455106d318a8ae5c87e7a56c19c8e8c05ced83cd
[safe/jmp/linux-2.6] / kernel / sched_fair.c
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27  * Targeted preemption latency for CPU-bound tasks:
28  * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  */
38 unsigned int sysctl_sched_latency = 5000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 5000000ULL;
40
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44  *
45  * Options are:
46  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51         = SCHED_TUNABLESCALING_LOG;
52
53 /*
54  * Minimal preemption granularity for CPU-bound tasks:
55  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
56  */
57 unsigned int sysctl_sched_min_granularity = 1000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
59
60 /*
61  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62  */
63 static unsigned int sched_nr_latency = 5;
64
65 /*
66  * After fork, child runs first. If set to 0 (default) then
67  * parent will (try to) run first.
68  */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72  * sys_sched_yield() compat mode
73  *
74  * This option switches the agressive yield implementation of the
75  * old scheduler back on.
76  */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80  * SCHED_OTHER wake-up granularity.
81  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82  *
83  * This option delays the preemption effects of decoupled workloads
84  * and reduces their over-scheduling. Synchronous workloads will still
85  * have immediate wakeup/sleep latencies.
86  */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95  * CFS operations on generic schedulable entities:
96  */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103         return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se)      (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112         WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114         return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119                 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123         return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129         return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135         return grp->my_q;
136 }
137
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139  * another cpu ('this_cpu')
140  */
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143         return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148         list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
153 {
154         if (se->cfs_rq == pse->cfs_rq)
155                 return 1;
156
157         return 0;
158 }
159
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
161 {
162         return se->parent;
163 }
164
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
167 {
168         int depth = 0;
169
170         for_each_sched_entity(se)
171                 depth++;
172
173         return depth;
174 }
175
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178 {
179         int se_depth, pse_depth;
180
181         /*
182          * preemption test can be made between sibling entities who are in the
183          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184          * both tasks until we find their ancestors who are siblings of common
185          * parent.
186          */
187
188         /* First walk up until both entities are at same depth */
189         se_depth = depth_se(*se);
190         pse_depth = depth_se(*pse);
191
192         while (se_depth > pse_depth) {
193                 se_depth--;
194                 *se = parent_entity(*se);
195         }
196
197         while (pse_depth > se_depth) {
198                 pse_depth--;
199                 *pse = parent_entity(*pse);
200         }
201
202         while (!is_same_group(*se, *pse)) {
203                 *se = parent_entity(*se);
204                 *pse = parent_entity(*pse);
205         }
206 }
207
208 #else   /* !CONFIG_FAIR_GROUP_SCHED */
209
210 static inline struct task_struct *task_of(struct sched_entity *se)
211 {
212         return container_of(se, struct task_struct, se);
213 }
214
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216 {
217         return container_of(cfs_rq, struct rq, cfs);
218 }
219
220 #define entity_is_task(se)      1
221
222 #define for_each_sched_entity(se) \
223                 for (; se; se = NULL)
224
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226 {
227         return &task_rq(p)->cfs;
228 }
229
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231 {
232         struct task_struct *p = task_of(se);
233         struct rq *rq = task_rq(p);
234
235         return &rq->cfs;
236 }
237
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240 {
241         return NULL;
242 }
243
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245 {
246         return &cpu_rq(this_cpu)->cfs;
247 }
248
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250                 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
254 {
255         return 1;
256 }
257
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
259 {
260         return NULL;
261 }
262
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265 {
266 }
267
268 #endif  /* CONFIG_FAIR_GROUP_SCHED */
269
270
271 /**************************************************************
272  * Scheduling class tree data structure manipulation methods:
273  */
274
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276 {
277         s64 delta = (s64)(vruntime - min_vruntime);
278         if (delta > 0)
279                 min_vruntime = vruntime;
280
281         return min_vruntime;
282 }
283
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
285 {
286         s64 delta = (s64)(vruntime - min_vruntime);
287         if (delta < 0)
288                 min_vruntime = vruntime;
289
290         return min_vruntime;
291 }
292
293 static inline int entity_before(struct sched_entity *a,
294                                 struct sched_entity *b)
295 {
296         return (s64)(a->vruntime - b->vruntime) < 0;
297 }
298
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300 {
301         return se->vruntime - cfs_rq->min_vruntime;
302 }
303
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
305 {
306         u64 vruntime = cfs_rq->min_vruntime;
307
308         if (cfs_rq->curr)
309                 vruntime = cfs_rq->curr->vruntime;
310
311         if (cfs_rq->rb_leftmost) {
312                 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313                                                    struct sched_entity,
314                                                    run_node);
315
316                 if (!cfs_rq->curr)
317                         vruntime = se->vruntime;
318                 else
319                         vruntime = min_vruntime(vruntime, se->vruntime);
320         }
321
322         cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323 }
324
325 /*
326  * Enqueue an entity into the rb-tree:
327  */
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 {
330         struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331         struct rb_node *parent = NULL;
332         struct sched_entity *entry;
333         s64 key = entity_key(cfs_rq, se);
334         int leftmost = 1;
335
336         /*
337          * Find the right place in the rbtree:
338          */
339         while (*link) {
340                 parent = *link;
341                 entry = rb_entry(parent, struct sched_entity, run_node);
342                 /*
343                  * We dont care about collisions. Nodes with
344                  * the same key stay together.
345                  */
346                 if (key < entity_key(cfs_rq, entry)) {
347                         link = &parent->rb_left;
348                 } else {
349                         link = &parent->rb_right;
350                         leftmost = 0;
351                 }
352         }
353
354         /*
355          * Maintain a cache of leftmost tree entries (it is frequently
356          * used):
357          */
358         if (leftmost)
359                 cfs_rq->rb_leftmost = &se->run_node;
360
361         rb_link_node(&se->run_node, parent, link);
362         rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
363 }
364
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367         if (cfs_rq->rb_leftmost == &se->run_node) {
368                 struct rb_node *next_node;
369
370                 next_node = rb_next(&se->run_node);
371                 cfs_rq->rb_leftmost = next_node;
372         }
373
374         rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
375 }
376
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378 {
379         struct rb_node *left = cfs_rq->rb_leftmost;
380
381         if (!left)
382                 return NULL;
383
384         return rb_entry(left, struct sched_entity, run_node);
385 }
386
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388 {
389         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390
391         if (!last)
392                 return NULL;
393
394         return rb_entry(last, struct sched_entity, run_node);
395 }
396
397 /**************************************************************
398  * Scheduling class statistics methods:
399  */
400
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_nr_latency_handler(struct ctl_table *table, int write,
403                 void __user *buffer, size_t *lenp,
404                 loff_t *ppos)
405 {
406         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407
408         if (ret || !write)
409                 return ret;
410
411         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
412                                         sysctl_sched_min_granularity);
413
414         return 0;
415 }
416 #endif
417
418 /*
419  * delta /= w
420  */
421 static inline unsigned long
422 calc_delta_fair(unsigned long delta, struct sched_entity *se)
423 {
424         if (unlikely(se->load.weight != NICE_0_LOAD))
425                 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
426
427         return delta;
428 }
429
430 /*
431  * The idea is to set a period in which each task runs once.
