460         current->notifier_mask = mask;
461         current->notifier_data = priv;
462         current->notifier = notifier;
463         spin_unlock_irqrestore(&current->sighand->siglock, flags);
464 }
465
466 /* Notify the system that blocking has ended. */
467
468 void
469 unblock_all_signals(void)
470 {
471         unsigned long flags;
472
473         spin_lock_irqsave(&current->sighand->siglock, flags);
474         current->notifier = NULL;
475         current->notifier_data = NULL;
476         recalc_sigpending();
477         spin_unlock_irqrestore(&current->sighand->siglock, flags);
478 }
479
480 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 {
482         struct sigqueue *q, *first = NULL;
483         int still_pending = 0;
484
485         if (unlikely(!sigismember(&list->signal, sig)))
486                 return 0;
487
488         /*
489          * Collect the siginfo appropriate to this signal.  Check if
490          * there is another siginfo for the same signal.
491         */
492         list_for_each_entry(q, &list->list, list) {
493                 if (q->info.si_signo == sig) {
494                         if (first) {
495                                 still_pending = 1;
496                                 break;
497                         }
498                         first = q;
499                 }
500         }
501         if (first) {
502                 list_del_init(&first->list);
503                 copy_siginfo(info, &first->info);
504                 __sigqueue_free(first);
505                 if (!still_pending)
506                         sigdelset(&list->signal, sig);
507         } else {
508
509                 /* Ok, it wasn't in the queue.  This must be
510                    a fast-pathed signal or we must have been
511                    out of queue space.  So zero out the info.
512                  */
513                 sigdelset(&list->signal, sig);
514                 info->si_signo = sig;
515                 info->si_errno = 0;
516                 info->si_code = 0;
517                 info->si_pid = 0;
518                 info->si_uid = 0;
519         }
520         return 1;
521 }
522
523 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
524                         siginfo_t *info)
525 {
526         int sig = 0;
527
528         sig = next_signal(pending, mask);
529         if (sig) {
530                 if (current->notifier) {
531                         if (sigismember(current->notifier_mask, sig)) {
532                                 if (!(current->notifier)(current->notifier_data)) {
533                                         clear_thread_flag(TIF_SIGPENDING);
534                                         return 0;
535                                 }
536                         }
537                 }
538
539                 if (!collect_signal(sig, pending, info))
540                         sig = 0;
541                                 
542         }
543         recalc_sigpending();
544
545         return sig;
546 }
547
548 /*
549  * Dequeue a signal and return the element to the caller, which is 
550  * expected to free it.
551  *
552  * All callers have to hold the siglock.
553  */
554 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
555 {
556         int signr = __dequeue_signal(&tsk->pending, mask, info);
557         if (!signr)
558                 signr = __dequeue_signal(&tsk->signal->shared_pending,
559                                          mask, info);
560         if (signr && unlikely(sig_kernel_stop(signr))) {
561                 /*
562                  * Set a marker that we have dequeued a stop signal.  Our
563                  * caller might release the siglock and then the pending
564                  * stop signal it is about to process is no longer in the
565                  * pending bitmasks, but must still be cleared by a SIGCONT
566                  * (and overruled by a SIGKILL).  So those cases clear this
567                  * shared flag after we've set it.  Note that this flag may
568                  * remain set after the signal we return is ignored or
569                  * handled.  That doesn't matter because its only purpose
570                  * is to alert stop-signal processing code when another
571                  * processor has come along and cleared the flag.
572                  */
573                 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
574                         tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
575         }
576         if ( signr &&
577              ((info->si_code & __SI_MASK) == __SI_TIMER) &&
578              info->si_sys_private){
579                 /*
580                  * Release the siglock to ensure proper locking order
581                  * of timer locks outside of siglocks.  Note, we leave
582                  * irqs disabled here, since the posix-timers code is
583                  * about to disable them again anyway.
584                  */
585                 spin_unlock(&tsk->sighand->siglock);
586                 do_schedule_next_timer(info);
587                 spin_lock(&tsk->sighand->siglock);
588         }
589         return signr;
590 }
591
592 /*
593  * Tell a process that it has a new active signal..
594  *
595  * NOTE! we rely on the previous spin_lock to
596  * lock interrupts for us! We can only be called with
597  * "siglock" held, and the local interrupt must
598  * have been disabled when that got acquired!
599  *
600  * No need to set need_resched since signal event passing
601  * goes through ->blocked
602  */
603 void signal_wake_up(struct task_struct *t, int resume)
604 {
605         unsigned int mask;
606
607         set_tsk_thread_flag(t, TIF_SIGPENDING);
608
609         /*
610          * For SIGKILL, we want to wake it up in the stopped/traced case.
611          * We don't check t->state here because there is a race with it
612          * executing another processor and just now entering stopped state.
613          * By using wake_up_state, we ensure the process will wake up and
614          * handle its death signal.
615          */
616         mask = TASK_INTERRUPTIBLE;
617         if (resume)
618                 mask |= TASK_STOPPED | TASK_TRACED;
619         if (!wake_up_state(t, mask))
620                 kick_process(t);
621 }
622
623 /*
624  * Remove signals in mask from the pending set and queue.
625  * Returns 1 if any signals were found.
626  *
627  * All callers must be holding the siglock.
628  */
629 static int rm_from_queue(unsigned long mask, struct sigpending *s)
630 {
631         struct sigqueue *q, *n;
632
633         if (!sigtestsetmask(&s->signal, mask))
634                 return 0;
635
636         sigdelsetmask(&s->signal, mask);
637         list_for_each_entry_safe(q, n, &s->list, list) {
638                 if (q->info.si_signo < SIGRTMIN &&
639                     (mask & sigmask(q->info.si_signo))) {
640                         list_del_init(&q->list);
641                         __sigqueue_free(q);
642                 }
643         }
644         return 1;
645 }
646
647 /*
648  * Bad permissions for sending the signal
649  */
650 static int check_kill_permission(int sig, struct siginfo *info,
651                                  struct task_struct *t)
652 {
653         int error = -EINVAL;
654         if (!valid_signal(sig))
655                 return error;
656         error = -EPERM;
657         if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
658             && ((sig != SIGCONT) ||
659                 (current->signal->session != t->signal->session))
660             && (current->euid ^ t->suid) && (current->euid ^ t->uid)
661             && (current->uid ^ t->suid) && (current->uid ^ t->uid)
662             && !capable(CAP_KILL))
663                 return error;
664
665         error = security_task_kill(t, info, sig);
666         if (!error)
667                 audit_signal_info(sig, t); /* Let audit system see the signal */
668         return error;
669 }
670
671 /* forward decl */
672 static void do_notify_parent_cldstop(struct task_struct *tsk,
673                                      int to_self,
674                                      int why);
675
676 /*
677  * Handle magic process-wide effects of stop/continue signals.
678  * Unlike the signal actions, these happen immediately at signal-generation
679  * time regardless of blocking, ignoring, or handling.  This does the
680  * actual continuing for SIGCONT, but not the actual stopping for stop
681  * signals.  The process stop is done as a signal action for SIG_DFL.
682  */
683 static void handle_stop_signal(int sig, struct task_struct *p)
684 {
685         struct task_struct *t;
686
687         if (p->signal->flags & SIGNAL_GROUP_EXIT)
688                 /*
689                  * The process is in the middle of dying already.
690                  */
691                 return;
692
693         if (sig_kernel_stop(sig)) {
694                 /*
695                  * This is a stop signal.  Remove SIGCONT from all queues.
696                  */
697                 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
698                 t = p;
699                 do {
700                         rm_from_queue(sigmask(SIGCONT), &t->pending);
701                         t = next_thread(t);
702                 } while (t != p);
703         } else if (sig == SIGCONT) {
704                 /*
705                  * Remove all stop signals from all queues,
706                  * and wake all threads.
707                  */
708                 if (unlikely(p->signal->group_stop_count > 0)) {
709                         /*
710                          * There was a group stop in progress.  We'll
711                          * pretend it finished before we got here.  We are
712                          * obliged to report it to the parent: if the
713                          * SIGSTOP happened "after" this SIGCONT, then it
714                          * would have cleared this pending SIGCONT.  If it
715                          * happened "before" this SIGCONT, then the parent
716                          * got the SIGCHLD about the stop finishing before
717                          * the continue happened.  We do the notification
718                          * now, and it's as if the stop had finished and
719                          * the SIGCHLD was pending on entry to this kill.
720                          */
721                         p->signal->group_stop_count = 0;
722                         p->signal->flags = SIGNAL_STOP_CONTINUED;
723                         spin_unlock(&p->sighand->siglock);
724                         do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
725                         spin_lock(&p->sighand->siglock);
726                 }
727                 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
728                 t = p;
729                 do {
730                         unsigned int state;
731                         rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
732                         
733                         /*
734                          * If there is a handler for SIGCONT, we must make
735                          * sure that no thread returns to user mode before
736                          * we post the signal, in case it was the only
737                          * thread eligible to run the signal handler--then
738                          * it must not do anything between resuming and
739                          * running the handler.  With the TIF_SIGPENDING
740                          * flag set, the thread will pause and acquire the
741                          * siglock that we hold now and until we've queued
742                          * the pending signal. 
