[PATCH] sched: consider migration thread with smp nice
[safe/jmp/linux-2.6] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long prio_bias;
210         unsigned long cpu_load[3];
211 #endif
212         unsigned long long nr_switches;
213
214         /*
215          * This is part of a global counter where only the total sum
216          * over all CPUs matters. A task can increase this counter on
217          * one CPU and if it got migrated afterwards it may decrease
218          * it on another CPU. Always updated under the runqueue lock:
219          */
220         unsigned long nr_uninterruptible;
221
222         unsigned long expired_timestamp;
223         unsigned long long timestamp_last_tick;
224         task_t *curr, *idle;
225         struct mm_struct *prev_mm;
226         prio_array_t *active, *expired, arrays[2];
227         int best_expired_prio;
228         atomic_t nr_iowait;
229
230 #ifdef CONFIG_SMP
231         struct sched_domain *sd;
232
233         /* For active balancing */
234         int active_balance;
235         int push_cpu;
236
237         task_t *migration_thread;
238         struct list_head migration_queue;
239 #endif
240
241 #ifdef CONFIG_SCHEDSTATS
242         /* latency stats */
243         struct sched_info rq_sched_info;
244
245         /* sys_sched_yield() stats */
246         unsigned long yld_exp_empty;
247         unsigned long yld_act_empty;
248         unsigned long yld_both_empty;
249         unsigned long yld_cnt;
250
251         /* schedule() stats */
252         unsigned long sched_switch;
253         unsigned long sched_cnt;
254         unsigned long sched_goidle;
255
256         /* try_to_wake_up() stats */
257         unsigned long ttwu_cnt;
258         unsigned long ttwu_local;
259 #endif
260 };
261
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
263
264 /*
265  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266  * See detach_destroy_domains: synchronize_sched for details.
267  *
268  * The domain tree of any CPU may only be accessed from within
269  * preempt-disabled sections.
270  */
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273
274 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
275 #define this_rq()               (&__get_cpu_var(runqueues))
276 #define task_rq(p)              cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
278
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next)      do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev)       do { } while (0)
284 #endif
285
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
288 {
289         return rq->curr == p;
290 }
291
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293 {
294 }
295
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 {
298 #ifdef CONFIG_DEBUG_SPINLOCK
299         /* this is a valid case when another task releases the spinlock */
300         rq->lock.owner = current;
301 #endif
302         spin_unlock_irq(&rq->lock);
303 }
304
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
307 {
308 #ifdef CONFIG_SMP
309         return p->oncpu;
310 #else
311         return rq->curr == p;
312 #endif
313 }
314
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316 {
317 #ifdef CONFIG_SMP
318         /*
319          * We can optimise this out completely for !SMP, because the
320          * SMP rebalancing from interrupt is the only thing that cares
321          * here.
322          */
323         next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326         spin_unlock_irq(&rq->lock);
327 #else
328         spin_unlock(&rq->lock);
329 #endif
330 }
331
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333 {
334 #ifdef CONFIG_SMP
335         /*
336          * After ->oncpu is cleared, the task can be moved to a different CPU.
337          * We must ensure this doesn't happen until the switch is completely
338          * finished.
339          */
340         smp_wmb();
341         prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344         local_irq_enable();
345 #endif
346 }
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
348
349 /*
350  * task_rq_lock - lock the runqueue a given task resides on and disable
351  * interrupts.  Note the ordering: we can safely lookup the task_rq without
352  * explicitly disabling preemption.
353  */
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355         __acquires(rq->lock)
356 {
357         struct runqueue *rq;
358
359 repeat_lock_task:
360         local_irq_save(*flags);
361         rq = task_rq(p);
362         spin_lock(&rq->lock);
363         if (unlikely(rq != task_rq(p))) {
364                 spin_unlock_irqrestore(&rq->lock, *flags);
365                 goto repeat_lock_task;
366         }
367         return rq;
368 }
369
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371         __releases(rq->lock)
372 {
373         spin_unlock_irqrestore(&rq->lock, *flags);
374 }
375
376 #ifdef CONFIG_SCHEDSTATS
377 /*
378  * bump this up when changing the output format or the meaning of an existing
379  * format, so that tools can adapt (or abort)
380  */
381 #define SCHEDSTAT_VERSION 12
382
383 static int show_schedstat(struct seq_file *seq, void *v)
384 {
385         int cpu;
386
387         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388         seq_printf(seq, "timestamp %lu\n", jiffies);
389         for_each_online_cpu(cpu) {
390                 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392                 struct sched_domain *sd;
393                 int dcnt = 0;
394 #endif
395
396                 /* runqueue-specific stats */
397                 seq_printf(seq,
398                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399                     cpu, rq->yld_both_empty,
400                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402                     rq->ttwu_cnt, rq->ttwu_local,
403                     rq->rq_sched_info.cpu_time,
404                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406                 seq_printf(seq, "\n");
407
408 #ifdef CONFIG_SMP
409                 /* domain-specific stats */
410                 preempt_disable();
411                 for_each_domain(cpu, sd) {
412                         enum idle_type itype;
413                         char mask_str[NR_CPUS];
414
415                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418                                         itype++) {
419                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420                                     sd->lb_cnt[itype],
421                                     sd->lb_balanced[itype],
422                                     sd->lb_failed[itype],
423                                     sd->lb_imbalance[itype],
424                                     sd->lb_gained[itype],
425                                     sd->lb_hot_gained[itype],
426                                     sd->lb_nobusyq[itype],
427                                     sd->lb_nobusyg[itype]);
428                         }
429                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434                 }
435                 preempt_enable();
436 #endif
437         }
438         return 0;
439 }
440
441 static int schedstat_open(struct inode *inode, struct file *file)
442 {
443         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444         char *buf = kmalloc(size, GFP_KERNEL);
445         struct seq_file *m;
446         int res;
447
448         if (!buf)
449                 return -ENOMEM;
450         res = single_open(file, show_schedstat, NULL);
451         if (!res) {
452                 m = file->private_data;
453                 m->buf = buf;
454                 m->size = size;
455         } else
456                 kfree(buf);
457         return res;
458 }
459
460 struct file_operations proc_schedstat_operations = {
461         .open    = schedstat_open,
462         .read    = seq_read,
463         .llseek  = seq_lseek,
464         .release = single_release,
465 };
466
467 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field)       do { } while (0)
471 # define schedstat_add(rq, field, amt)  do { } while (0)
472 #endif
473
474 /*
475  * rq_lock - lock a given runqueue and disable interrupts.
476  */
477 static inline runqueue_t *this_rq_lock(void)
478         __acquires(rq->lock)
479 {
480         runqueue_t *rq;
481
482         local_irq_disable();
483         rq = this_rq();
484         spin_lock(&rq->lock);
485
486         return rq;
487 }
488
489 #ifdef CONFIG_SCHEDSTATS
490 /*
491  * Called when a process is dequeued from the active array and given
492  * the cpu.  We should note that with the exception of interactive
493  * tasks, the expired queue will become the active queue after the active
494  * queue is empty, without explicitly dequeuing and requeuing tasks in the
495  * expired queue.  (Interactive tasks may be requeued directly to the
496  * active queue, thus delaying tasks in the expired queue from running;
497  * see scheduler_tick()).
498  *
499  * This function is only called from sched_info_arrive(), rather than
500  * dequeue_task(). Even though a task may be queued and dequeued multiple
501  * times as it is shuffled about, we're really interested in knowing how
502  * long it was from the *first* time it was queued to the time that it
503  * finally hit a cpu.
504  */
505 static inline void sched_info_dequeued(task_t *t)
506 {
507         t->sched_info.last_queued = 0;
508 }
509
510 /*
511  * Called when a task finally hits the cpu.  We can now calculate how
512  * long it was waiting to run.  We also note when it began so that we
513  * can keep stats on how long its timeslice is.
514  */
515 static inline void sched_info_arrive(task_t *t)
516 {
517         unsigned long now = jiffies, diff = 0;
518         struct runqueue *rq = task_rq(t);
519
520         if (t->sched_info.last_queued)
521                 diff = now - t->sched_info.last_queued;
522         sched_info_dequeued(t);
523         t->sched_info.run_delay += diff;
524         t->sched_info.last_arrival = now;
525         t->sched_info.pcnt++;
526
527         if (!rq)
528                 return;
529
530         rq->rq_sched_info.run_delay += diff;
531         rq->rq_sched_info.pcnt++;
532 }
533
534 /*
535  * Called when a process is queued into either the active or expired
536  * array.  The time is noted and later used to determine how long we
537  * had to wait for us to reach the cpu.  Since the expired queue will
538  * become the active queue after active queue is empty, without dequeuing
539  * and requeuing any tasks, we are interested in queuing to either. It
540  * is unusual but not impossible for tasks to be dequeued and immediately
541  * requeued in the same or another array: this can happen in sched_yield(),
542  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543  * to runqueue.
544  *
545  * This function is only called from enqueue_task(), but also only updates
546  * the timestamp if it is already not set.  It's assumed that
547  * sched_info_dequeued() will clear that stamp when appropriate.
548  */
549 static inline void sched_info_queued(task_t *t)
550 {
551         if (!t->sched_info.last_queued)
552                 t->sched_info.last_queued = jiffies;
553 }
554
555 /*
556  * Called when a process ceases being the active-running process, either
557  * voluntarily or involuntarily.  Now we can calculate how long we ran.
558  */
559 static inline void sched_info_depart(task_t *t)
560 {
561         struct runqueue *rq = task_rq(t);
562         unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564         t->sched_info.cpu_time += diff;
565
566         if (rq)
567                 rq->rq_sched_info.cpu_time += diff;
568 }
569
570 /*
571  * Called when tasks are switched involuntarily due, typically, to expiring
572  * their time slice.  (This may also be called when switching to or from
573  * the idle task.)  We are only called when prev != next.
574  */
575 static inline void sched_info_switch(task_t *prev, task_t *next)
576 {
577         struct runqueue *rq = task_rq(prev);
578
579         /*
580          * prev now departs the cpu.  It's not interesting to record
581          * stats about how efficient we were at scheduling the idle
582          * process, however.
583          */
584         if (prev != rq->idle)
585                 sched_info_depart(prev);
586
587         if (next != rq->idle)
588                 sched_info_arrive(next);
589 }
590 #else
591 #define sched_info_queued(t)            do { } while (0)
592 #define sched_info_switch(t, next)      do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
594
595 /*
596  * Adding/removing a task to/from a priority array:
597  */
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
599 {
600         array->nr_active--;
601         list_del(&p->run_list);
602         if (list_empty(array->queue + p->prio))
603                 __clear_bit(p->prio, array->bitmap);
604 }
605
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
607 {
608         sched_info_queued(p);
609         list_add_tail(&p->run_list, array->queue + p->prio);
610         __set_bit(p->prio, array->bitmap);
611         array->nr_active++;
612         p->array = array;
613 }
614
615 /*
616  * Put task to the end of the run list without the overhead of dequeue
617  * followed by enqueue.
618  */
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
620 {
621         list_move_tail(&p->run_list, array->queue + p->prio);
622 }
623
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625 {
626         list_add(&p->run_list, array->queue + p->prio);
627         __set_bit(p->prio, array->bitmap);
628         array->nr_active++;
629         p->array = array;
630 }
631
632 /*
633  * effective_prio - return the priority that is based on the static
634  * priority but is modified by bonuses/penalties.
635  *
636  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637  * into the -5 ... 0 ... +5 bonus/penalty range.
638  *
639  * We use 25% of the full 0...39 priority range so that:
640  *
641  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643  *
644  * Both properties are important to certain workloads.
645  */
646 static int effective_prio(task_t *p)
647 {
648         int bonus, prio;
649
650         if (rt_task(p))
651                 return p->prio;
652
653         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655         prio = p->static_prio - bonus;
656         if (prio < MAX_RT_PRIO)
657                 prio = MAX_RT_PRIO;
658         if (prio > MAX_PRIO-1)
659                 prio = MAX_PRIO-1;
660         return prio;
661 }
662
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
665 {
666         rq->prio_bias += MAX_PRIO - prio;
667 }
668
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
670 {
671         rq->prio_bias -= MAX_PRIO - prio;
672 }
673
674 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
675 {
676         rq->nr_running++;
677         if (rt_task(p)) {
678                 if (p != rq->migration_thread)
679                         /*
680                          * The migration thread does the actual balancing. Do
681                          * not bias by its priority as the ultra high priority
682                          * will skew balancing adversely.
683                          */
684                         inc_prio_bias(rq, p->prio);
685         } else
686                 inc_prio_bias(rq, p->static_prio);
687 }
688
689 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
690 {
691         rq->nr_running--;
692         if (rt_task(p)) {
693                 if (p != rq->migration_thread)
694                         dec_prio_bias(rq, p->prio);
695         } else
696                 dec_prio_bias(rq, p->static_prio);
697 }
698 #else
699 static inline void inc_prio_bias(runqueue_t *rq, int prio)
700 {
701 }
702
703 static inline void dec_prio_bias(runqueue_t *rq, int prio)
704 {
705 }
706
707 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
708 {
709         rq->nr_running++;
710 }
711
712 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
713 {
714         rq->nr_running--;
715 }
716 #endif
717
718 /*
719  * __activate_task - move a task to the runqueue.
720  */
721 static inline void __activate_task(task_t *p, runqueue_t *rq)
722 {
723         enqueue_task(p, rq->active);
724         inc_nr_running(p, rq);
725 }
726
727 /*
728  * __activate_idle_task - move idle task to the _front_ of runqueue.
729  */
730 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
731 {
732         enqueue_task_head(p, rq->active);
733         inc_nr_running(p, rq);
734 }
735
736 static int recalc_task_prio(task_t *p, unsigned long long now)
737 {
738         /* Caller must always ensure 'now >= p->timestamp' */
739         unsigned long long __sleep_time = now - p->timestamp;
740         unsigned long sleep_time;
741
742         if (__sleep_time > NS_MAX_SLEEP_AVG)
743                 sleep_time = NS_MAX_SLEEP_AVG;
744         else
745                 sleep_time = (unsigned long)__sleep_time;
746
747         if (likely(sleep_time > 0)) {
748                 /*
749                  * User tasks that sleep a long time are categorised as
750                  * idle and will get just interactive status to stay active &
751                  * prevent them suddenly becoming cpu hogs and starving
752                  * other processes.
753                  */
754                 if (p->mm && p->activated != -1 &&
755                         sleep_time > INTERACTIVE_SLEEP(p)) {
756                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
757                                                 DEF_TIMESLICE);
758                 } else {
759                         /*
760                          * The lower the sleep avg a task has the more
761                          * rapidly it will rise with sleep time.
762                          */
763                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
764
765                         /*
766                          * Tasks waking from uninterruptible sleep are
767                          * limited in their sleep_avg rise as they
768                          * are likely to be waiting on I/O
769                          */
770                         if (p->activated == -1 && p->mm) {
771                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
772                                         sleep_time = 0;
773                                 else if (p->sleep_avg + sleep_time >=
774                                                 INTERACTIVE_SLEEP(p)) {
775                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
776                                         sleep_time = 0;
777                                 }
778                         }
779
780                         /*
781                          * This code gives a bonus to interactive tasks.
782                          *
783                          * The boost works by updating the 'average sleep time'
784                          * value here, based on ->timestamp. The more time a
785                          * task spends sleeping, the higher the average gets -
786                          * and the higher the priority boost gets as well.
787                          */
788                         p->sleep_avg += sleep_time;
789
790                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
791                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
792                 }
793         }
794
795         return effective_prio(p);
796 }
797
798 /*
799  * activate_task - move a task to the runqueue and do priority recalculation
800  *
801  * Update all the scheduling statistics stuff. (sleep average
802  * calculation, priority modifiers, etc.)
803  */
804 static void activate_task(task_t *p, runqueue_t *rq, int local)
805 {
806         unsigned long long now;
807
808         now = sched_clock();
809 #ifdef CONFIG_SMP
810         if (!local) {
811                 /* Compensate for drifting sched_clock */
812                 runqueue_t *this_rq = this_rq();
813                 now = (now - this_rq->timestamp_last_tick)
814                         + rq->timestamp_last_tick;
815         }
816 #endif
817
818         p->prio = recalc_task_prio(p, now);
819
820         /*
821          * This checks to make sure it's not an uninterruptible task
822          * that is now waking up.
823          */
824         if (!p->activated) {
825                 /*
826                  * Tasks which were woken up by interrupts (ie. hw events)
827                  * are most likely of interactive nature. So we give them
828                  * the credit of extending their sleep time to the period
829                  * of time they spend on the runqueue, waiting for execution
830                  * on a CPU, first time around:
831                  */
832                 if (in_interrupt())
833                         p->activated = 2;
834                 else {
835                         /*
836                          * Normal first-time wakeups get a credit too for
837                          * on-runqueue time, but it will be weighted down:
838                          */
839                         p->activated = 1;
840                 }
841         }
842         p->timestamp = now;
843
844         __activate_task(p, rq);
845 }
846
847 /*
848  * deactivate_task - remove a task from the runqueue.
849  */
850 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
851 {
852         dec_nr_running(p, rq);
853         dequeue_task(p, p->array);
854         p->array = NULL;
855 }
856
857 /*
858  * resched_task - mark a task 'to be rescheduled now'.
859  *
860  * On UP this means the setting of the need_resched flag, on SMP it
861  * might also involve a cross-CPU call to trigger the scheduler on
862  * the target CPU.
863  */
864 #ifdef CONFIG_SMP
865 static void resched_task(task_t *p)
866 {
867         int need_resched, nrpolling;
868
869         assert_spin_locked(&task_rq(p)->lock);
870
871         /* minimise the chance of sending an interrupt to poll_idle() */
872         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
873         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
874         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
875
876         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
877                 smp_send_reschedule(task_cpu(p));
878 }
879 #else
880 static inline void resched_task(task_t *p)
881 {
882         set_tsk_need_resched(p);
883 }
884 #endif
885
886 /**
887  * task_curr - is this task currently executing on a CPU?
888  * @p: the task in question.
889  */
890 inline int task_curr(const task_t *p)
891 {
892         return cpu_curr(task_cpu(p)) == p;
893 }
894
895 #ifdef CONFIG_SMP
896 typedef struct {
897         struct list_head list;
898
899         task_t *task;
900         int dest_cpu;
901
902         struct completion done;
903 } migration_req_t;
904
905 /*
906  * The task's runqueue lock must be held.
907  * Returns true if you have to wait for migration thread.
908  */
909 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
910 {
911         runqueue_t *rq = task_rq(p);
912
913         /*
914          * If the task is not on a runqueue (and not running), then
915          * it is sufficient to simply update the task's cpu field.
916          */
917         if (!p->array && !task_running(rq, p)) {
918                 set_task_cpu(p, dest_cpu);
919                 return 0;
920         }
921
922         init_completion(&req->done);
923         req->task = p;
924         req->dest_cpu = dest_cpu;
925         list_add(&req->list, &rq->migration_queue);
926         return 1;
927 }
928
929 /*
930  * wait_task_inactive - wait for a thread to unschedule.
931  *
932  * The caller must ensure that the task *will* unschedule sometime soon,
933  * else this function might spin for a *long* time. This function can't
934  * be called with interrupts off, or it may introduce deadlock with
935  * smp_call_function() if an IPI is sent by the same process we are
936  * waiting to become inactive.
937  */
938 void wait_task_inactive(task_t *p)
939 {
940         unsigned long flags;
941         runqueue_t *rq;
942         int preempted;
943
944 repeat:
945         rq = task_rq_lock(p, &flags);
946         /* Must be off runqueue entirely, not preempted. */
947         if (unlikely(p->array || task_running(rq, p))) {
948                 /* If it's preempted, we yield.  It could be a while. */
949                 preempted = !task_running(rq, p);
950                 task_rq_unlock(rq, &flags);
951                 cpu_relax();
952                 if (preempted)
953                         yield();
954                 goto repeat;
955         }
956         task_rq_unlock(rq, &flags);
957 }
958
959 /***
960  * kick_process - kick a running thread to enter/exit the kernel
961  * @p: the to-be-kicked thread
962  *
963  * Cause a process which is running on another CPU to enter
964  * kernel-mode, without any delay. (to get signals handled.)
965  *
966  * NOTE: this function doesnt have to take the runqueue lock,
967  * because all it wants to ensure is that the remote task enters
968  * the kernel. If the IPI races and the task has been migrated
969  * to another CPU then no harm is done and the purpose has been
970  * achieved as well.
971  */
972 void kick_process(task_t *p)
973 {
974         int cpu;
975
976         preempt_disable();
977         cpu = task_cpu(p);
978         if ((cpu != smp_processor_id()) && task_curr(p))
979                 smp_send_reschedule(cpu);
980         preempt_enable();
981 }
982
983 /*
984  * Return a low guess at the load of a migration-source cpu.
985  *
986  * We want to under-estimate the load of migration sources, to
987  * balance conservatively.
