[PATCH] sched: change prio bias only if queued
[safe/jmp/linux-2.6] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long prio_bias;
210         unsigned long cpu_load[3];
211 #endif
212         unsigned long long nr_switches;
213
214         /*
215          * This is part of a global counter where only the total sum
216          * over all CPUs matters. A task can increase this counter on
217          * one CPU and if it got migrated afterwards it may decrease
218          * it on another CPU. Always updated under the runqueue lock:
219          */
220         unsigned long nr_uninterruptible;
221
222         unsigned long expired_timestamp;
223         unsigned long long timestamp_last_tick;
224         task_t *curr, *idle;
225         struct mm_struct *prev_mm;
226         prio_array_t *active, *expired, arrays[2];
227         int best_expired_prio;
228         atomic_t nr_iowait;
229
230 #ifdef CONFIG_SMP
231         struct sched_domain *sd;
232
233         /* For active balancing */
234         int active_balance;
235         int push_cpu;
236
237         task_t *migration_thread;
238         struct list_head migration_queue;
239 #endif
240
241 #ifdef CONFIG_SCHEDSTATS
242         /* latency stats */
243         struct sched_info rq_sched_info;
244
245         /* sys_sched_yield() stats */
246         unsigned long yld_exp_empty;
247         unsigned long yld_act_empty;
248         unsigned long yld_both_empty;
249         unsigned long yld_cnt;
250
251         /* schedule() stats */
252         unsigned long sched_switch;
253         unsigned long sched_cnt;
254         unsigned long sched_goidle;
255
256         /* try_to_wake_up() stats */
257         unsigned long ttwu_cnt;
258         unsigned long ttwu_local;
259 #endif
260 };
261
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
263
264 /*
265  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266  * See detach_destroy_domains: synchronize_sched for details.
267  *
268  * The domain tree of any CPU may only be accessed from within
269  * preempt-disabled sections.
270  */
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273
274 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
275 #define this_rq()               (&__get_cpu_var(runqueues))
276 #define task_rq(p)              cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
278
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next)      do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev)       do { } while (0)
284 #endif
285
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
288 {
289         return rq->curr == p;
290 }
291
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293 {
294 }
295
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 {
298 #ifdef CONFIG_DEBUG_SPINLOCK
299         /* this is a valid case when another task releases the spinlock */
300         rq->lock.owner = current;
301 #endif
302         spin_unlock_irq(&rq->lock);
303 }
304
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
307 {
308 #ifdef CONFIG_SMP
309         return p->oncpu;
310 #else
311         return rq->curr == p;
312 #endif
313 }
314
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316 {
317 #ifdef CONFIG_SMP
318         /*
319          * We can optimise this out completely for !SMP, because the
320          * SMP rebalancing from interrupt is the only thing that cares
321          * here.
322          */
323         next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326         spin_unlock_irq(&rq->lock);
327 #else
328         spin_unlock(&rq->lock);
329 #endif
330 }
331
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333 {
334 #ifdef CONFIG_SMP
335         /*
336          * After ->oncpu is cleared, the task can be moved to a different CPU.
337          * We must ensure this doesn't happen until the switch is completely
338          * finished.
339          */
340         smp_wmb();
341         prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344         local_irq_enable();
345 #endif
346 }
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
348
349 /*
350  * task_rq_lock - lock the runqueue a given task resides on and disable
351  * interrupts.  Note the ordering: we can safely lookup the task_rq without
352  * explicitly disabling preemption.
