bd90c8bb07399b161180b58853cef4f23cc70f41
[safe/jmp/linux-2.6] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10         return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15         if (!rq->online)
16                 return;
17
18         cpu_set(rq->cpu, rq->rd->rto_mask);
19         /*
20          * Make sure the mask is visible before we set
21          * the overload count. That is checked to determine
22          * if we should look at the mask. It would be a shame
23          * if we looked at the mask, but the mask was not
24          * updated yet.
25          */
26         wmb();
27         atomic_inc(&rq->rd->rto_count);
28 }
29
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32         if (!rq->online)
33                 return;
34
35         /* the order here really doesn't matter */
36         atomic_dec(&rq->rd->rto_count);
37         cpu_clear(rq->cpu, rq->rd->rto_mask);
38 }
39
40 static void update_rt_migration(struct rq *rq)
41 {
42         if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43                 if (!rq->rt.overloaded) {
44                         rt_set_overload(rq);
45                         rq->rt.overloaded = 1;
46                 }
47         } else if (rq->rt.overloaded) {
48                 rt_clear_overload(rq);
49                 rq->rt.overloaded = 0;
50         }
51 }
52 #endif /* CONFIG_SMP */
53
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56         return container_of(rt_se, struct task_struct, rt);
57 }
58
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61         return !list_empty(&rt_se->run_list);
62 }
63
64 #ifdef CONFIG_RT_GROUP_SCHED
65
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68         if (!rt_rq->tg)
69                 return RUNTIME_INF;
70
71         return rt_rq->rt_runtime;
72 }
73
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80         list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84         return rt_rq->rq;
85 }
86
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89         return rt_se->rt_rq;
90 }
91
92 #define for_each_sched_rt_entity(rt_se) \
93         for (; rt_se; rt_se = rt_se->parent)
94
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97         return rt_se->my_q;
98 }
99
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105         struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107         if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108                 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
110                 enqueue_rt_entity(rt_se);
111                 if (rt_rq->highest_prio < curr->prio)
112                         resched_task(curr);
113         }
114 }
115
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118         struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120         if (rt_se && on_rt_rq(rt_se))
121                 dequeue_rt_entity(rt_se);
122 }
123
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131         struct rt_rq *rt_rq = group_rt_rq(rt_se);
132         struct task_struct *p;
133
134         if (rt_rq)
135                 return !!rt_rq->rt_nr_boosted;
136
137         p = rt_task_of(rt_se);
138         return p->prio != p->normal_prio;
139 }
140
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
143 {
144         return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
148 {
149         return cpu_online_map;
150 }
151 #endif
152
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161         return &rt_rq->tg->rt_bandwidth;
162 }
163
164 #else
165
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168         return rt_rq->rt_runtime;
169 }
170
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173         return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181         return container_of(rt_rq, struct rq, rt);
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186         struct task_struct *p = rt_task_of(rt_se);
187         struct rq *rq = task_rq(p);
188
189         return &rq->rt;
190 }
191
192 #define for_each_sched_rt_entity(rt_se) \
193         for (; rt_se; rt_se = NULL)
194
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197         return NULL;
198 }
199
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 }
203
204 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
205 {
206 }
207
208 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209 {
210         return rt_rq->rt_throttled;
211 }
212
213 static inline cpumask_t sched_rt_period_mask(void)
214 {
215         return cpu_online_map;
216 }
217
218 static inline
219 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220 {
221         return &cpu_rq(cpu)->rt;
222 }
223
224 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225 {
226         return &def_rt_bandwidth;
227 }
228
229 #endif
230
231 #ifdef CONFIG_SMP
232 static int do_balance_runtime(struct rt_rq *rt_rq)
233 {
234         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
235         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
236         int i, weight, more = 0;
237         u64 rt_period;
238
239         weight = cpus_weight(rd->span);
240
241         spin_lock(&rt_b->rt_runtime_lock);
242         rt_period = ktime_to_ns(rt_b->rt_period);
243         for_each_cpu_mask(i, rd->span) {
244                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
245                 s64 diff;
246
247                 if (iter == rt_rq)
248                         continue;
249
250                 spin_lock(&iter->rt_runtime_lock);
251                 if (iter->rt_runtime == RUNTIME_INF)
252                         goto next;
253
254                 diff = iter->rt_runtime - iter->rt_time;
255                 if (diff > 0) {
256                         do_div(diff, weight);
257                         if (rt_rq->rt_runtime + diff > rt_period)
258                                 diff = rt_period - rt_rq->rt_runtime;
259                         iter->rt_runtime -= diff;
260                         rt_rq->rt_runtime += diff;
261                         more = 1;
262                         if (rt_rq->rt_runtime == rt_period) {
263                                 spin_unlock(&iter->rt_runtime_lock);
264                                 break;
265                         }
266                 }
267 next:
268                 spin_unlock(&iter->rt_runtime_lock);
269         }
270         spin_unlock(&rt_b->rt_runtime_lock);
271
272         return more;
273 }
274