988  */
989 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
990 {
991         runqueue_t *rq = cpu_rq(cpu);
992         unsigned long running = rq->nr_running;
993         unsigned long source_load, cpu_load = rq->cpu_load[type-1],
994                 load_now = running * SCHED_LOAD_SCALE;
995
996         if (type == 0)
997                 source_load = load_now;
998         else
999                 source_load = min(cpu_load, load_now);
1000
1001         if (running > 1 || (idle == NOT_IDLE && running))
1002                 /*
1003                  * If we are busy rebalancing the load is biased by
1004                  * priority to create 'nice' support across cpus. When
1005                  * idle rebalancing we should only bias the source_load if
1006                  * there is more than one task running on that queue to
1007                  * prevent idle rebalance from trying to pull tasks from a
1008                  * queue with only one running task.
1009                  */
1010                 source_load = source_load * rq->prio_bias / running;
1011
1012         return source_load;
1013 }
1014
1015 static inline unsigned long source_load(int cpu, int type)
1016 {
1017         return __source_load(cpu, type, NOT_IDLE);
1018 }
1019
1020 /*
1021  * Return a high guess at the load of a migration-target cpu
1022  */
1023 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1024 {
1025         runqueue_t *rq = cpu_rq(cpu);
1026         unsigned long running = rq->nr_running;
1027         unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1028                 load_now = running * SCHED_LOAD_SCALE;
1029
1030         if (type == 0)
1031                 target_load = load_now;
1032         else
1033                 target_load = max(cpu_load, load_now);
1034
1035         if (running > 1 || (idle == NOT_IDLE && running))
1036                 target_load = target_load * rq->prio_bias / running;
1037
1038         return target_load;
1039 }
1040
1041 static inline unsigned long target_load(int cpu, int type)
1042 {
1043         return __target_load(cpu, type, NOT_IDLE);
1044 }
1045
1046 /*
1047  * find_idlest_group finds and returns the least busy CPU group within the
1048  * domain.
1049  */
1050 static struct sched_group *
1051 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1052 {
1053         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1054         unsigned long min_load = ULONG_MAX, this_load = 0;
1055         int load_idx = sd->forkexec_idx;
1056         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1057
1058         do {
1059                 unsigned long load, avg_load;
1060                 int local_group;
1061                 int i;
1062
1063                 /* Skip over this group if it has no CPUs allowed */
1064                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1065                         goto nextgroup;
1066
1067                 local_group = cpu_isset(this_cpu, group->cpumask);
1068
1069                 /* Tally up the load of all CPUs in the group */
1070                 avg_load = 0;
1071
1072                 for_each_cpu_mask(i, group->cpumask) {
1073                         /* Bias balancing toward cpus of our domain */
1074                         if (local_group)
1075                                 load = source_load(i, load_idx);
1076                         else
1077                                 load = target_load(i, load_idx);
1078
1079                         avg_load += load;
1080                 }
1081
1082                 /* Adjust by relative CPU power of the group */
1083                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1084
1085                 if (local_group) {
1086                         this_load = avg_load;
1087                         this = group;
1088                 } else if (avg_load < min_load) {
1089                         min_load = avg_load;
1090                         idlest = group;
1091                 }
1092 nextgroup:
1093                 group = group->next;
1094         } while (group != sd->groups);
1095
1096         if (!idlest || 100*this_load < imbalance*min_load)
1097                 return NULL;
1098         return idlest;
1099 }
1100
1101 /*
1102  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1103  */
1104 static int
1105 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1106 {
1107         cpumask_t tmp;
1108         unsigned long load, min_load = ULONG_MAX;
1109         int idlest = -1;
1110         int i;
1111
1112         /* Traverse only the allowed CPUs */
1113         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1114
1115         for_each_cpu_mask(i, tmp) {
1116                 load = source_load(i, 0);
1117
1118                 if (load < min_load || (load == min_load && i == this_cpu)) {
1119                         min_load = load;
1120                         idlest = i;
1121                 }
1122         }
1123
1124         return idlest;
1125 }
1126
1127 /*
1128  * sched_balance_self: balance the current task (running on cpu) in domains
1129  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1130  * SD_BALANCE_EXEC.
1131  *
1132  * Balance, ie. select the least loaded group.
1133  *
1134  * Returns the target CPU number, or the same CPU if no balancing is needed.
1135  *
1136  * preempt must be disabled.
1137  */
1138 static int sched_balance_self(int cpu, int flag)
1139 {
1140         struct task_struct *t = current;
1141         struct sched_domain *tmp, *sd = NULL;
1142
1143         for_each_domain(cpu, tmp)
1144                 if (tmp->flags & flag)
1145                         sd = tmp;
1146
1147         while (sd) {
1148                 cpumask_t span;
1149                 struct sched_group *group;
1150                 int new_cpu;
1151                 int weight;
1152
1153                 span = sd->span;
1154                 group = find_idlest_group(sd, t, cpu);
1155                 if (!group)
1156                         goto nextlevel;
1157
1158                 new_cpu = find_idlest_cpu(group, t, cpu);
1159                 if (new_cpu == -1 || new_cpu == cpu)
1160                         goto nextlevel;
1161
1162                 /* Now try balancing at a lower domain level */
1163                 cpu = new_cpu;
1164 nextlevel:
1165                 sd = NULL;
1166                 weight = cpus_weight(span);
1167                 for_each_domain(cpu, tmp) {
1168                         if (weight <= cpus_weight(tmp->span))
1169                                 break;
1170                         if (tmp->flags & flag)
1171                                 sd = tmp;
1172                 }
1173                 /* while loop will break here if sd == NULL */
1174         }
1175
1176         return cpu;
1177 }
1178
1179 #endif /* CONFIG_SMP */
1180
1181 /*
1182  * wake_idle() will wake a task on an idle cpu if task->cpu is
1183  * not idle and an idle cpu is available.  The span of cpus to
1184  * search starts with cpus closest then further out as needed,
1185  * so we always favor a closer, idle cpu.
1186  *
1187  * Returns the CPU we should wake onto.
1188  */
1189 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1190 static int wake_idle(int cpu, task_t *p)
1191 {
1192         cpumask_t tmp;
1193         struct sched_domain *sd;
1194         int i;
1195
1196         if (idle_cpu(cpu))
1197                 return cpu;
1198
1199         for_each_domain(cpu, sd) {
1200                 if (sd->flags & SD_WAKE_IDLE) {
1201                         cpus_and(tmp, sd->span, p->cpus_allowed);
1202                         for_each_cpu_mask(i, tmp) {
1203                                 if (idle_cpu(i))
1204                                         return i;
1205                         }
1206                 }
1207                 else
1208                         break;
1209         }
1210         return cpu;
1211 }
1212 #else
1213 static inline int wake_idle(int cpu, task_t *p)
1214 {
1215         return cpu;
1216 }
1217 #endif
1218
1219 /***
1220  * try_to_wake_up - wake up a thread
1221  * @p: the to-be-woken-up thread
1222  * @state: the mask of task states that can be woken
1223  * @sync: do a synchronous wakeup?
1224  *
1225  * Put it on the run-queue if it's not already there. The "current"
1226  * thread is always on the run-queue (except when the actual
1227  * re-schedule is in progress), and as such you're allowed to do
1228  * the simpler "current->state = TASK_RUNNING" to mark yourself
1229  * runnable without the overhead of this.
1230  *
1231  * returns failure only if the task is already active.
1232  */
1233 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1234 {
1235         int cpu, this_cpu, success = 0;
1236         unsigned long flags;
1237         long old_state;
1238         runqueue_t *rq;
1239 #ifdef CONFIG_SMP
1240         unsigned long load, this_load;
1241         struct sched_domain *sd, *this_sd = NULL;
1242         int new_cpu;
1243 #endif
1244
1245         rq = task_rq_lock(p, &flags);
1246         old_state = p->state;
1247         if (!(old_state & state))
1248                 goto out;
1249
1250         if (p->array)
1251                 goto out_running;
1252
1253         cpu = task_cpu(p);
1254         this_cpu = smp_processor_id();
1255
1256 #ifdef CONFIG_SMP
1257         if (unlikely(task_running(rq, p)))
1258                 goto out_activate;
1259
1260         new_cpu = cpu;
1261
1262         schedstat_inc(rq, ttwu_cnt);
1263         if (cpu == this_cpu) {
1264                 schedstat_inc(rq, ttwu_local);
1265                 goto out_set_cpu;
1266         }
1267
1268         for_each_domain(this_cpu, sd) {
1269                 if (cpu_isset(cpu, sd->span)) {
1270                         schedstat_inc(sd, ttwu_wake_remote);
1271                         this_sd = sd;
1272                         break;
1273                 }
1274         }
1275
1276         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1277                 goto out_set_cpu;
1278
1279         /*
1280          * Check for affine wakeup and passive balancing possibilities.
1281          */
1282         if (this_sd) {
1283                 int idx = this_sd->wake_idx;
1284                 unsigned int imbalance;
1285
1286                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1287
1288                 load = source_load(cpu, idx);
1289                 this_load = target_load(this_cpu, idx);
1290
1291                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1292
1293                 if (this_sd->flags & SD_WAKE_AFFINE) {
1294                         unsigned long tl = this_load;
1295                         /*
1296                          * If sync wakeup then subtract the (maximum possible)
1297                          * effect of the currently running task from the load
1298                          * of the current CPU:
1299                          */
1300                         if (sync)
1301                                 tl -= SCHED_LOAD_SCALE;
1302
1303                         if ((tl <= load &&
1304                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1305                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1306                                 /*
1307                                  * This domain has SD_WAKE_AFFINE and
1308                                  * p is cache cold in this domain, and
1309                                  * there is no bad imbalance.
1310                                  */
1311                                 schedstat_inc(this_sd, ttwu_move_affine);
1312                                 goto out_set_cpu;
1313                         }
1314                 }
1315
1316                 /*
1317                  * Start passive balancing when half the imbalance_pct
1318                  * limit is reached.
1319                  */
1320                 if (this_sd->flags & SD_WAKE_BALANCE) {
1321                         if (imbalance*this_load <= 100*load) {
1322                                 schedstat_inc(this_sd, ttwu_move_balance);
1323                                 goto out_set_cpu;
1324                         }
1325                 }
1326         }
1327
1328         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1329 out_set_cpu:
1330         new_cpu = wake_idle(new_cpu, p);
1331         if (new_cpu != cpu) {
1332                 set_task_cpu(p, new_cpu);
1333                 task_rq_unlock(rq, &flags);
1334                 /* might preempt at this point */
1335                 rq = task_rq_lock(p, &flags);
1336                 old_state = p->state;
1337                 if (!(old_state & state))
1338                         goto out;
1339                 if (p->array)
1340                         goto out_running;
1341
1342                 this_cpu = smp_processor_id();
1343                 cpu = task_cpu(p);
1344         }
1345
1346 out_activate:
1347 #endif /* CONFIG_SMP */
1348         if (old_state == TASK_UNINTERRUPTIBLE) {
1349                 rq->nr_uninterruptible--;
1350                 /*
1351                  * Tasks on involuntary sleep don't earn
1352                  * sleep_avg beyond just interactive state.
1353                  */
1354                 p->activated = -1;
1355         }
1356
1357         /*
1358          * Tasks that have marked their sleep as noninteractive get
1359          * woken up without updating their sleep average. (i.e. their
1360          * sleep is handled in a priority-neutral manner, no priority
1361          * boost and no penalty.)
1362          */
1363         if (old_state & TASK_NONINTERACTIVE)
1364                 __activate_task(p, rq);
1365         else
1366                 activate_task(p, rq, cpu == this_cpu);
1367         /*
1368          * Sync wakeups (i.e. those types of wakeups where the waker
1369          * has indicated that it will leave the CPU in short order)
1370          * don't trigger a preemption, if the woken up task will run on
1371          * this cpu. (in this case the 'I will reschedule' promise of
1372          * the waker guarantees that the freshly woken up task is going
1373          * to be considered on this CPU.)
1374          */
1375         if (!sync || cpu != this_cpu) {
1376                 if (TASK_PREEMPTS_CURR(p, rq))
1377                         resched_task(rq->curr);
1378         }
1379         success = 1;
1380
1381 out_running:
1382         p->state = TASK_RUNNING;
1383 out:
1384         task_rq_unlock(rq, &flags);
1385
1386         return success;
1387 }
1388
1389 int fastcall wake_up_process(task_t *p)
1390 {
1391         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1392                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1393 }
1394
1395 EXPORT_SYMBOL(wake_up_process);
1396
1397 int fastcall wake_up_state(task_t *p, unsigned int state)
1398 {
1399         return try_to_wake_up(p, state, 0);
1400 }
1401
1402 /*
1403  * Perform scheduler related setup for a newly forked process p.
1404  * p is forked by current.
1405  */
1406 void fastcall sched_fork(task_t *p, int clone_flags)
1407 {
1408         int cpu = get_cpu();
1409
1410 #ifdef CONFIG_SMP
1411         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1412 #endif
1413         set_task_cpu(p, cpu);
1414
1415         /*
1416          * We mark the process as running here, but have not actually
1417          * inserted it onto the runqueue yet. This guarantees that
1418          * nobody will actually run it, and a signal or other external
1419          * event cannot wake it up and insert it on the runqueue either.
1420          */
1421         p->state = TASK_RUNNING;
1422         INIT_LIST_HEAD(&p->run_list);
1423         p->array = NULL;
1424 #ifdef CONFIG_SCHEDSTATS
1425         memset(&p->sched_info, 0, sizeof(p->sched_info));
1426 #endif
1427 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1428         p->oncpu = 0;
1429 #endif
1430 #ifdef CONFIG_PREEMPT
1431         /* Want to start with kernel preemption disabled. */
1432         p->thread_info->preempt_count = 1;
1433 #endif
1434         /*
1435          * Share the timeslice between parent and child, thus the
1436          * total amount of pending timeslices in the system doesn't change,
1437          * resulting in more scheduling fairness.
1438          */
1439         local_irq_disable();
1440         p->time_slice = (current->time_slice + 1) >> 1;
1441         /*
1442          * The remainder of the first timeslice might be recovered by
1443          * the parent if the child exits early enough.
1444          */
1445         p->first_time_slice = 1;
1446         current->time_slice >>= 1;
1447         p->timestamp = sched_clock();
1448         if (unlikely(!current->time_slice)) {
1449                 /*
1450                  * This case is rare, it happens when the parent has only
1451                  * a single jiffy left from its timeslice. Taking the
1452                  * runqueue lock is not a problem.
1453                  */
1454                 current->time_slice = 1;
1455                 scheduler_tick();
1456         }
1457         local_irq_enable();
1458         put_cpu();
1459 }
1460
1461 /*
1462  * wake_up_new_task - wake up a newly created task for the first time.
1463  *
1464  * This function will do some initial scheduler statistics housekeeping
1465  * that must be done for every newly created context, then puts the task
1466  * on the runqueue and wakes it.
1467  */
1468 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1469 {
1470         unsigned long flags;
1471         int this_cpu, cpu;
1472         runqueue_t *rq, *this_rq;
1473
1474         rq = task_rq_lock(p, &flags);
1475         BUG_ON(p->state != TASK_RUNNING);
1476         this_cpu = smp_processor_id();
1477         cpu = task_cpu(p);
1478
1479         /*
1480          * We decrease the sleep average of forking parents
1481          * and children as well, to keep max-interactive tasks
1482          * from forking tasks that are max-interactive. The parent
1483          * (current) is done further down, under its lock.
1484          */
1485         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1486                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1487
1488         p->prio = effective_prio(p);
1489
1490         if (likely(cpu == this_cpu)) {
1491                 if (!(clone_flags & CLONE_VM)) {
1492                         /*
1493                          * The VM isn't cloned, so we're in a good position to
1494                          * do child-runs-first in anticipation of an exec. This
1495                          * usually avoids a lot of COW overhead.
1496                          */
1497                         if (unlikely(!current->array))
1498                                 __activate_task(p, rq);
1499                         else {
1500                                 p->prio = current->prio;
1501                                 list_add_tail(&p->run_list, &current->run_list);
1502                                 p->array = current->array;
1503                                 p->array->nr_active++;
1504                                 inc_nr_running(p, rq);
1505                         }
1506                         set_need_resched();
1507                 } else
1508                         /* Run child last */
1509                         __activate_task(p, rq);
1510                 /*
1511                  * We skip the following code due to cpu == this_cpu
1512                  *
1513                  *   task_rq_unlock(rq, &flags);
1514                  *   this_rq = task_rq_lock(current, &flags);
1515                  */
1516                 this_rq = rq;
1517         } else {
1518                 this_rq = cpu_rq(this_cpu);
1519
1520                 /*
1521                  * Not the local CPU - must adjust timestamp. This should
1522                  * get optimised away in the !CONFIG_SMP case.
1523                  */
1524                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1525                                         + rq->timestamp_last_tick;
1526                 __activate_task(p, rq);
1527                 if (TASK_PREEMPTS_CURR(p, rq))
1528                         resched_task(rq->curr);
1529
1530                 /*
1531                  * Parent and child are on different CPUs, now get the
1532                  * parent runqueue to update the parent's ->sleep_avg:
1533                  */
1534                 task_rq_unlock(rq, &flags);
1535                 this_rq = task_rq_lock(current, &flags);
1536         }
1537         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1538                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1539         task_rq_unlock(this_rq, &flags);
1540 }
1541
1542 /*
1543  * Potentially available exiting-child timeslices are
1544  * retrieved here - this way the parent does not get
1545  * penalized for creating too many threads.
1546  *
1547  * (this cannot be used to 'generate' timeslices
1548  * artificially, because any timeslice recovered here
1549  * was given away by the parent in the first place.)
1550  */
1551 void fastcall sched_exit(task_t *p)
1552 {
1553         unsigned long flags;
1554         runqueue_t *rq;
1555
1556         /*
1557          * If the child was a (relative-) CPU hog then decrease
1558          * the sleep_avg of the parent as well.
1559          */
1560         rq = task_rq_lock(p->parent, &flags);
1561         if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1562                 p->parent->time_slice += p->time_slice;
1563                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1564                         p->parent->time_slice = task_timeslice(p);
1565         }
1566         if (p->sleep_avg < p->parent->sleep_avg)
1567                 p->parent->sleep_avg = p->parent->sleep_avg /
1568                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1569                 (EXIT_WEIGHT + 1);
1570         task_rq_unlock(rq, &flags);
1571 }
1572
1573 /**
1574  * prepare_task_switch - prepare to switch tasks
1575  * @rq: the runqueue preparing to switch
1576  * @next: the task we are going to switch to.
1577  *
1578  * This is called with the rq lock held and interrupts off. It must
1579  * be paired with a subsequent finish_task_switch after the context
1580  * switch.
1581  *
1582  * prepare_task_switch sets up locking and calls architecture specific
1583  * hooks.
1584  */
1585 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1586 {
1587         prepare_lock_switch(rq, next);
1588         prepare_arch_switch(next);
1589 }
1590
1591 /**
1592  * finish_task_switch - clean up after a task-switch
1593  * @rq: runqueue associated with task-switch
1594  * @prev: the thread we just switched away from.
1595  *
1596  * finish_task_switch must be called after the context switch, paired
1597  * with a prepare_task_switch call before the context switch.
1598  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1599  * and do any other architecture-specific cleanup actions.
1600  *
1601  * Note that we may have delayed dropping an mm in context_switch(). If
1602  * so, we finish that here outside of the runqueue lock.  (Doing it
1603  * with the lock held can cause deadlocks; see schedule() for
1604  * details.)
1605  */
1606 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1607         __releases(rq->lock)
1608 {
1609         struct mm_struct *mm = rq->prev_mm;
1610         unsigned long prev_task_flags;
1611
1612         rq->prev_mm = NULL;
1613
1614         /*
1615          * A task struct has one reference for the use as "current".
1616          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1617          * calls schedule one last time. The schedule call will never return,
1618          * and the scheduled task must drop that reference.
1619          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1620          * still held, otherwise prev could be scheduled on another cpu, die
1621          * there before we look at prev->state, and then the reference would
1622          * be dropped twice.
1623          *              Manfred Spraul <manfred@colorfullife.com>
1624          */
1625         prev_task_flags = prev->flags;
1626         finish_arch_switch(prev);
1627         finish_lock_switch(rq, prev);
1628         if (mm)
1629                 mmdrop(mm);
1630         if (unlikely(prev_task_flags & PF_DEAD))
1631                 put_task_struct(prev);
1632 }
1633
1634 /**
1635  * schedule_tail - first thing a freshly forked thread must call.
1636  * @prev: the thread we just switched away from.
1637  */
1638 asmlinkage void schedule_tail(task_t *prev)
1639         __releases(rq->lock)
1640 {
1641         runqueue_t *rq = this_rq();
1642         finish_task_switch(rq, prev);
1643 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1644         /* In this case, finish_task_switch does not reenable preemption */
1645         preempt_enable();
1646 #endif
1647         if (current->set_child_tid)
1648                 put_user(current->pid, current->set_child_tid);
1649 }
1650
1651 /*
1652  * context_switch - switch to the new MM and the new
1653  * thread's register state.