743                          *
744                          * Wake up the stopped thread _after_ setting
745                          * TIF_SIGPENDING
746                          */
747                         state = TASK_STOPPED;
748                         if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
749                                 set_tsk_thread_flag(t, TIF_SIGPENDING);
750                                 state |= TASK_INTERRUPTIBLE;
751                         }
752                         wake_up_state(t, state);
753
754                         t = next_thread(t);
755                 } while (t != p);
756
757                 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
758                         /*
759                          * We were in fact stopped, and are now continued.
760                          * Notify the parent with CLD_CONTINUED.
761                          */
762                         p->signal->flags = SIGNAL_STOP_CONTINUED;
763                         p->signal->group_exit_code = 0;
764                         spin_unlock(&p->sighand->siglock);
765                         do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
766                         spin_lock(&p->sighand->siglock);
767                 } else {
768                         /*
769                          * We are not stopped, but there could be a stop
770                          * signal in the middle of being processed after
771                          * being removed from the queue.  Clear that too.
772                          */
773                         p->signal->flags = 0;
774                 }
775         } else if (sig == SIGKILL) {
776                 /*
777                  * Make sure that any pending stop signal already dequeued
778                  * is undone by the wakeup for SIGKILL.
779                  */
780                 p->signal->flags = 0;
781         }
782 }
783
784 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
785                         struct sigpending *signals)
786 {
787         struct sigqueue * q = NULL;
788         int ret = 0;
789
790         /*
791          * fast-pathed signals for kernel-internal things like SIGSTOP
792          * or SIGKILL.
793          */
794         if (info == SEND_SIG_FORCED)
795                 goto out_set;
796
797         /* Real-time signals must be queued if sent by sigqueue, or
798            some other real-time mechanism.  It is implementation
799            defined whether kill() does so.  We attempt to do so, on
800            the principle of least surprise, but since kill is not
801            allowed to fail with EAGAIN when low on memory we just
802            make sure at least one signal gets delivered and don't
803            pass on the info struct.  */
804
805         q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
806                                              (is_si_special(info) ||
807                                               info->si_code >= 0)));
808         if (q) {
809                 list_add_tail(&q->list, &signals->list);
810                 switch ((unsigned long) info) {
811                 case (unsigned long) SEND_SIG_NOINFO:
812                         q->info.si_signo = sig;
813                         q->info.si_errno = 0;
814                         q->info.si_code = SI_USER;
815                         q->info.si_pid = current->pid;
816                         q->info.si_uid = current->uid;
817                         break;
818                 case (unsigned long) SEND_SIG_PRIV:
819                         q->info.si_signo = sig;
820                         q->info.si_errno = 0;
821                         q->info.si_code = SI_KERNEL;
822                         q->info.si_pid = 0;
823                         q->info.si_uid = 0;
824                         break;
825                 default:
826                         copy_siginfo(&q->info, info);
827                         break;
828                 }
829         } else if (!is_si_special(info)) {
830                 if (sig >= SIGRTMIN && info->si_code != SI_USER)
831                 /*
832                  * Queue overflow, abort.  We may abort if the signal was rt
833                  * and sent by user using something other than kill().
834                  */
835                         return -EAGAIN;
836         }
837
838 out_set:
839         sigaddset(&signals->signal, sig);
840         return ret;
841 }
842
843 #define LEGACY_QUEUE(sigptr, sig) \
844         (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
845
846
847 static int
848 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
849 {
850         int ret = 0;
851
852         if (!irqs_disabled())
853                 BUG();
854         assert_spin_locked(&t->sighand->siglock);
855
856         /* Short-circuit ignored signals.  */
857         if (sig_ignored(t, sig))
858                 goto out;
859
860         /* Support queueing exactly one non-rt signal, so that we
861            can get more detailed information about the cause of
862            the signal. */
863         if (LEGACY_QUEUE(&t->pending, sig))
864                 goto out;
865
866         ret = send_signal(sig, info, t, &t->pending);
867         if (!ret && !sigismember(&t->blocked, sig))
868                 signal_wake_up(t, sig == SIGKILL);
869 out:
870         return ret;
871 }
872
873 /*
874  * Force a signal that the process can't ignore: if necessary
875  * we unblock the signal and change any SIG_IGN to SIG_DFL.
876  */
877
878 int
879 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
880 {
881         unsigned long int flags;
882         int ret;
883
884         spin_lock_irqsave(&t->sighand->siglock, flags);
885         if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
886                 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
887         }
888         if (sigismember(&t->blocked, sig)) {
889                 sigdelset(&t->blocked, sig);
890         }
891         recalc_sigpending_tsk(t);
892         ret = specific_send_sig_info(sig, info, t);
893         spin_unlock_irqrestore(&t->sighand->siglock, flags);
894
895         return ret;
896 }
897
898 void
899 force_sig_specific(int sig, struct task_struct *t)
900 {
901         force_sig_info(sig, SEND_SIG_FORCED, t);
902 }
903
904 /*
905  * Test if P wants to take SIG.  After we've checked all threads with this,
906  * it's equivalent to finding no threads not blocking SIG.  Any threads not
907  * blocking SIG were ruled out because they are not running and already
908  * have pending signals.  Such threads will dequeue from the shared queue
909  * as soon as they're available, so putting the signal on the shared queue
910  * will be equivalent to sending it to one such thread.
911  */
912 static inline int wants_signal(int sig, struct task_struct *p)
913 {
914         if (sigismember(&p->blocked, sig))
915                 return 0;
916         if (p->flags & PF_EXITING)
917                 return 0;
918         if (sig == SIGKILL)
919                 return 1;
920         if (p->state & (TASK_STOPPED | TASK_TRACED))
921                 return 0;
922         return task_curr(p) || !signal_pending(p);
923 }
924
925 static void
926 __group_complete_signal(int sig, struct task_struct *p)
927 {
928         struct task_struct *t;
929
930         /*
931          * Now find a thread we can wake up to take the signal off the queue.
932          *
933          * If the main thread wants the signal, it gets first crack.
934          * Probably the least surprising to the average bear.
935          */
936         if (wants_signal(sig, p))
937                 t = p;
938         else if (thread_group_empty(p))
939                 /*
940                  * There is just one thread and it does not need to be woken.
941                  * It will dequeue unblocked signals before it runs again.
942                  */
943                 return;
944         else {
945                 /*
946                  * Otherwise try to find a suitable thread.
947                  */
948                 t = p->signal->curr_target;
949                 if (t == NULL)
950                         /* restart balancing at this thread */
951                         t = p->signal->curr_target = p;
952                 BUG_ON(t->tgid != p->tgid);
953
954                 while (!wants_signal(sig, t)) {
955                         t = next_thread(t);
956                         if (t == p->signal->curr_target)
957                                 /*
958                                  * No thread needs to be woken.
959                                  * Any eligible threads will see
960                                  * the signal in the queue soon.
961                                  */
962                                 return;
963                 }
964                 p->signal->curr_target = t;
965         }
966
967         /*
968          * Found a killable thread.  If the signal will be fatal,
969          * then start taking the whole group down immediately.
970          */
971         if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
972             !sigismember(&t->real_blocked, sig) &&
973             (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
974                 /*
975                  * This signal will be fatal to the whole group.
976                  */
977                 if (!sig_kernel_coredump(sig)) {
978                         /*
979                          * Start a group exit and wake everybody up.
980                          * This way we don't have other threads
981                          * running and doing things after a slower
982                          * thread has the fatal signal pending.
983                          */
984                         p->signal->flags = SIGNAL_GROUP_EXIT;
985                         p->signal->group_exit_code = sig;
986                         p->signal->group_stop_count = 0;
987                         t = p;
988                         do {
989                                 sigaddset(&t->pending.signal, SIGKILL);
990                                 signal_wake_up(t, 1);
991                                 t = next_thread(t);
992                         } while (t != p);
993                         return;
994                 }
995
996                 /*
997                  * There will be a core dump.  We make all threads other
998                  * than the chosen one go into a group stop so that nothing
999                  * happens until it gets scheduled, takes the signal off
1000                  * the shared queue, and does the core dump.  This is a
1001                  * little more complicated than strictly necessary, but it
1002                  * keeps the signal state that winds up in the core dump
1003                  * unchanged from the death state, e.g. which thread had
1004                  * the core-dump signal unblocked.
1005                  */
1006                 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1007                 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1008                 p->signal->group_stop_count = 0;
1009                 p->signal->group_exit_task = t;
1010                 t = p;
1011                 do {
1012                         p->signal->group_stop_count++;
1013                         signal_wake_up(t, 0);
1014                         t = next_thread(t);
1015                 } while (t != p);
1016                 wake_up_process(p->signal->group_exit_task);
1017                 return;
1018         }
1019
1020         /*
1021          * The signal is already in the shared-pending queue.