432  *
433  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
434  * this period because otherwise the slices get too small.
435  *
436  * p = (nr <= nl) ? l : l*nr/nl
437  */
438 static u64 __sched_period(unsigned long nr_running)
439 {
440         u64 period = sysctl_sched_latency;
441         unsigned long nr_latency = sched_nr_latency;
442
443         if (unlikely(nr_running > nr_latency)) {
444                 period = sysctl_sched_min_granularity;
445                 period *= nr_running;
446         }
447
448         return period;
449 }
450
451 /*
452  * We calculate the wall-time slice from the period by taking a part
453  * proportional to the weight.
454  *
455  * s = p*P[w/rw]
456  */
457 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
458 {
459         u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
460
461         for_each_sched_entity(se) {
462                 struct load_weight *load;
463                 struct load_weight lw;
464
465                 cfs_rq = cfs_rq_of(se);
466                 load = &cfs_rq->load;
467
468                 if (unlikely(!se->on_rq)) {
469                         lw = cfs_rq->load;
470
471                         update_load_add(&lw, se->load.weight);
472                         load = &lw;
473                 }
474                 slice = calc_delta_mine(slice, se->load.weight, load);
475         }
476         return slice;
477 }
478
479 /*
480  * We calculate the vruntime slice of a to be inserted task
481  *
482  * vs = s/w
483  */
484 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
485 {
486         return calc_delta_fair(sched_slice(cfs_rq, se), se);
487 }
488
489 /*
490  * Update the current task's runtime statistics. Skip current tasks that
491  * are not in our scheduling class.
492  */
493 static inline void
494 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
495               unsigned long delta_exec)
496 {
497         unsigned long delta_exec_weighted;
498
499         schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
500
501         curr->sum_exec_runtime += delta_exec;
502         schedstat_add(cfs_rq, exec_clock, delta_exec);
503         delta_exec_weighted = calc_delta_fair(delta_exec, curr);
504         curr->vruntime += delta_exec_weighted;
505         update_min_vruntime(cfs_rq);
506 }
507
508 static void update_curr(struct cfs_rq *cfs_rq)
509 {
510         struct sched_entity *curr = cfs_rq->curr;
511         u64 now = rq_of(cfs_rq)->clock;
512         unsigned long delta_exec;
513
514         if (unlikely(!curr))
515                 return;
516
517         /*
518          * Get the amount of time the current task was running
519          * since the last time we changed load (this cannot
520          * overflow on 32 bits):
521          */
522         delta_exec = (unsigned long)(now - curr->exec_start);
523         if (!delta_exec)
524                 return;
525
526         __update_curr(cfs_rq, curr, delta_exec);
527         curr->exec_start = now;
528
529         if (entity_is_task(curr)) {
530                 struct task_struct *curtask = task_of(curr);
531
532                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
533                 cpuacct_charge(curtask, delta_exec);
534                 account_group_exec_runtime(curtask, delta_exec);
535         }
536 }
537
538 static inline void
539 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
540 {
541         schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
542 }
543
544 /*
545  * Task is being enqueued - update stats:
546  */
547 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 {
549         /*
550          * Are we enqueueing a waiting task? (for current tasks
551          * a dequeue/enqueue event is a NOP)
552          */
553         if (se != cfs_rq->curr)
554                 update_stats_wait_start(cfs_rq, se);
555 }
556
557 static void
558 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560         schedstat_set(se->wait_max, max(se->wait_max,
561                         rq_of(cfs_rq)->clock - se->wait_start));
562         schedstat_set(se->wait_count, se->wait_count + 1);
563         schedstat_set(se->wait_sum, se->wait_sum +
564                         rq_of(cfs_rq)->clock - se->wait_start);
565 #ifdef CONFIG_SCHEDSTATS
566         if (entity_is_task(se)) {
567                 trace_sched_stat_wait(task_of(se),
568                         rq_of(cfs_rq)->clock - se->wait_start);
569         }
570 #endif
571         schedstat_set(se->wait_start, 0);
572 }
573
574 static inline void
575 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577         /*
578          * Mark the end of the wait period if dequeueing a
579          * waiting task:
580          */
581         if (se != cfs_rq->curr)
582                 update_stats_wait_end(cfs_rq, se);
583 }
584
585 /*
586  * We are picking a new current task - update its stats:
587  */
588 static inline void
589 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
590 {
591         /*
592          * We are starting a new run period:
593          */
594         se->exec_start = rq_of(cfs_rq)->clock;
595 }
596
597 /**************************************************
598  * Scheduling class queueing methods:
599  */
600
601 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
602 static void
603 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
604 {
605         cfs_rq->task_weight += weight;
606 }
607 #else
608 static inline void
609 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
610 {
611 }
612 #endif
613
614 static void
615 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
616 {
617         update_load_add(&cfs_rq->load, se->load.weight);
618         if (!parent_entity(se))
619                 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
620         if (entity_is_task(se)) {
621                 add_cfs_task_weight(cfs_rq, se->load.weight);
622                 list_add(&se->group_node, &cfs_rq->tasks);
623         }
624         cfs_rq->nr_running++;
625         se->on_rq = 1;
626 }
627
628 static void
629 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
630 {
631         update_load_sub(&cfs_rq->load, se->load.weight);
632         if (!parent_entity(se))
633                 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
634         if (entity_is_task(se)) {
635                 add_cfs_task_weight(cfs_rq, -se->load.weight);
636                 list_del_init(&se->group_node);
637         }
638         cfs_rq->nr_running--;
639         se->on_rq = 0;
640 }
641
642 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
643 {
644 #ifdef CONFIG_SCHEDSTATS
645         struct task_struct *tsk = NULL;
646
647         if (entity_is_task(se))
648                 tsk = task_of(se);
649
650         if (se->sleep_start) {
651                 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
652
653                 if ((s64)delta < 0)
654                         delta = 0;
655
656                 if (unlikely(delta > se->sleep_max))
657                         se->sleep_max = delta;
658
659                 se->sleep_start = 0;
660                 se->sum_sleep_runtime += delta;
661
662                 if (tsk) {
663                         account_scheduler_latency(tsk, delta >> 10, 1);
664                         trace_sched_stat_sleep(tsk, delta);
665                 }
666         }
667         if (se->block_start) {
668                 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
669
670                 if ((s64)delta < 0)
671                         delta = 0;
672
673                 if (unlikely(delta > se->block_max))
674                         se->block_max = delta;
675
676                 se->block_start = 0;
677                 se->sum_sleep_runtime += delta;
678
679                 if (tsk) {
680                         if (tsk->in_iowait) {
681                                 se->iowait_sum += delta;
682                                 se->iowait_count++;
683                                 trace_sched_stat_iowait(tsk, delta);
684                         }
685
686                         /*
687                          * Blocking time is in units of nanosecs, so shift by
688                          * 20 to get a milliseconds-range estimation of the
689                          * amount of time that the task spent sleeping:
690                          */
691                         if (unlikely(prof_on == SLEEP_PROFILING)) {
692                                 profile_hits(SLEEP_PROFILING,
693                                                 (void *)get_wchan(tsk),
694                                                 delta >> 20);
695                         }
696                         account_scheduler_latency(tsk, delta >> 10, 0);
697                 }
698         }
699 #endif
700 }
701
702 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 #ifdef CONFIG_SCHED_DEBUG
705         s64 d = se->vruntime - cfs_rq->min_vruntime;
706
707         if (d < 0)
708                 d = -d;
709
710         if (d > 3*sysctl_sched_latency)
711                 schedstat_inc(cfs_rq, nr_spread_over);
712 #endif
713 }
714
715 static void
716 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
717 {
718         u64 vruntime = cfs_rq->min_vruntime;
719
720         /*
721          * The 'current' period is already promised to the current tasks,
722          * however the extra weight of the new task will slow them down a
723          * little, place the new task so that it fits in the slot that
724          * stays open at the end.