275 static void __disable_runtime(struct rq *rq)
276 {
277         struct root_domain *rd = rq->rd;
278         struct rt_rq *rt_rq;
279
280         if (unlikely(!scheduler_running))
281                 return;
282
283         for_each_leaf_rt_rq(rt_rq, rq) {
284                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285                 s64 want;
286                 int i;
287
288                 spin_lock(&rt_b->rt_runtime_lock);
289                 spin_lock(&rt_rq->rt_runtime_lock);
290                 if (rt_rq->rt_runtime == RUNTIME_INF ||
291                                 rt_rq->rt_runtime == rt_b->rt_runtime)
292                         goto balanced;
293                 spin_unlock(&rt_rq->rt_runtime_lock);
294
295                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
296
297                 for_each_cpu_mask(i, rd->span) {
298                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299                         s64 diff;
300
301                         if (iter == rt_rq)
302                                 continue;
303
304                         spin_lock(&iter->rt_runtime_lock);
305                         if (want > 0) {
306                                 diff = min_t(s64, iter->rt_runtime, want);
307                                 iter->rt_runtime -= diff;
308                                 want -= diff;
309                         } else {
310                                 iter->rt_runtime -= want;
311                                 want -= want;
312                         }
313                         spin_unlock(&iter->rt_runtime_lock);
314
315                         if (!want)
316                                 break;
317                 }
318
319                 spin_lock(&rt_rq->rt_runtime_lock);
320                 BUG_ON(want);
321 balanced:
322                 rt_rq->rt_runtime = RUNTIME_INF;
323                 spin_unlock(&rt_rq->rt_runtime_lock);
324                 spin_unlock(&rt_b->rt_runtime_lock);
325         }
326 }
327
328 static void disable_runtime(struct rq *rq)
329 {
330         unsigned long flags;
331
332         spin_lock_irqsave(&rq->lock, flags);
333         __disable_runtime(rq);
334         spin_unlock_irqrestore(&rq->lock, flags);
335 }
336
337 static void __enable_runtime(struct rq *rq)
338 {
339         struct root_domain *rd = rq->rd;
340         struct rt_rq *rt_rq;
341
342         if (unlikely(!scheduler_running))
343                 return;
344
345         for_each_leaf_rt_rq(rt_rq, rq) {
346                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
347
348                 spin_lock(&rt_b->rt_runtime_lock);
349                 spin_lock(&rt_rq->rt_runtime_lock);
350                 rt_rq->rt_runtime = rt_b->rt_runtime;
351                 rt_rq->rt_time = 0;
352                 spin_unlock(&rt_rq->rt_runtime_lock);
353                 spin_unlock(&rt_b->rt_runtime_lock);
354         }
355 }
356
357 static void enable_runtime(struct rq *rq)
358 {
359         unsigned long flags;
360
361         spin_lock_irqsave(&rq->lock, flags);
362         __enable_runtime(rq);
363         spin_unlock_irqrestore(&rq->lock, flags);
364 }
365
366 static int balance_runtime(struct rt_rq *rt_rq)
367 {
368         int more = 0;
369
370         if (rt_rq->rt_time > rt_rq->rt_runtime) {
371                 spin_unlock(&rt_rq->rt_runtime_lock);
372                 more = do_balance_runtime(rt_rq);
373                 spin_lock(&rt_rq->rt_runtime_lock);
374         }
375
376         return more;
377 }
378 #else
379 static inline int balance_runtime(struct rt_rq *rt_rq)
380 {
381         return 0;
382 }
383 #endif
384
385 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
386 {
387         int i, idle = 1;
388         cpumask_t span;
389
390         if (rt_b->rt_runtime == RUNTIME_INF)
391                 return 1;
392
393         span = sched_rt_period_mask();
394         for_each_cpu_mask(i, span) {
395                 int enqueue = 0;
396                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
397                 struct rq *rq = rq_of_rt_rq(rt_rq);
398
399                 spin_lock(&rq->lock);
400                 if (rt_rq->rt_time) {
401                         u64 runtime;
402
403                         spin_lock(&rt_rq->rt_runtime_lock);
404                         if (rt_rq->rt_throttled)
405                                 balance_runtime(rt_rq);
406                         runtime = rt_rq->rt_runtime;
407                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
408                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
409                                 rt_rq->rt_throttled = 0;
410                                 enqueue = 1;
411                         }
412                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
413                                 idle = 0;
414                         spin_unlock(&rt_rq->rt_runtime_lock);
415                 } else if (rt_rq->rt_nr_running)
416                         idle = 0;
417
418                 if (enqueue)
419                         sched_rt_rq_enqueue(rt_rq);
420                 spin_unlock(&rq->lock);
421         }
422
423         return idle;
424 }
425
426 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
427 {
428 #ifdef CONFIG_RT_GROUP_SCHED
429         struct rt_rq *rt_rq = group_rt_rq(rt_se);
430
431         if (rt_rq)
432                 return rt_rq->highest_prio;
433 #endif
434
435         return rt_task_of(rt_se)->prio;
436 }
437
438 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
439 {
440         u64 runtime = sched_rt_runtime(rt_rq);
441
442         if (runtime == RUNTIME_INF)
443                 return 0;
444
445         if (rt_rq->rt_throttled)
446                 return rt_rq_throttled(rt_rq);
447
448         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
449                 return 0;
450
451         balance_runtime(rt_rq);
452         runtime = sched_rt_runtime(rt_rq);
453         if (runtime == RUNTIME_INF)
454                 return 0;
455
456         if (rt_rq->rt_time > runtime) {
457                 rt_rq->rt_throttled = 1;
458                 if (rt_rq_throttled(rt_rq)) {
459                         sched_rt_rq_dequeue(rt_rq);
460                         return 1;
461                 }
462         }
463
464         return 0;
465 }
466
467 /*
468  * Update the current task's runtime statistics. Skip current tasks that
469  * are not in our scheduling class.
