sched: rt-bandwidth accounting fix
[safe/jmp/linux-2.6] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10         return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15         if (!rq->online)
16                 return;
17
18         cpu_set(rq->cpu, rq->rd->rto_mask);
19         /*
20          * Make sure the mask is visible before we set
21          * the overload count. That is checked to determine
22          * if we should look at the mask. It would be a shame
23          * if we looked at the mask, but the mask was not
24          * updated yet.
25          */
26         wmb();
27         atomic_inc(&rq->rd->rto_count);
28 }
29
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32         if (!rq->online)
33                 return;
34
35         /* the order here really doesn't matter */
36         atomic_dec(&rq->rd->rto_count);
37         cpu_clear(rq->cpu, rq->rd->rto_mask);
38 }
39
40 static void update_rt_migration(struct rq *rq)
41 {
42         if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43                 if (!rq->rt.overloaded) {
44                         rt_set_overload(rq);
45                         rq->rt.overloaded = 1;
46                 }
47         } else if (rq->rt.overloaded) {
48                 rt_clear_overload(rq);
49                 rq->rt.overloaded = 0;
50         }
51 }
52 #endif /* CONFIG_SMP */
53
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56         return container_of(rt_se, struct task_struct, rt);
57 }
58
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61         return !list_empty(&rt_se->run_list);
62 }
63
64 #ifdef CONFIG_RT_GROUP_SCHED
65
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68         if (!rt_rq->tg)
69                 return RUNTIME_INF;
70
71         return rt_rq->rt_runtime;
72 }
73
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80         list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84         return rt_rq->rq;
85 }
86
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89         return rt_se->rt_rq;
90 }
91
92 #define for_each_sched_rt_entity(rt_se) \
93         for (; rt_se; rt_se = rt_se->parent)
94
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97         return rt_se->my_q;
98 }
99
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105         struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107         if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108                 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
110                 enqueue_rt_entity(rt_se);
111                 if (rt_rq->highest_prio < curr->prio)
112                         resched_task(curr);
113         }
114 }
115
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118         struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120         if (rt_se && on_rt_rq(rt_se))
121                 dequeue_rt_entity(rt_se);
122 }
123
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131         struct rt_rq *rt_rq = group_rt_rq(rt_se);
132         struct task_struct *p;
133
134         if (rt_rq)
135                 return !!rt_rq->rt_nr_boosted;
136
137         p = rt_task_of(rt_se);
138         return p->prio != p->normal_prio;
139 }
140
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
143 {
144         return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
148 {
149         return cpu_online_map;
150 }
151 #endif
152
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161         return &rt_rq->tg->rt_bandwidth;
162 }
163
164 #else /* !CONFIG_RT_GROUP_SCHED */
165
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168         return rt_rq->rt_runtime;
169 }
170
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173         return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181         return container_of(rt_rq, struct rq, rt);
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186         struct task_struct *p = rt_task_of(rt_se);
187         struct rq *rq = task_rq(p);
188
189         return &rq->rt;
190 }
191
192 #define for_each_sched_rt_entity(rt_se) \
193         for (; rt_se; rt_se = NULL)
194
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197         return NULL;
198 }
199
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 }
203
204 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
205 {
206 }
207
208 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209 {
210         return rt_rq->rt_throttled;
211 }
212
213 static inline cpumask_t sched_rt_period_mask(void)
214 {
215         return cpu_online_map;
216 }
217
218 static inline
219 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220 {
221         return &cpu_rq(cpu)->rt;
222 }
223
224 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225 {
226         return &def_rt_bandwidth;
227 }
228
229 #endif /* CONFIG_RT_GROUP_SCHED */
230
231 #ifdef CONFIG_SMP
232 static int do_balance_runtime(struct rt_rq *rt_rq)
233 {
234         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
235         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
236         int i, weight, more = 0;
237         u64 rt_period;
238
239         weight = cpus_weight(rd->span);
240
241         spin_lock(&rt_b->rt_runtime_lock);
242         rt_period = ktime_to_ns(rt_b->rt_period);
243         for_each_cpu_mask_nr(i, rd->span) {
244                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
245                 s64 diff;
246
247                 if (iter == rt_rq)
248                         continue;
249
250                 spin_lock(&iter->rt_runtime_lock);
251                 if (iter->rt_runtime == RUNTIME_INF)
252                         goto next;
253
254                 diff = iter->rt_runtime - iter->rt_time;
255                 if (diff > 0) {
256                         diff = div_u64((u64)diff, weight);
257                         if (rt_rq->rt_runtime + diff > rt_period)
258                                 diff = rt_period - rt_rq->rt_runtime;
259                         iter->rt_runtime -= diff;
260                         rt_rq->rt_runtime += diff;
261                         more = 1;
262                         if (rt_rq->rt_runtime == rt_period) {
263                                 spin_unlock(&iter->rt_runtime_lock);
264                                 break;
265                         }
266                 }
267 next:
268                 spin_unlock(&iter->rt_runtime_lock);
269         }
270         spin_unlock(&rt_b->rt_runtime_lock);