353  */
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355         __acquires(rq->lock)
356 {
357         struct runqueue *rq;
358
359 repeat_lock_task:
360         local_irq_save(*flags);
361         rq = task_rq(p);
362         spin_lock(&rq->lock);
363         if (unlikely(rq != task_rq(p))) {
364                 spin_unlock_irqrestore(&rq->lock, *flags);
365                 goto repeat_lock_task;
366         }
367         return rq;
368 }
369
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371         __releases(rq->lock)
372 {
373         spin_unlock_irqrestore(&rq->lock, *flags);
374 }
375
376 #ifdef CONFIG_SCHEDSTATS
377 /*
378  * bump this up when changing the output format or the meaning of an existing
379  * format, so that tools can adapt (or abort)
380  */
381 #define SCHEDSTAT_VERSION 12
382
383 static int show_schedstat(struct seq_file *seq, void *v)
384 {
385         int cpu;
386
387         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388         seq_printf(seq, "timestamp %lu\n", jiffies);
389         for_each_online_cpu(cpu) {
390                 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392                 struct sched_domain *sd;
393                 int dcnt = 0;
394 #endif
395
396                 /* runqueue-specific stats */
397                 seq_printf(seq,
398                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399                     cpu, rq->yld_both_empty,
400                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402                     rq->ttwu_cnt, rq->ttwu_local,
403                     rq->rq_sched_info.cpu_time,
404                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406                 seq_printf(seq, "\n");
407
408 #ifdef CONFIG_SMP
409                 /* domain-specific stats */
410                 preempt_disable();
411                 for_each_domain(cpu, sd) {
412                         enum idle_type itype;
413                         char mask_str[NR_CPUS];
414
415                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418                                         itype++) {
419                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420                                     sd->lb_cnt[itype],
421                                     sd->lb_balanced[itype],
422                                     sd->lb_failed[itype],
423                                     sd->lb_imbalance[itype],
424                                     sd->lb_gained[itype],
425                                     sd->lb_hot_gained[itype],
426                                     sd->lb_nobusyq[itype],
427                                     sd->lb_nobusyg[itype]);
428                         }
429                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434                 }
435                 preempt_enable();
436 #endif
437         }
438         return 0;
439 }
440
441 static int schedstat_open(struct inode *inode, struct file *file)
442 {
443         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444         char *buf = kmalloc(size, GFP_KERNEL);
445         struct seq_file *m;
446         int res;
447
448         if (!buf)
449                 return -ENOMEM;
450         res = single_open(file, show_schedstat, NULL);
451         if (!res) {
452                 m = file->private_data;
453                 m->buf = buf;
454                 m->size = size;
455         } else
456                 kfree(buf);
457         return res;
458 }
459
460 struct file_operations proc_schedstat_operations = {
461         .open    = schedstat_open,
462         .read    = seq_read,
463         .llseek  = seq_lseek,
464         .release = single_release,
465 };
466
467 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field)       do { } while (0)
471 # define schedstat_add(rq, field, amt)  do { } while (0)
472 #endif
473
474 /*
475  * rq_lock - lock a given runqueue and disable interrupts.
476  */
477 static inline runqueue_t *this_rq_lock(void)
478         __acquires(rq->lock)
479 {
480         runqueue_t *rq;
481
482         local_irq_disable();
483         rq = this_rq();
484         spin_lock(&rq->lock);
485
486         return rq;
487 }
488
489 #ifdef CONFIG_SCHEDSTATS
490 /*
491  * Called when a process is dequeued from the active array and given
492  * the cpu.  We should note that with the exception of interactive
493  * tasks, the expired queue will become the active queue after the active
494  * queue is empty, without explicitly dequeuing and requeuing tasks in the
495  * expired queue.  (Interactive tasks may be requeued directly to the
496  * active queue, thus delaying tasks in the expired queue from running;
497  * see scheduler_tick()).
498  *
499  * This function is only called from sched_info_arrive(), rather than
500  * dequeue_task(). Even though a task may be queued and dequeued multiple
501  * times as it is shuffled about, we're really interested in knowing how
502  * long it was from the *first* time it was queued to the time that it
503  * finally hit a cpu.
504  */
505 static inline void sched_info_dequeued(task_t *t)
506 {
507         t->sched_info.last_queued = 0;
508 }
509
510 /*
511  * Called when a task finally hits the cpu.  We can now calculate how
512  * long it was waiting to run.  We also note when it began so that we
513  * can keep stats on how long its timeslice is.