470  */
471 static void update_curr_rt(struct rq *rq)
472 {
473         struct task_struct *curr = rq->curr;
474         struct sched_rt_entity *rt_se = &curr->rt;
475         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
476         u64 delta_exec;
477
478         if (!task_has_rt_policy(curr))
479                 return;
480
481         delta_exec = rq->clock - curr->se.exec_start;
482         if (unlikely((s64)delta_exec < 0))
483                 delta_exec = 0;
484
485         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
486
487         curr->se.sum_exec_runtime += delta_exec;
488         curr->se.exec_start = rq->clock;
489         cpuacct_charge(curr, delta_exec);
490
491         for_each_sched_rt_entity(rt_se) {
492                 rt_rq = rt_rq_of_se(rt_se);
493
494                 spin_lock(&rt_rq->rt_runtime_lock);
495                 rt_rq->rt_time += delta_exec;
496                 if (sched_rt_runtime_exceeded(rt_rq))
497                         resched_task(curr);
498                 spin_unlock(&rt_rq->rt_runtime_lock);
499         }
500 }
501
502 static inline
503 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
504 {
505         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
506         rt_rq->rt_nr_running++;
507 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
508         if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
509                 struct rq *rq = rq_of_rt_rq(rt_rq);
510
511                 rt_rq->highest_prio = rt_se_prio(rt_se);
512 #ifdef CONFIG_SMP
513                 if (rq->online)
514                         cpupri_set(&rq->rd->cpupri, rq->cpu,
515                                    rt_se_prio(rt_se));
516 #endif
517         }
518 #endif
519 #ifdef CONFIG_SMP
520         if (rt_se->nr_cpus_allowed > 1) {
521                 struct rq *rq = rq_of_rt_rq(rt_rq);
522
523                 rq->rt.rt_nr_migratory++;
524         }
525
526         update_rt_migration(rq_of_rt_rq(rt_rq));
527 #endif
528 #ifdef CONFIG_RT_GROUP_SCHED
529         if (rt_se_boosted(rt_se))
530                 rt_rq->rt_nr_boosted++;
531
532         if (rt_rq->tg)
533                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
534 #else
535         start_rt_bandwidth(&def_rt_bandwidth);
536 #endif
537 }
538
539 static inline
540 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
541 {
542 #ifdef CONFIG_SMP
543         int highest_prio = rt_rq->highest_prio;
544 #endif
545
546         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
547         WARN_ON(!rt_rq->rt_nr_running);
548         rt_rq->rt_nr_running--;
549 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
550         if (rt_rq->rt_nr_running) {
551                 struct rt_prio_array *array;
552
553                 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
554                 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
555                         /* recalculate */
556                         array = &rt_rq->active;
557                         rt_rq->highest_prio =
558                                 sched_find_first_bit(array->bitmap);
559                 } /* otherwise leave rq->highest prio alone */
560         } else
561                 rt_rq->highest_prio = MAX_RT_PRIO;
562 #endif
563 #ifdef CONFIG_SMP
564         if (rt_se->nr_cpus_allowed > 1) {
565                 struct rq *rq = rq_of_rt_rq(rt_rq);
566                 rq->rt.rt_nr_migratory--;
567         }
568
569         if (rt_rq->highest_prio != highest_prio) {
570                 struct rq *rq = rq_of_rt_rq(rt_rq);
571
572                 if (rq->online)
573                         cpupri_set(&rq->rd->cpupri, rq->cpu,
574                                    rt_rq->highest_prio);
575         }
576
577         update_rt_migration(rq_of_rt_rq(rt_rq));
578 #endif /* CONFIG_SMP */
579 #ifdef CONFIG_RT_GROUP_SCHED
580         if (rt_se_boosted(rt_se))
581                 rt_rq->rt_nr_boosted--;
582
583         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
584 #endif
585 }
586
587 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
588 {
589         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
590         struct rt_prio_array *array = &rt_rq->active;
591         struct rt_rq *group_rq = group_rt_rq(rt_se);
592         struct list_head *queue = array->queue + rt_se_prio(rt_se);
593
594         /*
595          * Don't enqueue the group if its throttled, or when empty.
596          * The latter is a consequence of the former when a child group
597          * get throttled and the current group doesn't have any other
598          * active members.
599          */
600         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
601                 return;
602
603         if (rt_se->nr_cpus_allowed == 1)
604                 list_add(&rt_se->run_list, queue);
605         else
606                 list_add_tail(&rt_se->run_list, queue);
607
608         __set_bit(rt_se_prio(rt_se), array->bitmap);
609
610         inc_rt_tasks(rt_se, rt_rq);
611 }
612
613 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
614 {
615         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
616         struct rt_prio_array *array = &rt_rq->active;
617
618         list_del_init(&rt_se->run_list);
619         if (list_empty(array->queue + rt_se_prio(rt_se)))
620                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
621
622         dec_rt_tasks(rt_se, rt_rq);
623 }
624
625 /*
626  * Because the prio of an upper entry depends on the lower
627  * entries, we must remove entries top - down.