1022          * Tell the chosen thread to wake up and dequeue it.
1023          */
1024         signal_wake_up(t, sig == SIGKILL);
1025         return;
1026 }
1027
1028 int
1029 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1030 {
1031         int ret = 0;
1032
1033         assert_spin_locked(&p->sighand->siglock);
1034         handle_stop_signal(sig, p);
1035
1036         /* Short-circuit ignored signals.  */
1037         if (sig_ignored(p, sig))
1038                 return ret;
1039
1040         if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1041                 /* This is a non-RT signal and we already have one queued.  */
1042                 return ret;
1043
1044         /*
1045          * Put this signal on the shared-pending queue, or fail with EAGAIN.
1046          * We always use the shared queue for process-wide signals,
1047          * to avoid several races.
1048          */
1049         ret = send_signal(sig, info, p, &p->signal->shared_pending);
1050         if (unlikely(ret))
1051                 return ret;
1052
1053         __group_complete_signal(sig, p);
1054         return 0;
1055 }
1056
1057 /*
1058  * Nuke all other threads in the group.
1059  */
1060 void zap_other_threads(struct task_struct *p)
1061 {
1062         struct task_struct *t;
1063
1064         p->signal->flags = SIGNAL_GROUP_EXIT;
1065         p->signal->group_stop_count = 0;
1066
1067         if (thread_group_empty(p))
1068                 return;
1069
1070         for (t = next_thread(p); t != p; t = next_thread(t)) {
1071                 /*
1072                  * Don't bother with already dead threads
1073                  */
1074                 if (t->exit_state)
1075                         continue;
1076
1077                 /*
1078                  * We don't want to notify the parent, since we are
1079                  * killed as part of a thread group due to another
1080                  * thread doing an execve() or similar. So set the
1081                  * exit signal to -1 to allow immediate reaping of
1082                  * the process.  But don't detach the thread group
1083                  * leader.
1084                  */
1085                 if (t != p->group_leader)
1086                         t->exit_signal = -1;
1087
1088                 /* SIGKILL will be handled before any pending SIGSTOP */
1089                 sigaddset(&t->pending.signal, SIGKILL);
1090                 signal_wake_up(t, 1);
1091         }
1092 }
1093
1094 /*
1095  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1096  */
1097 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1098 {
1099         unsigned long flags;
1100         struct sighand_struct *sp;
1101         int ret;
1102
1103 retry:
1104         ret = check_kill_permission(sig, info, p);
1105         if (!ret && sig && (sp = p->sighand)) {
1106                 if (!get_task_struct_rcu(p))
1107                         return -ESRCH;
1108                 spin_lock_irqsave(&sp->siglock, flags);
1109                 if (p->sighand != sp) {
1110                         spin_unlock_irqrestore(&sp->siglock, flags);
1111                         put_task_struct(p);
1112                         goto retry;
1113                 }
1114                 ret = __group_send_sig_info(sig, info, p);
1115                 spin_unlock_irqrestore(&sp->siglock, flags);
1116                 put_task_struct(p);
1117         }
1118
1119         return ret;
1120 }
1121
1122 /*
1123  * kill_pg_info() sends a signal to a process group: this is what the tty
1124  * control characters do (^C, ^Z etc)
1125  */
1126
1127 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1128 {
1129         struct task_struct *p = NULL;
1130         int retval, success;
1131
1132         if (pgrp <= 0)
1133                 return -EINVAL;
1134
1135         success = 0;
1136         retval = -ESRCH;
1137         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1138                 int err = group_send_sig_info(sig, info, p);
1139                 success |= !err;
1140                 retval = err;
1141         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1142         return success ? 0 : retval;
1143 }
1144
1145 int
1146 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1147 {
1148         int retval;
1149
1150         read_lock(&tasklist_lock);
1151         retval = __kill_pg_info(sig, info, pgrp);
1152         read_unlock(&tasklist_lock);
1153
1154         return retval;
1155 }
1156
1157 int
1158 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1159 {
1160         int error;
1161         int acquired_tasklist_lock = 0;
1162         struct task_struct *p;
1163
1164         rcu_read_lock();
1165         if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) {
1166                 read_lock(&tasklist_lock);
1167                 acquired_tasklist_lock = 1;
1168         }
1169         p = find_task_by_pid(pid);
1170         error = -ESRCH;
1171         if (p)
1172                 error = group_send_sig_info(sig, info, p);
1173         if (unlikely(acquired_tasklist_lock))
1174                 read_unlock(&tasklist_lock);
1175         rcu_read_unlock();
1176         return error;
1177 }
1178
1179 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1180 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1181                       uid_t uid, uid_t euid)
1182 {
1183         int ret = -EINVAL;
1184         struct task_struct *p;
1185
1186         if (!valid_signal(sig))
1187                 return ret;
1188
1189         read_lock(&tasklist_lock);
1190         p = find_task_by_pid(pid);
1191         if (!p) {
1192                 ret = -ESRCH;
1193                 goto out_unlock;
1194         }
1195         if ((!info || ((unsigned long)info != 1 &&
1196                         (unsigned long)info != 2 && SI_FROMUSER(info)))
1197             && (euid != p->suid) && (euid != p->uid)
1198             && (uid != p->suid) && (uid != p->uid)) {
1199                 ret = -EPERM;
1200                 goto out_unlock;
1201         }
1202         if (sig && p->sighand) {
1203                 unsigned long flags;
1204                 spin_lock_irqsave(&p->sighand->siglock, flags);
1205                 ret = __group_send_sig_info(sig, info, p);
1206                 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1207         }
1208 out_unlock:
1209         read_unlock(&tasklist_lock);
1210         return ret;
1211 }
1212 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1213
1214 /*
1215  * kill_something_info() interprets pid in interesting ways just like kill(2).
1216  *
1217  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1218  * is probably wrong.  Should make it like BSD or SYSV.
1219  */
1220
1221 static int kill_something_info(int sig, struct siginfo *info, int pid)
1222 {
1223         if (!pid) {
1224                 return kill_pg_info(sig, info, process_group(current));
1225         } else if (pid == -1) {
1226                 int retval = 0, count = 0;
1227                 struct task_struct * p;
1228
1229                 read_lock(&tasklist_lock);
1230                 for_each_process(p) {
1231                         if (p->pid > 1 && p->tgid != current->tgid) {
1232                                 int err = group_send_sig_info(sig, info, p);
1233                                 ++count;
1234                                 if (err != -EPERM)
1235                                         retval = err;
1236                         }
1237                 }
1238                 read_unlock(&tasklist_lock);
1239                 return count ? retval : -ESRCH;
1240         } else if (pid < 0) {
1241                 return kill_pg_info(sig, info, -pid);
1242         } else {
1243                 return kill_proc_info(sig, info, pid);
1244         }
1245 }
1246
1247 /*
1248  * These are for backward compatibility with the rest of the kernel source.
1249  */
1250
1251 /*
1252  * These two are the most common entry points.  They send a signal
1253  * just to the specific thread.
1254  */
1255 int
1256 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1257 {
1258         int ret;
1259         unsigned long flags;
1260
1261         /*
1262          * Make sure legacy kernel users don't send in bad values
1263          * (normal paths check this in check_kill_permission).
1264          */
1265         if (!valid_signal(sig))
1266                 return -EINVAL;
1267
1268         /*
1269          * We need the tasklist lock even for the specific
1270          * thread case (when we don't need to follow the group
1271          * lists) in order to avoid races with "p->sighand"
1272          * going away or changing from under us.
1273          */
1274         read_lock(&tasklist_lock);  
1275         spin_lock_irqsave(&p->sighand->siglock, flags);
1276         ret = specific_send_sig_info(sig, info, p);
1277         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1278         read_unlock(&tasklist_lock);
1279         return ret;
1280 }
1281
1282 #define __si_special(priv) \
1283         ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1284
1285 int
1286 send_sig(int sig, struct task_struct *p, int priv)
1287 {
1288         return send_sig_info(sig, __si_special(priv), p);
1289 }
1290
1291 /*
1292  * This is the entry point for "process-wide" signals.
1293  * They will go to an appropriate thread in the thread group.
1294  */
1295 int
1296 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1297 {
1298         int ret;
1299         read_lock(&tasklist_lock);
1300         ret = group_send_sig_info(sig, info, p);
1301         read_unlock(&tasklist_lock);
1302         return ret;
1303 }
1304
1305 void
1306 force_sig(int sig, struct task_struct *p)
1307 {
1308         force_sig_info(sig, SEND_SIG_PRIV, p);
1309 }
1310
1311 /*
1312  * When things go south during signal handling, we
1313  * will force a SIGSEGV. And if the signal that caused
1314  * the problem was already a SIGSEGV, we'll want to
1315  * make sure we don't even try to deliver the signal..