1654  */
1655 static inline
1656 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1657 {
1658         struct mm_struct *mm = next->mm;
1659         struct mm_struct *oldmm = prev->active_mm;
1660
1661         if (unlikely(!mm)) {
1662                 next->active_mm = oldmm;
1663                 atomic_inc(&oldmm->mm_count);
1664                 enter_lazy_tlb(oldmm, next);
1665         } else
1666                 switch_mm(oldmm, mm, next);
1667
1668         if (unlikely(!prev->mm)) {
1669                 prev->active_mm = NULL;
1670                 WARN_ON(rq->prev_mm);
1671                 rq->prev_mm = oldmm;
1672         }
1673
1674         /* Here we just switch the register state and the stack. */
1675         switch_to(prev, next, prev);
1676
1677         return prev;
1678 }
1679
1680 /*
1681  * nr_running, nr_uninterruptible and nr_context_switches:
1682  *
1683  * externally visible scheduler statistics: current number of runnable
1684  * threads, current number of uninterruptible-sleeping threads, total
1685  * number of context switches performed since bootup.
1686  */
1687 unsigned long nr_running(void)
1688 {
1689         unsigned long i, sum = 0;
1690
1691         for_each_online_cpu(i)
1692                 sum += cpu_rq(i)->nr_running;
1693
1694         return sum;
1695 }
1696
1697 unsigned long nr_uninterruptible(void)
1698 {
1699         unsigned long i, sum = 0;
1700
1701         for_each_cpu(i)
1702                 sum += cpu_rq(i)->nr_uninterruptible;
1703
1704         /*
1705          * Since we read the counters lockless, it might be slightly
1706          * inaccurate. Do not allow it to go below zero though:
1707          */
1708         if (unlikely((long)sum < 0))
1709                 sum = 0;
1710
1711         return sum;
1712 }
1713
1714 unsigned long long nr_context_switches(void)
1715 {
1716         unsigned long long i, sum = 0;
1717
1718         for_each_cpu(i)
1719                 sum += cpu_rq(i)->nr_switches;
1720
1721         return sum;
1722 }
1723
1724 unsigned long nr_iowait(void)
1725 {
1726         unsigned long i, sum = 0;
1727
1728         for_each_cpu(i)
1729                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1730
1731         return sum;
1732 }
1733
1734 #ifdef CONFIG_SMP
1735
1736 /*
1737  * double_rq_lock - safely lock two runqueues
1738  *
1739  * Note this does not disable interrupts like task_rq_lock,
1740  * you need to do so manually before calling.
1741  */
1742 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1743         __acquires(rq1->lock)
1744         __acquires(rq2->lock)
1745 {
1746         if (rq1 == rq2) {
1747                 spin_lock(&rq1->lock);
1748                 __acquire(rq2->lock);   /* Fake it out ;) */
1749         } else {
1750                 if (rq1 < rq2) {
1751                         spin_lock(&rq1->lock);
1752                         spin_lock(&rq2->lock);
1753                 } else {
1754                         spin_lock(&rq2->lock);
1755                         spin_lock(&rq1->lock);
1756                 }
1757         }
1758 }
1759
1760 /*
1761  * double_rq_unlock - safely unlock two runqueues
1762  *
1763  * Note this does not restore interrupts like task_rq_unlock,
1764  * you need to do so manually after calling.
1765  */
1766 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1767         __releases(rq1->lock)
1768         __releases(rq2->lock)
1769 {
1770         spin_unlock(&rq1->lock);
1771         if (rq1 != rq2)
1772                 spin_unlock(&rq2->lock);
1773         else
1774                 __release(rq2->lock);
1775 }
1776
1777 /*
1778  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1779  */
1780 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1781         __releases(this_rq->lock)
1782         __acquires(busiest->lock)
1783         __acquires(this_rq->lock)
1784 {
1785         if (unlikely(!spin_trylock(&busiest->lock))) {
1786                 if (busiest < this_rq) {
1787                         spin_unlock(&this_rq->lock);
1788                         spin_lock(&busiest->lock);
1789                         spin_lock(&this_rq->lock);
1790                 } else
1791                         spin_lock(&busiest->lock);
1792         }
1793 }
1794
1795 /*
1796  * If dest_cpu is allowed for this process, migrate the task to it.
1797  * This is accomplished by forcing the cpu_allowed mask to only
1798  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1799  * the cpu_allowed mask is restored.
1800  */
1801 static void sched_migrate_task(task_t *p, int dest_cpu)
1802 {
1803         migration_req_t req;
1804         runqueue_t *rq;
1805         unsigned long flags;
1806
1807         rq = task_rq_lock(p, &flags);
1808         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1809             || unlikely(cpu_is_offline(dest_cpu)))
1810                 goto out;
1811
1812         /* force the process onto the specified CPU */
1813         if (migrate_task(p, dest_cpu, &req)) {
1814                 /* Need to wait for migration thread (might exit: take ref). */
1815                 struct task_struct *mt = rq->migration_thread;
1816                 get_task_struct(mt);
1817                 task_rq_unlock(rq, &flags);
1818                 wake_up_process(mt);
1819                 put_task_struct(mt);
1820                 wait_for_completion(&req.done);
1821                 return;
1822         }
1823 out:
1824         task_rq_unlock(rq, &flags);
1825 }
1826
1827 /*
1828  * sched_exec - execve() is a valuable balancing opportunity, because at
1829  * this point the task has the smallest effective memory and cache footprint.
1830  */
1831 void sched_exec(void)
1832 {
1833         int new_cpu, this_cpu = get_cpu();
1834         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1835         put_cpu();
1836         if (new_cpu != this_cpu)
1837                 sched_migrate_task(current, new_cpu);
1838 }
1839
1840 /*
1841  * pull_task - move a task from a remote runqueue to the local runqueue.
1842  * Both runqueues must be locked.
1843  */
1844 static inline
1845 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1846                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1847 {
1848         dequeue_task(p, src_array);
1849         dec_nr_running(p, src_rq);
1850         set_task_cpu(p, this_cpu);
1851         inc_nr_running(p, this_rq);
1852         enqueue_task(p, this_array);
1853         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1854                                 + this_rq->timestamp_last_tick;
1855         /*
1856          * Note that idle threads have a prio of MAX_PRIO, for this test
1857          * to be always true for them.
1858          */
1859         if (TASK_PREEMPTS_CURR(p, this_rq))
1860                 resched_task(this_rq->curr);
1861 }
1862
1863 /*
1864  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1865  */
1866 static inline
1867 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1868                      struct sched_domain *sd, enum idle_type idle,
1869                      int *all_pinned)
1870 {
1871         /*
1872          * We do not migrate tasks that are:
1873          * 1) running (obviously), or
1874          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1875          * 3) are cache-hot on their current CPU.
1876          */
1877         if (!cpu_isset(this_cpu, p->cpus_allowed))
1878                 return 0;
1879         *all_pinned = 0;
1880
1881         if (task_running(rq, p))
1882                 return 0;
1883
1884         /*
1885          * Aggressive migration if:
1886          * 1) task is cache cold, or
1887          * 2) too many balance attempts have failed.
1888          */
1889
1890         if (sd->nr_balance_failed > sd->cache_nice_tries)
1891                 return 1;
1892
1893         if (task_hot(p, rq->timestamp_last_tick, sd))
1894                 return 0;
1895         return 1;
1896 }
1897
1898 /*
1899  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1900  * as part of a balancing operation within "domain". Returns the number of
1901  * tasks moved.
1902  *
1903  * Called with both runqueues locked.
1904  */
1905 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1906                       unsigned long max_nr_move, struct sched_domain *sd,
1907                       enum idle_type idle, int *all_pinned)
1908 {
1909         prio_array_t *array, *dst_array;
1910         struct list_head *head, *curr;
1911         int idx, pulled = 0, pinned = 0;
1912         task_t *tmp;
1913
1914         if (max_nr_move == 0)
1915                 goto out;
1916
1917         pinned = 1;
1918
1919         /*
1920          * We first consider expired tasks. Those will likely not be
1921          * executed in the near future, and they are most likely to
1922          * be cache-cold, thus switching CPUs has the least effect
1923          * on them.
1924          */
1925         if (busiest->expired->nr_active) {
1926                 array = busiest->expired;
1927                 dst_array = this_rq->expired;
1928         } else {
1929                 array = busiest->active;
1930                 dst_array = this_rq->active;
1931         }
1932
1933 new_array:
1934         /* Start searching at priority 0: */
1935         idx = 0;
1936 skip_bitmap:
1937         if (!idx)
1938                 idx = sched_find_first_bit(array->bitmap);
1939         else
1940                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1941         if (idx >= MAX_PRIO) {
1942                 if (array == busiest->expired && busiest->active->nr_active) {
1943                         array = busiest->active;
1944                         dst_array = this_rq->active;
1945                         goto new_array;
1946                 }
1947                 goto out;
1948         }
1949
1950         head = array->queue + idx;
1951         curr = head->prev;
1952 skip_queue:
1953         tmp = list_entry(curr, task_t, run_list);
1954
1955         curr = curr->prev;
1956
1957         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1958                 if (curr != head)
1959                         goto skip_queue;
1960                 idx++;
1961                 goto skip_bitmap;
1962         }
1963
1964 #ifdef CONFIG_SCHEDSTATS
1965         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1966                 schedstat_inc(sd, lb_hot_gained[idle]);
1967 #endif
1968
1969         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1970         pulled++;
1971
1972         /* We only want to steal up to the prescribed number of tasks. */
1973         if (pulled < max_nr_move) {
1974                 if (curr != head)
1975                         goto skip_queue;
1976                 idx++;
1977                 goto skip_bitmap;
1978         }
1979 out:
1980         /*
1981          * Right now, this is the only place pull_task() is called,
1982          * so we can safely collect pull_task() stats here rather than
1983          * inside pull_task().
1984          */
1985         schedstat_add(sd, lb_gained[idle], pulled);
1986
1987         if (all_pinned)
1988                 *all_pinned = pinned;
1989         return pulled;
1990 }
1991
1992 /*
1993  * find_busiest_group finds and returns the busiest CPU group within the
1994  * domain. It calculates and returns the number of tasks which should be
1995  * moved to restore balance via the imbalance parameter.
1996  */
1997 static struct sched_group *
1998 find_busiest_group(struct sched_domain *sd, int this_cpu,
1999                    unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2000 {
2001         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2002         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2003         unsigned long max_pull;
2004         int load_idx;
2005
2006         max_load = this_load = total_load = total_pwr = 0;
2007         if (idle == NOT_IDLE)
2008                 load_idx = sd->busy_idx;
2009         else if (idle == NEWLY_IDLE)
2010                 load_idx = sd->newidle_idx;
2011         else
2012                 load_idx = sd->idle_idx;
2013
2014         do {
2015                 unsigned long load;
2016                 int local_group;
2017                 int i;
2018
2019                 local_group = cpu_isset(this_cpu, group->cpumask);
2020
2021                 /* Tally up the load of all CPUs in the group */
2022                 avg_load = 0;
2023
2024                 for_each_cpu_mask(i, group->cpumask) {
2025                         if (*sd_idle && !idle_cpu(i))
2026                                 *sd_idle = 0;
2027
2028                         /* Bias balancing toward cpus of our domain */
2029                         if (local_group)
2030                                 load = __target_load(i, load_idx, idle);
2031                         else
2032                                 load = __source_load(i, load_idx, idle);
2033
2034                         avg_load += load;
2035                 }
2036
2037                 total_load += avg_load;
2038                 total_pwr += group->cpu_power;
2039
2040                 /* Adjust by relative CPU power of the group */
2041                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2042
2043                 if (local_group) {
2044                         this_load = avg_load;
2045                         this = group;
2046                 } else if (avg_load > max_load) {
2047                         max_load = avg_load;
2048                         busiest = group;
2049                 }
2050                 group = group->next;
2051         } while (group != sd->groups);
2052
2053         if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2054                 goto out_balanced;
2055
2056         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2057
2058         if (this_load >= avg_load ||
2059                         100*max_load <= sd->imbalance_pct*this_load)
2060                 goto out_balanced;
2061
2062         /*
2063          * We're trying to get all the cpus to the average_load, so we don't
2064          * want to push ourselves above the average load, nor do we wish to
2065          * reduce the max loaded cpu below the average load, as either of these
2066          * actions would just result in more rebalancing later, and ping-pong
2067          * tasks around. Thus we look for the minimum possible imbalance.
2068          * Negative imbalances (*we* are more loaded than anyone else) will
2069          * be counted as no imbalance for these purposes -- we can't fix that
2070          * by pulling tasks to us.  Be careful of negative numbers as they'll
2071          * appear as very large values with unsigned longs.
2072          */
2073
2074         /* Don't want to pull so many tasks that a group would go idle */
2075         max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2076
2077         /* How much load to actually move to equalise the imbalance */
2078         *imbalance = min(max_pull * busiest->cpu_power,
2079                                 (avg_load - this_load) * this->cpu_power)
2080                         / SCHED_LOAD_SCALE;
2081
2082         if (*imbalance < SCHED_LOAD_SCALE) {
2083                 unsigned long pwr_now = 0, pwr_move = 0;
2084                 unsigned long tmp;
2085
2086                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2087                         *imbalance = 1;
2088                         return busiest;
2089                 }
2090
2091                 /*
2092                  * OK, we don't have enough imbalance to justify moving tasks,
2093                  * however we may be able to increase total CPU power used by
2094                  * moving them.
2095                  */
2096
2097                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2098                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2099                 pwr_now /= SCHED_LOAD_SCALE;
2100
2101                 /* Amount of load we'd subtract */
2102                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2103                 if (max_load > tmp)
2104                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2105                                                         max_load - tmp);
2106
2107                 /* Amount of load we'd add */
2108                 if (max_load*busiest->cpu_power <
2109                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2110                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2111                 else
2112                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2113                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2114                 pwr_move /= SCHED_LOAD_SCALE;
2115
2116                 /* Move if we gain throughput */
2117                 if (pwr_move <= pwr_now)
2118                         goto out_balanced;
2119
2120                 *imbalance = 1;
2121                 return busiest;
2122         }
2123
2124         /* Get rid of the scaling factor, rounding down as we divide */
2125         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2126         return busiest;
2127
2128 out_balanced:
2129
2130         *imbalance = 0;
2131         return NULL;
2132 }
2133
2134 /*
2135  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2136  */
2137 static runqueue_t *find_busiest_queue(struct sched_group *group,
2138         enum idle_type idle)
2139 {
2140         unsigned long load, max_load = 0;
2141         runqueue_t *busiest = NULL;
2142         int i;
2143
2144         for_each_cpu_mask(i, group->cpumask) {
2145                 load = __source_load(i, 0, idle);
2146
2147                 if (load > max_load) {
2148                         max_load = load;
2149                         busiest = cpu_rq(i);
2150                 }
2151         }
2152
2153         return busiest;
2154 }
2155
2156 /*
2157  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2158  * so long as it is large enough.
2159  */
2160 #define MAX_PINNED_INTERVAL     512
2161
2162 /*
2163  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2164  * tasks if there is an imbalance.
2165  *
2166  * Called with this_rq unlocked.
2167  */
2168 static int load_balance(int this_cpu, runqueue_t *this_rq,
2169                         struct sched_domain *sd, enum idle_type idle)
2170 {
2171         struct sched_group *group;
2172         runqueue_t *busiest;
2173         unsigned long imbalance;
2174         int nr_moved, all_pinned = 0;
2175         int active_balance = 0;
2176         int sd_idle = 0;
2177
2178         if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2179                 sd_idle = 1;
2180
2181         schedstat_inc(sd, lb_cnt[idle]);
2182
2183         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2184         if (!group) {
2185                 schedstat_inc(sd, lb_nobusyg[idle]);
2186                 goto out_balanced;
2187         }
2188
2189         busiest = find_busiest_queue(group, idle);
2190         if (!busiest) {
2191                 schedstat_inc(sd, lb_nobusyq[idle]);
2192                 goto out_balanced;
2193         }
2194
2195         BUG_ON(busiest == this_rq);
2196
2197         schedstat_add(sd, lb_imbalance[idle], imbalance);
2198
2199         nr_moved = 0;
2200         if (busiest->nr_running > 1) {
2201                 /*
2202                  * Attempt to move tasks. If find_busiest_group has found
2203                  * an imbalance but busiest->nr_running <= 1, the group is
2204                  * still unbalanced. nr_moved simply stays zero, so it is
2205                  * correctly treated as an imbalance.
2206                  */
2207                 double_rq_lock(this_rq, busiest);
2208                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2209                                         imbalance, sd, idle, &all_pinned);
2210                 double_rq_unlock(this_rq, busiest);
2211
2212                 /* All tasks on this runqueue were pinned by CPU affinity */
2213                 if (unlikely(all_pinned))
2214                         goto out_balanced;
2215         }
2216
2217         if (!nr_moved) {
2218                 schedstat_inc(sd, lb_failed[idle]);
2219                 sd->nr_balance_failed++;
2220
2221                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2222
2223                         spin_lock(&busiest->lock);
2224
2225                         /* don't kick the migration_thread, if the curr
2226                          * task on busiest cpu can't be moved to this_cpu
2227                          */
2228                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2229                                 spin_unlock(&busiest->lock);
2230                                 all_pinned = 1;
2231                                 goto out_one_pinned;
2232                         }
2233
2234                         if (!busiest->active_balance) {
2235                                 busiest->active_balance = 1;
2236                                 busiest->push_cpu = this_cpu;
2237                                 active_balance = 1;
2238                         }
2239                         spin_unlock(&busiest->lock);
2240                         if (active_balance)
2241                                 wake_up_process(busiest->migration_thread);
2242
2243                         /*
2244                          * We've kicked active balancing, reset the failure
2245                          * counter.
2246                          */
2247                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2248                 }
2249         } else
2250                 sd->nr_balance_failed = 0;
2251
2252         if (likely(!active_balance)) {
2253                 /* We were unbalanced, so reset the balancing interval */
2254                 sd->balance_interval = sd->min_interval;
2255         } else {
2256                 /*
2257                  * If we've begun active balancing, start to back off. This
2258                  * case may not be covered by the all_pinned logic if there
2259                  * is only 1 task on the busy runqueue (because we don't call
2260                  * move_tasks).
2261                  */
2262                 if (sd->balance_interval < sd->max_interval)
2263                         sd->balance_interval *= 2;
2264         }
2265
2266         if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2267                 return -1;
2268         return nr_moved;
2269
2270 out_balanced:
2271         schedstat_inc(sd, lb_balanced[idle]);
2272
2273         sd->nr_balance_failed = 0;
2274
2275 out_one_pinned:
2276         /* tune up the balancing interval */
2277         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2278                         (sd->balance_interval < sd->max_interval))
2279                 sd->balance_interval *= 2;
2280
2281         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2282                 return -1;
2283         return 0;
2284 }
2285
2286 /*
2287  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2288  * tasks if there is an imbalance.
2289  *
2290  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2291  * this_rq is locked.
2292  */
2293 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2294                                 struct sched_domain *sd)
2295 {
2296         struct sched_group *group;
2297         runqueue_t *busiest = NULL;
2298         unsigned long imbalance;
2299         int nr_moved = 0;
2300         int sd_idle = 0;
2301
2302         if (sd->flags & SD_SHARE_CPUPOWER)
2303                 sd_idle = 1;
2304
2305         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2306         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2307         if (!group) {
2308                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2309                 goto out_balanced;
2310         }
2311
2312         busiest = find_busiest_queue(group, NEWLY_IDLE);
2313         if (!busiest) {
2314                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2315                 goto out_balanced;
2316         }
2317
2318         BUG_ON(busiest == this_rq);
2319
2320         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2321
2322         nr_moved = 0;
2323         if (busiest->nr_running > 1) {
2324                 /* Attempt to move tasks */
2325                 double_lock_balance(this_rq, busiest);
2326                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2327                                         imbalance, sd, NEWLY_IDLE, NULL);
2328                 spin_unlock(&busiest->lock);
2329         }
2330
2331         if (!nr_moved) {
2332                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2333                 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2334                         return -1;
2335         } else
2336                 sd->nr_balance_failed = 0;
2337
2338         return nr_moved;
2339
2340 out_balanced:
2341         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2342         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2343                 return -1;
2344         sd->nr_balance_failed = 0;
2345         return 0;
2346 }
2347
2348 /*
2349  * idle_balance is called by schedule() if this_cpu is about to become
2350  * idle. Attempts to pull tasks from other CPUs.
2351  */
2352 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2353 {
2354         struct sched_domain *sd;
2355
2356         for_each_domain(this_cpu, sd) {
2357                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2358                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2359                                 /* We've pulled tasks over so stop searching */
2360                                 break;
2361                         }
2362                 }
2363         }
2364 }
2365
2366 /*
2367  * active_load_balance is run by migration threads. It pushes running tasks
2368  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2369  * running on each physical CPU where possible, and avoids physical /
2370  * logical imbalances.
2371  *
2372  * Called with busiest_rq locked.
2373  */
2374 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2375 {
2376         struct sched_domain *sd;
2377         runqueue_t *target_rq;
2378         int target_cpu = busiest_rq->push_cpu;
2379
2380         if (busiest_rq->nr_running <= 1)
2381                 /* no task to move */
2382                 return;
2383
2384         target_rq = cpu_rq(target_cpu);
2385
2386         /*
2387          * This condition is "impossible", if it occurs
2388          * we need to fix it.  Originally reported by
2389          * Bjorn Helgaas on a 128-cpu setup.