628  */
629 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
630 {
631         struct sched_rt_entity *back = NULL;
632
633         for_each_sched_rt_entity(rt_se) {
634                 rt_se->back = back;
635                 back = rt_se;
636         }
637
638         for (rt_se = back; rt_se; rt_se = rt_se->back) {
639                 if (on_rt_rq(rt_se))
640                         __dequeue_rt_entity(rt_se);
641         }
642 }
643
644 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
645 {
646         dequeue_rt_stack(rt_se);
647         for_each_sched_rt_entity(rt_se)
648                 __enqueue_rt_entity(rt_se);
649 }
650
651 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
652 {
653         dequeue_rt_stack(rt_se);
654
655         for_each_sched_rt_entity(rt_se) {
656                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
657
658                 if (rt_rq && rt_rq->rt_nr_running)
659                         __enqueue_rt_entity(rt_se);
660         }
661 }
662
663 /*
664  * Adding/removing a task to/from a priority array:
665  */
666 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
667 {
668         struct sched_rt_entity *rt_se = &p->rt;
669
670         if (wakeup)
671                 rt_se->timeout = 0;
672
673         enqueue_rt_entity(rt_se);
674 }
675
676 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
677 {
678         struct sched_rt_entity *rt_se = &p->rt;
679
680         update_curr_rt(rq);
681         dequeue_rt_entity(rt_se);
682 }
683
684 /*
685  * Put task to the end of the run list without the overhead of dequeue
686  * followed by enqueue.
687  */
688 static
689 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
690 {
691         struct rt_prio_array *array = &rt_rq->active;
692         struct list_head *queue = array->queue + rt_se_prio(rt_se);
693
694         if (on_rt_rq(rt_se)) {
695                 list_del_init(&rt_se->run_list);
696                 list_add_tail(&rt_se->run_list,
697                               array->queue + rt_se_prio(rt_se));
698         }
699 }
700
701 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
702 {
703         struct sched_rt_entity *rt_se = &p->rt;
704         struct rt_rq *rt_rq;
705
706         for_each_sched_rt_entity(rt_se) {
707                 rt_rq = rt_rq_of_se(rt_se);
708                 requeue_rt_entity(rt_rq, rt_se);
709         }
710 }
711
712 static void yield_task_rt(struct rq *rq)
713 {
714         requeue_task_rt(rq, rq->curr);
715 }
716
717 #ifdef CONFIG_SMP
718 static int find_lowest_rq(struct task_struct *task);
719
720 static int select_task_rq_rt(struct task_struct *p, int sync)
721 {
722         struct rq *rq = task_rq(p);
723
724         /*
725          * If the current task is an RT task, then
726          * try to see if we can wake this RT task up on another
727          * runqueue. Otherwise simply start this RT task
728          * on its current runqueue.
729          *
730          * We want to avoid overloading runqueues. Even if
731          * the RT task is of higher priority than the current RT task.
732          * RT tasks behave differently than other tasks. If
733          * one gets preempted, we try to push it off to another queue.
734          * So trying to keep a preempting RT task on the same
735          * cache hot CPU will force the running RT task to
736          * a cold CPU. So we waste all the cache for the lower
737          * RT task in hopes of saving some of a RT task
738          * that is just being woken and probably will have
739          * cold cache anyway.
740          */
741         if (unlikely(rt_task(rq->curr)) &&
742             (p->rt.nr_cpus_allowed > 1)) {
743                 int cpu = find_lowest_rq(p);
744
745                 return (cpu == -1) ? task_cpu(p) : cpu;
746         }
747
748         /*
749          * Otherwise, just let it ride on the affined RQ and the
750          * post-schedule router will push the preempted task away
751          */
752         return task_cpu(p);
753 }
754 #endif /* CONFIG_SMP */
755
756 /*
757  * Preempt the current task with a newly woken task if needed:
758  */
759 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
760 {
761         if (p->prio < rq->curr->prio) {
762                 resched_task(rq->curr);
763                 return;
764         }
765
766 #ifdef CONFIG_SMP
767         /*
768          * If:
769          *
770          * - the newly woken task is of equal priority to the current task
771          * - the newly woken task is non-migratable while current is migratable
772          * - current will be preempted on the next reschedule
773          *
774          * we should check to see if current can readily move to a different
775          * cpu.  If so, we will reschedule to allow the push logic to try
776          * to move current somewhere else, making room for our non-migratable
777          * task.