725          */
726         if (initial && sched_feat(START_DEBIT))
727                 vruntime += sched_vslice(cfs_rq, se);
728
729         /* sleeps up to a single latency don't count. */
730         if (!initial && sched_feat(FAIR_SLEEPERS)) {
731                 unsigned long thresh = sysctl_sched_latency;
732
733                 /*
734                  * Convert the sleeper threshold into virtual time.
735                  * SCHED_IDLE is a special sub-class.  We care about
736                  * fairness only relative to other SCHED_IDLE tasks,
737                  * all of which have the same weight.
738                  */
739                 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
740                                  task_of(se)->policy != SCHED_IDLE))
741                         thresh = calc_delta_fair(thresh, se);
742
743                 /*
744                  * Halve their sleep time's effect, to allow
745                  * for a gentler effect of sleepers:
746                  */
747                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
748                         thresh >>= 1;
749
750                 vruntime -= thresh;
751         }
752
753         /* ensure we never gain time by being placed backwards. */
754         vruntime = max_vruntime(se->vruntime, vruntime);
755
756         se->vruntime = vruntime;
757 }
758
759 static void
760 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
761 {
762         /*
763          * Update run-time statistics of the 'current'.
764          */
765         update_curr(cfs_rq);
766         account_entity_enqueue(cfs_rq, se);
767
768         if (wakeup) {
769                 place_entity(cfs_rq, se, 0);
770                 enqueue_sleeper(cfs_rq, se);
771         }
772
773         update_stats_enqueue(cfs_rq, se);
774         check_spread(cfs_rq, se);
775         if (se != cfs_rq->curr)
776                 __enqueue_entity(cfs_rq, se);
777 }
778
779 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
780 {
781         if (!se || cfs_rq->last == se)
782                 cfs_rq->last = NULL;
783
784         if (!se || cfs_rq->next == se)
785                 cfs_rq->next = NULL;
786 }
787
788 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
789 {
790         for_each_sched_entity(se)
791                 __clear_buddies(cfs_rq_of(se), se);
792 }
793
794 static void
795 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
796 {
797         /*
798          * Update run-time statistics of the 'current'.
799          */
800         update_curr(cfs_rq);
801
802         update_stats_dequeue(cfs_rq, se);
803         if (sleep) {
804 #ifdef CONFIG_SCHEDSTATS
805                 if (entity_is_task(se)) {
806                         struct task_struct *tsk = task_of(se);
807
808                         if (tsk->state & TASK_INTERRUPTIBLE)
809                                 se->sleep_start = rq_of(cfs_rq)->clock;
810                         if (tsk->state & TASK_UNINTERRUPTIBLE)
811                                 se->block_start = rq_of(cfs_rq)->clock;
812                 }
813 #endif
814         }
815
816         clear_buddies(cfs_rq, se);
817
818         if (se != cfs_rq->curr)
819                 __dequeue_entity(cfs_rq, se);
820         account_entity_dequeue(cfs_rq, se);
821         update_min_vruntime(cfs_rq);
822 }
823
824 /*
825  * Preempt the current task with a newly woken task if needed:
826  */
827 static void
828 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
829 {
830         unsigned long ideal_runtime, delta_exec;
831
832         ideal_runtime = sched_slice(cfs_rq, curr);
833         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
834         if (delta_exec > ideal_runtime) {
835                 resched_task(rq_of(cfs_rq)->curr);
836                 /*
837                  * The current task ran long enough, ensure it doesn't get
838                  * re-elected due to buddy favours.
839                  */
840                 clear_buddies(cfs_rq, curr);
841                 return;
842         }
843
844         /*
845          * Ensure that a task that missed wakeup preemption by a
846          * narrow margin doesn't have to wait for a full slice.
847          * This also mitigates buddy induced latencies under load.
848          */
849         if (!sched_feat(WAKEUP_PREEMPT))
850                 return;
851
852         if (delta_exec < sysctl_sched_min_granularity)
853                 return;
854
855         if (cfs_rq->nr_running > 1) {
856                 struct sched_entity *se = __pick_next_entity(cfs_rq);
857                 s64 delta = curr->vruntime - se->vruntime;
858
859                 if (delta > ideal_runtime)
860                         resched_task(rq_of(cfs_rq)->curr);
861         }
862 }
863
864 static void
865 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
866 {
867         /* 'current' is not kept within the tree. */
868         if (se->on_rq) {
869                 /*
870                  * Any task has to be enqueued before it get to execute on
871                  * a CPU. So account for the time it spent waiting on the
872                  * runqueue.
873                  */
874                 update_stats_wait_end(cfs_rq, se);
875                 __dequeue_entity(cfs_rq, se);
876         }
877
878         update_stats_curr_start(cfs_rq, se);
879         cfs_rq->curr = se;
880 #ifdef CONFIG_SCHEDSTATS
881         /*
882          * Track our maximum slice length, if the CPU's load is at
883          * least twice that of our own weight (i.e. dont track it
884          * when there are only lesser-weight tasks around):
885          */
886         if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
887                 se->slice_max = max(se->slice_max,
888                         se->sum_exec_runtime - se->prev_sum_exec_runtime);
889         }
890 #endif
891         se->prev_sum_exec_runtime = se->sum_exec_runtime;
892 }
893
894 static int
895 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
896
897 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
898 {
899         struct sched_entity *se = __pick_next_entity(cfs_rq);
900         struct sched_entity *left = se;
901
902         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
903                 se = cfs_rq->next;
904
905         /*
906          * Prefer last buddy, try to return the CPU to a preempted task.
907          */
908         if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
909                 se = cfs_rq->last;
910
911         clear_buddies(cfs_rq, se);
912
913         return se;
914 }
915
916 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
917 {
918         /*
919          * If still on the runqueue then deactivate_task()
920          * was not called and update_curr() has to be done:
921          */
922         if (prev->on_rq)
923                 update_curr(cfs_rq);
924
925         check_spread(cfs_rq, prev);
926         if (prev->on_rq) {
927                 update_stats_wait_start(cfs_rq, prev);
928                 /* Put 'current' back into the tree. */
929                 __enqueue_entity(cfs_rq, prev);
930         }
931         cfs_rq->curr = NULL;
932 }
933
934 static void
935 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
936 {
937         /*
938          * Update run-time statistics of the 'current'.