514  */
515 static inline void sched_info_arrive(task_t *t)
516 {
517         unsigned long now = jiffies, diff = 0;
518         struct runqueue *rq = task_rq(t);
519
520         if (t->sched_info.last_queued)
521                 diff = now - t->sched_info.last_queued;
522         sched_info_dequeued(t);
523         t->sched_info.run_delay += diff;
524         t->sched_info.last_arrival = now;
525         t->sched_info.pcnt++;
526
527         if (!rq)
528                 return;
529
530         rq->rq_sched_info.run_delay += diff;
531         rq->rq_sched_info.pcnt++;
532 }
533
534 /*
535  * Called when a process is queued into either the active or expired
536  * array.  The time is noted and later used to determine how long we
537  * had to wait for us to reach the cpu.  Since the expired queue will
538  * become the active queue after active queue is empty, without dequeuing
539  * and requeuing any tasks, we are interested in queuing to either. It
540  * is unusual but not impossible for tasks to be dequeued and immediately
541  * requeued in the same or another array: this can happen in sched_yield(),
542  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543  * to runqueue.
544  *
545  * This function is only called from enqueue_task(), but also only updates
546  * the timestamp if it is already not set.  It's assumed that
547  * sched_info_dequeued() will clear that stamp when appropriate.
548  */
549 static inline void sched_info_queued(task_t *t)
550 {
551         if (!t->sched_info.last_queued)
552                 t->sched_info.last_queued = jiffies;
553 }
554
555 /*
556  * Called when a process ceases being the active-running process, either
557  * voluntarily or involuntarily.  Now we can calculate how long we ran.
558  */
559 static inline void sched_info_depart(task_t *t)
560 {
561         struct runqueue *rq = task_rq(t);
562         unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564         t->sched_info.cpu_time += diff;
565
566         if (rq)
567                 rq->rq_sched_info.cpu_time += diff;
568 }
569
570 /*
571  * Called when tasks are switched involuntarily due, typically, to expiring
572  * their time slice.  (This may also be called when switching to or from
573  * the idle task.)  We are only called when prev != next.
574  */
575 static inline void sched_info_switch(task_t *prev, task_t *next)
576 {
577         struct runqueue *rq = task_rq(prev);
578
579         /*
580          * prev now departs the cpu.  It's not interesting to record
581          * stats about how efficient we were at scheduling the idle
582          * process, however.
583          */
584         if (prev != rq->idle)
585                 sched_info_depart(prev);
586
587         if (next != rq->idle)
588                 sched_info_arrive(next);
589 }
590 #else
591 #define sched_info_queued(t)            do { } while (0)
592 #define sched_info_switch(t, next)      do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
594
595 /*
596  * Adding/removing a task to/from a priority array:
597  */
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
599 {
600         array->nr_active--;
601         list_del(&p->run_list);
602         if (list_empty(array->queue + p->prio))
603                 __clear_bit(p->prio, array->bitmap);
604 }
605
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
607 {
608         sched_info_queued(p);
609         list_add_tail(&p->run_list, array->queue + p->prio);
610         __set_bit(p->prio, array->bitmap);
611         array->nr_active++;
612         p->array = array;
613 }
614
615 /*
616  * Put task to the end of the run list without the overhead of dequeue
617  * followed by enqueue.
618  */
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
620 {
621         list_move_tail(&p->run_list, array->queue + p->prio);
622 }
623
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625 {
626         list_add(&p->run_list, array->queue + p->prio);
627         __set_bit(p->prio, array->bitmap);
628         array->nr_active++;
629         p->array = array;
630 }
631
632 /*
633  * effective_prio - return the priority that is based on the static
634  * priority but is modified by bonuses/penalties.
635  *
636  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637  * into the -5 ... 0 ... +5 bonus/penalty range.
638  *
639  * We use 25% of the full 0...39 priority range so that:
640  *
641  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643  *
644  * Both properties are important to certain workloads.