778          */
779         if((p->prio == rq->curr->prio)
780            && p->rt.nr_cpus_allowed == 1
781            && rq->curr->rt.nr_cpus_allowed != 1) {
782                 cpumask_t mask;
783
784                 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
785                         /*
786                          * There appears to be other cpus that can accept
787                          * current, so lets reschedule to try and push it away
788                          */
789                         resched_task(rq->curr);
790         }
791 #endif
792 }
793
794 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
795                                                    struct rt_rq *rt_rq)
796 {
797         struct rt_prio_array *array = &rt_rq->active;
798         struct sched_rt_entity *next = NULL;
799         struct list_head *queue;
800         int idx;
801
802         idx = sched_find_first_bit(array->bitmap);
803         BUG_ON(idx >= MAX_RT_PRIO);
804
805         queue = array->queue + idx;
806         next = list_entry(queue->next, struct sched_rt_entity, run_list);
807
808         return next;
809 }
810
811 static struct task_struct *pick_next_task_rt(struct rq *rq)
812 {
813         struct sched_rt_entity *rt_se;
814         struct task_struct *p;
815         struct rt_rq *rt_rq;
816
817         rt_rq = &rq->rt;
818
819         if (unlikely(!rt_rq->rt_nr_running))
820                 return NULL;
821
822         if (rt_rq_throttled(rt_rq))
823                 return NULL;
824
825         do {
826                 rt_se = pick_next_rt_entity(rq, rt_rq);
827                 BUG_ON(!rt_se);
828                 rt_rq = group_rt_rq(rt_se);
829         } while (rt_rq);
830
831         p = rt_task_of(rt_se);
832         p->se.exec_start = rq->clock;
833         return p;
834 }
835
836 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
837 {
838         update_curr_rt(rq);
839         p->se.exec_start = 0;
840 }
841
842 #ifdef CONFIG_SMP
843
844 /* Only try algorithms three times */
845 #define RT_MAX_TRIES 3
846
847 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
848 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
849
850 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
851 {
852         if (!task_running(rq, p) &&
853             (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
854             (p->rt.nr_cpus_allowed > 1))
855                 return 1;
856         return 0;
857 }
858
859 /* Return the second highest RT task, NULL otherwise */
860 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
861 {
862         struct task_struct *next = NULL;
863         struct sched_rt_entity *rt_se;
864         struct rt_prio_array *array;
865         struct rt_rq *rt_rq;
866         int idx;
867
868         for_each_leaf_rt_rq(rt_rq, rq) {
869                 array = &rt_rq->active;
870                 idx = sched_find_first_bit(array->bitmap);
871  next_idx:
872                 if (idx >= MAX_RT_PRIO)
873                         continue;
874                 if (next && next->prio < idx)
875                         continue;
876                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
877                         struct task_struct *p = rt_task_of(rt_se);
878                         if (pick_rt_task(rq, p, cpu)) {
879                                 next = p;
880                                 break;
881                         }
882                 }
883                 if (!next) {
884                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
885                         goto next_idx;
886                 }
887         }
888
889         return next;
890 }
891
892 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
893
894 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
895 {
896         int first;
897
898         /* "this_cpu" is cheaper to preempt than a remote processor */
899         if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
900                 return this_cpu;
901
902         first = first_cpu(*mask);
903         if (first != NR_CPUS)
904                 return first;
905
906         return -1;
907 }
908
909 static int find_lowest_rq(struct task_struct *task)
910 {
911         struct sched_domain *sd;
912         cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
913         int this_cpu = smp_processor_id();
914         int cpu      = task_cpu(task);
915
916         if (task->rt.nr_cpus_allowed == 1)
917                 return -1; /* No other targets possible */
918
919         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
920                 return -1; /* No targets found */
921
922         /*
923          * At this point we have built a mask of cpus representing the
924          * lowest priority tasks in the system.  Now we want to elect
925          * the best one based on our affinity and topology.
926          *
927          * We prioritize the last cpu that the task executed on since
928          * it is most likely cache-hot in that location.
929          */
930         if (cpu_isset(cpu, *lowest_mask))
931                 return cpu;
932
933         /*
934          * Otherwise, we consult the sched_domains span maps to figure
935          * out which cpu is logically closest to our hot cache data.
936          */
937         if (this_cpu == cpu)
938                 this_cpu = -1; /* Skip this_cpu opt if the same */
939
940         for_each_domain(cpu, sd) {
941                 if (sd->flags & SD_WAKE_AFFINE) {
942                         cpumask_t domain_mask;
943                         int       best_cpu;
944
945                         cpus_and(domain_mask, sd->span, *lowest_mask);
946
947                         best_cpu = pick_optimal_cpu(this_cpu,
948                                                     &domain_mask);
949                         if (best_cpu != -1)
950                                 return best_cpu;
951                 }
952         }
953
954         /*
955          * And finally, if there were no matches within the domains
956          * just give the caller *something* to work with from the compatible
957          * locations.
958          */
959         return pick_optimal_cpu(this_cpu, lowest_mask);
960 }
961
962 /* Will lock the rq it finds */
963 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
964 {
965         struct rq *lowest_rq = NULL;
966         int tries;
967         int cpu;
968
969         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
970                 cpu = find_lowest_rq(task);
971
972                 if ((cpu == -1) || (cpu == rq->cpu))
973                         break;
974
975                 lowest_rq = cpu_rq(cpu);
976
977                 /* if the prio of this runqueue changed, try again */
978                 if (double_lock_balance(rq, lowest_rq)) {
979                         /*
980                          * We had to unlock the run queue. In
981                          * the mean time, task could have
982                          * migrated already or had its affinity changed.