2390          */
2391         BUG_ON(busiest_rq == target_rq);
2392
2393         /* move a task from busiest_rq to target_rq */
2394         double_lock_balance(busiest_rq, target_rq);
2395
2396         /* Search for an sd spanning us and the target CPU. */
2397         for_each_domain(target_cpu, sd)
2398                 if ((sd->flags & SD_LOAD_BALANCE) &&
2399                         cpu_isset(busiest_cpu, sd->span))
2400                                 break;
2401
2402         if (unlikely(sd == NULL))
2403                 goto out;
2404
2405         schedstat_inc(sd, alb_cnt);
2406
2407         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2408                 schedstat_inc(sd, alb_pushed);
2409         else
2410                 schedstat_inc(sd, alb_failed);
2411 out:
2412         spin_unlock(&target_rq->lock);
2413 }
2414
2415 /*
2416  * rebalance_tick will get called every timer tick, on every CPU.
2417  *
2418  * It checks each scheduling domain to see if it is due to be balanced,
2419  * and initiates a balancing operation if so.
2420  *
2421  * Balancing parameters are set up in arch_init_sched_domains.
2422  */
2423
2424 /* Don't have all balancing operations going off at once */
2425 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2426
2427 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2428                            enum idle_type idle)
2429 {
2430         unsigned long old_load, this_load;
2431         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2432         struct sched_domain *sd;
2433         int i;
2434
2435         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2436         /* Update our load */
2437         for (i = 0; i < 3; i++) {
2438                 unsigned long new_load = this_load;
2439                 int scale = 1 << i;
2440                 old_load = this_rq->cpu_load[i];
2441                 /*
2442                  * Round up the averaging division if load is increasing. This
2443                  * prevents us from getting stuck on 9 if the load is 10, for
2444                  * example.
2445                  */
2446                 if (new_load > old_load)
2447                         new_load += scale-1;
2448                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2449         }
2450
2451         for_each_domain(this_cpu, sd) {
2452                 unsigned long interval;
2453
2454                 if (!(sd->flags & SD_LOAD_BALANCE))
2455                         continue;
2456
2457                 interval = sd->balance_interval;
2458                 if (idle != SCHED_IDLE)
2459                         interval *= sd->busy_factor;
2460
2461                 /* scale ms to jiffies */
2462                 interval = msecs_to_jiffies(interval);
2463                 if (unlikely(!interval))
2464                         interval = 1;
2465
2466                 if (j - sd->last_balance >= interval) {
2467                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2468                                 /*
2469                                  * We've pulled tasks over so either we're no
2470                                  * longer idle, or one of our SMT siblings is
2471                                  * not idle.
2472                                  */
2473                                 idle = NOT_IDLE;
2474                         }
2475                         sd->last_balance += interval;
2476                 }
2477         }
2478 }
2479 #else
2480 /*
2481  * on UP we do not need to balance between CPUs:
2482  */
2483 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2484 {
2485 }
2486 static inline void idle_balance(int cpu, runqueue_t *rq)
2487 {
2488 }
2489 #endif
2490
2491 static inline int wake_priority_sleeper(runqueue_t *rq)
2492 {
2493         int ret = 0;
2494 #ifdef CONFIG_SCHED_SMT
2495         spin_lock(&rq->lock);
2496         /*
2497          * If an SMT sibling task has been put to sleep for priority
2498          * reasons reschedule the idle task to see if it can now run.
2499          */
2500         if (rq->nr_running) {
2501                 resched_task(rq->idle);
2502                 ret = 1;
2503         }
2504         spin_unlock(&rq->lock);
2505 #endif
2506         return ret;
2507 }
2508
2509 DEFINE_PER_CPU(struct kernel_stat, kstat);
2510
2511 EXPORT_PER_CPU_SYMBOL(kstat);
2512
2513 /*
2514  * This is called on clock ticks and on context switches.
2515  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2516  */
2517 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2518                                     unsigned long long now)
2519 {
2520         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2521         p->sched_time += now - last;
2522 }
2523
2524 /*
2525  * Return current->sched_time plus any more ns on the sched_clock
2526  * that have not yet been banked.
2527  */
2528 unsigned long long current_sched_time(const task_t *tsk)
2529 {
2530         unsigned long long ns;
2531         unsigned long flags;
2532         local_irq_save(flags);
2533         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2534         ns = tsk->sched_time + (sched_clock() - ns);
2535         local_irq_restore(flags);
2536         return ns;
2537 }
2538
2539 /*
2540  * We place interactive tasks back into the active array, if possible.
2541  *
2542  * To guarantee that this does not starve expired tasks we ignore the
2543  * interactivity of a task if the first expired task had to wait more
2544  * than a 'reasonable' amount of time. This deadline timeout is
2545  * load-dependent, as the frequency of array switched decreases with
2546  * increasing number of running tasks. We also ignore the interactivity
2547  * if a better static_prio task has expired:
2548  */
2549 #define EXPIRED_STARVING(rq) \
2550         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2551                 (jiffies - (rq)->expired_timestamp >= \
2552                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2553                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2554
2555 /*
2556  * Account user cpu time to a process.
2557  * @p: the process that the cpu time gets accounted to
2558  * @hardirq_offset: the offset to subtract from hardirq_count()
2559  * @cputime: the cpu time spent in user space since the last update
2560  */
2561 void account_user_time(struct task_struct *p, cputime_t cputime)
2562 {
2563         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2564         cputime64_t tmp;
2565
2566         p->utime = cputime_add(p->utime, cputime);
2567
2568         /* Add user time to cpustat. */
2569         tmp = cputime_to_cputime64(cputime);
2570         if (TASK_NICE(p) > 0)
2571                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2572         else
2573                 cpustat->user = cputime64_add(cpustat->user, tmp);
2574 }
2575
2576 /*
2577  * Account system cpu time to a process.
2578  * @p: the process that the cpu time gets accounted to
2579  * @hardirq_offset: the offset to subtract from hardirq_count()
2580  * @cputime: the cpu time spent in kernel space since the last update
2581  */
2582 void account_system_time(struct task_struct *p, int hardirq_offset,
2583                          cputime_t cputime)
2584 {
2585         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2586         runqueue_t *rq = this_rq();
2587         cputime64_t tmp;
2588
2589         p->stime = cputime_add(p->stime, cputime);
2590
2591         /* Add system time to cpustat. */
2592         tmp = cputime_to_cputime64(cputime);
2593         if (hardirq_count() - hardirq_offset)
2594                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2595         else if (softirq_count())
2596                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2597         else if (p != rq->idle)
2598                 cpustat->system = cputime64_add(cpustat->system, tmp);
2599         else if (atomic_read(&rq->nr_iowait) > 0)
2600                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2601         else
2602                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2603         /* Account for system time used */
2604         acct_update_integrals(p);
2605 }
2606
2607 /*
2608  * Account for involuntary wait time.
2609  * @p: the process from which the cpu time has been stolen
2610  * @steal: the cpu time spent in involuntary wait
2611  */
2612 void account_steal_time(struct task_struct *p, cputime_t steal)
2613 {
2614         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2615         cputime64_t tmp = cputime_to_cputime64(steal);
2616         runqueue_t *rq = this_rq();
2617
2618         if (p == rq->idle) {
2619                 p->stime = cputime_add(p->stime, steal);
2620                 if (atomic_read(&rq->nr_iowait) > 0)
2621                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2622                 else
2623                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2624         } else
2625                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2626 }
2627
2628 /*
2629  * This function gets called by the timer code, with HZ frequency.
2630  * We call it with interrupts disabled.
2631  *
2632  * It also gets called by the fork code, when changing the parent's
2633  * timeslices.
2634  */
2635 void scheduler_tick(void)
2636 {
2637         int cpu = smp_processor_id();
2638         runqueue_t *rq = this_rq();
2639         task_t *p = current;
2640         unsigned long long now = sched_clock();
2641
2642         update_cpu_clock(p, rq, now);
2643
2644         rq->timestamp_last_tick = now;
2645
2646         if (p == rq->idle) {
2647                 if (wake_priority_sleeper(rq))
2648                         goto out;
2649                 rebalance_tick(cpu, rq, SCHED_IDLE);
2650                 return;
2651         }
2652
2653         /* Task might have expired already, but not scheduled off yet */
2654         if (p->array != rq->active) {
2655                 set_tsk_need_resched(p);
2656                 goto out;
2657         }
2658         spin_lock(&rq->lock);
2659         /*
2660          * The task was running during this tick - update the
2661          * time slice counter. Note: we do not update a thread's
2662          * priority until it either goes to sleep or uses up its
2663          * timeslice. This makes it possible for interactive tasks
2664          * to use up their timeslices at their highest priority levels.
2665          */
2666         if (rt_task(p)) {
2667                 /*
2668                  * RR tasks need a special form of timeslice management.
2669                  * FIFO tasks have no timeslices.
2670                  */
2671                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2672                         p->time_slice = task_timeslice(p);
2673                         p->first_time_slice = 0;
2674                         set_tsk_need_resched(p);
2675
2676                         /* put it at the end of the queue: */
2677                         requeue_task(p, rq->active);
2678                 }
2679                 goto out_unlock;
2680         }
2681         if (!--p->time_slice) {
2682                 dequeue_task(p, rq->active);
2683                 set_tsk_need_resched(p);
2684                 p->prio = effective_prio(p);
2685                 p->time_slice = task_timeslice(p);
2686                 p->first_time_slice = 0;
2687
2688                 if (!rq->expired_timestamp)
2689                         rq->expired_timestamp = jiffies;
2690                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2691                         enqueue_task(p, rq->expired);
2692                         if (p->static_prio < rq->best_expired_prio)
2693                                 rq->best_expired_prio = p->static_prio;
2694                 } else
2695                         enqueue_task(p, rq->active);
2696         } else {
2697                 /*
2698                  * Prevent a too long timeslice allowing a task to monopolize
2699                  * the CPU. We do this by splitting up the timeslice into
2700                  * smaller pieces.
2701                  *
2702                  * Note: this does not mean the task's timeslices expire or
2703                  * get lost in any way, they just might be preempted by
2704                  * another task of equal priority. (one with higher
2705                  * priority would have preempted this task already.) We
2706                  * requeue this task to the end of the list on this priority
2707                  * level, which is in essence a round-robin of tasks with
2708                  * equal priority.
2709                  *
2710                  * This only applies to tasks in the interactive
2711                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2712                  */
2713                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2714                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2715                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2716                         (p->array == rq->active)) {
2717
2718                         requeue_task(p, rq->active);
2719                         set_tsk_need_resched(p);
2720                 }
2721         }
2722 out_unlock:
2723         spin_unlock(&rq->lock);
2724 out:
2725         rebalance_tick(cpu, rq, NOT_IDLE);
2726 }
2727
2728 #ifdef CONFIG_SCHED_SMT
2729 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2730 {
2731         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2732         if (rq->curr == rq->idle && rq->nr_running)
2733                 resched_task(rq->idle);
2734 }
2735
2736 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2737 {
2738         struct sched_domain *tmp, *sd = NULL;
2739         cpumask_t sibling_map;
2740         int i;
2741
2742         for_each_domain(this_cpu, tmp)
2743                 if (tmp->flags & SD_SHARE_CPUPOWER)
2744                         sd = tmp;
2745
2746         if (!sd)
2747                 return;
2748
2749         /*
2750          * Unlock the current runqueue because we have to lock in
2751          * CPU order to avoid deadlocks. Caller knows that we might
2752          * unlock. We keep IRQs disabled.
2753          */
2754         spin_unlock(&this_rq->lock);
2755
2756         sibling_map = sd->span;
2757
2758         for_each_cpu_mask(i, sibling_map)
2759                 spin_lock(&cpu_rq(i)->lock);
2760         /*
2761          * We clear this CPU from the mask. This both simplifies the
2762          * inner loop and keps this_rq locked when we exit:
2763          */
2764         cpu_clear(this_cpu, sibling_map);
2765
2766         for_each_cpu_mask(i, sibling_map) {
2767                 runqueue_t *smt_rq = cpu_rq(i);
2768
2769                 wakeup_busy_runqueue(smt_rq);
2770         }
2771
2772         for_each_cpu_mask(i, sibling_map)
2773                 spin_unlock(&cpu_rq(i)->lock);
2774         /*
2775          * We exit with this_cpu's rq still held and IRQs
2776          * still disabled:
2777          */
2778 }
2779
2780 /*
2781  * number of 'lost' timeslices this task wont be able to fully
2782  * utilize, if another task runs on a sibling. This models the
2783  * slowdown effect of other tasks running on siblings:
2784  */
2785 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2786 {
2787         return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2788 }
2789
2790 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2791 {
2792         struct sched_domain *tmp, *sd = NULL;
2793         cpumask_t sibling_map;
2794         prio_array_t *array;
2795         int ret = 0, i;
2796         task_t *p;
2797
2798         for_each_domain(this_cpu, tmp)
2799                 if (tmp->flags & SD_SHARE_CPUPOWER)
2800                         sd = tmp;
2801
2802         if (!sd)
2803                 return 0;
2804
2805         /*
2806          * The same locking rules and details apply as for
2807          * wake_sleeping_dependent():
2808          */
2809         spin_unlock(&this_rq->lock);
2810         sibling_map = sd->span;
2811         for_each_cpu_mask(i, sibling_map)
2812                 spin_lock(&cpu_rq(i)->lock);
2813         cpu_clear(this_cpu, sibling_map);
2814
2815         /*
2816          * Establish next task to be run - it might have gone away because
2817          * we released the runqueue lock above:
2818          */
2819         if (!this_rq->nr_running)
2820                 goto out_unlock;
2821         array = this_rq->active;
2822         if (!array->nr_active)
2823                 array = this_rq->expired;
2824         BUG_ON(!array->nr_active);
2825
2826         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2827                 task_t, run_list);
2828
2829         for_each_cpu_mask(i, sibling_map) {
2830                 runqueue_t *smt_rq = cpu_rq(i);
2831                 task_t *smt_curr = smt_rq->curr;
2832
2833                 /* Kernel threads do not participate in dependent sleeping */
2834                 if (!p->mm || !smt_curr->mm || rt_task(p))
2835                         goto check_smt_task;
2836
2837                 /*
2838                  * If a user task with lower static priority than the
2839                  * running task on the SMT sibling is trying to schedule,
2840                  * delay it till there is proportionately less timeslice
2841                  * left of the sibling task to prevent a lower priority
2842                  * task from using an unfair proportion of the
2843                  * physical cpu's resources. -ck
2844                  */
2845                 if (rt_task(smt_curr)) {
2846                         /*
2847                          * With real time tasks we run non-rt tasks only
2848                          * per_cpu_gain% of the time.
2849                          */
2850                         if ((jiffies % DEF_TIMESLICE) >
2851                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2852                                         ret = 1;
2853                 } else
2854                         if (smt_curr->static_prio < p->static_prio &&
2855                                 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2856                                 smt_slice(smt_curr, sd) > task_timeslice(p))
2857                                         ret = 1;
2858
2859 check_smt_task:
2860                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2861                         rt_task(smt_curr))
2862                                 continue;
2863                 if (!p->mm) {
2864                         wakeup_busy_runqueue(smt_rq);
2865                         continue;
2866                 }
2867
2868                 /*
2869                  * Reschedule a lower priority task on the SMT sibling for
2870                  * it to be put to sleep, or wake it up if it has been put to
2871                  * sleep for priority reasons to see if it should run now.
2872                  */
2873                 if (rt_task(p)) {
2874                         if ((jiffies % DEF_TIMESLICE) >
2875                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2876                                         resched_task(smt_curr);
2877                 } else {
2878                         if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2879                                 smt_slice(p, sd) > task_timeslice(smt_curr))
2880                                         resched_task(smt_curr);
2881                         else
2882                                 wakeup_busy_runqueue(smt_rq);
2883                 }
2884         }
2885 out_unlock:
2886         for_each_cpu_mask(i, sibling_map)
2887                 spin_unlock(&cpu_rq(i)->lock);
2888         return ret;
2889 }
2890 #else
2891 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2892 {
2893 }
2894
2895 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2896 {
2897         return 0;
2898 }
2899 #endif
2900
2901 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2902
2903 void fastcall add_preempt_count(int val)
2904 {
2905         /*
2906          * Underflow?
2907          */
2908         BUG_ON((preempt_count() < 0));
2909         preempt_count() += val;
2910         /*
2911          * Spinlock count overflowing soon?
2912          */
2913         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2914 }
2915 EXPORT_SYMBOL(add_preempt_count);
2916
2917 void fastcall sub_preempt_count(int val)
2918 {
2919         /*
2920          * Underflow?
2921          */
2922         BUG_ON(val > preempt_count());
2923         /*
2924          * Is the spinlock portion underflowing?
2925          */
2926         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2927         preempt_count() -= val;
2928 }
2929 EXPORT_SYMBOL(sub_preempt_count);
2930
2931 #endif
2932
2933 /*
2934  * schedule() is the main scheduler function.
2935  */
2936 asmlinkage void __sched schedule(void)
2937 {
2938         long *switch_count;
2939         task_t *prev, *next;
2940         runqueue_t *rq;
2941         prio_array_t *array;
2942         struct list_head *queue;
2943         unsigned long long now;
2944         unsigned long run_time;
2945         int cpu, idx, new_prio;
2946
2947         /*
2948          * Test if we are atomic.  Since do_exit() needs to call into
2949          * schedule() atomically, we ignore that path for now.
2950          * Otherwise, whine if we are scheduling when we should not be.
2951          */
2952         if (likely(!current->exit_state)) {
2953                 if (unlikely(in_atomic())) {
2954                         printk(KERN_ERR "scheduling while atomic: "
2955                                 "%s/0x%08x/%d\n",
2956                                 current->comm, preempt_count(), current->pid);
2957                         dump_stack();
2958                 }
2959         }
2960         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2961
2962 need_resched:
2963         preempt_disable();
2964         prev = current;
2965         release_kernel_lock(prev);
2966 need_resched_nonpreemptible:
2967         rq = this_rq();
2968
2969         /*
2970          * The idle thread is not allowed to schedule!
2971          * Remove this check after it has been exercised a bit.
2972          */
2973         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2974                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2975                 dump_stack();
2976         }
2977
2978         schedstat_inc(rq, sched_cnt);
2979         now = sched_clock();
2980         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2981                 run_time = now - prev->timestamp;
2982                 if (unlikely((long long)(now - prev->timestamp) < 0))
2983                         run_time = 0;
2984         } else
2985                 run_time = NS_MAX_SLEEP_AVG;
2986
2987         /*
2988          * Tasks charged proportionately less run_time at high sleep_avg to
2989          * delay them losing their interactive status
2990          */
2991         run_time /= (CURRENT_BONUS(prev) ? : 1);
2992
2993         spin_lock_irq(&rq->lock);
2994
2995         if (unlikely(prev->flags & PF_DEAD))
2996                 prev->state = EXIT_DEAD;
2997
2998         switch_count = &prev->nivcsw;
2999         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3000                 switch_count = &prev->nvcsw;
3001                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3002                                 unlikely(signal_pending(prev))))
3003                         prev->state = TASK_RUNNING;
3004                 else {
3005                         if (prev->state == TASK_UNINTERRUPTIBLE)
3006                                 rq->nr_uninterruptible++;
3007                         deactivate_task(prev, rq);
3008                 }
3009         }
3010
3011         cpu = smp_processor_id();
3012         if (unlikely(!rq->nr_running)) {
3013 go_idle:
3014                 idle_balance(cpu, rq);
3015                 if (!rq->nr_running) {
3016                         next = rq->idle;
3017                         rq->expired_timestamp = 0;
3018                         wake_sleeping_dependent(cpu, rq);
3019                         /*
3020                          * wake_sleeping_dependent() might have released
3021                          * the runqueue, so break out if we got new
3022                          * tasks meanwhile:
3023                          */
3024                         if (!rq->nr_running)
3025                                 goto switch_tasks;
3026                 }
3027         } else {
3028                 if (dependent_sleeper(cpu, rq)) {
3029                         next = rq->idle;
3030                         goto switch_tasks;
3031                 }
3032                 /*
3033                  * dependent_sleeper() releases and reacquires the runqueue
3034                  * lock, hence go into the idle loop if the rq went
3035                  * empty meanwhile:
3036                  */
3037                 if (unlikely(!rq->nr_running))
3038                         goto go_idle;
3039         }
3040
3041         array = rq->active;
3042         if (unlikely(!array->nr_active)) {
3043                 /*
3044                  * Switch the active and expired arrays.