939          */
940         update_curr(cfs_rq);
941
942 #ifdef CONFIG_SCHED_HRTICK
943         /*
944          * queued ticks are scheduled to match the slice, so don't bother
945          * validating it and just reschedule.
946          */
947         if (queued) {
948                 resched_task(rq_of(cfs_rq)->curr);
949                 return;
950         }
951         /*
952          * don't let the period tick interfere with the hrtick preemption
953          */
954         if (!sched_feat(DOUBLE_TICK) &&
955                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
956                 return;
957 #endif
958
959         if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
960                 check_preempt_tick(cfs_rq, curr);
961 }
962
963 /**************************************************
964  * CFS operations on tasks:
965  */
966
967 #ifdef CONFIG_SCHED_HRTICK
968 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
969 {
970         struct sched_entity *se = &p->se;
971         struct cfs_rq *cfs_rq = cfs_rq_of(se);
972
973         WARN_ON(task_rq(p) != rq);
974
975         if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
976                 u64 slice = sched_slice(cfs_rq, se);
977                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
978                 s64 delta = slice - ran;
979
980                 if (delta < 0) {
981                         if (rq->curr == p)
982                                 resched_task(p);
983                         return;
984                 }
985
986                 /*
987                  * Don't schedule slices shorter than 10000ns, that just
988                  * doesn't make sense. Rely on vruntime for fairness.
989                  */
990                 if (rq->curr != p)
991                         delta = max_t(s64, 10000LL, delta);
992
993                 hrtick_start(rq, delta);
994         }
995 }
996
997 /*
998  * called from enqueue/dequeue and updates the hrtick when the
999  * current task is from our class and nr_running is low enough
1000  * to matter.
1001  */
1002 static void hrtick_update(struct rq *rq)
1003 {
1004         struct task_struct *curr = rq->curr;
1005
1006         if (curr->sched_class != &fair_sched_class)
1007                 return;
1008
1009         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1010                 hrtick_start_fair(rq, curr);
1011 }
1012 #else /* !CONFIG_SCHED_HRTICK */
1013 static inline void
1014 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1015 {
1016 }
1017
1018 static inline void hrtick_update(struct rq *rq)
1019 {
1020 }
1021 #endif
1022
1023 /*
1024  * The enqueue_task method is called before nr_running is
1025  * increased. Here we update the fair scheduling stats and
1026  * then put the task into the rbtree:
1027  */
1028 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1029 {
1030         struct cfs_rq *cfs_rq;
1031         struct sched_entity *se = &p->se;
1032
1033         for_each_sched_entity(se) {
1034                 if (se->on_rq)
1035                         break;
1036                 cfs_rq = cfs_rq_of(se);
1037                 enqueue_entity(cfs_rq, se, wakeup);
1038                 wakeup = 1;
1039         }
1040
1041         hrtick_update(rq);
1042 }
1043
1044 /*
1045  * The dequeue_task method is called before nr_running is
1046  * decreased. We remove the task from the rbtree and
1047  * update the fair scheduling stats:
1048  */
1049 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1050 {
1051         struct cfs_rq *cfs_rq;
1052         struct sched_entity *se = &p->se;
1053
1054         for_each_sched_entity(se) {
1055                 cfs_rq = cfs_rq_of(se);
1056                 dequeue_entity(cfs_rq, se, sleep);
1057                 /* Don't dequeue parent if it has other entities besides us */
1058                 if (cfs_rq->load.weight)
1059                         break;
1060                 sleep = 1;
1061         }
1062
1063         hrtick_update(rq);
1064 }
1065
1066 /*
1067  * sched_yield() support is very simple - we dequeue and enqueue.
1068  *
1069  * If compat_yield is turned on then we requeue to the end of the tree.
1070  */
1071 static void yield_task_fair(struct rq *rq)
1072 {
1073         struct task_struct *curr = rq->curr;
1074         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1075         struct sched_entity *rightmost, *se = &curr->se;
1076
1077         /*
1078          * Are we the only task in the tree?
1079          */
1080         if (unlikely(cfs_rq->nr_running == 1))
1081                 return;
1082
1083         clear_buddies(cfs_rq, se);
1084
1085         if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1086                 update_rq_clock(rq);
1087                 /*
1088                  * Update run-time statistics of the 'current'.
1089                  */
1090                 update_curr(cfs_rq);
1091
1092                 return;
1093         }
1094         /*
1095          * Find the rightmost entry in the rbtree:
1096          */
1097         rightmost = __pick_last_entity(cfs_rq);
1098         /*
1099          * Already in the rightmost position?
1100          */
1101         if (unlikely(!rightmost || entity_before(rightmost, se)))
1102                 return;
1103
1104         /*
1105          * Minimally necessary key value to be last in the tree:
1106          * Upon rescheduling, sched_class::put_prev_task() will place
1107          * 'current' within the tree based on its new key value.
1108          */
1109         se->vruntime = rightmost->vruntime + 1;
1110 }
1111
1112 #ifdef CONFIG_SMP
1113
1114 #ifdef CONFIG_FAIR_GROUP_SCHED
1115 /*
1116  * effective_load() calculates the load change as seen from the root_task_group
1117  *
1118  * Adding load to a group doesn't make a group heavier, but can cause movement
1119  * of group shares between cpus. Assuming the shares were perfectly aligned one
1120  * can calculate the shift in shares.
1121  *
1122  * The problem is that perfectly aligning the shares is rather expensive, hence
1123  * we try to avoid doing that too often - see update_shares(), which ratelimits
1124  * this change.
1125  *
1126  * We compensate this by not only taking the current delta into account, but
1127  * also considering the delta between when the shares were last adjusted and
1128  * now.
1129  *
1130  * We still saw a performance dip, some tracing learned us that between
1131  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1132  * significantly. Therefore try to bias the error in direction of failing
1133  * the affine wakeup.
1134  *
1135  */
1136 static long effective_load(struct task_group *tg, int cpu,
1137                 long wl, long wg)
1138 {
1139         struct sched_entity *se = tg->se[cpu];
1140
1141         if (!tg->parent)
1142                 return wl;
1143
1144         /*
1145          * By not taking the decrease of shares on the other cpu into
1146          * account our error leans towards reducing the affine wakeups.
1147          */
1148         if (!wl && sched_feat(ASYM_EFF_LOAD))
1149                 return wl;
1150
1151         for_each_sched_entity(se) {
1152                 long S, rw, s, a, b;
1153                 long more_w;
1154
1155                 /*
1156                  * Instead of using this increment, also add the difference
1157                  * between when the shares were last updated and now.
1158                  */
1159                 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1160                 wl += more_w;
1161                 wg += more_w;
1162
1163                 S = se->my_q->tg->shares;
1164                 s = se->my_q->shares;
1165                 rw = se->my_q->rq_weight;
1166
1167                 a = S*(rw + wl);
1168                 b = S*rw + s*wg;
1169
1170                 wl = s*(a-b);
1171
1172                 if (likely(b))
1173                         wl /= b;
1174
1175                 /*
1176                  * Assume the group is already running and will
1177                  * thus already be accounted for in the weight.