645  */
646 static int effective_prio(task_t *p)
647 {
648         int bonus, prio;
649
650         if (rt_task(p))
651                 return p->prio;
652
653         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655         prio = p->static_prio - bonus;
656         if (prio < MAX_RT_PRIO)
657                 prio = MAX_RT_PRIO;
658         if (prio > MAX_PRIO-1)
659                 prio = MAX_PRIO-1;
660         return prio;
661 }
662
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int static_prio)
665 {
666         rq->prio_bias += MAX_PRIO - static_prio;
667 }
668
669 static inline void dec_prio_bias(runqueue_t *rq, int static_prio)
670 {
671         rq->prio_bias -= MAX_PRIO - static_prio;
672 }
673 #else
674 static inline void inc_prio_bias(runqueue_t *rq, int static_prio)
675 {
676 }
677
678 static inline void dec_prio_bias(runqueue_t *rq, int static_prio)
679 {
680 }
681 #endif
682
683 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
684 {
685         rq->nr_running++;
686         inc_prio_bias(rq, p->static_prio);
687 }
688
689 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
690 {
691         rq->nr_running--;
692         dec_prio_bias(rq, p->static_prio);
693 }
694
695 /*
696  * __activate_task - move a task to the runqueue.
697  */
698 static inline void __activate_task(task_t *p, runqueue_t *rq)
699 {
700         enqueue_task(p, rq->active);
701         inc_nr_running(p, rq);
702 }
703
704 /*
705  * __activate_idle_task - move idle task to the _front_ of runqueue.
706  */
707 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
708 {
709         enqueue_task_head(p, rq->active);
710         inc_nr_running(p, rq);
711 }
712
713 static int recalc_task_prio(task_t *p, unsigned long long now)
714 {
715         /* Caller must always ensure 'now >= p->timestamp' */
716         unsigned long long __sleep_time = now - p->timestamp;
717         unsigned long sleep_time;
718
719         if (__sleep_time > NS_MAX_SLEEP_AVG)
720                 sleep_time = NS_MAX_SLEEP_AVG;
721         else
722                 sleep_time = (unsigned long)__sleep_time;
723
724         if (likely(sleep_time > 0)) {
725                 /*
726                  * User tasks that sleep a long time are categorised as
727                  * idle and will get just interactive status to stay active &
728                  * prevent them suddenly becoming cpu hogs and starving
729                  * other processes.
730                  */
731                 if (p->mm && p->activated != -1 &&
732                         sleep_time > INTERACTIVE_SLEEP(p)) {
733                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
734                                                 DEF_TIMESLICE);
735                 } else {
736                         /*
737                          * The lower the sleep avg a task has the more
738                          * rapidly it will rise with sleep time.
739                          */
740                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
741
742                         /*
743                          * Tasks waking from uninterruptible sleep are
744                          * limited in their sleep_avg rise as they
745                          * are likely to be waiting on I/O
746                          */
747                         if (p->activated == -1 && p->mm) {
748                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
749                                         sleep_time = 0;
750                                 else if (p->sleep_avg + sleep_time >=
751                                                 INTERACTIVE_SLEEP(p)) {
752                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
753                                         sleep_time = 0;
754                                 }
755                         }
756
757                         /*
758                          * This code gives a bonus to interactive tasks.
759                          *
760                          * The boost works by updating the 'average sleep time'
761                          * value here, based on ->timestamp. The more time a
762                          * task spends sleeping, the higher the average gets -
763                          * and the higher the priority boost gets as well.
764                          */
765                         p->sleep_avg += sleep_time;
766
767                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
768                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
769                 }
770         }
771
772         return effective_prio(p);
773 }
774
775 /*
776  * activate_task - move a task to the runqueue and do priority recalculation
777  *
778  * Update all the scheduling statistics stuff. (sleep average
779  * calculation, priority modifiers, etc.)