271
272         return more;
273 }
274
275 static void __disable_runtime(struct rq *rq)
276 {
277         struct root_domain *rd = rq->rd;
278         struct rt_rq *rt_rq;
279
280         if (unlikely(!scheduler_running))
281                 return;
282
283         for_each_leaf_rt_rq(rt_rq, rq) {
284                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285                 s64 want;
286                 int i;
287
288                 spin_lock(&rt_b->rt_runtime_lock);
289                 spin_lock(&rt_rq->rt_runtime_lock);
290                 if (rt_rq->rt_runtime == RUNTIME_INF ||
291                                 rt_rq->rt_runtime == rt_b->rt_runtime)
292                         goto balanced;
293                 spin_unlock(&rt_rq->rt_runtime_lock);
294
295                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
296
297                 for_each_cpu_mask(i, rd->span) {
298                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299                         s64 diff;
300
301                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
302                                 continue;
303
304                         spin_lock(&iter->rt_runtime_lock);
305                         if (want > 0) {
306                                 diff = min_t(s64, iter->rt_runtime, want);
307                                 iter->rt_runtime -= diff;
308                                 want -= diff;
309                         } else {
310                                 iter->rt_runtime -= want;
311                                 want -= want;
312                         }
313                         spin_unlock(&iter->rt_runtime_lock);
314
315                         if (!want)
316                                 break;
317                 }
318
319                 spin_lock(&rt_rq->rt_runtime_lock);
320                 BUG_ON(want);
321 balanced:
322                 rt_rq->rt_runtime = RUNTIME_INF;
323                 spin_unlock(&rt_rq->rt_runtime_lock);
324                 spin_unlock(&rt_b->rt_runtime_lock);
325         }
326 }
327
328 static void disable_runtime(struct rq *rq)
329 {
330         unsigned long flags;
331
332         spin_lock_irqsave(&rq->lock, flags);
333         __disable_runtime(rq);
334         spin_unlock_irqrestore(&rq->lock, flags);
335 }
336
337 static void __enable_runtime(struct rq *rq)
338 {
339         struct rt_rq *rt_rq;
340
341         if (unlikely(!scheduler_running))
342                 return;
343
344         for_each_leaf_rt_rq(rt_rq, rq) {
345                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
346
347                 spin_lock(&rt_b->rt_runtime_lock);
348                 spin_lock(&rt_rq->rt_runtime_lock);
349                 rt_rq->rt_runtime = rt_b->rt_runtime;
350                 rt_rq->rt_time = 0;
351                 spin_unlock(&rt_rq->rt_runtime_lock);
352                 spin_unlock(&rt_b->rt_runtime_lock);
353         }
354 }
355
356 static void enable_runtime(struct rq *rq)
357 {
358         unsigned long flags;
359
360         spin_lock_irqsave(&rq->lock, flags);
361         __enable_runtime(rq);
362         spin_unlock_irqrestore(&rq->lock, flags);
363 }
364
365 static int balance_runtime(struct rt_rq *rt_rq)
366 {
367         int more = 0;
368
369         if (rt_rq->rt_time > rt_rq->rt_runtime) {
370                 spin_unlock(&rt_rq->rt_runtime_lock);
371                 more = do_balance_runtime(rt_rq);
372                 spin_lock(&rt_rq->rt_runtime_lock);
373         }
374
375         return more;
376 }
377 #else /* !CONFIG_SMP */
378 static inline int balance_runtime(struct rt_rq *rt_rq)
379 {
380         return 0;
381 }
382 #endif /* CONFIG_SMP */
383
384 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
385 {
386         int i, idle = 1;
387         cpumask_t span;
388
389         if (rt_b->rt_runtime == RUNTIME_INF)
390                 return 1;
391
392         span = sched_rt_period_mask();
393         for_each_cpu_mask(i, span) {
394                 int enqueue = 0;
395                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
396                 struct rq *rq = rq_of_rt_rq(rt_rq);
397
398                 spin_lock(&rq->lock);
399                 if (rt_rq->rt_time) {
400                         u64 runtime;
401
402                         spin_lock(&rt_rq->rt_runtime_lock);
403                         if (rt_rq->rt_throttled)
404                                 balance_runtime(rt_rq);
405                         runtime = rt_rq->rt_runtime;
406                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
407                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
408                                 rt_rq->rt_throttled = 0;
409                                 enqueue = 1;
410                         }
411                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
412                                 idle = 0;
413                         spin_unlock(&rt_rq->rt_runtime_lock);
414                 } else if (rt_rq->rt_nr_running)
415                         idle = 0;
416
417                 if (enqueue)
418                         sched_rt_rq_enqueue(rt_rq);
419                 spin_unlock(&rq->lock);
420         }
421
422         return idle;
423 }
424
425 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
426 {
427 #ifdef CONFIG_RT_GROUP_SCHED
428         struct rt_rq *rt_rq = group_rt_rq(rt_se);
429
430         if (rt_rq)
431                 return rt_rq->highest_prio;
432 #endif
433
434         return rt_task_of(rt_se)->prio;
435 }
436
437 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
438 {
439         u64 runtime = sched_rt_runtime(rt_rq);
440
441         if (rt_rq->rt_throttled)
442                 return rt_rq_throttled(rt_rq);
443
444         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
445                 return 0;
446
447         balance_runtime(rt_rq);
448         runtime = sched_rt_runtime(rt_rq);
449         if (runtime == RUNTIME_INF)
450                 return 0;
451
452         if (rt_rq->rt_time > runtime) {
453                 rt_rq->rt_throttled = 1;
454                 if (rt_rq_throttled(rt_rq)) {
455                         sched_rt_rq_dequeue(rt_rq);
456                         return 1;
457                 }
458         }
459
460         return 0;
461 }
462
463 /*
464  * Update the current task's runtime statistics. Skip current tasks that
465  * are not in our scheduling class.