3045                  */
3046                 schedstat_inc(rq, sched_switch);
3047                 rq->active = rq->expired;
3048                 rq->expired = array;
3049                 array = rq->active;
3050                 rq->expired_timestamp = 0;
3051                 rq->best_expired_prio = MAX_PRIO;
3052         }
3053
3054         idx = sched_find_first_bit(array->bitmap);
3055         queue = array->queue + idx;
3056         next = list_entry(queue->next, task_t, run_list);
3057
3058         if (!rt_task(next) && next->activated > 0) {
3059                 unsigned long long delta = now - next->timestamp;
3060                 if (unlikely((long long)(now - next->timestamp) < 0))
3061                         delta = 0;
3062
3063                 if (next->activated == 1)
3064                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3065
3066                 array = next->array;
3067                 new_prio = recalc_task_prio(next, next->timestamp + delta);
3068
3069                 if (unlikely(next->prio != new_prio)) {
3070                         dequeue_task(next, array);
3071                         next->prio = new_prio;
3072                         enqueue_task(next, array);
3073                 } else
3074                         requeue_task(next, array);
3075         }
3076         next->activated = 0;
3077 switch_tasks:
3078         if (next == rq->idle)
3079                 schedstat_inc(rq, sched_goidle);
3080         prefetch(next);
3081         prefetch_stack(next);
3082         clear_tsk_need_resched(prev);
3083         rcu_qsctr_inc(task_cpu(prev));
3084
3085         update_cpu_clock(prev, rq, now);
3086
3087         prev->sleep_avg -= run_time;
3088         if ((long)prev->sleep_avg <= 0)
3089                 prev->sleep_avg = 0;
3090         prev->timestamp = prev->last_ran = now;
3091
3092         sched_info_switch(prev, next);
3093         if (likely(prev != next)) {
3094                 next->timestamp = now;
3095                 rq->nr_switches++;
3096                 rq->curr = next;
3097                 ++*switch_count;
3098
3099                 prepare_task_switch(rq, next);
3100                 prev = context_switch(rq, prev, next);
3101                 barrier();
3102                 /*
3103                  * this_rq must be evaluated again because prev may have moved
3104                  * CPUs since it called schedule(), thus the 'rq' on its stack
3105                  * frame will be invalid.
3106                  */
3107                 finish_task_switch(this_rq(), prev);
3108         } else
3109                 spin_unlock_irq(&rq->lock);
3110
3111         prev = current;
3112         if (unlikely(reacquire_kernel_lock(prev) < 0))
3113                 goto need_resched_nonpreemptible;
3114         preempt_enable_no_resched();
3115         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3116                 goto need_resched;
3117 }
3118
3119 EXPORT_SYMBOL(schedule);
3120
3121 #ifdef CONFIG_PREEMPT
3122 /*
3123  * this is is the entry point to schedule() from in-kernel preemption
3124  * off of preempt_enable.  Kernel preemptions off return from interrupt
3125  * occur there and call schedule directly.
3126  */
3127 asmlinkage void __sched preempt_schedule(void)
3128 {
3129         struct thread_info *ti = current_thread_info();
3130 #ifdef CONFIG_PREEMPT_BKL
3131         struct task_struct *task = current;
3132         int saved_lock_depth;
3133 #endif
3134         /*
3135          * If there is a non-zero preempt_count or interrupts are disabled,
3136          * we do not want to preempt the current task.  Just return..
3137          */
3138         if (unlikely(ti->preempt_count || irqs_disabled()))
3139                 return;
3140
3141 need_resched:
3142         add_preempt_count(PREEMPT_ACTIVE);
3143         /*
3144          * We keep the big kernel semaphore locked, but we
3145          * clear ->lock_depth so that schedule() doesnt
3146          * auto-release the semaphore:
3147          */
3148 #ifdef CONFIG_PREEMPT_BKL
3149         saved_lock_depth = task->lock_depth;
3150         task->lock_depth = -1;
3151 #endif
3152         schedule();
3153 #ifdef CONFIG_PREEMPT_BKL
3154         task->lock_depth = saved_lock_depth;
3155 #endif
3156         sub_preempt_count(PREEMPT_ACTIVE);
3157
3158         /* we could miss a preemption opportunity between schedule and now */
3159         barrier();
3160         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3161                 goto need_resched;
3162 }
3163
3164 EXPORT_SYMBOL(preempt_schedule);
3165
3166 /*
3167  * this is is the entry point to schedule() from kernel preemption
3168  * off of irq context.
3169  * Note, that this is called and return with irqs disabled. This will
3170  * protect us against recursive calling from irq.
3171  */
3172 asmlinkage void __sched preempt_schedule_irq(void)
3173 {
3174         struct thread_info *ti = current_thread_info();
3175 #ifdef CONFIG_PREEMPT_BKL
3176         struct task_struct *task = current;
3177         int saved_lock_depth;
3178 #endif
3179         /* Catch callers which need to be fixed*/
3180         BUG_ON(ti->preempt_count || !irqs_disabled());
3181
3182 need_resched:
3183         add_preempt_count(PREEMPT_ACTIVE);
3184         /*
3185          * We keep the big kernel semaphore locked, but we
3186          * clear ->lock_depth so that schedule() doesnt
3187          * auto-release the semaphore:
3188          */
3189 #ifdef CONFIG_PREEMPT_BKL
3190         saved_lock_depth = task->lock_depth;
3191         task->lock_depth = -1;
3192 #endif
3193         local_irq_enable();
3194         schedule();
3195         local_irq_disable();
3196 #ifdef CONFIG_PREEMPT_BKL
3197         task->lock_depth = saved_lock_depth;
3198 #endif
3199         sub_preempt_count(PREEMPT_ACTIVE);
3200
3201         /* we could miss a preemption opportunity between schedule and now */
3202         barrier();
3203         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3204                 goto need_resched;
3205 }
3206
3207 #endif /* CONFIG_PREEMPT */
3208
3209 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3210                           void *key)
3211 {
3212         task_t *p = curr->private;
3213         return try_to_wake_up(p, mode, sync);
3214 }
3215
3216 EXPORT_SYMBOL(default_wake_function);
3217
3218 /*
3219  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3220  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3221  * number) then we wake all the non-exclusive tasks and one exclusive task.
3222  *
3223  * There are circumstances in which we can try to wake a task which has already
3224  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3225  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3226  */
3227 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3228                              int nr_exclusive, int sync, void *key)
3229 {
3230         struct list_head *tmp, *next;
3231
3232         list_for_each_safe(tmp, next, &q->task_list) {
3233                 wait_queue_t *curr;
3234                 unsigned flags;
3235                 curr = list_entry(tmp, wait_queue_t, task_list);
3236                 flags = curr->flags;
3237                 if (curr->func(curr, mode, sync, key) &&
3238                     (flags & WQ_FLAG_EXCLUSIVE) &&
3239                     !--nr_exclusive)
3240                         break;
3241         }
3242 }
3243
3244 /**
3245  * __wake_up - wake up threads blocked on a waitqueue.
3246  * @q: the waitqueue
3247  * @mode: which threads
3248  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3249  * @key: is directly passed to the wakeup function
3250  */
3251 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3252                         int nr_exclusive, void *key)
3253 {
3254         unsigned long flags;
3255
3256         spin_lock_irqsave(&q->lock, flags);
3257         __wake_up_common(q, mode, nr_exclusive, 0, key);
3258         spin_unlock_irqrestore(&q->lock, flags);
3259 }
3260
3261 EXPORT_SYMBOL(__wake_up);
3262
3263 /*
3264  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3265  */
3266 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3267 {
3268         __wake_up_common(q, mode, 1, 0, NULL);
3269 }
3270
3271 /**
3272  * __wake_up_sync - wake up threads blocked on a waitqueue.
3273  * @q: the waitqueue
3274  * @mode: which threads
3275  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3276  *
3277  * The sync wakeup differs that the waker knows that it will schedule
3278  * away soon, so while the target thread will be woken up, it will not
3279  * be migrated to another CPU - ie. the two threads are 'synchronized'
3280  * with each other. This can prevent needless bouncing between CPUs.
3281  *
3282  * On UP it can prevent extra preemption.
3283  */
3284 void fastcall
3285 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3286 {
3287         unsigned long flags;
3288         int sync = 1;
3289
3290         if (unlikely(!q))
3291                 return;
3292
3293         if (unlikely(!nr_exclusive))
3294                 sync = 0;
3295
3296         spin_lock_irqsave(&q->lock, flags);
3297         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3298         spin_unlock_irqrestore(&q->lock, flags);
3299 }
3300 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3301
3302 void fastcall complete(struct completion *x)
3303 {
3304         unsigned long flags;
3305
3306         spin_lock_irqsave(&x->wait.lock, flags);
3307         x->done++;
3308         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3309                          1, 0, NULL);
3310         spin_unlock_irqrestore(&x->wait.lock, flags);
3311 }
3312 EXPORT_SYMBOL(complete);
3313
3314 void fastcall complete_all(struct completion *x)
3315 {
3316         unsigned long flags;
3317
3318         spin_lock_irqsave(&x->wait.lock, flags);
3319         x->done += UINT_MAX/2;
3320         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3321                          0, 0, NULL);
3322         spin_unlock_irqrestore(&x->wait.lock, flags);
3323 }
3324 EXPORT_SYMBOL(complete_all);
3325
3326 void fastcall __sched wait_for_completion(struct completion *x)
3327 {
3328         might_sleep();
3329         spin_lock_irq(&x->wait.lock);
3330         if (!x->done) {
3331                 DECLARE_WAITQUEUE(wait, current);
3332
3333                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3334                 __add_wait_queue_tail(&x->wait, &wait);
3335                 do {
3336                         __set_current_state(TASK_UNINTERRUPTIBLE);
3337                         spin_unlock_irq(&x->wait.lock);
3338                         schedule();
3339                         spin_lock_irq(&x->wait.lock);
3340                 } while (!x->done);
3341                 __remove_wait_queue(&x->wait, &wait);
3342         }
3343         x->done--;
3344         spin_unlock_irq(&x->wait.lock);
3345 }
3346 EXPORT_SYMBOL(wait_for_completion);
3347
3348 unsigned long fastcall __sched
3349 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3350 {
3351         might_sleep();
3352
3353         spin_lock_irq(&x->wait.lock);
3354         if (!x->done) {
3355                 DECLARE_WAITQUEUE(wait, current);
3356
3357                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3358                 __add_wait_queue_tail(&x->wait, &wait);
3359                 do {
3360                         __set_current_state(TASK_UNINTERRUPTIBLE);
3361                         spin_unlock_irq(&x->wait.lock);
3362                         timeout = schedule_timeout(timeout);
3363                         spin_lock_irq(&x->wait.lock);
3364                         if (!timeout) {
3365                                 __remove_wait_queue(&x->wait, &wait);
3366                                 goto out;
3367                         }
3368                 } while (!x->done);
3369                 __remove_wait_queue(&x->wait, &wait);
3370         }
3371         x->done--;
3372 out:
3373         spin_unlock_irq(&x->wait.lock);
3374         return timeout;
3375 }
3376 EXPORT_SYMBOL(wait_for_completion_timeout);
3377
3378 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3379 {
3380         int ret = 0;
3381
3382         might_sleep();
3383
3384         spin_lock_irq(&x->wait.lock);
3385         if (!x->done) {
3386                 DECLARE_WAITQUEUE(wait, current);
3387
3388                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3389                 __add_wait_queue_tail(&x->wait, &wait);
3390                 do {
3391                         if (signal_pending(current)) {
3392                                 ret = -ERESTARTSYS;
3393                                 __remove_wait_queue(&x->wait, &wait);
3394                                 goto out;
3395                         }
3396                         __set_current_state(TASK_INTERRUPTIBLE);
3397                         spin_unlock_irq(&x->wait.lock);
3398                         schedule();
3399                         spin_lock_irq(&x->wait.lock);
3400                 } while (!x->done);
3401                 __remove_wait_queue(&x->wait, &wait);
3402         }
3403         x->done--;
3404 out:
3405         spin_unlock_irq(&x->wait.lock);
3406
3407         return ret;
3408 }
3409 EXPORT_SYMBOL(wait_for_completion_interruptible);
3410
3411 unsigned long fastcall __sched
3412 wait_for_completion_interruptible_timeout(struct completion *x,
3413                                           unsigned long timeout)
3414 {
3415         might_sleep();
3416
3417         spin_lock_irq(&x->wait.lock);
3418         if (!x->done) {
3419                 DECLARE_WAITQUEUE(wait, current);
3420
3421                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3422                 __add_wait_queue_tail(&x->wait, &wait);
3423                 do {
3424                         if (signal_pending(current)) {
3425                                 timeout = -ERESTARTSYS;
3426                                 __remove_wait_queue(&x->wait, &wait);
3427                                 goto out;
3428                         }
3429                         __set_current_state(TASK_INTERRUPTIBLE);
3430                         spin_unlock_irq(&x->wait.lock);
3431                         timeout = schedule_timeout(timeout);
3432                         spin_lock_irq(&x->wait.lock);
3433                         if (!timeout) {
3434                                 __remove_wait_queue(&x->wait, &wait);
3435                                 goto out;
3436                         }
3437                 } while (!x->done);
3438                 __remove_wait_queue(&x->wait, &wait);
3439         }
3440         x->done--;
3441 out:
3442         spin_unlock_irq(&x->wait.lock);
3443         return timeout;
3444 }
3445 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3446
3447
3448 #define SLEEP_ON_VAR                                    \
3449         unsigned long flags;                            \
3450         wait_queue_t wait;                              \
3451         init_waitqueue_entry(&wait, current);
3452
3453 #define SLEEP_ON_HEAD                                   \
3454         spin_lock_irqsave(&q->lock,flags);              \
3455         __add_wait_queue(q, &wait);                     \
3456         spin_unlock(&q->lock);
3457
3458 #define SLEEP_ON_TAIL                                   \
3459         spin_lock_irq(&q->lock);                        \
3460         __remove_wait_queue(q, &wait);                  \
3461         spin_unlock_irqrestore(&q->lock, flags);
3462
3463 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3464 {
3465         SLEEP_ON_VAR
3466
3467         current->state = TASK_INTERRUPTIBLE;
3468
3469         SLEEP_ON_HEAD
3470         schedule();
3471         SLEEP_ON_TAIL
3472 }
3473
3474 EXPORT_SYMBOL(interruptible_sleep_on);
3475
3476 long fastcall __sched
3477 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3478 {
3479         SLEEP_ON_VAR
3480
3481         current->state = TASK_INTERRUPTIBLE;
3482
3483         SLEEP_ON_HEAD
3484         timeout = schedule_timeout(timeout);
3485         SLEEP_ON_TAIL
3486
3487         return timeout;
3488 }
3489
3490 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3491
3492 void fastcall __sched sleep_on(wait_queue_head_t *q)
3493 {
3494         SLEEP_ON_VAR
3495
3496         current->state = TASK_UNINTERRUPTIBLE;
3497
3498         SLEEP_ON_HEAD
3499         schedule();
3500         SLEEP_ON_TAIL
3501 }
3502
3503 EXPORT_SYMBOL(sleep_on);
3504
3505 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3506 {
3507         SLEEP_ON_VAR
3508
3509         current->state = TASK_UNINTERRUPTIBLE;
3510
3511         SLEEP_ON_HEAD
3512         timeout = schedule_timeout(timeout);
3513         SLEEP_ON_TAIL
3514
3515         return timeout;
3516 }
3517
3518 EXPORT_SYMBOL(sleep_on_timeout);
3519
3520 void set_user_nice(task_t *p, long nice)
3521 {
3522         unsigned long flags;
3523         prio_array_t *array;
3524         runqueue_t *rq;
3525         int old_prio, new_prio, delta;
3526
3527         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3528                 return;
3529         /*
3530          * We have to be careful, if called from sys_setpriority(),
3531          * the task might be in the middle of scheduling on another CPU.
3532          */
3533         rq = task_rq_lock(p, &flags);
3534         /*
3535          * The RT priorities are set via sched_setscheduler(), but we still
3536          * allow the 'normal' nice value to be set - but as expected
3537          * it wont have any effect on scheduling until the task is
3538          * not SCHED_NORMAL:
3539          */
3540         if (rt_task(p)) {
3541                 p->static_prio = NICE_TO_PRIO(nice);
3542                 goto out_unlock;
3543         }
3544         array = p->array;
3545         if (array) {
3546                 dequeue_task(p, array);
3547                 dec_prio_bias(rq, p->static_prio);
3548         }
3549
3550         old_prio = p->prio;
3551         new_prio = NICE_TO_PRIO(nice);
3552         delta = new_prio - old_prio;
3553         p->static_prio = NICE_TO_PRIO(nice);
3554         p->prio += delta;
3555
3556         if (array) {
3557                 enqueue_task(p, array);
3558                 inc_prio_bias(rq, p->static_prio);
3559                 /*
3560                  * If the task increased its priority or is running and
3561                  * lowered its priority, then reschedule its CPU:
3562                  */
3563                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3564                         resched_task(rq->curr);
3565         }
3566 out_unlock:
3567         task_rq_unlock(rq, &flags);
3568 }
3569
3570 EXPORT_SYMBOL(set_user_nice);
3571
3572 /*
3573  * can_nice - check if a task can reduce its nice value
3574  * @p: task
3575  * @nice: nice value
3576  */
3577 int can_nice(const task_t *p, const int nice)
3578 {
3579         /* convert nice value [19,-20] to rlimit style value [1,40] */
3580         int nice_rlim = 20 - nice;
3581         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3582                 capable(CAP_SYS_NICE));
3583 }
3584
3585 #ifdef __ARCH_WANT_SYS_NICE
3586
3587 /*
3588  * sys_nice - change the priority of the current process.
3589  * @increment: priority increment
3590  *
3591  * sys_setpriority is a more generic, but much slower function that
3592  * does similar things.
3593  */
3594 asmlinkage long sys_nice(int increment)
3595 {
3596         int retval;
3597         long nice;
3598
3599         /*
3600          * Setpriority might change our priority at the same moment.
3601          * We don't have to worry. Conceptually one call occurs first
3602          * and we have a single winner.
3603          */
3604         if (increment < -40)
3605                 increment = -40;
3606         if (increment > 40)
3607                 increment = 40;
3608
3609         nice = PRIO_TO_NICE(current->static_prio) + increment;
3610         if (nice < -20)
3611                 nice = -20;
3612         if (nice > 19)
3613                 nice = 19;
3614
3615         if (increment < 0 && !can_nice(current, nice))
3616                 return -EPERM;
3617
3618         retval = security_task_setnice(current, nice);
3619         if (retval)
3620                 return retval;
3621
3622         set_user_nice(current, nice);
3623         return 0;
3624 }
3625
3626 #endif
3627
3628 /**
3629  * task_prio - return the priority value of a given task.
3630  * @p: the task in question.
3631  *
3632  * This is the priority value as seen by users in /proc.
3633  * RT tasks are offset by -200. Normal tasks are centered
3634  * around 0, value goes from -16 to +15.
3635  */
3636 int task_prio(const task_t *p)
3637 {
3638         return p->prio - MAX_RT_PRIO;
3639 }
3640
3641 /**
3642  * task_nice - return the nice value of a given task.
3643  * @p: the task in question.
3644  */
3645 int task_nice(const task_t *p)
3646 {
3647         return TASK_NICE(p);
3648 }
3649 EXPORT_SYMBOL_GPL(task_nice);
3650
3651 /**
3652  * idle_cpu - is a given cpu idle currently?
3653  * @cpu: the processor in question.
3654  */
3655 int idle_cpu(int cpu)
3656 {
3657         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3658 }
3659
3660 /**
3661  * idle_task - return the idle task for a given cpu.
3662  * @cpu: the processor in question.
3663  */
3664 task_t *idle_task(int cpu)
3665 {
3666         return cpu_rq(cpu)->idle;
3667 }
3668
3669 /**
3670  * find_process_by_pid - find a process with a matching PID value.
3671  * @pid: the pid in question.
3672  */
3673 static inline task_t *find_process_by_pid(pid_t pid)
3674 {
3675         return pid ? find_task_by_pid(pid) : current;
3676 }
3677
3678 /* Actually do priority change: must hold rq lock. */
3679 static void __setscheduler(struct task_struct *p, int policy, int prio)
3680 {
3681         BUG_ON(p->array);
3682         p->policy = policy;
3683         p->rt_priority = prio;
3684         if (policy != SCHED_NORMAL)
3685                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3686         else
3687                 p->prio = p->static_prio;
3688 }
3689
3690 /**
3691  * sched_setscheduler - change the scheduling policy and/or RT priority of
3692  * a thread.
3693  * @p: the task in question.
3694  * @policy: new policy.
3695  * @param: structure containing the new RT priority.
3696  */
3697 int sched_setscheduler(struct task_struct *p, int policy,
3698                        struct sched_param *param)
3699 {
3700         int retval;
3701         int oldprio, oldpolicy = -1;
3702         prio_array_t *array;
3703         unsigned long flags;
3704         runqueue_t *rq;
3705
3706 recheck:
3707         /* double check policy once rq lock held */
3708         if (policy < 0)
3709                 policy = oldpolicy = p->policy;
3710         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3711                                 policy != SCHED_NORMAL)
3712                         return -EINVAL;
3713         /*
3714          * Valid priorities for SCHED_FIFO and SCHED_RR are
3715          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3716          */
3717         if (param->sched_priority < 0 ||
3718             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3719             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3720                 return -EINVAL;
3721         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3722                 return -EINVAL;
3723
3724         /*
3725          * Allow unprivileged RT tasks to decrease priority:
3726          */
3727         if (!capable(CAP_SYS_NICE)) {
3728                 /* can't change policy */
3729                 if (policy != p->policy &&
3730                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3731                         return -EPERM;
3732                 /* can't increase priority */
3733                 if (policy != SCHED_NORMAL &&
3734                     param->sched_priority > p->rt_priority &&
3735                     param->sched_priority >
3736                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3737                         return -EPERM;
3738                 /* can't change other user's priorities */
3739                 if ((current->euid != p->euid) &&
3740                     (current->euid != p->uid))
3741                         return -EPERM;
3742         }
3743
3744         retval = security_task_setscheduler(p, policy, param);
3745         if (retval)
3746                 return retval;
3747         /*
3748          * To be able to change p->policy safely, the apropriate
3749          * runqueue lock must be held.