1316  */
1317 int
1318 force_sigsegv(int sig, struct task_struct *p)
1319 {
1320         if (sig == SIGSEGV) {
1321                 unsigned long flags;
1322                 spin_lock_irqsave(&p->sighand->siglock, flags);
1323                 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1324                 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1325         }
1326         force_sig(SIGSEGV, p);
1327         return 0;
1328 }
1329
1330 int
1331 kill_pg(pid_t pgrp, int sig, int priv)
1332 {
1333         return kill_pg_info(sig, __si_special(priv), pgrp);
1334 }
1335
1336 int
1337 kill_proc(pid_t pid, int sig, int priv)
1338 {
1339         return kill_proc_info(sig, __si_special(priv), pid);
1340 }
1341
1342 /*
1343  * These functions support sending signals using preallocated sigqueue
1344  * structures.  This is needed "because realtime applications cannot
1345  * afford to lose notifications of asynchronous events, like timer
1346  * expirations or I/O completions".  In the case of Posix Timers 
1347  * we allocate the sigqueue structure from the timer_create.  If this
1348  * allocation fails we are able to report the failure to the application
1349  * with an EAGAIN error.
1350  */
1351  
1352 struct sigqueue *sigqueue_alloc(void)
1353 {
1354         struct sigqueue *q;
1355
1356         if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1357                 q->flags |= SIGQUEUE_PREALLOC;
1358         return(q);
1359 }
1360
1361 void sigqueue_free(struct sigqueue *q)
1362 {
1363         unsigned long flags;
1364         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1365         /*
1366          * If the signal is still pending remove it from the
1367          * pending queue.
1368          */
1369         if (unlikely(!list_empty(&q->list))) {
1370                 spinlock_t *lock = &current->sighand->siglock;
1371                 read_lock(&tasklist_lock);
1372                 spin_lock_irqsave(lock, flags);
1373                 if (!list_empty(&q->list))
1374                         list_del_init(&q->list);
1375                 spin_unlock_irqrestore(lock, flags);
1376                 read_unlock(&tasklist_lock);
1377         }
1378         q->flags &= ~SIGQUEUE_PREALLOC;
1379         __sigqueue_free(q);
1380 }
1381
1382 int
1383 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1384 {
1385         unsigned long flags;
1386         int ret = 0;
1387         struct sighand_struct *sh;
1388
1389         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1390
1391         /*
1392          * The rcu based delayed sighand destroy makes it possible to
1393          * run this without tasklist lock held. The task struct itself
1394          * cannot go away as create_timer did get_task_struct().
1395          *
1396          * We return -1, when the task is marked exiting, so
1397          * posix_timer_event can redirect it to the group leader
1398          */
1399         rcu_read_lock();
1400
1401         if (unlikely(p->flags & PF_EXITING)) {
1402                 ret = -1;
1403                 goto out_err;
1404         }
1405
1406 retry:
1407         sh = rcu_dereference(p->sighand);
1408
1409         spin_lock_irqsave(&sh->siglock, flags);
1410         if (p->sighand != sh) {
1411                 /* We raced with exec() in a multithreaded process... */
1412                 spin_unlock_irqrestore(&sh->siglock, flags);
1413                 goto retry;
1414         }
1415
1416         /*
1417          * We do the check here again to handle the following scenario:
1418          *
1419          * CPU 0                CPU 1
1420          * send_sigqueue
1421          * check PF_EXITING
1422          * interrupt            exit code running
1423          *                      __exit_signal
1424          *                      lock sighand->siglock
1425          *                      unlock sighand->siglock
1426          * lock sh->siglock
1427          * add(tsk->pending)    flush_sigqueue(tsk->pending)
1428          *
1429          */
1430
1431         if (unlikely(p->flags & PF_EXITING)) {
1432                 ret = -1;
1433                 goto out;
1434         }
1435
1436         if (unlikely(!list_empty(&q->list))) {
1437                 /*
1438                  * If an SI_TIMER entry is already queue just increment
1439                  * the overrun count.
1440                  */
1441                 if (q->info.si_code != SI_TIMER)
1442                         BUG();
1443                 q->info.si_overrun++;
1444                 goto out;
1445         }
1446         /* Short-circuit ignored signals.  */
1447         if (sig_ignored(p, sig)) {
1448                 ret = 1;
1449                 goto out;
1450         }
1451
1452         list_add_tail(&q->list, &p->pending.list);
1453         sigaddset(&p->pending.signal, sig);
1454         if (!sigismember(&p->blocked, sig))
1455                 signal_wake_up(p, sig == SIGKILL);
1456
1457 out:
1458         spin_unlock_irqrestore(&sh->siglock, flags);
1459 out_err:
1460         rcu_read_unlock();
1461
1462         return ret;
1463 }
1464
1465 int
1466 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1467 {
1468         unsigned long flags;
1469         int ret = 0;
1470
1471         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1472
1473         read_lock(&tasklist_lock);
1474         /* Since it_lock is held, p->sighand cannot be NULL. */
1475         spin_lock_irqsave(&p->sighand->siglock, flags);
1476         handle_stop_signal(sig, p);
1477
1478         /* Short-circuit ignored signals.  */
1479         if (sig_ignored(p, sig)) {
1480                 ret = 1;
1481                 goto out;
1482         }
1483
1484         if (unlikely(!list_empty(&q->list))) {
1485                 /*
1486                  * If an SI_TIMER entry is already queue just increment
1487                  * the overrun count.  Other uses should not try to
1488                  * send the signal multiple times.
1489                  */
1490                 if (q->info.si_code != SI_TIMER)
1491                         BUG();
1492                 q->info.si_overrun++;
1493                 goto out;
1494         } 
1495
1496         /*
1497          * Put this signal on the shared-pending queue.
1498          * We always use the shared queue for process-wide signals,
1499          * to avoid several races.
1500          */
1501         list_add_tail(&q->list, &p->signal->shared_pending.list);
1502         sigaddset(&p->signal->shared_pending.signal, sig);
1503
1504         __group_complete_signal(sig, p);
1505 out:
1506         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1507         read_unlock(&tasklist_lock);
1508         return ret;
1509 }
1510
1511 /*
1512  * Wake up any threads in the parent blocked in wait* syscalls.
1513  */
1514 static inline void __wake_up_parent(struct task_struct *p,
1515                                     struct task_struct *parent)
1516 {
1517         wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1518 }
1519
1520 /*
1521  * Let a parent know about the death of a child.
1522  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1523  */
1524
1525 void do_notify_parent(struct task_struct *tsk, int sig)
1526 {
1527         struct siginfo info;
1528         unsigned long flags;
1529         struct sighand_struct *psig;
1530
1531         BUG_ON(sig == -1);
1532
1533         /* do_notify_parent_cldstop should have been called instead.  */
1534         BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1535
1536         BUG_ON(!tsk->ptrace &&
1537                (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1538
1539         info.si_signo = sig;
1540         info.si_errno = 0;
1541         info.si_pid = tsk->pid;
1542         info.si_uid = tsk->uid;
1543
1544         /* FIXME: find out whether or not this is supposed to be c*time. */
1545         info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1546                                                        tsk->signal->utime));
1547         info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1548                                                        tsk->signal->stime));
1549
1550         info.si_status = tsk->exit_code & 0x7f;
1551         if (tsk->exit_code & 0x80)
1552                 info.si_code = CLD_DUMPED;
1553         else if (tsk->exit_code & 0x7f)
1554                 info.si_code = CLD_KILLED;
1555         else {
1556                 info.si_code = CLD_EXITED;
1557                 info.si_status = tsk->exit_code >> 8;
1558         }
1559
1560         psig = tsk->parent->sighand;
1561         spin_lock_irqsave(&psig->siglock, flags);
1562         if (!tsk->ptrace && sig == SIGCHLD &&
1563             (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1564              (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1565                 /*
1566                  * We are exiting and our parent doesn't care.  POSIX.1
1567                  * defines special semantics for setting SIGCHLD to SIG_IGN
1568                  * or setting the SA_NOCLDWAIT flag: we should be reaped
1569                  * automatically and not left for our parent's wait4 call.
1570                  * Rather than having the parent do it as a magic kind of
1571                  * signal handler, we just set this to tell do_exit that we
1572                  * can be cleaned up without becoming a zombie.  Note that
1573                  * we still call __wake_up_parent in this case, because a
1574                  * blocked sys_wait4 might now return -ECHILD.
1575                  *
1576                  * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1577                  * is implementation-defined: we do (if you don't want
1578                  * it, just use SIG_IGN instead).