466  */
467 static void update_curr_rt(struct rq *rq)
468 {
469         struct task_struct *curr = rq->curr;
470         struct sched_rt_entity *rt_se = &curr->rt;
471         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
472         u64 delta_exec;
473
474         if (!task_has_rt_policy(curr))
475                 return;
476
477         delta_exec = rq->clock - curr->se.exec_start;
478         if (unlikely((s64)delta_exec < 0))
479                 delta_exec = 0;
480
481         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
482
483         curr->se.sum_exec_runtime += delta_exec;
484         curr->se.exec_start = rq->clock;
485         cpuacct_charge(curr, delta_exec);
486
487         for_each_sched_rt_entity(rt_se) {
488                 rt_rq = rt_rq_of_se(rt_se);
489
490                 spin_lock(&rt_rq->rt_runtime_lock);
491                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
492                         rt_rq->rt_time += delta_exec;
493                         if (sched_rt_runtime_exceeded(rt_rq))
494                                 resched_task(curr);
495                 }
496                 spin_unlock(&rt_rq->rt_runtime_lock);
497         }
498 }
499
500 static inline
501 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
502 {
503         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
504         rt_rq->rt_nr_running++;
505 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
506         if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
507 #ifdef CONFIG_SMP
508                 struct rq *rq = rq_of_rt_rq(rt_rq);
509 #endif
510
511                 rt_rq->highest_prio = rt_se_prio(rt_se);
512 #ifdef CONFIG_SMP
513                 if (rq->online)
514                         cpupri_set(&rq->rd->cpupri, rq->cpu,
515                                    rt_se_prio(rt_se));
516 #endif
517         }
518 #endif
519 #ifdef CONFIG_SMP
520         if (rt_se->nr_cpus_allowed > 1) {
521                 struct rq *rq = rq_of_rt_rq(rt_rq);
522
523                 rq->rt.rt_nr_migratory++;
524         }
525
526         update_rt_migration(rq_of_rt_rq(rt_rq));
527 #endif
528 #ifdef CONFIG_RT_GROUP_SCHED
529         if (rt_se_boosted(rt_se))
530                 rt_rq->rt_nr_boosted++;
531
532         if (rt_rq->tg)
533                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
534 #else
535         start_rt_bandwidth(&def_rt_bandwidth);
536 #endif
537 }
538
539 static inline
540 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
541 {
542 #ifdef CONFIG_SMP
543         int highest_prio = rt_rq->highest_prio;
544 #endif
545
546         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
547         WARN_ON(!rt_rq->rt_nr_running);
548         rt_rq->rt_nr_running--;
549 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
550         if (rt_rq->rt_nr_running) {
551                 struct rt_prio_array *array;
552
553                 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
554                 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
555                         /* recalculate */
556                         array = &rt_rq->active;
557                         rt_rq->highest_prio =
558                                 sched_find_first_bit(array->bitmap);
559                 } /* otherwise leave rq->highest prio alone */
560         } else
561                 rt_rq->highest_prio = MAX_RT_PRIO;
562 #endif
563 #ifdef CONFIG_SMP
564         if (rt_se->nr_cpus_allowed > 1) {
565                 struct rq *rq = rq_of_rt_rq(rt_rq);
566                 rq->rt.rt_nr_migratory--;
567         }
568
569         if (rt_rq->highest_prio != highest_prio) {
570                 struct rq *rq = rq_of_rt_rq(rt_rq);
571
572                 if (rq->online)
573                         cpupri_set(&rq->rd->cpupri, rq->cpu,
574                                    rt_rq->highest_prio);
575         }
576
577         update_rt_migration(rq_of_rt_rq(rt_rq));
578 #endif /* CONFIG_SMP */
579 #ifdef CONFIG_RT_GROUP_SCHED
580         if (rt_se_boosted(rt_se))
581                 rt_rq->rt_nr_boosted--;
582
583         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
584 #endif
585 }
586
587 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
588 {
589         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
590         struct rt_prio_array *array = &rt_rq->active;
591         struct rt_rq *group_rq = group_rt_rq(rt_se);
592         struct list_head *queue = array->queue + rt_se_prio(rt_se);
593
594         /*
595          * Don't enqueue the group if its throttled, or when empty.
596          * The latter is a consequence of the former when a child group
597          * get throttled and the current group doesn't have any other
598          * active members.
599          */
600         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
601                 return;
602
603         list_add_tail(&rt_se->run_list, queue);
604         __set_bit(rt_se_prio(rt_se), array->bitmap);
605
606         inc_rt_tasks(rt_se, rt_rq);
607 }
608
609 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
610 {
611         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
612         struct rt_prio_array *array = &rt_rq->active;
613
614         list_del_init(&rt_se->run_list);
615         if (list_empty(array->queue + rt_se_prio(rt_se)))
616                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
617
618         dec_rt_tasks(rt_se, rt_rq);
619 }
620
621 /*
622  * Because the prio of an upper entry depends on the lower
623  * entries, we must remove entries top - down.