3750          */
3751         rq = task_rq_lock(p, &flags);
3752         /* recheck policy now with rq lock held */
3753         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3754                 policy = oldpolicy = -1;
3755                 task_rq_unlock(rq, &flags);
3756                 goto recheck;
3757         }
3758         array = p->array;
3759         if (array)
3760                 deactivate_task(p, rq);
3761         oldprio = p->prio;
3762         __setscheduler(p, policy, param->sched_priority);
3763         if (array) {
3764                 __activate_task(p, rq);
3765                 /*
3766                  * Reschedule if we are currently running on this runqueue and
3767                  * our priority decreased, or if we are not currently running on
3768                  * this runqueue and our priority is higher than the current's
3769                  */
3770                 if (task_running(rq, p)) {
3771                         if (p->prio > oldprio)
3772                                 resched_task(rq->curr);
3773                 } else if (TASK_PREEMPTS_CURR(p, rq))
3774                         resched_task(rq->curr);
3775         }
3776         task_rq_unlock(rq, &flags);
3777         return 0;
3778 }
3779 EXPORT_SYMBOL_GPL(sched_setscheduler);
3780
3781 static int
3782 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3783 {
3784         int retval;
3785         struct sched_param lparam;
3786         struct task_struct *p;
3787
3788         if (!param || pid < 0)
3789                 return -EINVAL;
3790         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3791                 return -EFAULT;
3792         read_lock_irq(&tasklist_lock);
3793         p = find_process_by_pid(pid);
3794         if (!p) {
3795                 read_unlock_irq(&tasklist_lock);
3796                 return -ESRCH;
3797         }
3798         retval = sched_setscheduler(p, policy, &lparam);
3799         read_unlock_irq(&tasklist_lock);
3800         return retval;
3801 }
3802
3803 /**
3804  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3805  * @pid: the pid in question.
3806  * @policy: new policy.
3807  * @param: structure containing the new RT priority.
3808  */
3809 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3810                                        struct sched_param __user *param)
3811 {
3812         return do_sched_setscheduler(pid, policy, param);
3813 }
3814
3815 /**
3816  * sys_sched_setparam - set/change the RT priority of a thread
3817  * @pid: the pid in question.
3818  * @param: structure containing the new RT priority.
3819  */
3820 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3821 {
3822         return do_sched_setscheduler(pid, -1, param);
3823 }
3824
3825 /**
3826  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3827  * @pid: the pid in question.
3828  */
3829 asmlinkage long sys_sched_getscheduler(pid_t pid)
3830 {
3831         int retval = -EINVAL;
3832         task_t *p;
3833
3834         if (pid < 0)
3835                 goto out_nounlock;
3836
3837         retval = -ESRCH;
3838         read_lock(&tasklist_lock);
3839         p = find_process_by_pid(pid);
3840         if (p) {
3841                 retval = security_task_getscheduler(p);
3842                 if (!retval)
3843                         retval = p->policy;
3844         }
3845         read_unlock(&tasklist_lock);
3846
3847 out_nounlock:
3848         return retval;
3849 }
3850
3851 /**
3852  * sys_sched_getscheduler - get the RT priority of a thread
3853  * @pid: the pid in question.
3854  * @param: structure containing the RT priority.
3855  */
3856 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3857 {
3858         struct sched_param lp;
3859         int retval = -EINVAL;
3860         task_t *p;
3861
3862         if (!param || pid < 0)
3863                 goto out_nounlock;
3864
3865         read_lock(&tasklist_lock);
3866         p = find_process_by_pid(pid);
3867         retval = -ESRCH;
3868         if (!p)
3869                 goto out_unlock;
3870
3871         retval = security_task_getscheduler(p);
3872         if (retval)
3873                 goto out_unlock;
3874
3875         lp.sched_priority = p->rt_priority;
3876         read_unlock(&tasklist_lock);
3877
3878         /*
3879          * This one might sleep, we cannot do it with a spinlock held ...
3880          */
3881         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3882
3883 out_nounlock:
3884         return retval;
3885
3886 out_unlock:
3887         read_unlock(&tasklist_lock);
3888         return retval;
3889 }
3890
3891 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3892 {
3893         task_t *p;
3894         int retval;
3895         cpumask_t cpus_allowed;
3896
3897         lock_cpu_hotplug();
3898         read_lock(&tasklist_lock);
3899
3900         p = find_process_by_pid(pid);
3901         if (!p) {
3902                 read_unlock(&tasklist_lock);
3903                 unlock_cpu_hotplug();
3904                 return -ESRCH;
3905         }
3906
3907         /*
3908          * It is not safe to call set_cpus_allowed with the
3909          * tasklist_lock held.  We will bump the task_struct's
3910          * usage count and then drop tasklist_lock.
3911          */
3912         get_task_struct(p);
3913         read_unlock(&tasklist_lock);
3914
3915         retval = -EPERM;
3916         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3917                         !capable(CAP_SYS_NICE))
3918                 goto out_unlock;
3919
3920         cpus_allowed = cpuset_cpus_allowed(p);
3921         cpus_and(new_mask, new_mask, cpus_allowed);
3922         retval = set_cpus_allowed(p, new_mask);
3923
3924 out_unlock:
3925         put_task_struct(p);
3926         unlock_cpu_hotplug();
3927         return retval;
3928 }
3929
3930 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3931                              cpumask_t *new_mask)
3932 {
3933         if (len < sizeof(cpumask_t)) {
3934                 memset(new_mask, 0, sizeof(cpumask_t));
3935         } else if (len > sizeof(cpumask_t)) {
3936                 len = sizeof(cpumask_t);
3937         }
3938         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3939 }
3940
3941 /**
3942  * sys_sched_setaffinity - set the cpu affinity of a process
3943  * @pid: pid of the process
3944  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3945  * @user_mask_ptr: user-space pointer to the new cpu mask
3946  */
3947 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3948                                       unsigned long __user *user_mask_ptr)
3949 {
3950         cpumask_t new_mask;
3951         int retval;
3952
3953         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3954         if (retval)
3955                 return retval;
3956
3957         return sched_setaffinity(pid, new_mask);
3958 }
3959
3960 /*
3961  * Represents all cpu's present in the system
3962  * In systems capable of hotplug, this map could dynamically grow
3963  * as new cpu's are detected in the system via any platform specific
3964  * method, such as ACPI for e.g.
3965  */
3966
3967 cpumask_t cpu_present_map;
3968 EXPORT_SYMBOL(cpu_present_map);
3969
3970 #ifndef CONFIG_SMP
3971 cpumask_t cpu_online_map = CPU_MASK_ALL;
3972 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3973 #endif
3974
3975 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3976 {
3977         int retval;
3978         task_t *p;
3979
3980         lock_cpu_hotplug();
3981         read_lock(&tasklist_lock);
3982
3983         retval = -ESRCH;
3984         p = find_process_by_pid(pid);
3985         if (!p)
3986                 goto out_unlock;
3987
3988         retval = 0;
3989         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3990
3991 out_unlock:
3992         read_unlock(&tasklist_lock);
3993         unlock_cpu_hotplug();
3994         if (retval)
3995                 return retval;
3996
3997         return 0;
3998 }
3999
4000 /**
4001  * sys_sched_getaffinity - get the cpu affinity of a process
4002  * @pid: pid of the process
4003  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4004  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4005  */
4006 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4007                                       unsigned long __user *user_mask_ptr)
4008 {
4009         int ret;
4010         cpumask_t mask;
4011
4012         if (len < sizeof(cpumask_t))
4013                 return -EINVAL;
4014
4015         ret = sched_getaffinity(pid, &mask);
4016         if (ret < 0)
4017                 return ret;
4018
4019         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4020                 return -EFAULT;
4021
4022         return sizeof(cpumask_t);
4023 }
4024
4025 /**
4026  * sys_sched_yield - yield the current processor to other threads.
4027  *
4028  * this function yields the current CPU by moving the calling thread
4029  * to the expired array. If there are no other threads running on this
4030  * CPU then this function will return.
4031  */
4032 asmlinkage long sys_sched_yield(void)
4033 {
4034         runqueue_t *rq = this_rq_lock();
4035         prio_array_t *array = current->array;
4036         prio_array_t *target = rq->expired;
4037
4038         schedstat_inc(rq, yld_cnt);
4039         /*
4040          * We implement yielding by moving the task into the expired
4041          * queue.
4042          *
4043          * (special rule: RT tasks will just roundrobin in the active
4044          *  array.)
4045          */
4046         if (rt_task(current))
4047                 target = rq->active;
4048
4049         if (array->nr_active == 1) {
4050                 schedstat_inc(rq, yld_act_empty);
4051                 if (!rq->expired->nr_active)
4052                         schedstat_inc(rq, yld_both_empty);
4053         } else if (!rq->expired->nr_active)
4054                 schedstat_inc(rq, yld_exp_empty);
4055
4056         if (array != target) {
4057                 dequeue_task(current, array);
4058                 enqueue_task(current, target);
4059         } else
4060                 /*
4061                  * requeue_task is cheaper so perform that if possible.
4062                  */
4063                 requeue_task(current, array);
4064
4065         /*
4066          * Since we are going to call schedule() anyway, there's
4067          * no need to preempt or enable interrupts:
4068          */
4069         __release(rq->lock);
4070         _raw_spin_unlock(&rq->lock);
4071         preempt_enable_no_resched();
4072
4073         schedule();
4074
4075         return 0;
4076 }
4077
4078 static inline void __cond_resched(void)
4079 {
4080         /*
4081          * The BKS might be reacquired before we have dropped
4082          * PREEMPT_ACTIVE, which could trigger a second
4083          * cond_resched() call.
4084          */
4085         if (unlikely(preempt_count()))
4086                 return;
4087         do {
4088                 add_preempt_count(PREEMPT_ACTIVE);
4089                 schedule();
4090                 sub_preempt_count(PREEMPT_ACTIVE);
4091         } while (need_resched());
4092 }
4093
4094 int __sched cond_resched(void)
4095 {
4096         if (need_resched()) {
4097                 __cond_resched();
4098                 return 1;
4099         }
4100         return 0;
4101 }
4102
4103 EXPORT_SYMBOL(cond_resched);
4104
4105 /*
4106  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4107  * call schedule, and on return reacquire the lock.
4108  *
4109  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
4110  * operations here to prevent schedule() from being called twice (once via
4111  * spin_unlock(), once by hand).
4112  */
4113 int cond_resched_lock(spinlock_t *lock)
4114 {
4115         int ret = 0;
4116
4117         if (need_lockbreak(lock)) {
4118                 spin_unlock(lock);
4119                 cpu_relax();
4120                 ret = 1;
4121                 spin_lock(lock);
4122         }
4123         if (need_resched()) {
4124                 _raw_spin_unlock(lock);
4125                 preempt_enable_no_resched();
4126                 __cond_resched();
4127                 ret = 1;
4128                 spin_lock(lock);
4129         }
4130         return ret;
4131 }
4132
4133 EXPORT_SYMBOL(cond_resched_lock);
4134
4135 int __sched cond_resched_softirq(void)
4136 {
4137         BUG_ON(!in_softirq());
4138
4139         if (need_resched()) {
4140                 __local_bh_enable();
4141                 __cond_resched();
4142                 local_bh_disable();
4143                 return 1;
4144         }
4145         return 0;
4146 }
4147
4148 EXPORT_SYMBOL(cond_resched_softirq);
4149
4150
4151 /**
4152  * yield - yield the current processor to other threads.
4153  *
4154  * this is a shortcut for kernel-space yielding - it marks the
4155  * thread runnable and calls sys_sched_yield().
4156  */
4157 void __sched yield(void)
4158 {
4159         set_current_state(TASK_RUNNING);
4160         sys_sched_yield();
4161 }
4162
4163 EXPORT_SYMBOL(yield);
4164
4165 /*
4166  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4167  * that process accounting knows that this is a task in IO wait state.
4168  *
4169  * But don't do that if it is a deliberate, throttling IO wait (this task
4170  * has set its backing_dev_info: the queue against which it should throttle)
4171  */
4172 void __sched io_schedule(void)
4173 {
4174         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4175
4176         atomic_inc(&rq->nr_iowait);
4177         schedule();
4178         atomic_dec(&rq->nr_iowait);
4179 }
4180
4181 EXPORT_SYMBOL(io_schedule);
4182
4183 long __sched io_schedule_timeout(long timeout)
4184 {
4185         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4186         long ret;
4187
4188         atomic_inc(&rq->nr_iowait);
4189         ret = schedule_timeout(timeout);
4190         atomic_dec(&rq->nr_iowait);
4191         return ret;
4192 }
4193
4194 /**
4195  * sys_sched_get_priority_max - return maximum RT priority.
4196  * @policy: scheduling class.
4197  *
4198  * this syscall returns the maximum rt_priority that can be used
4199  * by a given scheduling class.
4200  */
4201 asmlinkage long sys_sched_get_priority_max(int policy)
4202 {
4203         int ret = -EINVAL;
4204
4205         switch (policy) {
4206         case SCHED_FIFO:
4207         case SCHED_RR:
4208                 ret = MAX_USER_RT_PRIO-1;
4209                 break;
4210         case SCHED_NORMAL:
4211                 ret = 0;
4212                 break;
4213         }
4214         return ret;
4215 }
4216
4217 /**
4218  * sys_sched_get_priority_min - return minimum RT priority.
4219  * @policy: scheduling class.
4220  *
4221  * this syscall returns the minimum rt_priority that can be used
4222  * by a given scheduling class.
4223  */
4224 asmlinkage long sys_sched_get_priority_min(int policy)
4225 {
4226         int ret = -EINVAL;
4227
4228         switch (policy) {
4229         case SCHED_FIFO:
4230         case SCHED_RR:
4231                 ret = 1;
4232                 break;
4233         case SCHED_NORMAL:
4234                 ret = 0;
4235         }
4236         return ret;
4237 }
4238
4239 /**
4240  * sys_sched_rr_get_interval - return the default timeslice of a process.
4241  * @pid: pid of the process.
4242  * @interval: userspace pointer to the timeslice value.
4243  *
4244  * this syscall writes the default timeslice value of a given process
4245  * into the user-space timespec buffer. A value of '0' means infinity.
4246  */
4247 asmlinkage
4248 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4249 {
4250         int retval = -EINVAL;
4251         struct timespec t;
4252         task_t *p;
4253
4254         if (pid < 0)
4255                 goto out_nounlock;
4256
4257         retval = -ESRCH;
4258         read_lock(&tasklist_lock);
4259         p = find_process_by_pid(pid);
4260         if (!p)
4261                 goto out_unlock;
4262
4263         retval = security_task_getscheduler(p);
4264         if (retval)
4265                 goto out_unlock;
4266
4267         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4268                                 0 : task_timeslice(p), &t);
4269         read_unlock(&tasklist_lock);
4270         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4271 out_nounlock:
4272         return retval;
4273 out_unlock:
4274         read_unlock(&tasklist_lock);
4275         return retval;
4276 }
4277
4278 static inline struct task_struct *eldest_child(struct task_struct *p)
4279 {
4280         if (list_empty(&p->children)) return NULL;
4281         return list_entry(p->children.next,struct task_struct,sibling);
4282 }
4283
4284 static inline struct task_struct *older_sibling(struct task_struct *p)
4285 {
4286         if (p->sibling.prev==&p->parent->children) return NULL;
4287         return list_entry(p->sibling.prev,struct task_struct,sibling);
4288 }
4289
4290 static inline struct task_struct *younger_sibling(struct task_struct *p)
4291 {
4292         if (p->sibling.next==&p->parent->children) return NULL;
4293         return list_entry(p->sibling.next,struct task_struct,sibling);
4294 }
4295
4296 static void show_task(task_t *p)
4297 {
4298         task_t *relative;
4299         unsigned state;
4300         unsigned long free = 0;
4301         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4302
4303         printk("%-13.13s ", p->comm);
4304         state = p->state ? __ffs(p->state) + 1 : 0;
4305         if (state < ARRAY_SIZE(stat_nam))
4306                 printk(stat_nam[state]);
4307         else
4308                 printk("?");
4309 #if (BITS_PER_LONG == 32)
4310         if (state == TASK_RUNNING)
4311                 printk(" running ");
4312         else
4313                 printk(" %08lX ", thread_saved_pc(p));
4314 #else
4315         if (state == TASK_RUNNING)
4316                 printk("  running task   ");
4317         else
4318                 printk(" %016lx ", thread_saved_pc(p));
4319 #endif
4320 #ifdef CONFIG_DEBUG_STACK_USAGE
4321         {
4322                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4323                 while (!*n)
4324                         n++;
4325                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4326         }
4327 #endif
4328         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4329         if ((relative = eldest_child(p)))
4330                 printk("%5d ", relative->pid);
4331         else
4332                 printk("      ");
4333         if ((relative = younger_sibling(p)))
4334                 printk("%7d", relative->pid);
4335         else
4336                 printk("       ");
4337         if ((relative = older_sibling(p)))
4338                 printk(" %5d", relative->pid);
4339         else
4340                 printk("      ");
4341         if (!p->mm)
4342                 printk(" (L-TLB)\n");
4343         else
4344                 printk(" (NOTLB)\n");
4345
4346         if (state != TASK_RUNNING)
4347                 show_stack(p, NULL);
4348 }
4349
4350 void show_state(void)
4351 {
4352         task_t *g, *p;
4353
4354 #if (BITS_PER_LONG == 32)
4355         printk("\n"
4356                "                                               sibling\n");
4357         printk("  task             PC      pid father child younger older\n");
4358 #else
4359         printk("\n"
4360                "                                                       sibling\n");
4361         printk("  task                 PC          pid father child younger older\n");
4362 #endif
4363         read_lock(&tasklist_lock);
4364         do_each_thread(g, p) {
4365                 /*
4366                  * reset the NMI-timeout, listing all files on a slow
4367                  * console might take alot of time:
4368                  */
4369                 touch_nmi_watchdog();
4370                 show_task(p);
4371         } while_each_thread(g, p);
4372
4373         read_unlock(&tasklist_lock);
4374 }
4375
4376 /**
4377  * init_idle - set up an idle thread for a given CPU
4378  * @idle: task in question
4379  * @cpu: cpu the idle task belongs to
4380  *
4381  * NOTE: this function does not set the idle thread's NEED_RESCHED
4382  * flag, to make booting more robust.
4383  */
4384 void __devinit init_idle(task_t *idle, int cpu)
4385 {
4386         runqueue_t *rq = cpu_rq(cpu);
4387         unsigned long flags;
4388
4389         idle->sleep_avg = 0;
4390         idle->array = NULL;
4391         idle->prio = MAX_PRIO;
4392         idle->state = TASK_RUNNING;
4393         idle->cpus_allowed = cpumask_of_cpu(cpu);
4394         set_task_cpu(idle, cpu);
4395
4396         spin_lock_irqsave(&rq->lock, flags);
4397         rq->curr = rq->idle = idle;
4398 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4399         idle->oncpu = 1;
4400 #endif
4401         spin_unlock_irqrestore(&rq->lock, flags);
4402
4403         /* Set the preempt count _outside_ the spinlocks! */
4404 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4405         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4406 #else
4407         idle->thread_info->preempt_count = 0;
4408 #endif
4409 }
4410
4411 /*
4412  * In a system that switches off the HZ timer nohz_cpu_mask
4413  * indicates which cpus entered this state. This is used
4414  * in the rcu update to wait only for active cpus. For system
4415  * which do not switch off the HZ timer nohz_cpu_mask should
4416  * always be CPU_MASK_NONE.
4417  */
4418 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4419
4420 #ifdef CONFIG_SMP
4421 /*
4422  * This is how migration works:
4423  *
4424  * 1) we queue a migration_req_t structure in the source CPU's
4425  *    runqueue and wake up that CPU's migration thread.
4426  * 2) we down() the locked semaphore => thread blocks.
4427  * 3) migration thread wakes up (implicitly it forces the migrated
4428  *    thread off the CPU)
4429  * 4) it gets the migration request and checks whether the migrated
4430  *    task is still in the wrong runqueue.
4431  * 5) if it's in the wrong runqueue then the migration thread removes
4432  *    it and puts it into the right queue.
4433  * 6) migration thread up()s the semaphore.
4434  * 7) we wake up and the migration is done.
4435  */
4436
4437 /*
4438  * Change a given task's CPU affinity. Migrate the thread to a
4439  * proper CPU and schedule it away if the CPU it's executing on
4440  * is removed from the allowed bitmask.
4441  *
4442  * NOTE: the caller must have a valid reference to the task, the
4443  * task must not exit() & deallocate itself prematurely.  The
4444  * call is not atomic; no spinlocks may be held.