1579                  */
1580                 tsk->exit_signal = -1;
1581                 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1582                         sig = 0;
1583         }
1584         if (valid_signal(sig) && sig > 0)
1585                 __group_send_sig_info(sig, &info, tsk->parent);
1586         __wake_up_parent(tsk, tsk->parent);
1587         spin_unlock_irqrestore(&psig->siglock, flags);
1588 }
1589
1590 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1591 {
1592         struct siginfo info;
1593         unsigned long flags;
1594         struct task_struct *parent;
1595         struct sighand_struct *sighand;
1596
1597         if (to_self)
1598                 parent = tsk->parent;
1599         else {
1600                 tsk = tsk->group_leader;
1601                 parent = tsk->real_parent;
1602         }
1603
1604         info.si_signo = SIGCHLD;
1605         info.si_errno = 0;
1606         info.si_pid = tsk->pid;
1607         info.si_uid = tsk->uid;
1608
1609         /* FIXME: find out whether or not this is supposed to be c*time. */
1610         info.si_utime = cputime_to_jiffies(tsk->utime);
1611         info.si_stime = cputime_to_jiffies(tsk->stime);
1612
1613         info.si_code = why;
1614         switch (why) {
1615         case CLD_CONTINUED:
1616                 info.si_status = SIGCONT;
1617                 break;
1618         case CLD_STOPPED:
1619                 info.si_status = tsk->signal->group_exit_code & 0x7f;
1620                 break;
1621         case CLD_TRAPPED:
1622                 info.si_status = tsk->exit_code & 0x7f;
1623                 break;
1624         default:
1625                 BUG();
1626         }
1627
1628         sighand = parent->sighand;
1629         spin_lock_irqsave(&sighand->siglock, flags);
1630         if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1631             !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1632                 __group_send_sig_info(SIGCHLD, &info, parent);
1633         /*
1634          * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1635          */
1636         __wake_up_parent(tsk, parent);
1637         spin_unlock_irqrestore(&sighand->siglock, flags);
1638 }
1639
1640 /*
1641  * This must be called with current->sighand->siglock held.
1642  *
1643  * This should be the path for all ptrace stops.
1644  * We always set current->last_siginfo while stopped here.
1645  * That makes it a way to test a stopped process for
1646  * being ptrace-stopped vs being job-control-stopped.
1647  *
1648  * If we actually decide not to stop at all because the tracer is gone,
1649  * we leave nostop_code in current->exit_code.
1650  */
1651 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1652 {
1653         /*
1654          * If there is a group stop in progress,
1655          * we must participate in the bookkeeping.
1656          */
1657         if (current->signal->group_stop_count > 0)
1658                 --current->signal->group_stop_count;
1659
1660         current->last_siginfo = info;
1661         current->exit_code = exit_code;
1662
1663         /* Let the debugger run.  */
1664         set_current_state(TASK_TRACED);
1665         spin_unlock_irq(&current->sighand->siglock);
1666         read_lock(&tasklist_lock);
1667         if (likely(current->ptrace & PT_PTRACED) &&
1668             likely(current->parent != current->real_parent ||
1669                    !(current->ptrace & PT_ATTACHED)) &&
1670             (likely(current->parent->signal != current->signal) ||
1671              !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1672                 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1673                 read_unlock(&tasklist_lock);
1674                 schedule();
1675         } else {
1676                 /*
1677                  * By the time we got the lock, our tracer went away.
1678                  * Don't stop here.
1679                  */
1680                 read_unlock(&tasklist_lock);
1681                 set_current_state(TASK_RUNNING);
1682                 current->exit_code = nostop_code;
1683         }
1684
1685         /*
1686          * We are back.  Now reacquire the siglock before touching
1687          * last_siginfo, so that we are sure to have synchronized with
1688          * any signal-sending on another CPU that wants to examine it.
1689          */
1690         spin_lock_irq(&current->sighand->siglock);
1691         current->last_siginfo = NULL;
1692
1693         /*
1694          * Queued signals ignored us while we were stopped for tracing.
1695          * So check for any that we should take before resuming user mode.
1696          */
1697         recalc_sigpending();
1698 }
1699
1700 void ptrace_notify(int exit_code)
1701 {
1702         siginfo_t info;
1703
1704         BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1705
1706         memset(&info, 0, sizeof info);
1707         info.si_signo = SIGTRAP;
1708         info.si_code = exit_code;
1709         info.si_pid = current->pid;
1710         info.si_uid = current->uid;
1711
1712         /* Let the debugger run.  */
1713         spin_lock_irq(&current->sighand->siglock);
1714         ptrace_stop(exit_code, 0, &info);
1715         spin_unlock_irq(&current->sighand->siglock);
1716 }
1717
1718 static void
1719 finish_stop(int stop_count)
1720 {
1721         int to_self;
1722
1723         /*
1724          * If there are no other threads in the group, or if there is
1725          * a group stop in progress and we are the last to stop,
1726          * report to the parent.  When ptraced, every thread reports itself.
1727          */
1728         if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1729                 to_self = 1;
1730         else if (stop_count == 0)
1731                 to_self = 0;
1732         else
1733                 goto out;
1734
1735         read_lock(&tasklist_lock);
1736         do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1737         read_unlock(&tasklist_lock);
1738
1739 out:
1740         schedule();
1741         /*
1742          * Now we don't run again until continued.
1743          */
1744         current->exit_code = 0;
1745 }
1746
1747 /*
1748  * This performs the stopping for SIGSTOP and other stop signals.
1749  * We have to stop all threads in the thread group.
1750  * Returns nonzero if we've actually stopped and released the siglock.
1751  * Returns zero if we didn't stop and still hold the siglock.
1752  */
1753 static int
1754 do_signal_stop(int signr)
1755 {
1756         struct signal_struct *sig = current->signal;
1757         struct sighand_struct *sighand = current->sighand;
1758         int stop_count = -1;
1759
1760         if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1761                 return 0;
1762
1763         if (sig->group_stop_count > 0) {
1764                 /*
1765                  * There is a group stop in progress.  We don't need to
1766                  * start another one.
1767                  */
1768                 signr = sig->group_exit_code;
1769                 stop_count = --sig->group_stop_count;
1770                 current->exit_code = signr;
1771                 set_current_state(TASK_STOPPED);
1772                 if (stop_count == 0)
1773                         sig->flags = SIGNAL_STOP_STOPPED;
1774                 spin_unlock_irq(&sighand->siglock);
1775         }
1776         else if (thread_group_empty(current)) {
1777                 /*
1778                  * Lock must be held through transition to stopped state.
1779                  */
1780                 current->exit_code = current->signal->group_exit_code = signr;
1781                 set_current_state(TASK_STOPPED);
1782                 sig->flags = SIGNAL_STOP_STOPPED;
1783                 spin_unlock_irq(&sighand->siglock);
1784         }
1785         else {
1786                 /*
1787                  * There is no group stop already in progress.
1788                  * We must initiate one now, but that requires
1789                  * dropping siglock to get both the tasklist lock
1790                  * and siglock again in the proper order.  Note that
1791                  * this allows an intervening SIGCONT to be posted.
1792                  * We need to check for that and bail out if necessary.
1793                  */
1794                 struct task_struct *t;
1795
1796                 spin_unlock_irq(&sighand->siglock);
1797
1798                 /* signals can be posted during this window */
1799
1800                 read_lock(&tasklist_lock);
1801                 spin_lock_irq(&sighand->siglock);
1802
1803                 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1804                         /*
1805                          * Another stop or continue happened while we
1806                          * didn't have the lock.  We can just swallow this
1807                          * signal now.  If we raced with a SIGCONT, that
1808                          * should have just cleared it now.  If we raced
1809                          * with another processor delivering a stop signal,
1810                          * then the SIGCONT that wakes us up should clear it.
1811                          */
1812                         read_unlock(&tasklist_lock);
1813                         return 0;
1814                 }
1815
1816                 if (sig->group_stop_count == 0) {
1817                         sig->group_exit_code = signr;
1818                         stop_count = 0;
1819                         for (t = next_thread(current); t != current;
1820                              t = next_thread(t))
1821                                 /*
1822                                  * Setting state to TASK_STOPPED for a group
1823                                  * stop is always done with the siglock held,
1824                                  * so this check has no races.
1825                                  */
1826                                 if (!t->exit_state &&
1827                                     !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1828                                         stop_count++;
1829                                         signal_wake_up(t, 0);
1830                                 }
1831                         sig->group_stop_count = stop_count;
1832                 }
1833                 else {
1834                         /* A race with another thread while unlocked.  */
1835                         signr = sig->group_exit_code;
1836                         stop_count = --sig->group_stop_count;
1837                 }
1838
1839                 current->exit_code = signr;
1840                 set_current_state(TASK_STOPPED);
1841                 if (stop_count == 0)
1842                         sig->flags = SIGNAL_STOP_STOPPED;
1843
1844                 spin_unlock_irq(&sighand->siglock);
1845                 read_unlock(&tasklist_lock);
1846         }
1847
1848         finish_stop(stop_count);
1849         return 1;
1850 }
1851
1852 /*
1853  * Do appropriate magic when group_stop_count > 0.
1854  * We return nonzero if we stopped, after releasing the siglock.
1855  * We return zero if we still hold the siglock and should look
1856  * for another signal without checking group_stop_count again.
1857  */
1858 static inline int handle_group_stop(void)
1859 {
1860         int stop_count;
1861
1862         if (current->signal->group_exit_task == current) {
1863                 /*
1864                  * Group stop is so we can do a core dump,
1865                  * We are the initiating thread, so get on with it.