624  */
625 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
626 {
627         struct sched_rt_entity *back = NULL;
628
629         for_each_sched_rt_entity(rt_se) {
630                 rt_se->back = back;
631                 back = rt_se;
632         }
633
634         for (rt_se = back; rt_se; rt_se = rt_se->back) {
635                 if (on_rt_rq(rt_se))
636                         __dequeue_rt_entity(rt_se);
637         }
638 }
639
640 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
641 {
642         dequeue_rt_stack(rt_se);
643         for_each_sched_rt_entity(rt_se)
644                 __enqueue_rt_entity(rt_se);
645 }
646
647 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
648 {
649         dequeue_rt_stack(rt_se);
650
651         for_each_sched_rt_entity(rt_se) {
652                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
653
654                 if (rt_rq && rt_rq->rt_nr_running)
655                         __enqueue_rt_entity(rt_se);
656         }
657 }
658
659 /*
660  * Adding/removing a task to/from a priority array:
661  */
662 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
663 {
664         struct sched_rt_entity *rt_se = &p->rt;
665
666         if (wakeup)
667                 rt_se->timeout = 0;
668
669         enqueue_rt_entity(rt_se);
670
671         inc_cpu_load(rq, p->se.load.weight);
672 }
673
674 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
675 {
676         struct sched_rt_entity *rt_se = &p->rt;
677
678         update_curr_rt(rq);
679         dequeue_rt_entity(rt_se);
680
681         dec_cpu_load(rq, p->se.load.weight);
682 }
683
684 /*
685  * Put task to the end of the run list without the overhead of dequeue
686  * followed by enqueue.
687  */
688 static void
689 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
690 {
691         if (on_rt_rq(rt_se)) {
692                 struct rt_prio_array *array = &rt_rq->active;
693                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
694
695                 if (head)
696                         list_move(&rt_se->run_list, queue);
697                 else
698                         list_move_tail(&rt_se->run_list, queue);
699         }
700 }
701
702 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
703 {
704         struct sched_rt_entity *rt_se = &p->rt;
705         struct rt_rq *rt_rq;
706
707         for_each_sched_rt_entity(rt_se) {
708                 rt_rq = rt_rq_of_se(rt_se);
709                 requeue_rt_entity(rt_rq, rt_se, head);
710         }
711 }
712
713 static void yield_task_rt(struct rq *rq)
714 {
715         requeue_task_rt(rq, rq->curr, 0);
716 }
717
718 #ifdef CONFIG_SMP
719 static int find_lowest_rq(struct task_struct *task);
720
721 static int select_task_rq_rt(struct task_struct *p, int sync)
722 {
723         struct rq *rq = task_rq(p);
724
725         /*
726          * If the current task is an RT task, then
727          * try to see if we can wake this RT task up on another
728          * runqueue. Otherwise simply start this RT task
729          * on its current runqueue.
730          *
731          * We want to avoid overloading runqueues. Even if
732          * the RT task is of higher priority than the current RT task.
733          * RT tasks behave differently than other tasks. If
734          * one gets preempted, we try to push it off to another queue.
735          * So trying to keep a preempting RT task on the same
736          * cache hot CPU will force the running RT task to
737          * a cold CPU. So we waste all the cache for the lower
738          * RT task in hopes of saving some of a RT task
739          * that is just being woken and probably will have
740          * cold cache anyway.
741          */
742         if (unlikely(rt_task(rq->curr)) &&
743             (p->rt.nr_cpus_allowed > 1)) {
744                 int cpu = find_lowest_rq(p);
745
746                 return (cpu == -1) ? task_cpu(p) : cpu;
747         }
748
749         /*
750          * Otherwise, just let it ride on the affined RQ and the
751          * post-schedule router will push the preempted task away
752          */
753         return task_cpu(p);
754 }
755
756 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
757 {
758         cpumask_t mask;
759
760         if (rq->curr->rt.nr_cpus_allowed == 1)
761                 return;
762
763         if (p->rt.nr_cpus_allowed != 1
764             && cpupri_find(&rq->rd->cpupri, p, &mask))
765                 return;
766
767         if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
768                 return;
769
770         /*
771          * There appears to be other cpus that can accept
772          * current and none to run 'p', so lets reschedule
773          * to try and push current away:
774          */
775         requeue_task_rt(rq, p, 1);
776         resched_task(rq->curr);
777 }
778
779 #endif /* CONFIG_SMP */
780
781 /*
782  * Preempt the current task with a newly woken task if needed:
783  */
784 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
785 {
786         if (p->prio < rq->curr->prio) {
787                 resched_task(rq->curr);
788                 return;
789         }
790
791 #ifdef CONFIG_SMP
792         /*
793          * If:
794          *
795          * - the newly woken task is of equal priority to the current task
796          * - the newly woken task is non-migratable while current is migratable
797          * - current will be preempted on the next reschedule
798          *
799          * we should check to see if current can readily move to a different
800          * cpu.  If so, we will reschedule to allow the push logic to try
801          * to move current somewhere else, making room for our non-migratable
802          * task.