1178                  *
1179                  * That is, moving shares between CPUs, does not
1180                  * alter the group weight.
1181                  */
1182                 wg = 0;
1183         }
1184
1185         return wl;
1186 }
1187
1188 #else
1189
1190 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1191                 unsigned long wl, unsigned long wg)
1192 {
1193         return wl;
1194 }
1195
1196 #endif
1197
1198 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1199 {
1200         struct task_struct *curr = current;
1201         unsigned long this_load, load;
1202         int idx, this_cpu, prev_cpu;
1203         unsigned long tl_per_task;
1204         unsigned int imbalance;
1205         struct task_group *tg;
1206         unsigned long weight;
1207         int balanced;
1208
1209         idx       = sd->wake_idx;
1210         this_cpu  = smp_processor_id();
1211         prev_cpu  = task_cpu(p);
1212         load      = source_load(prev_cpu, idx);
1213         this_load = target_load(this_cpu, idx);
1214
1215         if (sync) {
1216                if (sched_feat(SYNC_LESS) &&
1217                    (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1218                     p->se.avg_overlap > sysctl_sched_migration_cost))
1219                        sync = 0;
1220         } else {
1221                 if (sched_feat(SYNC_MORE) &&
1222                     (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1223                      p->se.avg_overlap < sysctl_sched_migration_cost))
1224                         sync = 1;
1225         }
1226
1227         /*
1228          * If sync wakeup then subtract the (maximum possible)
1229          * effect of the currently running task from the load
1230          * of the current CPU:
1231          */
1232         if (sync) {
1233                 tg = task_group(current);
1234                 weight = current->se.load.weight;
1235
1236                 this_load += effective_load(tg, this_cpu, -weight, -weight);
1237                 load += effective_load(tg, prev_cpu, 0, -weight);
1238         }
1239
1240         tg = task_group(p);
1241         weight = p->se.load.weight;
1242
1243         imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1244
1245         /*
1246          * In low-load situations, where prev_cpu is idle and this_cpu is idle
1247          * due to the sync cause above having dropped this_load to 0, we'll
1248          * always have an imbalance, but there's really nothing you can do
1249          * about that, so that's good too.
1250          *
1251          * Otherwise check if either cpus are near enough in load to allow this
1252          * task to be woken on this_cpu.
1253          */
1254         balanced = !this_load ||
1255                 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1256                 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1257
1258         /*
1259          * If the currently running task will sleep within
1260          * a reasonable amount of time then attract this newly
1261          * woken task:
1262          */
1263         if (sync && balanced)
1264                 return 1;
1265
1266         schedstat_inc(p, se.nr_wakeups_affine_attempts);
1267         tl_per_task = cpu_avg_load_per_task(this_cpu);
1268
1269         if (balanced ||
1270             (this_load <= load &&
1271              this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1272                 /*
1273                  * This domain has SD_WAKE_AFFINE and
1274                  * p is cache cold in this domain, and
1275                  * there is no bad imbalance.
1276                  */
1277                 schedstat_inc(sd, ttwu_move_affine);
1278                 schedstat_inc(p, se.nr_wakeups_affine);
1279
1280                 return 1;
1281         }
1282         return 0;
1283 }
1284
1285 /*
1286  * find_idlest_group finds and returns the least busy CPU group within the
1287  * domain.
1288  */
1289 static struct sched_group *
1290 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1291                   int this_cpu, int load_idx)
1292 {
1293         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1294         unsigned long min_load = ULONG_MAX, this_load = 0;
1295         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1296
1297         do {
1298                 unsigned long load, avg_load;
1299                 int local_group;
1300                 int i;
1301
1302                 /* Skip over this group if it has no CPUs allowed */
1303                 if (!cpumask_intersects(sched_group_cpus(group),
1304                                         &p->cpus_allowed))
1305                         continue;
1306
1307                 local_group = cpumask_test_cpu(this_cpu,
1308                                                sched_group_cpus(group));
1309
1310                 /* Tally up the load of all CPUs in the group */
1311                 avg_load = 0;
1312
1313                 for_each_cpu(i, sched_group_cpus(group)) {
1314                         /* Bias balancing toward cpus of our domain */
1315                         if (local_group)
1316                                 load = source_load(i, load_idx);
1317                         else
1318                                 load = target_load(i, load_idx);
1319
1320                         avg_load += load;
1321                 }
1322
1323                 /* Adjust by relative CPU power of the group */
1324                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1325
1326                 if (local_group) {
1327                         this_load = avg_load;
1328                         this = group;
1329                 } else if (avg_load < min_load) {
1330                         min_load = avg_load;
1331                         idlest = group;
1332                 }
1333         } while (group = group->next, group != sd->groups);
1334
1335         if (!idlest || 100*this_load < imbalance*min_load)
1336                 return NULL;
1337         return idlest;
1338 }
1339
1340 /*
1341  * find_idlest_cpu - find the idlest cpu among the cpus in group.
1342  */
1343 static int
1344 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1345 {
1346         unsigned long load, min_load = ULONG_MAX;
1347         int idlest = -1;
1348         int i;
1349
1350         /* Traverse only the allowed CPUs */
1351         for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1352                 load = weighted_cpuload(i);
1353
1354                 if (load < min_load || (load == min_load && i == this_cpu)) {
1355                         min_load = load;
1356                         idlest = i;
1357                 }
1358         }
1359
1360         return idlest;
1361 }
1362
1363 /*
1364  * Try and locate an idle CPU in the sched_domain.
1365  */
1366 static int
1367 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1368 {
1369         int cpu = smp_processor_id();
1370         int prev_cpu = task_cpu(p);
1371         int i;
1372
1373         /*
1374          * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1375          * test in select_task_rq_fair) and the prev_cpu is idle then that's
1376          * always a better target than the current cpu.
1377          */
1378         if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1379                 return prev_cpu;
1380
1381         /*
1382          * Otherwise, iterate the domain and find an elegible idle cpu.
1383          */
1384         for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1385                 if (!cpu_rq(i)->cfs.nr_running) {
1386                         target = i;
1387                         break;
1388                 }
1389         }
1390
1391         return target;
1392 }
1393
1394 /*
1395  * sched_balance_self: balance the current task (running on cpu) in domains
1396  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1397  * SD_BALANCE_EXEC.
1398  *
1399  * Balance, ie. select the least loaded group.
1400  *
1401  * Returns the target CPU number, or the same CPU if no balancing is needed.
1402  *
1403  * preempt must be disabled.