1866                  */
1867                 current->signal->group_exit_task = NULL;
1868                 return 0;
1869         }
1870
1871         if (current->signal->flags & SIGNAL_GROUP_EXIT)
1872                 /*
1873                  * Group stop is so another thread can do a core dump,
1874                  * or else we are racing against a death signal.
1875                  * Just punt the stop so we can get the next signal.
1876                  */
1877                 return 0;
1878
1879         /*
1880          * There is a group stop in progress.  We stop
1881          * without any associated signal being in our queue.
1882          */
1883         stop_count = --current->signal->group_stop_count;
1884         if (stop_count == 0)
1885                 current->signal->flags = SIGNAL_STOP_STOPPED;
1886         current->exit_code = current->signal->group_exit_code;
1887         set_current_state(TASK_STOPPED);
1888         spin_unlock_irq(&current->sighand->siglock);
1889         finish_stop(stop_count);
1890         return 1;
1891 }
1892
1893 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1894                           struct pt_regs *regs, void *cookie)
1895 {
1896         sigset_t *mask = &current->blocked;
1897         int signr = 0;
1898
1899 relock:
1900         spin_lock_irq(&current->sighand->siglock);
1901         for (;;) {
1902                 struct k_sigaction *ka;
1903
1904                 if (unlikely(current->signal->group_stop_count > 0) &&
1905                     handle_group_stop())
1906                         goto relock;
1907
1908                 signr = dequeue_signal(current, mask, info);
1909
1910                 if (!signr)
1911                         break; /* will return 0 */
1912
1913                 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1914                         ptrace_signal_deliver(regs, cookie);
1915
1916                         /* Let the debugger run.  */
1917                         ptrace_stop(signr, signr, info);
1918
1919                         /* We're back.  Did the debugger cancel the sig or group_exit? */
1920                         signr = current->exit_code;
1921                         if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1922                                 continue;
1923
1924                         current->exit_code = 0;
1925
1926                         /* Update the siginfo structure if the signal has
1927                            changed.  If the debugger wanted something
1928                            specific in the siginfo structure then it should
1929                            have updated *info via PTRACE_SETSIGINFO.  */
1930                         if (signr != info->si_signo) {
1931                                 info->si_signo = signr;
1932                                 info->si_errno = 0;
1933                                 info->si_code = SI_USER;
1934                                 info->si_pid = current->parent->pid;
1935                                 info->si_uid = current->parent->uid;
1936                         }
1937
1938                         /* If the (new) signal is now blocked, requeue it.  */
1939                         if (sigismember(&current->blocked, signr)) {
1940                                 specific_send_sig_info(signr, info, current);
1941                                 continue;
1942                         }
1943                 }
1944
1945                 ka = &current->sighand->action[signr-1];
1946                 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1947                         continue;
1948                 if (ka->sa.sa_handler != SIG_DFL) {
1949                         /* Run the handler.  */
1950                         *return_ka = *ka;
1951
1952                         if (ka->sa.sa_flags & SA_ONESHOT)
1953                                 ka->sa.sa_handler = SIG_DFL;
1954
1955                         break; /* will return non-zero "signr" value */
1956                 }
1957
1958                 /*
1959                  * Now we are doing the default action for this signal.
1960                  */
1961                 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1962                         continue;
1963
1964                 /* Init gets no signals it doesn't want.  */
1965                 if (current->pid == 1)
1966                         continue;
1967
1968                 if (sig_kernel_stop(signr)) {
1969                         /*
1970                          * The default action is to stop all threads in
1971                          * the thread group.  The job control signals
1972                          * do nothing in an orphaned pgrp, but SIGSTOP
1973                          * always works.  Note that siglock needs to be
1974                          * dropped during the call to is_orphaned_pgrp()
1975                          * because of lock ordering with tasklist_lock.
1976                          * This allows an intervening SIGCONT to be posted.
1977                          * We need to check for that and bail out if necessary.
1978                          */
1979                         if (signr != SIGSTOP) {
1980                                 spin_unlock_irq(&current->sighand->siglock);
1981
1982                                 /* signals can be posted during this window */
1983
1984                                 if (is_orphaned_pgrp(process_group(current)))
1985                                         goto relock;
1986
1987                                 spin_lock_irq(&current->sighand->siglock);
1988                         }
1989
1990                         if (likely(do_signal_stop(signr))) {
1991                                 /* It released the siglock.  */
1992                                 goto relock;
1993                         }
1994
1995                         /*
1996                          * We didn't actually stop, due to a race
1997                          * with SIGCONT or something like that.
1998                          */
1999                         continue;
2000                 }
2001
2002                 spin_unlock_irq(&current->sighand->siglock);
2003
2004                 /*
2005                  * Anything else is fatal, maybe with a core dump.
2006                  */
2007                 current->flags |= PF_SIGNALED;
2008                 if (sig_kernel_coredump(signr)) {
2009                         /*
2010                          * If it was able to dump core, this kills all
2011                          * other threads in the group and synchronizes with
2012                          * their demise.  If we lost the race with another
2013                          * thread getting here, it set group_exit_code
2014                          * first and our do_group_exit call below will use
2015                          * that value and ignore the one we pass it.
2016                          */
2017                         do_coredump((long)signr, signr, regs);
2018                 }
2019
2020                 /*
2021                  * Death signals, no core dump.
2022                  */
2023                 do_group_exit(signr);
2024                 /* NOTREACHED */
2025         }
2026         spin_unlock_irq(&current->sighand->siglock);
2027         return signr;
2028 }
2029
2030 EXPORT_SYMBOL(recalc_sigpending);
2031 EXPORT_SYMBOL_GPL(dequeue_signal);
2032 EXPORT_SYMBOL(flush_signals);
2033 EXPORT_SYMBOL(force_sig);
2034 EXPORT_SYMBOL(kill_pg);
2035 EXPORT_SYMBOL(kill_proc);
2036 EXPORT_SYMBOL(ptrace_notify);
2037 EXPORT_SYMBOL(send_sig);
2038 EXPORT_SYMBOL(send_sig_info);
2039 EXPORT_SYMBOL(sigprocmask);
2040 EXPORT_SYMBOL(block_all_signals);
2041 EXPORT_SYMBOL(unblock_all_signals);
2042
2043
2044 /*
2045  * System call entry points.
2046  */
2047
2048 asmlinkage long sys_restart_syscall(void)
2049 {
2050         struct restart_block *restart = &current_thread_info()->restart_block;
2051         return restart->fn(restart);
2052 }
2053
2054 long do_no_restart_syscall(struct restart_block *param)
2055 {
2056         return -EINTR;
2057 }
2058
2059 /*
2060  * We don't need to get the kernel lock - this is all local to this
2061  * particular thread.. (and that's good, because this is _heavily_
2062  * used by various programs)
2063  */
2064
2065 /*
2066  * This is also useful for kernel threads that want to temporarily
2067  * (or permanently) block certain signals.
2068  *
2069  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2070  * interface happily blocks "unblockable" signals like SIGKILL
2071  * and friends.
2072  */
2073 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2074 {
2075         int error;
2076         sigset_t old_block;
2077
2078         spin_lock_irq(&current->sighand->siglock);
2079         old_block = current->blocked;
2080         error = 0;
2081         switch (how) {
2082         case SIG_BLOCK:
2083                 sigorsets(&current->blocked, &current->blocked, set);
2084                 break;
2085         case SIG_UNBLOCK:
2086                 signandsets(&current->blocked, &current->blocked, set);
2087                 break;
2088         case SIG_SETMASK:
2089                 current->blocked = *set;
2090                 break;
2091         default:
2092                 error = -EINVAL;
2093         }
2094         recalc_sigpending();
2095         spin_unlock_irq(&current->sighand->siglock);
2096         if (oldset)
2097                 *oldset = old_block;
2098         return error;
2099 }
2100
2101 asmlinkage long
2102 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2103 {
2104         int error = -EINVAL;
2105         sigset_t old_set, new_set;
2106
2107         /* XXX: Don't preclude handling different sized sigset_t's.  */
2108         if (sigsetsize != sizeof(sigset_t))
2109                 goto out;
2110
2111         if (set) {
2112                 error = -EFAULT;
2113                 if (copy_from_user(&new_set, set, sizeof(*set)))
2114                         goto out;
2115                 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2116
2117                 error = sigprocmask(how, &new_set, &old_set);
2118                 if (error)
2119                         goto out;
2120                 if (oset)
2121                         goto set_old;
2122         } else if (oset) {
2123                 spin_lock_irq(&current->sighand->siglock);
2124                 old_set = current->blocked;
2125                 spin_unlock_irq(&current->sighand->siglock);
2126
2127         set_old:
2128                 error = -EFAULT;
2129                 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2130                         goto out;
2131         }
2132         error = 0;
2133 out:
2134         return error;
2135 }
2136
2137 long do_sigpending(void __user *set, unsigned long sigsetsize)
2138 {
2139         long error = -EINVAL;
2140         sigset_t pending;
2141
2142         if (sigsetsize > sizeof(sigset_t))
2143                 goto out;
2144
2145         spin_lock_irq(&current->sighand->siglock);
2146         sigorsets(&pending, &current->pending.signal,
2147                   &current->signal->shared_pending.signal);
2148         spin_unlock_irq(&current->sighand->siglock);
2149
2150         /* Outside the lock because only this thread touches it.  */
2151         sigandsets(&pending, &current->blocked, &pending);
2152
2153         error = -EFAULT;
2154         if (!copy_to_user(set, &pending, sigsetsize))
2155                 error = 0;
2156
2157 out:
2158         return error;
2159 }       
2160
2161 asmlinkage long
2162 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2163 {
2164         return do_sigpending(set, sigsetsize);
2165 }
2166
2167 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2168
2169 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2170 {
2171         int err;
2172
2173         if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2174                 return -EFAULT;
2175         if (from->si_code < 0)
2176                 return __copy_to_user(to, from, sizeof(siginfo_t))
2177                         ? -EFAULT : 0;
2178         /*
2179          * If you change siginfo_t structure, please be sure
2180          * this code is fixed accordingly.