4445  */
4446 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4447 {
4448         unsigned long flags;
4449         int ret = 0;
4450         migration_req_t req;
4451         runqueue_t *rq;
4452
4453         rq = task_rq_lock(p, &flags);
4454         if (!cpus_intersects(new_mask, cpu_online_map)) {
4455                 ret = -EINVAL;
4456                 goto out;
4457         }
4458
4459         p->cpus_allowed = new_mask;
4460         /* Can the task run on the task's current CPU? If so, we're done */
4461         if (cpu_isset(task_cpu(p), new_mask))
4462                 goto out;
4463
4464         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4465                 /* Need help from migration thread: drop lock and wait. */
4466                 task_rq_unlock(rq, &flags);
4467                 wake_up_process(rq->migration_thread);
4468                 wait_for_completion(&req.done);
4469                 tlb_migrate_finish(p->mm);
4470                 return 0;
4471         }
4472 out:
4473         task_rq_unlock(rq, &flags);
4474         return ret;
4475 }
4476
4477 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4478
4479 /*
4480  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4481  * this because either it can't run here any more (set_cpus_allowed()
4482  * away from this CPU, or CPU going down), or because we're
4483  * attempting to rebalance this task on exec (sched_exec).
4484  *
4485  * So we race with normal scheduler movements, but that's OK, as long
4486  * as the task is no longer on this CPU.
4487  */
4488 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4489 {
4490         runqueue_t *rq_dest, *rq_src;
4491
4492         if (unlikely(cpu_is_offline(dest_cpu)))
4493                 return;
4494
4495         rq_src = cpu_rq(src_cpu);
4496         rq_dest = cpu_rq(dest_cpu);
4497
4498         double_rq_lock(rq_src, rq_dest);
4499         /* Already moved. */
4500         if (task_cpu(p) != src_cpu)
4501                 goto out;
4502         /* Affinity changed (again). */
4503         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4504                 goto out;
4505
4506         set_task_cpu(p, dest_cpu);
4507         if (p->array) {
4508                 /*
4509                  * Sync timestamp with rq_dest's before activating.
4510                  * The same thing could be achieved by doing this step
4511                  * afterwards, and pretending it was a local activate.
4512                  * This way is cleaner and logically correct.
4513                  */
4514                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4515                                 + rq_dest->timestamp_last_tick;
4516                 deactivate_task(p, rq_src);
4517                 activate_task(p, rq_dest, 0);
4518                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4519                         resched_task(rq_dest->curr);
4520         }
4521
4522 out:
4523         double_rq_unlock(rq_src, rq_dest);
4524 }
4525
4526 /*
4527  * migration_thread - this is a highprio system thread that performs
4528  * thread migration by bumping thread off CPU then 'pushing' onto
4529  * another runqueue.
4530  */
4531 static int migration_thread(void *data)
4532 {
4533         runqueue_t *rq;
4534         int cpu = (long)data;
4535
4536         rq = cpu_rq(cpu);
4537         BUG_ON(rq->migration_thread != current);
4538
4539         set_current_state(TASK_INTERRUPTIBLE);
4540         while (!kthread_should_stop()) {
4541                 struct list_head *head;
4542                 migration_req_t *req;
4543
4544                 try_to_freeze();
4545
4546                 spin_lock_irq(&rq->lock);
4547
4548                 if (cpu_is_offline(cpu)) {
4549                         spin_unlock_irq(&rq->lock);
4550                         goto wait_to_die;
4551                 }
4552
4553                 if (rq->active_balance) {
4554                         active_load_balance(rq, cpu);
4555                         rq->active_balance = 0;
4556                 }
4557
4558                 head = &rq->migration_queue;
4559
4560                 if (list_empty(head)) {
4561                         spin_unlock_irq(&rq->lock);
4562                         schedule();
4563                         set_current_state(TASK_INTERRUPTIBLE);
4564                         continue;
4565                 }
4566                 req = list_entry(head->next, migration_req_t, list);
4567                 list_del_init(head->next);
4568
4569                 spin_unlock(&rq->lock);
4570                 __migrate_task(req->task, cpu, req->dest_cpu);
4571                 local_irq_enable();
4572
4573                 complete(&req->done);
4574         }
4575         __set_current_state(TASK_RUNNING);
4576         return 0;
4577
4578 wait_to_die:
4579         /* Wait for kthread_stop */
4580         set_current_state(TASK_INTERRUPTIBLE);
4581         while (!kthread_should_stop()) {
4582                 schedule();
4583                 set_current_state(TASK_INTERRUPTIBLE);
4584         }
4585         __set_current_state(TASK_RUNNING);
4586         return 0;
4587 }
4588
4589 #ifdef CONFIG_HOTPLUG_CPU
4590 /* Figure out where task on dead CPU should go, use force if neccessary. */
4591 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4592 {
4593         int dest_cpu;
4594         cpumask_t mask;
4595
4596         /* On same node? */
4597         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4598         cpus_and(mask, mask, tsk->cpus_allowed);
4599         dest_cpu = any_online_cpu(mask);
4600
4601         /* On any allowed CPU? */
4602         if (dest_cpu == NR_CPUS)
4603                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4604
4605         /* No more Mr. Nice Guy. */
4606         if (dest_cpu == NR_CPUS) {
4607                 cpus_setall(tsk->cpus_allowed);
4608                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4609
4610                 /*
4611                  * Don't tell them about moving exiting tasks or
4612                  * kernel threads (both mm NULL), since they never
4613                  * leave kernel.
4614                  */
4615                 if (tsk->mm && printk_ratelimit())
4616                         printk(KERN_INFO "process %d (%s) no "
4617                                "longer affine to cpu%d\n",
4618                                tsk->pid, tsk->comm, dead_cpu);
4619         }
4620         __migrate_task(tsk, dead_cpu, dest_cpu);
4621 }
4622
4623 /*
4624  * While a dead CPU has no uninterruptible tasks queued at this point,
4625  * it might still have a nonzero ->nr_uninterruptible counter, because
4626  * for performance reasons the counter is not stricly tracking tasks to
4627  * their home CPUs. So we just add the counter to another CPU's counter,
4628  * to keep the global sum constant after CPU-down:
4629  */
4630 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4631 {
4632         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4633         unsigned long flags;
4634
4635         local_irq_save(flags);
4636         double_rq_lock(rq_src, rq_dest);
4637         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4638         rq_src->nr_uninterruptible = 0;
4639         double_rq_unlock(rq_src, rq_dest);
4640         local_irq_restore(flags);
4641 }
4642
4643 /* Run through task list and migrate tasks from the dead cpu. */
4644 static void migrate_live_tasks(int src_cpu)
4645 {
4646         struct task_struct *tsk, *t;
4647
4648         write_lock_irq(&tasklist_lock);
4649
4650         do_each_thread(t, tsk) {
4651                 if (tsk == current)
4652                         continue;
4653
4654                 if (task_cpu(tsk) == src_cpu)
4655                         move_task_off_dead_cpu(src_cpu, tsk);
4656         } while_each_thread(t, tsk);
4657
4658         write_unlock_irq(&tasklist_lock);
4659 }
4660
4661 /* Schedules idle task to be the next runnable task on current CPU.
4662  * It does so by boosting its priority to highest possible and adding it to
4663  * the _front_ of runqueue. Used by CPU offline code.
4664  */
4665 void sched_idle_next(void)
4666 {
4667         int cpu = smp_processor_id();
4668         runqueue_t *rq = this_rq();
4669         struct task_struct *p = rq->idle;
4670         unsigned long flags;
4671
4672         /* cpu has to be offline */
4673         BUG_ON(cpu_online(cpu));
4674
4675         /* Strictly not necessary since rest of the CPUs are stopped by now
4676          * and interrupts disabled on current cpu.
4677          */
4678         spin_lock_irqsave(&rq->lock, flags);
4679
4680         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4681         /* Add idle task to _front_ of it's priority queue */
4682         __activate_idle_task(p, rq);
4683
4684         spin_unlock_irqrestore(&rq->lock, flags);
4685 }
4686
4687 /* Ensures that the idle task is using init_mm right before its cpu goes
4688  * offline.
4689  */
4690 void idle_task_exit(void)
4691 {
4692         struct mm_struct *mm = current->active_mm;
4693
4694         BUG_ON(cpu_online(smp_processor_id()));
4695
4696         if (mm != &init_mm)
4697                 switch_mm(mm, &init_mm, current);
4698         mmdrop(mm);
4699 }
4700
4701 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4702 {
4703         struct runqueue *rq = cpu_rq(dead_cpu);
4704
4705         /* Must be exiting, otherwise would be on tasklist. */
4706         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4707
4708         /* Cannot have done final schedule yet: would have vanished. */
4709         BUG_ON(tsk->flags & PF_DEAD);
4710
4711         get_task_struct(tsk);
4712
4713         /*
4714          * Drop lock around migration; if someone else moves it,
4715          * that's OK.  No task can be added to this CPU, so iteration is
4716          * fine.
4717          */
4718         spin_unlock_irq(&rq->lock);
4719         move_task_off_dead_cpu(dead_cpu, tsk);
4720         spin_lock_irq(&rq->lock);
4721
4722         put_task_struct(tsk);
4723 }
4724
4725 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4726 static void migrate_dead_tasks(unsigned int dead_cpu)
4727 {
4728         unsigned arr, i;
4729         struct runqueue *rq = cpu_rq(dead_cpu);
4730
4731         for (arr = 0; arr < 2; arr++) {
4732                 for (i = 0; i < MAX_PRIO; i++) {
4733                         struct list_head *list = &rq->arrays[arr].queue[i];
4734                         while (!list_empty(list))
4735                                 migrate_dead(dead_cpu,
4736                                              list_entry(list->next, task_t,
4737                                                         run_list));
4738                 }
4739         }
4740 }
4741 #endif /* CONFIG_HOTPLUG_CPU */
4742
4743 /*
4744  * migration_call - callback that gets triggered when a CPU is added.
4745  * Here we can start up the necessary migration thread for the new CPU.
4746  */
4747 static int migration_call(struct notifier_block *nfb, unsigned long action,
4748                           void *hcpu)
4749 {
4750         int cpu = (long)hcpu;
4751         struct task_struct *p;
4752         struct runqueue *rq;
4753         unsigned long flags;
4754
4755         switch (action) {
4756         case CPU_UP_PREPARE:
4757                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4758                 if (IS_ERR(p))
4759                         return NOTIFY_BAD;
4760                 p->flags |= PF_NOFREEZE;
4761                 kthread_bind(p, cpu);
4762                 /* Must be high prio: stop_machine expects to yield to it. */
4763                 rq = task_rq_lock(p, &flags);
4764                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4765                 task_rq_unlock(rq, &flags);
4766                 cpu_rq(cpu)->migration_thread = p;
4767                 break;
4768         case CPU_ONLINE:
4769                 /* Strictly unneccessary, as first user will wake it. */
4770                 wake_up_process(cpu_rq(cpu)->migration_thread);
4771                 break;
4772 #ifdef CONFIG_HOTPLUG_CPU
4773         case CPU_UP_CANCELED:
4774                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4775                 kthread_bind(cpu_rq(cpu)->migration_thread,
4776                              any_online_cpu(cpu_online_map));
4777                 kthread_stop(cpu_rq(cpu)->migration_thread);
4778                 cpu_rq(cpu)->migration_thread = NULL;
4779                 break;
4780         case CPU_DEAD:
4781                 migrate_live_tasks(cpu);
4782                 rq = cpu_rq(cpu);
4783                 kthread_stop(rq->migration_thread);
4784                 rq->migration_thread = NULL;
4785                 /* Idle task back to normal (off runqueue, low prio) */
4786                 rq = task_rq_lock(rq->idle, &flags);
4787                 deactivate_task(rq->idle, rq);
4788                 rq->idle->static_prio = MAX_PRIO;
4789                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4790                 migrate_dead_tasks(cpu);
4791                 task_rq_unlock(rq, &flags);
4792                 migrate_nr_uninterruptible(rq);
4793                 BUG_ON(rq->nr_running != 0);
4794
4795                 /* No need to migrate the tasks: it was best-effort if
4796                  * they didn't do lock_cpu_hotplug().  Just wake up
4797                  * the requestors. */
4798                 spin_lock_irq(&rq->lock);
4799                 while (!list_empty(&rq->migration_queue)) {
4800                         migration_req_t *req;
4801                         req = list_entry(rq->migration_queue.next,
4802                                          migration_req_t, list);
4803                         list_del_init(&req->list);
4804                         complete(&req->done);
4805                 }
4806                 spin_unlock_irq(&rq->lock);
4807                 break;
4808 #endif
4809         }
4810         return NOTIFY_OK;
4811 }
4812
4813 /* Register at highest priority so that task migration (migrate_all_tasks)
4814  * happens before everything else.
4815  */
4816 static struct notifier_block __devinitdata migration_notifier = {
4817         .notifier_call = migration_call,
4818         .priority = 10
4819 };
4820
4821 int __init migration_init(void)
4822 {
4823         void *cpu = (void *)(long)smp_processor_id();
4824         /* Start one for boot CPU. */
4825         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4826         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4827         register_cpu_notifier(&migration_notifier);
4828         return 0;
4829 }
4830 #endif
4831
4832 #ifdef CONFIG_SMP
4833 #undef SCHED_DOMAIN_DEBUG
4834 #ifdef SCHED_DOMAIN_DEBUG
4835 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4836 {
4837         int level = 0;
4838
4839         if (!sd) {
4840                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4841                 return;
4842         }
4843
4844         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4845
4846         do {
4847                 int i;
4848                 char str[NR_CPUS];
4849                 struct sched_group *group = sd->groups;
4850                 cpumask_t groupmask;
4851
4852                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4853                 cpus_clear(groupmask);
4854
4855                 printk(KERN_DEBUG);
4856                 for (i = 0; i < level + 1; i++)
4857                         printk(" ");
4858                 printk("domain %d: ", level);
4859
4860                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4861                         printk("does not load-balance\n");
4862                         if (sd->parent)
4863                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4864                         break;
4865                 }
4866
4867                 printk("span %s\n", str);
4868
4869                 if (!cpu_isset(cpu, sd->span))
4870                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4871                 if (!cpu_isset(cpu, group->cpumask))
4872                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4873
4874                 printk(KERN_DEBUG);
4875                 for (i = 0; i < level + 2; i++)
4876                         printk(" ");
4877                 printk("groups:");
4878                 do {
4879                         if (!group) {
4880                                 printk("\n");
4881                                 printk(KERN_ERR "ERROR: group is NULL\n");
4882                                 break;
4883                         }
4884
4885                         if (!group->cpu_power) {
4886                                 printk("\n");
4887                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4888                         }
4889
4890                         if (!cpus_weight(group->cpumask)) {
4891                                 printk("\n");
4892                                 printk(KERN_ERR "ERROR: empty group\n");
4893                         }
4894
4895                         if (cpus_intersects(groupmask, group->cpumask)) {
4896                                 printk("\n");
4897                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4898                         }
4899
4900                         cpus_or(groupmask, groupmask, group->cpumask);
4901
4902                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4903                         printk(" %s", str);
4904
4905                         group = group->next;
4906                 } while (group != sd->groups);
4907                 printk("\n");
4908
4909                 if (!cpus_equal(sd->span, groupmask))
4910                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4911
4912                 level++;
4913                 sd = sd->parent;
4914
4915                 if (sd) {
4916                         if (!cpus_subset(groupmask, sd->span))
4917                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4918                 }
4919
4920         } while (sd);
4921 }
4922 #else
4923 #define sched_domain_debug(sd, cpu) {}
4924 #endif
4925
4926 static int sd_degenerate(struct sched_domain *sd)
4927 {
4928         if (cpus_weight(sd->span) == 1)
4929                 return 1;
4930
4931         /* Following flags need at least 2 groups */
4932         if (sd->flags & (SD_LOAD_BALANCE |
4933                          SD_BALANCE_NEWIDLE |
4934                          SD_BALANCE_FORK |
4935                          SD_BALANCE_EXEC)) {
4936                 if (sd->groups != sd->groups->next)
4937                         return 0;
4938         }
4939
4940         /* Following flags don't use groups */
4941         if (sd->flags & (SD_WAKE_IDLE |
4942                          SD_WAKE_AFFINE |
4943                          SD_WAKE_BALANCE))
4944                 return 0;
4945
4946         return 1;
4947 }
4948
4949 static int sd_parent_degenerate(struct sched_domain *sd,
4950                                                 struct sched_domain *parent)
4951 {
4952         unsigned long cflags = sd->flags, pflags = parent->flags;
4953
4954         if (sd_degenerate(parent))
4955                 return 1;
4956
4957         if (!cpus_equal(sd->span, parent->span))
4958                 return 0;
4959
4960         /* Does parent contain flags not in child? */
4961         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4962         if (cflags & SD_WAKE_AFFINE)
4963                 pflags &= ~SD_WAKE_BALANCE;
4964         /* Flags needing groups don't count if only 1 group in parent */
4965         if (parent->groups == parent->groups->next) {
4966                 pflags &= ~(SD_LOAD_BALANCE |
4967                                 SD_BALANCE_NEWIDLE |
4968                                 SD_BALANCE_FORK |
4969                                 SD_BALANCE_EXEC);
4970         }
4971         if (~cflags & pflags)
4972                 return 0;
4973
4974         return 1;
4975 }
4976
4977 /*
4978  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4979  * hold the hotplug lock.
4980  */
4981 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4982 {
4983         runqueue_t *rq = cpu_rq(cpu);
4984         struct sched_domain *tmp;
4985
4986         /* Remove the sched domains which do not contribute to scheduling. */
4987         for (tmp = sd; tmp; tmp = tmp->parent) {
4988                 struct sched_domain *parent = tmp->parent;
4989                 if (!parent)
4990                         break;
4991                 if (sd_parent_degenerate(tmp, parent))
4992                         tmp->parent = parent->parent;
4993         }
4994
4995         if (sd && sd_degenerate(sd))
4996                 sd = sd->parent;
4997
4998         sched_domain_debug(sd, cpu);
4999
5000         rcu_assign_pointer(rq->sd, sd);
5001 }
5002
5003 /* cpus with isolated domains */
5004 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5005
5006 /* Setup the mask of cpus configured for isolated domains */
5007 static int __init isolated_cpu_setup(char *str)
5008 {
5009         int ints[NR_CPUS], i;
5010
5011         str = get_options(str, ARRAY_SIZE(ints), ints);
5012         cpus_clear(cpu_isolated_map);
5013         for (i = 1; i <= ints[0]; i++)
5014                 if (ints[i] < NR_CPUS)
5015                         cpu_set(ints[i], cpu_isolated_map);
5016         return 1;
5017 }
5018
5019 __setup ("isolcpus=", isolated_cpu_setup);
5020
5021 /*
5022  * init_sched_build_groups takes an array of groups, the cpumask we wish
5023  * to span, and a pointer to a function which identifies what group a CPU
5024  * belongs to. The return value of group_fn must be a valid index into the
5025  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5026  * keep track of groups covered with a cpumask_t).
5027  *
5028  * init_sched_build_groups will build a circular linked list of the groups
5029  * covered by the given span, and will set each group's ->cpumask correctly,
5030  * and ->cpu_power to 0.
5031  */
5032 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5033                                     int (*group_fn)(int cpu))
5034 {
5035         struct sched_group *first = NULL, *last = NULL;
5036         cpumask_t covered = CPU_MASK_NONE;
5037         int i;
5038
5039         for_each_cpu_mask(i, span) {
5040                 int group = group_fn(i);
5041                 struct sched_group *sg = &groups[group];
5042                 int j;
5043
5044                 if (cpu_isset(i, covered))
5045                         continue;
5046
5047                 sg->cpumask = CPU_MASK_NONE;
5048                 sg->cpu_power = 0;
5049
5050                 for_each_cpu_mask(j, span) {
5051                         if (group_fn(j) != group)
5052                                 continue;
5053
5054                         cpu_set(j, covered);
5055                         cpu_set(j, sg->cpumask);
5056                 }
5057                 if (!first)
5058                         first = sg;
5059                 if (last)
5060                         last->next = sg;
5061                 last = sg;
5062         }
5063         last->next = first;
5064 }
5065
5066 #define SD_NODES_PER_DOMAIN 16
5067
5068 #ifdef CONFIG_NUMA
5069 /**
5070  * find_next_best_node - find the next node to include in a sched_domain
5071  * @node: node whose sched_domain we're building
5072  * @used_nodes: nodes already in the sched_domain
5073  *
5074  * Find the next node to include in a given scheduling domain.  Simply
5075  * finds the closest node not already in the @used_nodes map.
5076  *
5077  * Should use nodemask_t.