803          */
804         if (p->prio == rq->curr->prio && !need_resched())
805                 check_preempt_equal_prio(rq, p);
806 #endif
807 }
808
809 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
810                                                    struct rt_rq *rt_rq)
811 {
812         struct rt_prio_array *array = &rt_rq->active;
813         struct sched_rt_entity *next = NULL;
814         struct list_head *queue;
815         int idx;
816
817         idx = sched_find_first_bit(array->bitmap);
818         BUG_ON(idx >= MAX_RT_PRIO);
819
820         queue = array->queue + idx;
821         next = list_entry(queue->next, struct sched_rt_entity, run_list);
822
823         return next;
824 }
825
826 static struct task_struct *pick_next_task_rt(struct rq *rq)
827 {
828         struct sched_rt_entity *rt_se;
829         struct task_struct *p;
830         struct rt_rq *rt_rq;
831
832         rt_rq = &rq->rt;
833
834         if (unlikely(!rt_rq->rt_nr_running))
835                 return NULL;
836
837         if (rt_rq_throttled(rt_rq))
838                 return NULL;
839
840         do {
841                 rt_se = pick_next_rt_entity(rq, rt_rq);
842                 BUG_ON(!rt_se);
843                 rt_rq = group_rt_rq(rt_se);
844         } while (rt_rq);
845
846         p = rt_task_of(rt_se);
847         p->se.exec_start = rq->clock;
848         return p;
849 }
850
851 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
852 {
853         update_curr_rt(rq);
854         p->se.exec_start = 0;
855 }
856
857 #ifdef CONFIG_SMP
858
859 /* Only try algorithms three times */
860 #define RT_MAX_TRIES 3
861
862 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
863 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
864
865 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
866
867 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
868 {
869         if (!task_running(rq, p) &&
870             (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
871             (p->rt.nr_cpus_allowed > 1))
872                 return 1;
873         return 0;
874 }
875
876 /* Return the second highest RT task, NULL otherwise */
877 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
878 {
879         struct task_struct *next = NULL;
880         struct sched_rt_entity *rt_se;
881         struct rt_prio_array *array;
882         struct rt_rq *rt_rq;
883         int idx;
884
885         for_each_leaf_rt_rq(rt_rq, rq) {
886                 array = &rt_rq->active;
887                 idx = sched_find_first_bit(array->bitmap);
888  next_idx:
889                 if (idx >= MAX_RT_PRIO)
890                         continue;
891                 if (next && next->prio < idx)
892                         continue;
893                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
894                         struct task_struct *p = rt_task_of(rt_se);
895                         if (pick_rt_task(rq, p, cpu)) {
896                                 next = p;
897                                 break;
898                         }
899                 }
900                 if (!next) {
901                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
902                         goto next_idx;
903                 }
904         }
905
906         return next;
907 }
908
909 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
910
911 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
912 {
913         int first;
914
915         /* "this_cpu" is cheaper to preempt than a remote processor */
916         if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
917                 return this_cpu;
918
919         first = first_cpu(*mask);
920         if (first != NR_CPUS)
921                 return first;
922
923         return -1;
924 }
925
926 static int find_lowest_rq(struct task_struct *task)
927 {
928         struct sched_domain *sd;
929         cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
930         int this_cpu = smp_processor_id();
931         int cpu      = task_cpu(task);
932
933         if (task->rt.nr_cpus_allowed == 1)
934                 return -1; /* No other targets possible */
935
936         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
937                 return -1; /* No targets found */
938
939         /*
940          * Only consider CPUs that are usable for migration.
941          * I guess we might want to change cpupri_find() to ignore those
942          * in the first place.
943          */
944         cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
945
946         /*
947          * At this point we have built a mask of cpus representing the
948          * lowest priority tasks in the system.  Now we want to elect
949          * the best one based on our affinity and topology.
950          *
951          * We prioritize the last cpu that the task executed on since
952          * it is most likely cache-hot in that location.
953          */
954         if (cpu_isset(cpu, *lowest_mask))
955                 return cpu;
956
957         /*
958          * Otherwise, we consult the sched_domains span maps to figure
959          * out which cpu is logically closest to our hot cache data.
960          */
961         if (this_cpu == cpu)
962                 this_cpu = -1; /* Skip this_cpu opt if the same */
963
964         for_each_domain(cpu, sd) {
965                 if (sd->flags & SD_WAKE_AFFINE) {
966                         cpumask_t domain_mask;
967                         int       best_cpu;
968
969                         cpus_and(domain_mask, sd->span, *lowest_mask);
970
971                         best_cpu = pick_optimal_cpu(this_cpu,
972                                                     &domain_mask);
973                         if (best_cpu != -1)
974                                 return best_cpu;
975                 }
976         }
977
978         /*
979          * And finally, if there were no matches within the domains
980          * just give the caller *something* to work with from the compatible
981          * locations.
982          */
983         return pick_optimal_cpu(this_cpu, lowest_mask);
984 }
985
986 /* Will lock the rq it finds */
987 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
988 {
989         struct rq *lowest_rq = NULL;
990         int tries;
991         int cpu;
992
993         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
994                 cpu = find_lowest_rq(task);
995
996                 if ((cpu == -1) || (cpu == rq->cpu))
997                         break;
998
999                 lowest_rq = cpu_rq(cpu);
1000
1001                 /* if the prio of this runqueue changed, try again */
1002                 if (double_lock_balance(rq, lowest_rq)) {
1003                         /*
1004                          * We had to unlock the run queue. In
1005                          * the mean time, task could have
1006                          * migrated already or had its affinity changed.