983                          * Also make sure that it wasn't scheduled on its rq.
984                          */
985                         if (unlikely(task_rq(task) != rq ||
986                                      !cpu_isset(lowest_rq->cpu,
987                                                 task->cpus_allowed) ||
988                                      task_running(rq, task) ||
989                                      !task->se.on_rq)) {
990
991                                 spin_unlock(&lowest_rq->lock);
992                                 lowest_rq = NULL;
993                                 break;
994                         }
995                 }
996
997                 /* If this rq is still suitable use it. */
998                 if (lowest_rq->rt.highest_prio > task->prio)
999                         break;
1000
1001                 /* try again */
1002                 spin_unlock(&lowest_rq->lock);
1003                 lowest_rq = NULL;
1004         }
1005
1006         return lowest_rq;
1007 }
1008
1009 /*
1010  * If the current CPU has more than one RT task, see if the non
1011  * running task can migrate over to a CPU that is running a task
1012  * of lesser priority.
1013  */
1014 static int push_rt_task(struct rq *rq)
1015 {
1016         struct task_struct *next_task;
1017         struct rq *lowest_rq;
1018         int ret = 0;
1019         int paranoid = RT_MAX_TRIES;
1020
1021         if (!rq->rt.overloaded)
1022                 return 0;
1023
1024         next_task = pick_next_highest_task_rt(rq, -1);
1025         if (!next_task)
1026                 return 0;
1027
1028  retry:
1029         if (unlikely(next_task == rq->curr)) {
1030                 WARN_ON(1);
1031                 return 0;
1032         }
1033
1034         /*
1035          * It's possible that the next_task slipped in of
1036          * higher priority than current. If that's the case
1037          * just reschedule current.
1038          */
1039         if (unlikely(next_task->prio < rq->curr->prio)) {
1040                 resched_task(rq->curr);
1041                 return 0;
1042         }
1043
1044         /* We might release rq lock */
1045         get_task_struct(next_task);
1046
1047         /* find_lock_lowest_rq locks the rq if found */
1048         lowest_rq = find_lock_lowest_rq(next_task, rq);
1049         if (!lowest_rq) {
1050                 struct task_struct *task;
1051                 /*
1052                  * find lock_lowest_rq releases rq->lock
1053                  * so it is possible that next_task has changed.
1054                  * If it has, then try again.
1055                  */
1056                 task = pick_next_highest_task_rt(rq, -1);
1057                 if (unlikely(task != next_task) && task && paranoid--) {
1058                         put_task_struct(next_task);
1059                         next_task = task;
1060                         goto retry;
1061                 }
1062                 goto out;
1063         }
1064
1065         deactivate_task(rq, next_task, 0);
1066         set_task_cpu(next_task, lowest_rq->cpu);
1067         activate_task(lowest_rq, next_task, 0);
1068
1069         resched_task(lowest_rq->curr);
1070
1071         spin_unlock(&lowest_rq->lock);
1072
1073         ret = 1;
1074 out:
1075         put_task_struct(next_task);
1076
1077         return ret;
1078 }
1079
1080 /*
1081  * TODO: Currently we just use the second highest prio task on
1082  *       the queue, and stop when it can't migrate (or there's
1083  *       no more RT tasks).  There may be a case where a lower
1084  *       priority RT task has a different affinity than the
1085  *       higher RT task. In this case the lower RT task could
1086  *       possibly be able to migrate where as the higher priority
1087  *       RT task could not.  We currently ignore this issue.
1088  *       Enhancements are welcome!
1089  */
1090 static void push_rt_tasks(struct rq *rq)
1091 {
1092         /* push_rt_task will return true if it moved an RT */
1093         while (push_rt_task(rq))
1094                 ;
1095 }
1096
1097 static int pull_rt_task(struct rq *this_rq)
1098 {
1099         int this_cpu = this_rq->cpu, ret = 0, cpu;
1100         struct task_struct *p, *next;
1101         struct rq *src_rq;
1102
1103         if (likely(!rt_overloaded(this_rq)))
1104                 return 0;
1105
1106         next = pick_next_task_rt(this_rq);
1107
1108         for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1109                 if (this_cpu == cpu)
1110                         continue;
1111
1112                 src_rq = cpu_rq(cpu);
1113                 /*
1114                  * We can potentially drop this_rq's lock in
1115                  * double_lock_balance, and another CPU could
1116                  * steal our next task - hence we must cause
1117                  * the caller to recalculate the next task
1118                  * in that case:
1119                  */
1120                 if (double_lock_balance(this_rq, src_rq)) {
1121                         struct task_struct *old_next = next;
1122
1123                         next = pick_next_task_rt(this_rq);
1124                         if (next != old_next)
1125                                 ret = 1;
1126                 }
1127
1128                 /*
1129                  * Are there still pullable RT tasks?
1130                  */
1131                 if (src_rq->rt.rt_nr_running <= 1)
1132                         goto skip;
1133
1134                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1135
1136                 /*
1137                  * Do we have an RT task that preempts
1138                  * the to-be-scheduled task?