5078  */
5079 static int find_next_best_node(int node, unsigned long *used_nodes)
5080 {
5081         int i, n, val, min_val, best_node = 0;
5082
5083         min_val = INT_MAX;
5084
5085         for (i = 0; i < MAX_NUMNODES; i++) {
5086                 /* Start at @node */
5087                 n = (node + i) % MAX_NUMNODES;
5088
5089                 if (!nr_cpus_node(n))
5090                         continue;
5091
5092                 /* Skip already used nodes */
5093                 if (test_bit(n, used_nodes))
5094                         continue;
5095
5096                 /* Simple min distance search */
5097                 val = node_distance(node, n);
5098
5099                 if (val < min_val) {
5100                         min_val = val;
5101                         best_node = n;
5102                 }
5103         }
5104
5105         set_bit(best_node, used_nodes);
5106         return best_node;
5107 }
5108
5109 /**
5110  * sched_domain_node_span - get a cpumask for a node's sched_domain
5111  * @node: node whose cpumask we're constructing
5112  * @size: number of nodes to include in this span
5113  *
5114  * Given a node, construct a good cpumask for its sched_domain to span.  It
5115  * should be one that prevents unnecessary balancing, but also spreads tasks
5116  * out optimally.
5117  */
5118 static cpumask_t sched_domain_node_span(int node)
5119 {
5120         int i;
5121         cpumask_t span, nodemask;
5122         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5123
5124         cpus_clear(span);
5125         bitmap_zero(used_nodes, MAX_NUMNODES);
5126
5127         nodemask = node_to_cpumask(node);
5128         cpus_or(span, span, nodemask);
5129         set_bit(node, used_nodes);
5130
5131         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5132                 int next_node = find_next_best_node(node, used_nodes);
5133                 nodemask = node_to_cpumask(next_node);
5134                 cpus_or(span, span, nodemask);
5135         }
5136
5137         return span;
5138 }
5139 #endif
5140
5141 /*
5142  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5143  * can switch it on easily if needed.
5144  */
5145 #ifdef CONFIG_SCHED_SMT
5146 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5147 static struct sched_group sched_group_cpus[NR_CPUS];
5148 static int cpu_to_cpu_group(int cpu)
5149 {
5150         return cpu;
5151 }
5152 #endif
5153
5154 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5155 static struct sched_group sched_group_phys[NR_CPUS];
5156 static int cpu_to_phys_group(int cpu)
5157 {
5158 #ifdef CONFIG_SCHED_SMT
5159         return first_cpu(cpu_sibling_map[cpu]);
5160 #else
5161         return cpu;
5162 #endif
5163 }
5164
5165 #ifdef CONFIG_NUMA
5166 /*
5167  * The init_sched_build_groups can't handle what we want to do with node
5168  * groups, so roll our own. Now each node has its own list of groups which
5169  * gets dynamically allocated.
5170  */
5171 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5172 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5173
5174 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5175 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5176
5177 static int cpu_to_allnodes_group(int cpu)
5178 {
5179         return cpu_to_node(cpu);
5180 }
5181 #endif
5182
5183 /*
5184  * Build sched domains for a given set of cpus and attach the sched domains
5185  * to the individual cpus
5186  */
5187 void build_sched_domains(const cpumask_t *cpu_map)
5188 {
5189         int i;
5190 #ifdef CONFIG_NUMA
5191         struct sched_group **sched_group_nodes = NULL;
5192         struct sched_group *sched_group_allnodes = NULL;
5193
5194         /*
5195          * Allocate the per-node list of sched groups
5196          */
5197         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5198                                            GFP_ATOMIC);
5199         if (!sched_group_nodes) {
5200                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5201                 return;
5202         }
5203         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5204 #endif
5205
5206         /*
5207          * Set up domains for cpus specified by the cpu_map.
5208          */
5209         for_each_cpu_mask(i, *cpu_map) {
5210                 int group;
5211                 struct sched_domain *sd = NULL, *p;
5212                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5213
5214                 cpus_and(nodemask, nodemask, *cpu_map);
5215
5216 #ifdef CONFIG_NUMA
5217                 if (cpus_weight(*cpu_map)
5218                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5219                         if (!sched_group_allnodes) {
5220                                 sched_group_allnodes
5221                                         = kmalloc(sizeof(struct sched_group)
5222                                                         * MAX_NUMNODES,
5223                                                   GFP_KERNEL);
5224                                 if (!sched_group_allnodes) {
5225                                         printk(KERN_WARNING
5226                                         "Can not alloc allnodes sched group\n");
5227                                         break;
5228                                 }
5229                                 sched_group_allnodes_bycpu[i]
5230                                                 = sched_group_allnodes;
5231                         }
5232                         sd = &per_cpu(allnodes_domains, i);
5233                         *sd = SD_ALLNODES_INIT;
5234                         sd->span = *cpu_map;
5235                         group = cpu_to_allnodes_group(i);
5236                         sd->groups = &sched_group_allnodes[group];
5237                         p = sd;
5238                 } else
5239                         p = NULL;
5240
5241                 sd = &per_cpu(node_domains, i);
5242                 *sd = SD_NODE_INIT;
5243                 sd->span = sched_domain_node_span(cpu_to_node(i));
5244                 sd->parent = p;
5245                 cpus_and(sd->span, sd->span, *cpu_map);
5246 #endif
5247
5248                 p = sd;
5249                 sd = &per_cpu(phys_domains, i);
5250                 group = cpu_to_phys_group(i);
5251                 *sd = SD_CPU_INIT;
5252                 sd->span = nodemask;
5253                 sd->parent = p;
5254                 sd->groups = &sched_group_phys[group];
5255
5256 #ifdef CONFIG_SCHED_SMT
5257                 p = sd;
5258                 sd = &per_cpu(cpu_domains, i);
5259                 group = cpu_to_cpu_group(i);
5260                 *sd = SD_SIBLING_INIT;
5261                 sd->span = cpu_sibling_map[i];
5262                 cpus_and(sd->span, sd->span, *cpu_map);
5263                 sd->parent = p;
5264                 sd->groups = &sched_group_cpus[group];
5265 #endif
5266         }
5267
5268 #ifdef CONFIG_SCHED_SMT
5269         /* Set up CPU (sibling) groups */
5270         for_each_cpu_mask(i, *cpu_map) {
5271                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5272                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5273                 if (i != first_cpu(this_sibling_map))
5274                         continue;
5275
5276                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5277                                                 &cpu_to_cpu_group);
5278         }
5279 #endif
5280
5281         /* Set up physical groups */
5282         for (i = 0; i < MAX_NUMNODES; i++) {
5283                 cpumask_t nodemask = node_to_cpumask(i);
5284
5285                 cpus_and(nodemask, nodemask, *cpu_map);
5286                 if (cpus_empty(nodemask))
5287                         continue;
5288
5289                 init_sched_build_groups(sched_group_phys, nodemask,
5290                                                 &cpu_to_phys_group);
5291         }
5292
5293 #ifdef CONFIG_NUMA
5294         /* Set up node groups */
5295         if (sched_group_allnodes)
5296                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5297                                         &cpu_to_allnodes_group);
5298
5299         for (i = 0; i < MAX_NUMNODES; i++) {
5300                 /* Set up node groups */
5301                 struct sched_group *sg, *prev;
5302                 cpumask_t nodemask = node_to_cpumask(i);
5303                 cpumask_t domainspan;
5304                 cpumask_t covered = CPU_MASK_NONE;
5305                 int j;
5306
5307                 cpus_and(nodemask, nodemask, *cpu_map);
5308                 if (cpus_empty(nodemask)) {
5309                         sched_group_nodes[i] = NULL;
5310                         continue;
5311                 }
5312
5313                 domainspan = sched_domain_node_span(i);
5314                 cpus_and(domainspan, domainspan, *cpu_map);
5315
5316                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5317                 sched_group_nodes[i] = sg;
5318                 for_each_cpu_mask(j, nodemask) {
5319                         struct sched_domain *sd;
5320                         sd = &per_cpu(node_domains, j);
5321                         sd->groups = sg;
5322                         if (sd->groups == NULL) {
5323                                 /* Turn off balancing if we have no groups */
5324                                 sd->flags = 0;
5325                         }
5326                 }
5327                 if (!sg) {
5328                         printk(KERN_WARNING
5329                         "Can not alloc domain group for node %d\n", i);
5330                         continue;
5331                 }
5332                 sg->cpu_power = 0;
5333                 sg->cpumask = nodemask;
5334                 cpus_or(covered, covered, nodemask);
5335                 prev = sg;
5336
5337                 for (j = 0; j < MAX_NUMNODES; j++) {
5338                         cpumask_t tmp, notcovered;
5339                         int n = (i + j) % MAX_NUMNODES;
5340
5341                         cpus_complement(notcovered, covered);
5342                         cpus_and(tmp, notcovered, *cpu_map);
5343                         cpus_and(tmp, tmp, domainspan);
5344                         if (cpus_empty(tmp))
5345                                 break;
5346
5347                         nodemask = node_to_cpumask(n);
5348                         cpus_and(tmp, tmp, nodemask);
5349                         if (cpus_empty(tmp))
5350                                 continue;
5351
5352                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5353                         if (!sg) {
5354                                 printk(KERN_WARNING
5355                                 "Can not alloc domain group for node %d\n", j);
5356                                 break;
5357                         }
5358                         sg->cpu_power = 0;
5359                         sg->cpumask = tmp;
5360                         cpus_or(covered, covered, tmp);
5361                         prev->next = sg;
5362                         prev = sg;
5363                 }
5364                 prev->next = sched_group_nodes[i];
5365         }
5366 #endif
5367
5368         /* Calculate CPU power for physical packages and nodes */
5369         for_each_cpu_mask(i, *cpu_map) {
5370                 int power;
5371                 struct sched_domain *sd;
5372 #ifdef CONFIG_SCHED_SMT
5373                 sd = &per_cpu(cpu_domains, i);
5374                 power = SCHED_LOAD_SCALE;
5375                 sd->groups->cpu_power = power;
5376 #endif
5377
5378                 sd = &per_cpu(phys_domains, i);
5379                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5380                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5381                 sd->groups->cpu_power = power;
5382
5383 #ifdef CONFIG_NUMA
5384                 sd = &per_cpu(allnodes_domains, i);
5385                 if (sd->groups) {
5386                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5387                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5388                         sd->groups->cpu_power = power;
5389                 }
5390 #endif
5391         }
5392
5393 #ifdef CONFIG_NUMA
5394         for (i = 0; i < MAX_NUMNODES; i++) {
5395                 struct sched_group *sg = sched_group_nodes[i];
5396                 int j;
5397
5398                 if (sg == NULL)
5399                         continue;
5400 next_sg:
5401                 for_each_cpu_mask(j, sg->cpumask) {
5402                         struct sched_domain *sd;
5403                         int power;
5404
5405                         sd = &per_cpu(phys_domains, j);
5406                         if (j != first_cpu(sd->groups->cpumask)) {
5407                                 /*
5408                                  * Only add "power" once for each
5409                                  * physical package.
5410                                  */
5411                                 continue;
5412                         }
5413                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5414                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5415
5416                         sg->cpu_power += power;
5417                 }
5418                 sg = sg->next;
5419                 if (sg != sched_group_nodes[i])
5420                         goto next_sg;
5421         }
5422 #endif
5423
5424         /* Attach the domains */
5425         for_each_cpu_mask(i, *cpu_map) {
5426                 struct sched_domain *sd;
5427 #ifdef CONFIG_SCHED_SMT
5428                 sd = &per_cpu(cpu_domains, i);
5429 #else
5430                 sd = &per_cpu(phys_domains, i);
5431 #endif
5432                 cpu_attach_domain(sd, i);
5433         }
5434 }
5435 /*
5436  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5437  */
5438 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5439 {
5440         cpumask_t cpu_default_map;
5441
5442         /*
5443          * Setup mask for cpus without special case scheduling requirements.
5444          * For now this just excludes isolated cpus, but could be used to
5445          * exclude other special cases in the future.
5446          */
5447         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5448
5449         build_sched_domains(&cpu_default_map);
5450 }
5451
5452 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5453 {
5454 #ifdef CONFIG_NUMA
5455         int i;
5456         int cpu;
5457
5458         for_each_cpu_mask(cpu, *cpu_map) {
5459                 struct sched_group *sched_group_allnodes
5460                         = sched_group_allnodes_bycpu[cpu];
5461                 struct sched_group **sched_group_nodes
5462                         = sched_group_nodes_bycpu[cpu];
5463
5464                 if (sched_group_allnodes) {
5465                         kfree(sched_group_allnodes);
5466                         sched_group_allnodes_bycpu[cpu] = NULL;
5467                 }
5468
5469                 if (!sched_group_nodes)
5470                         continue;
5471
5472                 for (i = 0; i < MAX_NUMNODES; i++) {
5473                         cpumask_t nodemask = node_to_cpumask(i);
5474                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5475
5476                         cpus_and(nodemask, nodemask, *cpu_map);
5477                         if (cpus_empty(nodemask))
5478                                 continue;
5479
5480                         if (sg == NULL)
5481                                 continue;
5482                         sg = sg->next;
5483 next_sg:
5484                         oldsg = sg;
5485                         sg = sg->next;
5486                         kfree(oldsg);
5487                         if (oldsg != sched_group_nodes[i])
5488                                 goto next_sg;
5489                 }
5490                 kfree(sched_group_nodes);
5491                 sched_group_nodes_bycpu[cpu] = NULL;
5492         }
5493 #endif
5494 }
5495
5496 /*
5497  * Detach sched domains from a group of cpus specified in cpu_map
5498  * These cpus will now be attached to the NULL domain
5499  */
5500 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5501 {
5502         int i;
5503
5504         for_each_cpu_mask(i, *cpu_map)
5505                 cpu_attach_domain(NULL, i);
5506         synchronize_sched();
5507         arch_destroy_sched_domains(cpu_map);
5508 }
5509
5510 /*
5511  * Partition sched domains as specified by the cpumasks below.
5512  * This attaches all cpus from the cpumasks to the NULL domain,
5513  * waits for a RCU quiescent period, recalculates sched
5514  * domain information and then attaches them back to the
5515  * correct sched domains
5516  * Call with hotplug lock held
5517  */
5518 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5519 {
5520         cpumask_t change_map;
5521
5522         cpus_and(*partition1, *partition1, cpu_online_map);
5523         cpus_and(*partition2, *partition2, cpu_online_map);
5524         cpus_or(change_map, *partition1, *partition2);
5525
5526         /* Detach sched domains from all of the affected cpus */
5527         detach_destroy_domains(&change_map);
5528         if (!cpus_empty(*partition1))
5529                 build_sched_domains(partition1);
5530         if (!cpus_empty(*partition2))
5531                 build_sched_domains(partition2);
5532 }
5533
5534 #ifdef CONFIG_HOTPLUG_CPU
5535 /*
5536  * Force a reinitialization of the sched domains hierarchy.  The domains
5537  * and groups cannot be updated in place without racing with the balancing
5538  * code, so we temporarily attach all running cpus to the NULL domain
5539  * which will prevent rebalancing while the sched domains are recalculated.
5540  */
5541 static int update_sched_domains(struct notifier_block *nfb,
5542                                 unsigned long action, void *hcpu)
5543 {
5544         switch (action) {
5545         case CPU_UP_PREPARE:
5546         case CPU_DOWN_PREPARE:
5547                 detach_destroy_domains(&cpu_online_map);
5548                 return NOTIFY_OK;
5549
5550         case CPU_UP_CANCELED:
5551         case CPU_DOWN_FAILED:
5552         case CPU_ONLINE:
5553         case CPU_DEAD:
5554                 /*
5555                  * Fall through and re-initialise the domains.
5556                  */
5557                 break;
5558         default:
5559                 return NOTIFY_DONE;
5560         }
5561
5562         /* The hotplug lock is already held by cpu_up/cpu_down */
5563         arch_init_sched_domains(&cpu_online_map);
5564
5565         return NOTIFY_OK;
5566 }
5567 #endif
5568
5569 void __init sched_init_smp(void)
5570 {
5571         lock_cpu_hotplug();
5572         arch_init_sched_domains(&cpu_online_map);
5573         unlock_cpu_hotplug();
5574         /* XXX: Theoretical race here - CPU may be hotplugged now */
5575         hotcpu_notifier(update_sched_domains, 0);
5576 }
5577 #else
5578 void __init sched_init_smp(void)
5579 {
5580 }
5581 #endif /* CONFIG_SMP */
5582
5583 int in_sched_functions(unsigned long addr)
5584 {
5585         /* Linker adds these: start and end of __sched functions */
5586         extern char __sched_text_start[], __sched_text_end[];
5587         return in_lock_functions(addr) ||
5588                 (addr >= (unsigned long)__sched_text_start
5589                 && addr < (unsigned long)__sched_text_end);
5590 }
5591
5592 void __init sched_init(void)
5593 {
5594         runqueue_t *rq;
5595         int i, j, k;
5596
5597         for (i = 0; i < NR_CPUS; i++) {
5598                 prio_array_t *array;
5599
5600                 rq = cpu_rq(i);
5601                 spin_lock_init(&rq->lock);
5602                 rq->nr_running = 0;
5603                 rq->active = rq->arrays;
5604                 rq->expired = rq->arrays + 1;
5605                 rq->best_expired_prio = MAX_PRIO;
5606
5607 #ifdef CONFIG_SMP
5608                 rq->sd = NULL;
5609                 for (j = 1; j < 3; j++)
5610                         rq->cpu_load[j] = 0;
5611                 rq->active_balance = 0;
5612                 rq->push_cpu = 0;
5613                 rq->migration_thread = NULL;
5614                 INIT_LIST_HEAD(&rq->migration_queue);
5615 #endif
5616                 atomic_set(&rq->nr_iowait, 0);
5617
5618                 for (j = 0; j < 2; j++) {
5619                         array = rq->arrays + j;
5620                         for (k = 0; k < MAX_PRIO; k++) {
5621                                 INIT_LIST_HEAD(array->queue + k);
5622                                 __clear_bit(k, array->bitmap);
5623                         }
5624                         // delimiter for bitsearch
5625                         __set_bit(MAX_PRIO, array->bitmap);
5626                 }
5627         }
5628
5629         /*
5630          * The boot idle thread does lazy MMU switching as well:
5631          */
5632         atomic_inc(&init_mm.mm_count);
5633         enter_lazy_tlb(&init_mm, current);
5634
5635         /*
5636          * Make us the idle thread. Technically, schedule() should not be
5637          * called from this thread, however somewhere below it might be,
5638          * but because we are the idle thread, we just pick up running again
5639          * when this runqueue becomes "idle".
5640          */
5641         init_idle(current, smp_processor_id());
5642 }
5643
5644 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5645 void __might_sleep(char *file, int line)
5646 {
5647 #if defined(in_atomic)
5648         static unsigned long prev_jiffy;        /* ratelimiting */
5649
5650         if ((in_atomic() || irqs_disabled()) &&
5651             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5652                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5653                         return;
5654                 prev_jiffy = jiffies;
5655                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5656                                 " context at %s:%d\n", file, line);
5657                 printk("in_atomic():%d, irqs_disabled():%d\n",
5658                         in_atomic(), irqs_disabled());
5659                 dump_stack();
5660         }
5661 #endif
5662 }
5663 EXPORT_SYMBOL(__might_sleep);
5664 #endif
5665
5666 #ifdef CONFIG_MAGIC_SYSRQ
5667 void normalize_rt_tasks(void)
5668 {
5669         struct task_struct *p;
5670         prio_array_t *array;
5671         unsigned long flags;
5672         runqueue_t *rq;
5673
5674         read_lock_irq(&tasklist_lock);
5675         for_each_process (p) {
5676                 if (!rt_task(p))
5677                         continue;
5678
5679                 rq = task_rq_lock(p, &flags);
5680
5681                 array = p->array;
5682                 if (array)
5683                         deactivate_task(p, task_rq(p));
5684                 __setscheduler(p, SCHED_NORMAL, 0);
5685                 if (array) {
5686                         __activate_task(p, task_rq(p));
5687                         resched_task(rq->curr);
5688                 }
5689
5690                 task_rq_unlock(rq, &flags);
5691         }
5692         read_unlock_irq(&tasklist_lock);
5693 }
5694
5695 #endif /* CONFIG_MAGIC_SYSRQ */
5696
5697 #ifdef CONFIG_IA64
5698 /*
5699  * These functions are only useful for the IA64 MCA handling.
5700  *
5701  * They can only be called when the whole system has been
5702  * stopped - every CPU needs to be quiescent, and no scheduling
5703  * activity can take place. Using them for anything else would
5704  * be a serious bug, and as a result, they aren't even visible
5705  * under any other configuration.
5706  */
5707
5708 /**
5709  * curr_task - return the current task for a given cpu.
5710  * @cpu: the processor in question.
5711  *
5712  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5713  */
5714 task_t *curr_task(int cpu)
5715 {
5716         return cpu_curr(cpu);
5717 }
5718
5719 /**
5720  * set_curr_task - set the current task for a given cpu.
5721  * @cpu: the processor in question.
5722  * @p: the task pointer to set.
5723  *
5724  * Description: This function must only be used when non-maskable interrupts
5725  * are serviced on a separate stack.  It allows the architecture to switch the
5726  * notion of the current task on a cpu in a non-blocking manner.  This function
5727  * must be called with all CPU's synchronized, and interrupts disabled, the
5728  * and caller must save the original value of the current task (see
5729  * curr_task() above) and restore that value before reenabling interrupts and
5730  * re-starting the system.
5731  *
5732  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5733  */
5734 void set_curr_task(int cpu, task_t *p)
5735 {
5736         cpu_curr(cpu) = p;
5737 }
5738
5739 #endif