1007                          * Also make sure that it wasn't scheduled on its rq.
1008                          */
1009                         if (unlikely(task_rq(task) != rq ||
1010                                      !cpu_isset(lowest_rq->cpu,
1011                                                 task->cpus_allowed) ||
1012                                      task_running(rq, task) ||
1013                                      !task->se.on_rq)) {
1014
1015                                 spin_unlock(&lowest_rq->lock);
1016                                 lowest_rq = NULL;
1017                                 break;
1018                         }
1019                 }
1020
1021                 /* If this rq is still suitable use it. */
1022                 if (lowest_rq->rt.highest_prio > task->prio)
1023                         break;
1024
1025                 /* try again */
1026                 double_unlock_balance(rq, lowest_rq);
1027                 lowest_rq = NULL;
1028         }
1029
1030         return lowest_rq;
1031 }
1032
1033 /*
1034  * If the current CPU has more than one RT task, see if the non
1035  * running task can migrate over to a CPU that is running a task
1036  * of lesser priority.
1037  */
1038 static int push_rt_task(struct rq *rq)
1039 {
1040         struct task_struct *next_task;
1041         struct rq *lowest_rq;
1042         int ret = 0;
1043         int paranoid = RT_MAX_TRIES;
1044
1045         if (!rq->rt.overloaded)
1046                 return 0;
1047
1048         next_task = pick_next_highest_task_rt(rq, -1);
1049         if (!next_task)
1050                 return 0;
1051
1052  retry:
1053         if (unlikely(next_task == rq->curr)) {
1054                 WARN_ON(1);
1055                 return 0;
1056         }
1057
1058         /*
1059          * It's possible that the next_task slipped in of
1060          * higher priority than current. If that's the case
1061          * just reschedule current.
1062          */
1063         if (unlikely(next_task->prio < rq->curr->prio)) {
1064                 resched_task(rq->curr);
1065                 return 0;
1066         }
1067
1068         /* We might release rq lock */
1069         get_task_struct(next_task);
1070
1071         /* find_lock_lowest_rq locks the rq if found */
1072         lowest_rq = find_lock_lowest_rq(next_task, rq);
1073         if (!lowest_rq) {
1074                 struct task_struct *task;
1075                 /*
1076                  * find lock_lowest_rq releases rq->lock
1077                  * so it is possible that next_task has changed.
1078                  * If it has, then try again.
1079                  */
1080                 task = pick_next_highest_task_rt(rq, -1);
1081                 if (unlikely(task != next_task) && task && paranoid--) {
1082                         put_task_struct(next_task);
1083                         next_task = task;
1084                         goto retry;
1085                 }
1086                 goto out;
1087         }
1088
1089         deactivate_task(rq, next_task, 0);
1090         set_task_cpu(next_task, lowest_rq->cpu);
1091         activate_task(lowest_rq, next_task, 0);
1092
1093         resched_task(lowest_rq->curr);
1094
1095         double_unlock_balance(rq, lowest_rq);
1096
1097         ret = 1;
1098 out:
1099         put_task_struct(next_task);
1100
1101         return ret;
1102 }
1103
1104 /*
1105  * TODO: Currently we just use the second highest prio task on
1106  *       the queue, and stop when it can't migrate (or there's
1107  *       no more RT tasks).  There may be a case where a lower
1108  *       priority RT task has a different affinity than the
1109  *       higher RT task. In this case the lower RT task could
1110  *       possibly be able to migrate where as the higher priority
1111  *       RT task could not.  We currently ignore this issue.
1112  *       Enhancements are welcome!
1113  */
1114 static void push_rt_tasks(struct rq *rq)
1115 {
1116         /* push_rt_task will return true if it moved an RT */
1117         while (push_rt_task(rq))
1118                 ;
1119 }
1120
1121 static int pull_rt_task(struct rq *this_rq)
1122 {
1123         int this_cpu = this_rq->cpu, ret = 0, cpu;
1124         struct task_struct *p, *next;
1125         struct rq *src_rq;
1126
1127         if (likely(!rt_overloaded(this_rq)))
1128                 return 0;
1129
1130         next = pick_next_task_rt(this_rq);
1131
1132         for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1133                 if (this_cpu == cpu)
1134                         continue;
1135
1136                 src_rq = cpu_rq(cpu);
1137                 /*
1138                  * We can potentially drop this_rq's lock in
1139                  * double_lock_balance, and another CPU could
1140                  * steal our next task - hence we must cause
1141                  * the caller to recalculate the next task
1142                  * in that case:
1143                  */
1144                 if (double_lock_balance(this_rq, src_rq)) {
1145                         struct task_struct *old_next = next;
1146
1147                         next = pick_next_task_rt(this_rq);
1148                         if (next != old_next)
1149                                 ret = 1;
1150                 }
1151
1152                 /*
1153                  * Are there still pullable RT tasks?
1154                  */
1155                 if (src_rq->rt.rt_nr_running <= 1)
1156                         goto skip;
1157
1158                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1159
1160                 /*
1161                  * Do we have an RT task that preempts
1162                  * the to-be-scheduled task?