780  */
781 static void activate_task(task_t *p, runqueue_t *rq, int local)
782 {
783         unsigned long long now;
784
785         now = sched_clock();
786 #ifdef CONFIG_SMP
787         if (!local) {
788                 /* Compensate for drifting sched_clock */
789                 runqueue_t *this_rq = this_rq();
790                 now = (now - this_rq->timestamp_last_tick)
791                         + rq->timestamp_last_tick;
792         }
793 #endif
794
795         p->prio = recalc_task_prio(p, now);
796
797         /*
798          * This checks to make sure it's not an uninterruptible task
799          * that is now waking up.
800          */
801         if (!p->activated) {
802                 /*
803                  * Tasks which were woken up by interrupts (ie. hw events)
804                  * are most likely of interactive nature. So we give them
805                  * the credit of extending their sleep time to the period
806                  * of time they spend on the runqueue, waiting for execution
807                  * on a CPU, first time around:
808                  */
809                 if (in_interrupt())
810                         p->activated = 2;
811                 else {
812                         /*
813                          * Normal first-time wakeups get a credit too for
814                          * on-runqueue time, but it will be weighted down:
815                          */
816                         p->activated = 1;
817                 }
818         }
819         p->timestamp = now;
820
821         __activate_task(p, rq);
822 }
823
824 /*
825  * deactivate_task - remove a task from the runqueue.
826  */
827 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
828 {
829         dec_nr_running(p, rq);
830         dequeue_task(p, p->array);
831         p->array = NULL;
832 }
833
834 /*
835  * resched_task - mark a task 'to be rescheduled now'.
836  *
837  * On UP this means the setting of the need_resched flag, on SMP it
838  * might also involve a cross-CPU call to trigger the scheduler on
839  * the target CPU.
840  */
841 #ifdef CONFIG_SMP
842 static void resched_task(task_t *p)
843 {
844         int need_resched, nrpolling;
845
846         assert_spin_locked(&task_rq(p)->lock);
847
848         /* minimise the chance of sending an interrupt to poll_idle() */
849         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
850         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
851         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
852
853         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
854                 smp_send_reschedule(task_cpu(p));
855 }
856 #else
857 static inline void resched_task(task_t *p)
858 {
859         set_tsk_need_resched(p);
860 }
861 #endif
862
863 /**
864  * task_curr - is this task currently executing on a CPU?
865  * @p: the task in question.
866  */
867 inline int task_curr(const task_t *p)
868 {
869         return cpu_curr(task_cpu(p)) == p;
870 }
871
872 #ifdef CONFIG_SMP
873 typedef struct {
874         struct list_head list;
875
876         task_t *task;
877         int dest_cpu;
878
879         struct completion done;
880 } migration_req_t;
881
882 /*
883  * The task's runqueue lock must be held.
884  * Returns true if you have to wait for migration thread.
885  */
886 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
887 {
888         runqueue_t *rq = task_rq(p);
889
890         /*
891          * If the task is not on a runqueue (and not running), then
892          * it is sufficient to simply update the task's cpu field.
893          */
894         if (!p->array && !task_running(rq, p)) {
895                 set_task_cpu(p, dest_cpu);
896                 return 0;
897         }
898
899         init_completion(&req->done);
900         req->task = p;
901         req->dest_cpu = dest_cpu;
902         list_add(&req->list, &rq->migration_queue);
903         return 1;
904 }
905
906 /*
907  * wait_task_inactive - wait for a thread to unschedule.
908  *
909  * The caller must ensure that the task *will* unschedule sometime soon,
910  * else this function might spin for a *long* time. This function can't
911  * be called with interrupts off, or it may introduce deadlock with
912  * smp_call_function() if an IPI is sent by the same process we are
913  * waiting to become inactive.
914  */
915 void wait_task_inactive(task_t *p)
916 {
917         unsigned long flags;
918         runqueue_t *rq;
919         int preempted;
920
921 repeat:
922         rq = task_rq_lock(p, &flags);
923         /* Must be off runqueue entirely, not preempted. */
924         if (unlikely(p->array || task_running(rq, p))) {
925                 /* If it's preempted, we yield.  It could be a while. */
926                 preempted = !task_running(rq, p);
927                 task_rq_unlock(rq, &flags);
928                 cpu_relax();
929                 if (preempted)
930                         yield();
931                 goto repeat;
932         }
933         task_rq_unlock(rq, &flags);
934 }
935
936 /***
937  * kick_process - kick a running thread to enter/exit the kernel
938  * @p: the to-be-kicked thread
939  *
940  * Cause a process which is running on another CPU to enter
941  * kernel-mode, without any delay. (to get signals handled.)