2181          * It should never copy any pad contained in the structure
2182          * to avoid security leaks, but must copy the generic
2183          * 3 ints plus the relevant union member.
2184          */
2185         err = __put_user(from->si_signo, &to->si_signo);
2186         err |= __put_user(from->si_errno, &to->si_errno);
2187         err |= __put_user((short)from->si_code, &to->si_code);
2188         switch (from->si_code & __SI_MASK) {
2189         case __SI_KILL:
2190                 err |= __put_user(from->si_pid, &to->si_pid);
2191                 err |= __put_user(from->si_uid, &to->si_uid);
2192                 break;
2193         case __SI_TIMER:
2194                  err |= __put_user(from->si_tid, &to->si_tid);
2195                  err |= __put_user(from->si_overrun, &to->si_overrun);
2196                  err |= __put_user(from->si_ptr, &to->si_ptr);
2197                 break;
2198         case __SI_POLL:
2199                 err |= __put_user(from->si_band, &to->si_band);
2200                 err |= __put_user(from->si_fd, &to->si_fd);
2201                 break;
2202         case __SI_FAULT:
2203                 err |= __put_user(from->si_addr, &to->si_addr);
2204 #ifdef __ARCH_SI_TRAPNO
2205                 err |= __put_user(from->si_trapno, &to->si_trapno);
2206 #endif
2207                 break;
2208         case __SI_CHLD:
2209                 err |= __put_user(from->si_pid, &to->si_pid);
2210                 err |= __put_user(from->si_uid, &to->si_uid);
2211                 err |= __put_user(from->si_status, &to->si_status);
2212                 err |= __put_user(from->si_utime, &to->si_utime);
2213                 err |= __put_user(from->si_stime, &to->si_stime);
2214                 break;
2215         case __SI_RT: /* This is not generated by the kernel as of now. */
2216         case __SI_MESGQ: /* But this is */
2217                 err |= __put_user(from->si_pid, &to->si_pid);
2218                 err |= __put_user(from->si_uid, &to->si_uid);
2219                 err |= __put_user(from->si_ptr, &to->si_ptr);
2220                 break;
2221         default: /* this is just in case for now ... */
2222                 err |= __put_user(from->si_pid, &to->si_pid);
2223                 err |= __put_user(from->si_uid, &to->si_uid);
2224                 break;
2225         }
2226         return err;
2227 }
2228
2229 #endif
2230
2231 asmlinkage long
2232 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2233                     siginfo_t __user *uinfo,
2234                     const struct timespec __user *uts,
2235                     size_t sigsetsize)
2236 {
2237         int ret, sig;
2238         sigset_t these;
2239         struct timespec ts;
2240         siginfo_t info;
2241         long timeout = 0;
2242
2243         /* XXX: Don't preclude handling different sized sigset_t's.  */
2244         if (sigsetsize != sizeof(sigset_t))
2245                 return -EINVAL;
2246
2247         if (copy_from_user(&these, uthese, sizeof(these)))
2248                 return -EFAULT;
2249                 
2250         /*
2251          * Invert the set of allowed signals to get those we
2252          * want to block.
2253          */
2254         sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2255         signotset(&these);
2256
2257         if (uts) {
2258                 if (copy_from_user(&ts, uts, sizeof(ts)))
2259                         return -EFAULT;
2260                 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2261                     || ts.tv_sec < 0)
2262                         return -EINVAL;
2263         }
2264
2265         spin_lock_irq(&current->sighand->siglock);
2266         sig = dequeue_signal(current, &these, &info);
2267         if (!sig) {
2268                 timeout = MAX_SCHEDULE_TIMEOUT;
2269                 if (uts)
2270                         timeout = (timespec_to_jiffies(&ts)
2271                                    + (ts.tv_sec || ts.tv_nsec));
2272
2273                 if (timeout) {
2274                         /* None ready -- temporarily unblock those we're
2275                          * interested while we are sleeping in so that we'll
2276                          * be awakened when they arrive.  */
2277                         current->real_blocked = current->blocked;
2278                         sigandsets(&current->blocked, &current->blocked, &these);
2279                         recalc_sigpending();
2280                         spin_unlock_irq(&current->sighand->siglock);
2281
2282                         timeout = schedule_timeout_interruptible(timeout);
2283
2284                         try_to_freeze();
2285                         spin_lock_irq(&current->sighand->siglock);
2286                         sig = dequeue_signal(current, &these, &info);
2287                         current->blocked = current->real_blocked;
2288                         siginitset(&current->real_blocked, 0);
2289                         recalc_sigpending();
2290                 }
2291         }
2292         spin_unlock_irq(&current->sighand->siglock);
2293
2294         if (sig) {
2295                 ret = sig;
2296                 if (uinfo) {
2297                         if (copy_siginfo_to_user(uinfo, &info))
2298                                 ret = -EFAULT;
2299                 }
2300         } else {
2301                 ret = -EAGAIN;
2302                 if (timeout)
2303                         ret = -EINTR;
2304         }
2305
2306         return ret;
2307 }
2308
2309 asmlinkage long
2310 sys_kill(int pid, int sig)
2311 {
2312         struct siginfo info;
2313
2314         info.si_signo = sig;
2315         info.si_errno = 0;
2316         info.si_code = SI_USER;
2317         info.si_pid = current->tgid;
2318         info.si_uid = current->uid;
2319
2320         return kill_something_info(sig, &info, pid);
2321 }
2322
2323 static int do_tkill(int tgid, int pid, int sig)
2324 {
2325         int error;
2326         struct siginfo info;
2327         struct task_struct *p;
2328
2329         error = -ESRCH;
2330         info.si_signo = sig;
2331         info.si_errno = 0;
2332         info.si_code = SI_TKILL;
2333         info.si_pid = current->tgid;
2334         info.si_uid = current->uid;
2335
2336         read_lock(&tasklist_lock);
2337         p = find_task_by_pid(pid);
2338         if (p && (tgid <= 0 || p->tgid == tgid)) {
2339                 error = check_kill_permission(sig, &info, p);
2340                 /*
2341                  * The null signal is a permissions and process existence
2342                  * probe.  No signal is actually delivered.
2343                  */
2344                 if (!error && sig && p->sighand) {
2345                         spin_lock_irq(&p->sighand->siglock);
2346                         handle_stop_signal(sig, p);
2347                         error = specific_send_sig_info(sig, &info, p);
2348                         spin_unlock_irq(&p->sighand->siglock);
2349                 }
2350         }
2351         read_unlock(&tasklist_lock);
2352
2353         return error;
2354 }
2355
2356 /**
2357  *  sys_tgkill - send signal to one specific thread
2358  *  @tgid: the thread group ID of the thread
2359  *  @pid: the PID of the thread
2360  *  @sig: signal to be sent
2361  *
2362  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2363  *  exists but it's not belonging to the target process anymore. This
2364  *  method solves the problem of threads exiting and PIDs getting reused.
2365  */
2366 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2367 {
2368         /* This is only valid for single tasks */
2369         if (pid <= 0 || tgid <= 0)
2370                 return -EINVAL;
2371
2372         return do_tkill(tgid, pid, sig);
2373 }
2374
2375 /*
2376  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2377  */
2378 asmlinkage long
2379 sys_tkill(int pid, int sig)
2380 {
2381         /* This is only valid for single tasks */
2382         if (pid <= 0)
2383                 return -EINVAL;
2384
2385         return do_tkill(0, pid, sig);
2386 }
2387
2388 asmlinkage long
2389 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2390 {
2391         siginfo_t info;
2392
2393         if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2394                 return -EFAULT;
2395
2396         /* Not even root can pretend to send signals from the kernel.
2397            Nor can they impersonate a kill(), which adds source info.  */
2398         if (info.si_code >= 0)
2399                 return -EPERM;
2400         info.si_signo = sig;
2401
2402         /* POSIX.1b doesn't mention process groups.  */
2403         return kill_proc_info(sig, &info, pid);
2404 }
2405
2406 int
2407 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2408 {
2409         struct k_sigaction *k;
2410
2411         if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2412                 return -EINVAL;
2413
2414         k = &current->sighand->action[sig-1];
2415
2416         spin_lock_irq(&current->sighand->siglock);
2417         if (signal_pending(current)) {
2418                 /*
2419                  * If there might be a fatal signal pending on multiple
2420                  * threads, make sure we take it before changing the action.