1163                  */
1164                 if (p && (!next || (p->prio < next->prio))) {
1165                         WARN_ON(p == src_rq->curr);
1166                         WARN_ON(!p->se.on_rq);
1167
1168                         /*
1169                          * There's a chance that p is higher in priority
1170                          * than what's currently running on its cpu.
1171                          * This is just that p is wakeing up and hasn't
1172                          * had a chance to schedule. We only pull
1173                          * p if it is lower in priority than the
1174                          * current task on the run queue or
1175                          * this_rq next task is lower in prio than
1176                          * the current task on that rq.
1177                          */
1178                         if (p->prio < src_rq->curr->prio ||
1179                             (next && next->prio < src_rq->curr->prio))
1180                                 goto skip;
1181
1182                         ret = 1;
1183
1184                         deactivate_task(src_rq, p, 0);
1185                         set_task_cpu(p, this_cpu);
1186                         activate_task(this_rq, p, 0);
1187                         /*
1188                          * We continue with the search, just in
1189                          * case there's an even higher prio task
1190                          * in another runqueue. (low likelyhood
1191                          * but possible)
1192                          *
1193                          * Update next so that we won't pick a task
1194                          * on another cpu with a priority lower (or equal)
1195                          * than the one we just picked.
1196                          */
1197                         next = p;
1198
1199                 }
1200  skip:
1201                 double_unlock_balance(this_rq, src_rq);
1202         }
1203
1204         return ret;
1205 }
1206
1207 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1208 {
1209         /* Try to pull RT tasks here if we lower this rq's prio */
1210         if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1211                 pull_rt_task(rq);
1212 }
1213
1214 static void post_schedule_rt(struct rq *rq)
1215 {
1216         /*
1217          * If we have more than one rt_task queued, then
1218          * see if we can push the other rt_tasks off to other CPUS.
1219          * Note we may release the rq lock, and since
1220          * the lock was owned by prev, we need to release it
1221          * first via finish_lock_switch and then reaquire it here.
1222          */
1223         if (unlikely(rq->rt.overloaded)) {
1224                 spin_lock_irq(&rq->lock);
1225                 push_rt_tasks(rq);
1226                 spin_unlock_irq(&rq->lock);
1227         }
1228 }
1229
1230 /*
1231  * If we are not running and we are not going to reschedule soon, we should
1232  * try to push tasks away now
1233  */
1234 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1235 {
1236         if (!task_running(rq, p) &&
1237             !test_tsk_need_resched(rq->curr) &&
1238             rq->rt.overloaded)
1239                 push_rt_tasks(rq);
1240 }
1241
1242 static unsigned long
1243 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1244                 unsigned long max_load_move,
1245                 struct sched_domain *sd, enum cpu_idle_type idle,
1246                 int *all_pinned, int *this_best_prio)
1247 {
1248         /* don't touch RT tasks */
1249         return 0;
1250 }
1251
1252 static int
1253 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1254                  struct sched_domain *sd, enum cpu_idle_type idle)
1255 {
1256         /* don't touch RT tasks */
1257         return 0;
1258 }
1259
1260 static void set_cpus_allowed_rt(struct task_struct *p,
1261                                 const cpumask_t *new_mask)
1262 {
1263         int weight = cpus_weight(*new_mask);
1264
1265         BUG_ON(!rt_task(p));
1266
1267         /*
1268          * Update the migration status of the RQ if we have an RT task
1269          * which is running AND changing its weight value.
1270          */
1271         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1272                 struct rq *rq = task_rq(p);
1273
1274                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1275                         rq->rt.rt_nr_migratory++;
1276                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1277                         BUG_ON(!rq->rt.rt_nr_migratory);
1278                         rq->rt.rt_nr_migratory--;
1279                 }
1280
1281                 update_rt_migration(rq);
1282         }
1283
1284         p->cpus_allowed    = *new_mask;
1285         p->rt.nr_cpus_allowed = weight;
1286 }
1287
1288 /* Assumes rq->lock is held */
1289 static void rq_online_rt(struct rq *rq)
1290 {
1291         if (rq->rt.overloaded)
1292                 rt_set_overload(rq);
1293
1294         __enable_runtime(rq);
1295
1296         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1297 }
1298
1299 /* Assumes rq->lock is held */
1300 static void rq_offline_rt(struct rq *rq)
1301 {
1302         if (rq->rt.overloaded)
1303                 rt_clear_overload(rq);
1304
1305         __disable_runtime(rq);
1306
1307         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1308 }
1309
1310 /*
1311  * When switch from the rt queue, we bring ourselves to a position
1312  * that we might want to pull RT tasks from other runqueues.
1313  */
1314 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1315                            int running)
1316 {
1317         /*
1318          * If there are other RT tasks then we will reschedule
1319          * and the scheduling of the other RT tasks will handle
1320          * the balancing. But if we are the last RT task
1321          * we may need to handle the pulling of RT tasks
1322          * now.
1323          */
1324         if (!rq->rt.rt_nr_running)
1325                 pull_rt_task(rq);
1326 }
1327 #endif /* CONFIG_SMP */
1328
1329 /*
1330  * When switching a task to RT, we may overload the runqueue
1331  * with RT tasks. In this case we try to push them off to
1332  * other runqueues.