1139                  */
1140                 if (p && (!next || (p->prio < next->prio))) {
1141                         WARN_ON(p == src_rq->curr);
1142                         WARN_ON(!p->se.on_rq);
1143
1144                         /*
1145                          * There's a chance that p is higher in priority
1146                          * than what's currently running on its cpu.
1147                          * This is just that p is wakeing up and hasn't
1148                          * had a chance to schedule. We only pull
1149                          * p if it is lower in priority than the
1150                          * current task on the run queue or
1151                          * this_rq next task is lower in prio than
1152                          * the current task on that rq.
1153                          */
1154                         if (p->prio < src_rq->curr->prio ||
1155                             (next && next->prio < src_rq->curr->prio))
1156                                 goto skip;
1157
1158                         ret = 1;
1159
1160                         deactivate_task(src_rq, p, 0);
1161                         set_task_cpu(p, this_cpu);
1162                         activate_task(this_rq, p, 0);
1163                         /*
1164                          * We continue with the search, just in
1165                          * case there's an even higher prio task
1166                          * in another runqueue. (low likelyhood
1167                          * but possible)
1168                          *
1169                          * Update next so that we won't pick a task
1170                          * on another cpu with a priority lower (or equal)
1171                          * than the one we just picked.
1172                          */
1173                         next = p;
1174
1175                 }
1176  skip:
1177                 spin_unlock(&src_rq->lock);
1178         }
1179
1180         return ret;
1181 }
1182
1183 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1184 {
1185         /* Try to pull RT tasks here if we lower this rq's prio */
1186         if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1187                 pull_rt_task(rq);
1188 }
1189
1190 static void post_schedule_rt(struct rq *rq)
1191 {
1192         /*
1193          * If we have more than one rt_task queued, then
1194          * see if we can push the other rt_tasks off to other CPUS.
1195          * Note we may release the rq lock, and since
1196          * the lock was owned by prev, we need to release it
1197          * first via finish_lock_switch and then reaquire it here.
1198          */
1199         if (unlikely(rq->rt.overloaded)) {
1200                 spin_lock_irq(&rq->lock);
1201                 push_rt_tasks(rq);
1202                 spin_unlock_irq(&rq->lock);
1203         }
1204 }
1205
1206 /*
1207  * If we are not running and we are not going to reschedule soon, we should
1208  * try to push tasks away now
1209  */
1210 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1211 {
1212         if (!task_running(rq, p) &&
1213             !test_tsk_need_resched(rq->curr) &&
1214             rq->rt.overloaded)
1215                 push_rt_tasks(rq);
1216 }
1217
1218 static unsigned long
1219 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1220                 unsigned long max_load_move,
1221                 struct sched_domain *sd, enum cpu_idle_type idle,
1222                 int *all_pinned, int *this_best_prio)
1223 {
1224         /* don't touch RT tasks */
1225         return 0;
1226 }
1227
1228 static int
1229 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1230                  struct sched_domain *sd, enum cpu_idle_type idle)
1231 {
1232         /* don't touch RT tasks */
1233         return 0;
1234 }
1235
1236 static void set_cpus_allowed_rt(struct task_struct *p,
1237                                 const cpumask_t *new_mask)
1238 {
1239         int weight = cpus_weight(*new_mask);
1240
1241         BUG_ON(!rt_task(p));
1242
1243         /*
1244          * Update the migration status of the RQ if we have an RT task
1245          * which is running AND changing its weight value.
1246          */
1247         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1248                 struct rq *rq = task_rq(p);
1249
1250                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1251                         rq->rt.rt_nr_migratory++;
1252                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1253                         BUG_ON(!rq->rt.rt_nr_migratory);
1254                         rq->rt.rt_nr_migratory--;
1255                 }
1256
1257                 update_rt_migration(rq);
1258         }
1259
1260         p->cpus_allowed    = *new_mask;
1261         p->rt.nr_cpus_allowed = weight;
1262 }
1263
1264 /* Assumes rq->lock is held */
1265 static void rq_online_rt(struct rq *rq)
1266 {
1267         if (rq->rt.overloaded)
1268                 rt_set_overload(rq);
1269
1270         __enable_runtime(rq);
1271
1272         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1273 }
1274
1275 /* Assumes rq->lock is held */
1276 static void rq_offline_rt(struct rq *rq)
1277 {
1278         if (rq->rt.overloaded)
1279                 rt_clear_overload(rq);
1280
1281         __disable_runtime(rq);
1282
1283         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1284 }
1285
1286 /*
1287  * When switch from the rt queue, we bring ourselves to a position
1288  * that we might want to pull RT tasks from other runqueues.
1289  */
1290 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1291                            int running)
1292 {
1293         /*
1294          * If there are other RT tasks then we will reschedule
1295          * and the scheduling of the other RT tasks will handle
1296          * the balancing. But if we are the last RT task
1297          * we may need to handle the pulling of RT tasks
1298          * now.
1299          */
1300         if (!rq->rt.rt_nr_running)
1301                 pull_rt_task(rq);
1302 }
1303 #endif /* CONFIG_SMP */
1304
1305 /*
1306  * When switching a task to RT, we may overload the runqueue
1307  * with RT tasks. In this case we try to push them off to
1308  * other runqueues.