2421                  */
2422                 spin_unlock_irq(&current->sighand->siglock);
2423                 return -ERESTARTNOINTR;
2424         }
2425
2426         if (oact)
2427                 *oact = *k;
2428
2429         if (act) {
2430                 /*
2431                  * POSIX 3.3.1.3:
2432                  *  "Setting a signal action to SIG_IGN for a signal that is
2433                  *   pending shall cause the pending signal to be discarded,
2434                  *   whether or not it is blocked."
2435                  *
2436                  *  "Setting a signal action to SIG_DFL for a signal that is
2437                  *   pending and whose default action is to ignore the signal
2438                  *   (for example, SIGCHLD), shall cause the pending signal to
2439                  *   be discarded, whether or not it is blocked"
2440                  */
2441                 if (act->sa.sa_handler == SIG_IGN ||
2442                     (act->sa.sa_handler == SIG_DFL &&
2443                      sig_kernel_ignore(sig))) {
2444                         /*
2445                          * This is a fairly rare case, so we only take the
2446                          * tasklist_lock once we're sure we'll need it.
2447                          * Now we must do this little unlock and relock
2448                          * dance to maintain the lock hierarchy.
2449                          */
2450                         struct task_struct *t = current;
2451                         spin_unlock_irq(&t->sighand->siglock);
2452                         read_lock(&tasklist_lock);
2453                         spin_lock_irq(&t->sighand->siglock);
2454                         *k = *act;
2455                         sigdelsetmask(&k->sa.sa_mask,
2456                                       sigmask(SIGKILL) | sigmask(SIGSTOP));
2457                         rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2458                         do {
2459                                 rm_from_queue(sigmask(sig), &t->pending);
2460                                 recalc_sigpending_tsk(t);
2461                                 t = next_thread(t);
2462                         } while (t != current);
2463                         spin_unlock_irq(&current->sighand->siglock);
2464                         read_unlock(&tasklist_lock);
2465                         return 0;
2466                 }
2467
2468                 *k = *act;
2469                 sigdelsetmask(&k->sa.sa_mask,
2470                               sigmask(SIGKILL) | sigmask(SIGSTOP));
2471         }
2472
2473         spin_unlock_irq(&current->sighand->siglock);
2474         return 0;
2475 }
2476
2477 int 
2478 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2479 {
2480         stack_t oss;
2481         int error;
2482
2483         if (uoss) {
2484                 oss.ss_sp = (void __user *) current->sas_ss_sp;
2485                 oss.ss_size = current->sas_ss_size;
2486                 oss.ss_flags = sas_ss_flags(sp);
2487         }
2488
2489         if (uss) {
2490                 void __user *ss_sp;
2491                 size_t ss_size;
2492                 int ss_flags;
2493
2494                 error = -EFAULT;
2495                 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2496                     || __get_user(ss_sp, &uss->ss_sp)
2497                     || __get_user(ss_flags, &uss->ss_flags)
2498                     || __get_user(ss_size, &uss->ss_size))
2499                         goto out;
2500
2501                 error = -EPERM;
2502                 if (on_sig_stack(sp))
2503                         goto out;
2504
2505                 error = -EINVAL;
2506                 /*
2507                  *
2508                  * Note - this code used to test ss_flags incorrectly
2509                  *        old code may have been written using ss_flags==0
2510                  *        to mean ss_flags==SS_ONSTACK (as this was the only
2511                  *        way that worked) - this fix preserves that older
2512                  *        mechanism
2513                  */
2514                 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2515                         goto out;
2516
2517                 if (ss_flags == SS_DISABLE) {
2518                         ss_size = 0;
2519                         ss_sp = NULL;
2520                 } else {
2521                         error = -ENOMEM;
2522                         if (ss_size < MINSIGSTKSZ)
2523                                 goto out;
2524                 }
2525
2526                 current->sas_ss_sp = (unsigned long) ss_sp;
2527                 current->sas_ss_size = ss_size;
2528         }
2529
2530         if (uoss) {
2531                 error = -EFAULT;
2532                 if (copy_to_user(uoss, &oss, sizeof(oss)))
2533                         goto out;
2534         }
2535
2536         error = 0;
2537 out:
2538         return error;
2539 }
2540
2541 #ifdef __ARCH_WANT_SYS_SIGPENDING
2542
2543 asmlinkage long
2544 sys_sigpending(old_sigset_t __user *set)
2545 {
2546         return do_sigpending(set, sizeof(*set));
2547 }
2548
2549 #endif
2550
2551 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2552 /* Some platforms have their own version with special arguments others
2553    support only sys_rt_sigprocmask.  */
2554
2555 asmlinkage long
2556 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2557 {
2558         int error;
2559         old_sigset_t old_set, new_set;
2560
2561         if (set) {
2562                 error = -EFAULT;
2563                 if (copy_from_user(&new_set, set, sizeof(*set)))
2564                         goto out;
2565                 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2566
2567                 spin_lock_irq(&current->sighand->siglock);
2568                 old_set = current->blocked.sig[0];
2569
2570                 error = 0;
2571                 switch (how) {
2572                 default:
2573                         error = -EINVAL;
2574                         break;
2575                 case SIG_BLOCK:
2576                         sigaddsetmask(&current->blocked, new_set);
2577                         break;
2578                 case SIG_UNBLOCK:
2579                         sigdelsetmask(&current->blocked, new_set);
2580                         break;
2581                 case SIG_SETMASK:
2582                         current->blocked.sig[0] = new_set;
2583                         break;
2584                 }
2585
2586                 recalc_sigpending();
2587                 spin_unlock_irq(&current->sighand->siglock);
2588                 if (error)
2589                         goto out;
2590                 if (oset)
2591                         goto set_old;
2592         } else if (oset) {
2593                 old_set = current->blocked.sig[0];
2594         set_old:
2595                 error = -EFAULT;
2596                 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2597                         goto out;
2598         }
2599         error = 0;
2600 out:
2601         return error;
2602 }
2603 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2604
2605 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2606 asmlinkage long
2607 sys_rt_sigaction(int sig,
2608                  const struct sigaction __user *act,
2609                  struct sigaction __user *oact,
2610                  size_t sigsetsize)
2611 {
2612         struct k_sigaction new_sa, old_sa;
2613         int ret = -EINVAL;
2614
2615         /* XXX: Don't preclude handling different sized sigset_t's.  */
2616         if (sigsetsize != sizeof(sigset_t))
2617                 goto out;
2618
2619         if (act) {
2620                 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2621                         return -EFAULT;
2622         }
2623
2624         ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2625
2626         if (!ret && oact) {
2627                 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2628                         return -EFAULT;
2629         }
2630 out:
2631         return ret;
2632 }
2633 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2634
2635 #ifdef __ARCH_WANT_SYS_SGETMASK
2636
2637 /*
2638  * For backwards compatibility.  Functionality superseded by sigprocmask.
2639  */
2640 asmlinkage long
2641 sys_sgetmask(void)
2642 {
2643         /* SMP safe */
2644         return current->blocked.sig[0];
2645 }
2646
2647 asmlinkage long
2648 sys_ssetmask(int newmask)
2649 {
2650         int old;
2651
2652         spin_lock_irq(&current->sighand->siglock);
2653         old = current->blocked.sig[0];
2654
2655         siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2656                                                   sigmask(SIGSTOP)));
2657         recalc_sigpending();
2658         spin_unlock_irq(&current->sighand->siglock);
2659
2660         return old;
2661 }
2662 #endif /* __ARCH_WANT_SGETMASK */
2663
2664 #ifdef __ARCH_WANT_SYS_SIGNAL
2665 /*
2666  * For backwards compatibility.  Functionality superseded by sigaction.
2667  */
2668 asmlinkage unsigned long
2669 sys_signal(int sig, __sighandler_t handler)
2670 {
2671         struct k_sigaction new_sa, old_sa;
2672         int ret;
2673
2674         new_sa.sa.sa_handler = handler;
2675         new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2676
2677         ret = do_sigaction(sig, &new_sa, &old_sa);
2678
2679         return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2680 }
2681 #endif /* __ARCH_WANT_SYS_SIGNAL */
2682
2683 #ifdef __ARCH_WANT_SYS_PAUSE
2684
2685 asmlinkage long
2686 sys_pause(void)
2687 {
2688         current->state = TASK_INTERRUPTIBLE;
2689         schedule();
2690         return -ERESTARTNOHAND;
2691 }
2692
2693 #endif
2694
2695 void __init signals_init(void)
2696 {
2697         sigqueue_cachep =
2698                 kmem_cache_create("sigqueue",
2699                                   sizeof(struct sigqueue),
2700                                   __alignof__(struct sigqueue),
2701                                   SLAB_PANIC, NULL, NULL);
2702 }