1333  */
1334 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1335                            int running)
1336 {
1337         int check_resched = 1;
1338
1339         /*
1340          * If we are already running, then there's nothing
1341          * that needs to be done. But if we are not running
1342          * we may need to preempt the current running task.
1343          * If that current running task is also an RT task
1344          * then see if we can move to another run queue.
1345          */
1346         if (!running) {
1347 #ifdef CONFIG_SMP
1348                 if (rq->rt.overloaded && push_rt_task(rq) &&
1349                     /* Don't resched if we changed runqueues */
1350                     rq != task_rq(p))
1351                         check_resched = 0;
1352 #endif /* CONFIG_SMP */
1353                 if (check_resched && p->prio < rq->curr->prio)
1354                         resched_task(rq->curr);
1355         }
1356 }
1357
1358 /*
1359  * Priority of the task has changed. This may cause
1360  * us to initiate a push or pull.
1361  */
1362 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1363                             int oldprio, int running)
1364 {
1365         if (running) {
1366 #ifdef CONFIG_SMP
1367                 /*
1368                  * If our priority decreases while running, we
1369                  * may need to pull tasks to this runqueue.
1370                  */
1371                 if (oldprio < p->prio)
1372                         pull_rt_task(rq);
1373                 /*
1374                  * If there's a higher priority task waiting to run
1375                  * then reschedule. Note, the above pull_rt_task
1376                  * can release the rq lock and p could migrate.
1377                  * Only reschedule if p is still on the same runqueue.
1378                  */
1379                 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1380                         resched_task(p);
1381 #else
1382                 /* For UP simply resched on drop of prio */
1383                 if (oldprio < p->prio)
1384                         resched_task(p);
1385 #endif /* CONFIG_SMP */
1386         } else {
1387                 /*
1388                  * This task is not running, but if it is
1389                  * greater than the current running task
1390                  * then reschedule.
1391                  */
1392                 if (p->prio < rq->curr->prio)
1393                         resched_task(rq->curr);
1394         }
1395 }
1396
1397 static void watchdog(struct rq *rq, struct task_struct *p)
1398 {
1399         unsigned long soft, hard;
1400
1401         if (!p->signal)
1402                 return;
1403
1404         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1405         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1406
1407         if (soft != RLIM_INFINITY) {
1408                 unsigned long next;
1409
1410                 p->rt.timeout++;
1411                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1412                 if (p->rt.timeout > next)
1413                         p->it_sched_expires = p->se.sum_exec_runtime;
1414         }
1415 }
1416
1417 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1418 {
1419         update_curr_rt(rq);
1420
1421         watchdog(rq, p);
1422
1423         /*
1424          * RR tasks need a special form of timeslice management.
1425          * FIFO tasks have no timeslices.
1426          */
1427         if (p->policy != SCHED_RR)
1428                 return;
1429
1430         if (--p->rt.time_slice)
1431                 return;
1432
1433         p->rt.time_slice = DEF_TIMESLICE;
1434
1435         /*
1436          * Requeue to the end of queue if we are not the only element
1437          * on the queue:
1438          */
1439         if (p->rt.run_list.prev != p->rt.run_list.next) {
1440                 requeue_task_rt(rq, p, 0);
1441                 set_tsk_need_resched(p);
1442         }
1443 }
1444
1445 static void set_curr_task_rt(struct rq *rq)
1446 {
1447         struct task_struct *p = rq->curr;
1448
1449         p->se.exec_start = rq->clock;
1450 }
1451
1452 static const struct sched_class rt_sched_class = {
1453         .next                   = &fair_sched_class,
1454         .enqueue_task           = enqueue_task_rt,
1455         .dequeue_task           = dequeue_task_rt,
1456         .yield_task             = yield_task_rt,
1457 #ifdef CONFIG_SMP
1458         .select_task_rq         = select_task_rq_rt,
1459 #endif /* CONFIG_SMP */
1460
1461         .check_preempt_curr     = check_preempt_curr_rt,
1462
1463         .pick_next_task         = pick_next_task_rt,
1464         .put_prev_task          = put_prev_task_rt,
1465
1466 #ifdef CONFIG_SMP
1467         .load_balance           = load_balance_rt,
1468         .move_one_task          = move_one_task_rt,
1469         .set_cpus_allowed       = set_cpus_allowed_rt,
1470         .rq_online              = rq_online_rt,
1471         .rq_offline             = rq_offline_rt,
1472         .pre_schedule           = pre_schedule_rt,
1473         .post_schedule          = post_schedule_rt,
1474         .task_wake_up           = task_wake_up_rt,
1475         .switched_from          = switched_from_rt,
1476 #endif
1477
1478         .set_curr_task          = set_curr_task_rt,
1479         .task_tick              = task_tick_rt,
1480
1481         .prio_changed           = prio_changed_rt,
1482         .switched_to            = switched_to_rt,
1483 };
1484
1485 #ifdef CONFIG_SCHED_DEBUG
1486 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1487
1488 static void print_rt_stats(struct seq_file *m, int cpu)
1489 {
1490         struct rt_rq *rt_rq;
1491
1492         rcu_read_lock();
1493         for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1494                 print_rt_rq(m, cpu, rt_rq);
1495         rcu_read_unlock();
1496 }
1497 #endif /* CONFIG_SCHED_DEBUG */