1309  */
1310 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1311                            int running)
1312 {
1313         int check_resched = 1;
1314
1315         /*
1316          * If we are already running, then there's nothing
1317          * that needs to be done. But if we are not running
1318          * we may need to preempt the current running task.
1319          * If that current running task is also an RT task
1320          * then see if we can move to another run queue.
1321          */
1322         if (!running) {
1323 #ifdef CONFIG_SMP
1324                 if (rq->rt.overloaded && push_rt_task(rq) &&
1325                     /* Don't resched if we changed runqueues */
1326                     rq != task_rq(p))
1327                         check_resched = 0;
1328 #endif /* CONFIG_SMP */
1329                 if (check_resched && p->prio < rq->curr->prio)
1330                         resched_task(rq->curr);
1331         }
1332 }
1333
1334 /*
1335  * Priority of the task has changed. This may cause
1336  * us to initiate a push or pull.
1337  */
1338 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1339                             int oldprio, int running)
1340 {
1341         if (running) {
1342 #ifdef CONFIG_SMP
1343                 /*
1344                  * If our priority decreases while running, we
1345                  * may need to pull tasks to this runqueue.
1346                  */
1347                 if (oldprio < p->prio)
1348                         pull_rt_task(rq);
1349                 /*
1350                  * If there's a higher priority task waiting to run
1351                  * then reschedule. Note, the above pull_rt_task
1352                  * can release the rq lock and p could migrate.
1353                  * Only reschedule if p is still on the same runqueue.
1354                  */
1355                 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1356                         resched_task(p);
1357 #else
1358                 /* For UP simply resched on drop of prio */
1359                 if (oldprio < p->prio)
1360                         resched_task(p);
1361 #endif /* CONFIG_SMP */
1362         } else {
1363                 /*
1364                  * This task is not running, but if it is
1365                  * greater than the current running task
1366                  * then reschedule.
1367                  */
1368                 if (p->prio < rq->curr->prio)
1369                         resched_task(rq->curr);
1370         }
1371 }
1372
1373 static void watchdog(struct rq *rq, struct task_struct *p)
1374 {
1375         unsigned long soft, hard;
1376
1377         if (!p->signal)
1378                 return;
1379
1380         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1381         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1382
1383         if (soft != RLIM_INFINITY) {
1384                 unsigned long next;
1385
1386                 p->rt.timeout++;
1387                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1388                 if (p->rt.timeout > next)
1389                         p->it_sched_expires = p->se.sum_exec_runtime;
1390         }
1391 }
1392
1393 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1394 {
1395         update_curr_rt(rq);
1396
1397         watchdog(rq, p);
1398
1399         /*
1400          * RR tasks need a special form of timeslice management.
1401          * FIFO tasks have no timeslices.
1402          */
1403         if (p->policy != SCHED_RR)
1404                 return;
1405
1406         if (--p->rt.time_slice)
1407                 return;
1408
1409         p->rt.time_slice = DEF_TIMESLICE;
1410
1411         /*
1412          * Requeue to the end of queue if we are not the only element
1413          * on the queue:
1414          */
1415         if (p->rt.run_list.prev != p->rt.run_list.next) {
1416                 requeue_task_rt(rq, p);
1417                 set_tsk_need_resched(p);
1418         }
1419 }
1420
1421 static void set_curr_task_rt(struct rq *rq)
1422 {
1423         struct task_struct *p = rq->curr;
1424
1425         p->se.exec_start = rq->clock;
1426 }
1427
1428 static const struct sched_class rt_sched_class = {
1429         .next                   = &fair_sched_class,
1430         .enqueue_task           = enqueue_task_rt,
1431         .dequeue_task           = dequeue_task_rt,
1432         .yield_task             = yield_task_rt,
1433 #ifdef CONFIG_SMP
1434         .select_task_rq         = select_task_rq_rt,
1435 #endif /* CONFIG_SMP */
1436
1437         .check_preempt_curr     = check_preempt_curr_rt,
1438
1439         .pick_next_task         = pick_next_task_rt,
1440         .put_prev_task          = put_prev_task_rt,
1441
1442 #ifdef CONFIG_SMP
1443         .load_balance           = load_balance_rt,
1444         .move_one_task          = move_one_task_rt,
1445         .set_cpus_allowed       = set_cpus_allowed_rt,
1446         .rq_online              = rq_online_rt,
1447         .rq_offline             = rq_offline_rt,
1448         .pre_schedule           = pre_schedule_rt,
1449         .post_schedule          = post_schedule_rt,
1450         .task_wake_up           = task_wake_up_rt,
1451         .switched_from          = switched_from_rt,
1452 #endif
1453
1454         .set_curr_task          = set_curr_task_rt,
1455         .task_tick              = task_tick_rt,
1456
1457         .prio_changed           = prio_changed_rt,
1458         .switched_to            = switched_to_rt,
1459 };
1460
1461 #ifdef CONFIG_SCHED_DEBUG
1462 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1463
1464 static void print_rt_stats(struct seq_file *m, int cpu)
1465 {
1466         struct rt_rq *rt_rq;
1467
1468         rcu_read_lock();
1469         for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1470                 print_rt_rq(m, cpu, rt_rq);
1471         rcu_read_unlock();
1472 }
1473 #endif