1404  */
1405 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1406 {
1407         struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1408         int cpu = smp_processor_id();
1409         int prev_cpu = task_cpu(p);
1410         int new_cpu = cpu;
1411         int want_affine = 0;
1412         int want_sd = 1;
1413         int sync = wake_flags & WF_SYNC;
1414
1415         if (sd_flag & SD_BALANCE_WAKE) {
1416                 if (sched_feat(AFFINE_WAKEUPS) &&
1417                     cpumask_test_cpu(cpu, &p->cpus_allowed))
1418                         want_affine = 1;
1419                 new_cpu = prev_cpu;
1420         }
1421
1422         for_each_domain(cpu, tmp) {
1423                 /*
1424                  * If power savings logic is enabled for a domain, see if we
1425                  * are not overloaded, if so, don't balance wider.
1426                  */
1427                 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1428                         unsigned long power = 0;
1429                         unsigned long nr_running = 0;
1430                         unsigned long capacity;
1431                         int i;
1432
1433                         for_each_cpu(i, sched_domain_span(tmp)) {
1434                                 power += power_of(i);
1435                                 nr_running += cpu_rq(i)->cfs.nr_running;
1436                         }
1437
1438                         capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1439
1440                         if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1441                                 nr_running /= 2;
1442
1443                         if (nr_running < capacity)
1444                                 want_sd = 0;
1445                 }
1446
1447                 /*
1448                  * While iterating the domains looking for a spanning
1449                  * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1450                  * in cache sharing domains along the way.
1451                  */
1452                 if (want_affine) {
1453                         int target = -1;
1454
1455                         /*
1456                          * If both cpu and prev_cpu are part of this domain,
1457                          * cpu is a valid SD_WAKE_AFFINE target.
1458                          */
1459                         if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1460                                 target = cpu;
1461
1462                         /*
1463                          * If there's an idle sibling in this domain, make that
1464                          * the wake_affine target instead of the current cpu.
1465                          */
1466                         if (tmp->flags & SD_PREFER_SIBLING)
1467                                 target = select_idle_sibling(p, tmp, target);
1468
1469                         if (target >= 0) {
1470                                 if (tmp->flags & SD_WAKE_AFFINE) {
1471                                         affine_sd = tmp;
1472                                         want_affine = 0;
1473                                 }
1474                                 cpu = target;
1475                         }
1476                 }
1477
1478                 if (!want_sd && !want_affine)
1479                         break;
1480
1481                 if (!(tmp->flags & sd_flag))
1482                         continue;
1483
1484                 if (want_sd)
1485                         sd = tmp;
1486         }
1487
1488         if (sched_feat(LB_SHARES_UPDATE)) {
1489                 /*
1490                  * Pick the largest domain to update shares over
1491                  */
1492                 tmp = sd;
1493                 if (affine_sd && (!tmp ||
1494                                   cpumask_weight(sched_domain_span(affine_sd)) >
1495                                   cpumask_weight(sched_domain_span(sd))))
1496                         tmp = affine_sd;
1497
1498                 if (tmp)
1499                         update_shares(tmp);
1500         }
1501
1502         if (affine_sd && wake_affine(affine_sd, p, sync))
1503                 return cpu;
1504
1505         while (sd) {
1506                 int load_idx = sd->forkexec_idx;
1507                 struct sched_group *group;
1508                 int weight;
1509
1510                 if (!(sd->flags & sd_flag)) {
1511                         sd = sd->child;
1512                         continue;
1513                 }
1514
1515                 if (sd_flag & SD_BALANCE_WAKE)
1516                         load_idx = sd->wake_idx;
1517
1518                 group = find_idlest_group(sd, p, cpu, load_idx);
1519                 if (!group) {
1520                         sd = sd->child;
1521                         continue;
1522                 }
1523
1524                 new_cpu = find_idlest_cpu(group, p, cpu);
1525                 if (new_cpu == -1 || new_cpu == cpu) {
1526                         /* Now try balancing at a lower domain level of cpu */
1527                         sd = sd->child;
1528                         continue;
1529                 }
1530
1531                 /* Now try balancing at a lower domain level of new_cpu */
1532                 cpu = new_cpu;
1533                 weight = cpumask_weight(sched_domain_span(sd));
1534                 sd = NULL;
1535                 for_each_domain(cpu, tmp) {
1536                         if (weight <= cpumask_weight(sched_domain_span(tmp)))
1537                                 break;
1538                         if (tmp->flags & sd_flag)
1539                                 sd = tmp;
1540                 }
1541                 /* while loop will break here if sd == NULL */
1542         }
1543
1544         return new_cpu;
1545 }
1546 #endif /* CONFIG_SMP */
1547
1548 /*
1549  * Adaptive granularity
1550  *
1551  * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1552  * with the limit of wakeup_gran -- when it never does a wakeup.
1553  *
1554  * So the smaller avg_wakeup is the faster we want this task to preempt,
1555  * but we don't want to treat the preemptee unfairly and therefore allow it
1556  * to run for at least the amount of time we'd like to run.
1557  *
1558  * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1559  *
1560  * NOTE: we use *nr_running to scale with load, this nicely matches the
1561  *       degrading latency on load.
1562  */
1563 static unsigned long
1564 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1565 {
1566         u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1567         u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1568         u64 gran = 0;
1569
1570         if (this_run < expected_wakeup)
1571                 gran = expected_wakeup - this_run;
1572
1573         return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1574 }
1575
1576 static unsigned long
1577 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1578 {
1579         unsigned long gran = sysctl_sched_wakeup_granularity;
1580
1581         if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1582                 gran = adaptive_gran(curr, se);
1583
1584         /*
1585          * Since its curr running now, convert the gran from real-time
1586          * to virtual-time in his units.
1587          */
1588         if (sched_feat(ASYM_GRAN)) {
1589                 /*
1590                  * By using 'se' instead of 'curr' we penalize light tasks, so
1591                  * they get preempted easier. That is, if 'se' < 'curr' then
1592                  * the resulting gran will be larger, therefore penalizing the
1593                  * lighter, if otoh 'se' > 'curr' then the resulting gran will
1594                  * be smaller, again penalizing the lighter task.
1595                  *
1596                  * This is especially important for buddies when the leftmost
1597                  * task is higher priority than the buddy.
1598                  */
1599                 if (unlikely(se->load.weight != NICE_0_LOAD))
1600                         gran = calc_delta_fair(gran, se);
1601         } else {
1602                 if (unlikely(curr->load.weight != NICE_0_LOAD))
1603                         gran = calc_delta_fair(gran, curr);
1604         }
1605
1606         return gran;
1607 }
1608
1609 /*
1610  * Should 'se' preempt 'curr'.
1611  *
1612  *             |s1
1613  *        |s2
1614  *   |s3
1615  *         g
1616  *      |<--->|c
1617  *
1618  *  w(c, s1) = -1
1619  *  w(c, s2) =  0
1620  *  w(c, s3) =  1
1621  *
1622  */
1623 static int
1624 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1625 {
1626         s64 gran, vdiff = curr->vruntime - se->vruntime;
1627
1628         if (vdiff <= 0)
1629                 return -1;
1630
1631         gran = wakeup_gran(curr, se);
1632         if (vdiff > gran)
1633                 return 1;
1634
1635         return 0;
1636 }
1637
1638 static void set_last_buddy(struct sched_entity *se)
1639 {
1640         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1641                 for_each_sched_entity(se)
1642                         cfs_rq_of(se)->last = se;
1643         }
1644 }
1645
1646 static void set_next_buddy(struct sched_entity *se)
1647 {
1648         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1649                 for_each_sched_entity(se)
1650                         cfs_rq_of(se)->next = se;
1651         }
1652 }
1653
1654 /*
1655  * Preempt the current task with a newly woken task if needed:
1656  */
1657 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1658 {
1659         struct task_struct *curr = rq->curr;
1660         struct sched_entity *se = &curr->se, *pse = &p->se;
1661         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1662         int sync = wake_flags & WF_SYNC;
1663         int scale = cfs_rq->nr_running >= sched_nr_latency;
1664
1665         if (unlikely(rt_prio(p->prio)))
1666                 goto preempt;
1667
1668         if (unlikely(p->sched_class != &fair_sched_class))
1669                 return;
1670
1671         if (unlikely(se == pse))
1672                 return;
1673
1674         if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1675                 set_next_buddy(pse);
1676
1677         /*
1678          * We can come here with TIF_NEED_RESCHED already set from new task
1679          * wake up path.
1680          */
1681         if (test_tsk_need_resched(curr))
1682                 return;
1683
1684         /*
1685          * Batch and idle tasks do not preempt (their preemption is driven by
1686          * the tick):
1687          */
1688         if (unlikely(p->policy != SCHED_NORMAL))
1689                 return;
1690
1691         /* Idle tasks are by definition preempted by everybody. */
1692         if (unlikely(curr->policy == SCHED_IDLE))
1693                 goto preempt;
1694
1695         if (sched_feat(WAKEUP_SYNC) && sync)
1696                 goto preempt;
1697
1698         if (sched_feat(WAKEUP_OVERLAP) &&
1699                         se->avg_overlap < sysctl_sched_migration_cost &&
1700                         pse->avg_overlap < sysctl_sched_migration_cost)
1701                 goto preempt;
1702
1703         if (!sched_feat(WAKEUP_PREEMPT))
1704                 return;
1705
1706         update_curr(cfs_rq);
1707         find_matching_se(&se, &pse);
1708         BUG_ON(!pse);
1709         if (wakeup_preempt_entity(se, pse) == 1)
1710                 goto preempt;
1711
1712         return;
1713
1714 preempt:
1715         resched_task(curr);
1716         /*
1717          * Only set the backward buddy when the current task is still
1718          * on the rq. This can happen when a wakeup gets interleaved
1719          * with schedule on the ->pre_schedule() or idle_balance()
1720          * point, either of which can * drop the rq lock.
1721          *
1722          * Also, during early boot the idle thread is in the fair class,
1723          * for obvious reasons its a bad idea to schedule back to it.
1724          */
1725         if (unlikely(!se->on_rq || curr == rq->idle))
1726                 return;
1727
1728         if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1729                 set_last_buddy(se);
1730 }
1731
1732 static struct task_struct *pick_next_task_fair(struct rq *rq)
1733 {
1734         struct task_struct *p;
1735         struct cfs_rq *cfs_rq = &rq->cfs;
1736         struct sched_entity *se;
1737
1738         if (!cfs_rq->nr_running)
1739                 return NULL;
1740
1741         do {
1742                 se = pick_next_entity(cfs_rq);
1743                 set_next_entity(cfs_rq, se);
1744                 cfs_rq = group_cfs_rq(se);
1745         } while (cfs_rq);
1746
1747         p = task_of(se);
1748         hrtick_start_fair(rq, p);
1749
1750         return p;
1751 }
1752
1753 /*
1754  * Account for a descheduled task:
1755  */
1756 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1757 {
1758         struct sched_entity *se = &prev->se;
1759         struct cfs_rq *cfs_rq;
1760
1761         for_each_sched_entity(se) {
1762                 cfs_rq = cfs_rq_of(se);
1763                 put_prev_entity(cfs_rq, se);
1764         }
1765 }
1766
1767 #ifdef CONFIG_SMP
1768 /**************************************************
1769  * Fair scheduling class load-balancing methods:
1770  */
1771
1772 /*
1773  * Load-balancing iterator. Note: while the runqueue stays locked
1774  * during the whole iteration, the current task might be
1775  * dequeued so the iterator has to be dequeue-safe. Here we
1776  * achieve that by always pre-iterating before returning
1777  * the current task:
1778  */
1779 static struct task_struct *
1780 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1781 {
1782         struct task_struct *p = NULL;
1783         struct sched_entity *se;
1784
1785         if (next == &cfs_rq->tasks)
1786                 return NULL;
1787
1788         se = list_entry(next, struct sched_entity, group_node);
1789         p = task_of(se);
1790         cfs_rq->balance_iterator = next->next;
1791
1792         return p;
1793 }
1794
1795 static struct task_struct *load_balance_start_fair(void *arg)
1796 {
1797         struct cfs_rq *cfs_rq = arg;
1798
1799         return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1800 }
1801
1802 static struct task_struct *load_balance_next_fair(void *arg)
1803 {
1804         struct cfs_rq *cfs_rq = arg;
1805
1806         return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1807 }
1808
1809 static unsigned long
1810 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1811                 unsigned long max_load_move, struct sched_domain *sd,
1812                 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1813                 struct cfs_rq *cfs_rq)
1814 {
1815         struct rq_iterator cfs_rq_iterator;
1816
1817         cfs_rq_iterator.start = load_balance_start_fair;
1818         cfs_rq_iterator.next = load_balance_next_fair;
1819         cfs_rq_iterator.arg = cfs_rq;
1820
1821         return balance_tasks(this_rq, this_cpu, busiest,
1822                         max_load_move, sd, idle, all_pinned,
1823                         this_best_prio, &cfs_rq_iterator);
1824 }
1825
1826 #ifdef CONFIG_FAIR_GROUP_SCHED
1827 static unsigned long
1828 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1829                   unsigned long max_load_move,
1830                   struct sched_domain *sd, enum cpu_idle_type idle,
1831                   int *all_pinned, int *this_best_prio)
1832 {
1833         long rem_load_move = max_load_move;
1834         int busiest_cpu = cpu_of(busiest);
1835         struct task_group *tg;
1836
1837         rcu_read_lock();
1838         update_h_load(busiest_cpu);
1839
1840         list_for_each_entry_rcu(tg, &task_groups, list) {
1841                 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1842                 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1843                 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1844                 u64 rem_load, moved_load;
1845
1846                 /*
1847                  * empty group
1848                  */
1849                 if (!busiest_cfs_rq->task_weight)
1850                         continue;
1851
1852                 rem_load = (u64)rem_load_move * busiest_weight;
1853                 rem_load = div_u64(rem_load, busiest_h_load + 1);
1854
1855                 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1856                                 rem_load, sd, idle, all_pinned, this_best_prio,
1857                                 tg->cfs_rq[busiest_cpu]);
1858
1859                 if (!moved_load)
1860                         continue;
1861
1862                 moved_load *= busiest_h_load;
1863                 moved_load = div_u64(moved_load, busiest_weight + 1);
1864
1865                 rem_load_move -= moved_load;
1866                 if (rem_load_move < 0)
1867                         break;
1868         }
1869         rcu_read_unlock();
1870
1871         return max_load_move - rem_load_move;
1872 }
1873 #else
1874 static unsigned long
1875 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1876                   unsigned long max_load_move,
1877                   struct sched_domain *sd, enum cpu_idle_type idle,
1878                   int *all_pinned, int *this_best_prio)
1879 {
1880         return __load_balance_fair(this_rq, this_cpu, busiest,
1881                         max_load_move, sd, idle, all_pinned,
1882                         this_best_prio, &busiest->cfs);
1883 }
1884 #endif
1885
1886 static int
1887 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1888                    struct sched_domain *sd, enum cpu_idle_type idle)
1889 {
1890         struct cfs_rq *busy_cfs_rq;
1891         struct rq_iterator cfs_rq_iterator;
1892
1893         cfs_rq_iterator.start = load_balance_start_fair;
1894         cfs_rq_iterator.next = load_balance_next_fair;
1895
1896         for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1897                 /*
1898                  * pass busy_cfs_rq argument into
1899                  * load_balance_[start|next]_fair iterators
1900                  */
1901                 cfs_rq_iterator.arg = busy_cfs_rq;
1902                 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1903                                        &cfs_rq_iterator))
1904                     return 1;
1905         }
1906
1907         return 0;
1908 }
1909
1910 static void rq_online_fair(struct rq *rq)
1911 {
1912         update_sysctl();
1913 }
1914
1915 static void rq_offline_fair(struct rq *rq)
1916 {
1917         update_sysctl();
1918 }
1919
1920 #endif /* CONFIG_SMP */
1921
1922 /*
1923  * scheduler tick hitting a task of our scheduling class:
1924  */
1925 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1926 {
1927         struct cfs_rq *cfs_rq;
1928         struct sched_entity *se = &curr->se;
1929
1930         for_each_sched_entity(se) {
1931                 cfs_rq = cfs_rq_of(se);
1932                 entity_tick(cfs_rq, se, queued);
1933         }
1934 }
1935
1936 /*
1937  * called on fork with the child task as argument from the parent's context
1938  *  - child not yet on the tasklist
1939  *  - preemption disabled
1940  */
1941 static void task_fork_fair(struct task_struct *p)
1942 {
1943         struct cfs_rq *cfs_rq = task_cfs_rq(current);
1944         struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1945         int this_cpu = smp_processor_id();
1946         struct rq *rq = this_rq();
1947         unsigned long flags;
1948
1949         spin_lock_irqsave(&rq->lock, flags);
1950
1951         if (unlikely(task_cpu(p) != this_cpu))
1952                 __set_task_cpu(p, this_cpu);
1953
1954         update_curr(cfs_rq);
1955
1956         if (curr)
1957                 se->vruntime = curr->vruntime;
1958         place_entity(cfs_rq, se, 1);
1959
1960         if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
1961                 /*
1962                  * Upon rescheduling, sched_class::put_prev_task() will place
1963                  * 'current' within the tree based on its new key value.
1964                  */
1965                 swap(curr->vruntime, se->vruntime);
1966                 resched_task(rq->curr);
1967         }
1968
1969         spin_unlock_irqrestore(&rq->lock, flags);
1970 }
1971
1972 /*
1973  * Priority of the task has changed. Check to see if we preempt
1974  * the current task.
1975  */
1976 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1977                               int oldprio, int running)
1978 {
1979         /*
1980          * Reschedule if we are currently running on this runqueue and
1981          * our priority decreased, or if we are not currently running on
1982          * this runqueue and our priority is higher than the current's
1983          */
1984         if (running) {
1985                 if (p->prio > oldprio)
1986                         resched_task(rq->curr);
1987         } else
1988                 check_preempt_curr(rq, p, 0);
1989 }
1990
1991 /*
1992  * We switched to the sched_fair class.
1993  */
1994 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1995                              int running)
1996 {
1997         /*
1998          * We were most likely switched from sched_rt, so
1999          * kick off the schedule if running, otherwise just see
2000          * if we can still preempt the current task.
2001          */
2002         if (running)
2003                 resched_task(rq->curr);
2004         else
2005                 check_preempt_curr(rq, p, 0);
2006 }
2007
2008 /* Account for a task changing its policy or group.
2009  *
2010  * This routine is mostly called to set cfs_rq->curr field when a task
2011  * migrates between groups/classes.
2012  */
2013 static void set_curr_task_fair(struct rq *rq)
2014 {
2015         struct sched_entity *se = &rq->curr->se;
2016
2017         for_each_sched_entity(se)
2018                 set_next_entity(cfs_rq_of(se), se);
2019 }
2020
2021 #ifdef CONFIG_FAIR_GROUP_SCHED
2022 static void moved_group_fair(struct task_struct *p)
2023 {
2024         struct cfs_rq *cfs_rq = task_cfs_rq(p);
2025
2026         update_curr(cfs_rq);
2027         place_entity(cfs_rq, &p->se, 1);
2028 }
2029 #endif
2030
2031 unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2032 {
2033         struct sched_entity *se = &task->se;
2034         unsigned int rr_interval = 0;
2035
2036         /*
2037          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2038          * idle runqueue:
2039          */
2040         if (rq->cfs.load.weight)
2041                 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2042
2043         return rr_interval;
2044 }
2045
2046 /*
2047  * All the scheduling class methods:
2048  */
2049 static const struct sched_class fair_sched_class = {
2050         .next                   = &idle_sched_class,
2051         .enqueue_task           = enqueue_task_fair,
2052         .dequeue_task           = dequeue_task_fair,
2053         .yield_task             = yield_task_fair,
2054
2055         .check_preempt_curr     = check_preempt_wakeup,
2056
2057         .pick_next_task         = pick_next_task_fair,
2058         .put_prev_task          = put_prev_task_fair,
2059
2060 #ifdef CONFIG_SMP
2061         .select_task_rq         = select_task_rq_fair,
2062
2063         .load_balance           = load_balance_fair,
2064         .move_one_task          = move_one_task_fair,
2065         .rq_online              = rq_online_fair,
2066         .rq_offline             = rq_offline_fair,
2067 #endif
2068
2069         .set_curr_task          = set_curr_task_fair,
2070         .task_tick              = task_tick_fair,
2071         .task_fork              = task_fork_fair,
2072
2073         .prio_changed           = prio_changed_fair,
2074         .switched_to            = switched_to_fair,
2075
2076         .get_rr_interval        = get_rr_interval_fair,
2077
2078 #ifdef CONFIG_FAIR_GROUP_SCHED
2079         .moved_group            = moved_group_fair,
2080 #endif
2081 };
2082
2083 #ifdef CONFIG_SCHED_DEBUG
2084 static void print_cfs_stats(struct seq_file *m, int cpu)
2085 {
2086         struct cfs_rq *cfs_rq;
2087
2088         rcu_read_lock();
2089         for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2090                 print_cfs_rq(m, cpu, cfs_rq);
2091         rcu_read_unlock();
2092 }
2093 #endif