942  *
943  * NOTE: this function doesnt have to take the runqueue lock,
944  * because all it wants to ensure is that the remote task enters
945  * the kernel. If the IPI races and the task has been migrated
946  * to another CPU then no harm is done and the purpose has been
947  * achieved as well.
948  */
949 void kick_process(task_t *p)
950 {
951         int cpu;
952
953         preempt_disable();
954         cpu = task_cpu(p);
955         if ((cpu != smp_processor_id()) && task_curr(p))
956                 smp_send_reschedule(cpu);
957         preempt_enable();
958 }
959
960 /*
961  * Return a low guess at the load of a migration-source cpu.
962  *
963  * We want to under-estimate the load of migration sources, to
964  * balance conservatively.
965  */
966 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
967 {
968         runqueue_t *rq = cpu_rq(cpu);
969         unsigned long cpu_load = rq->cpu_load[type-1],
970                 load_now = rq->nr_running * SCHED_LOAD_SCALE;
971
972         if (idle == NOT_IDLE) {
973                 /*
974                  * If we are balancing busy runqueues the load is biased by
975                  * priority to create 'nice' support across cpus.
976                  */
977                 cpu_load *= rq->prio_bias;
978                 load_now *= rq->prio_bias;
979         }
980
981         if (type == 0)
982                 return load_now;
983
984         return min(cpu_load, load_now);
985 }
986
987 static inline unsigned long source_load(int cpu, int type)
988 {
989         return __source_load(cpu, type, NOT_IDLE);
990 }
991
992 /*
993  * Return a high guess at the load of a migration-target cpu
994  */
995 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
996 {
997         runqueue_t *rq = cpu_rq(cpu);
998         unsigned long cpu_load = rq->cpu_load[type-1],
999                 load_now = rq->nr_running * SCHED_LOAD_SCALE;
1000
1001         if (type == 0)
1002                 return load_now;
1003
1004         if (idle == NOT_IDLE) {
1005                 cpu_load *= rq->prio_bias;
1006                 load_now *= rq->prio_bias;
1007         }
1008         return max(cpu_load, load_now);
1009 }
1010
1011 static inline unsigned long target_load(int cpu, int type)
1012 {
1013         return __target_load(cpu, type, NOT_IDLE);
1014 }
1015
1016 /*
1017  * find_idlest_group finds and returns the least busy CPU group within the
1018  * domain.
1019  */
1020 static struct sched_group *
1021 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1022 {
1023         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1024         unsigned long min_load = ULONG_MAX, this_load = 0;
1025         int load_idx = sd->forkexec_idx;
1026         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1027
1028         do {
1029                 unsigned long load, avg_load;
1030                 int local_group;
1031                 int i;
1032
1033                 /* Skip over this group if it has no CPUs allowed */
1034                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1035                         goto nextgroup;
1036
1037                 local_group = cpu_isset(this_cpu, group->cpumask);
1038
1039                 /* Tally up the load of all CPUs in the group */
1040                 avg_load = 0;
1041
1042                 for_each_cpu_mask(i, group->cpumask) {
1043                         /* Bias balancing toward cpus of our domain */
1044                         if (local_group)
1045                                 load = source_load(i, load_idx);
1046                         else
1047                                 load = target_load(i, load_idx);
1048
1049                         avg_load += load;
1050                 }
1051
1052                 /* Adjust by relative CPU power of the group */
1053                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1054
1055                 if (local_group) {
1056                         this_load = avg_load;
1057                         this = group;
1058                 } else if (avg_load < min_load) {
1059                         min_load = avg_load;
1060                         idlest = group;
1061                 }
1062 nextgroup:
1063                 group = group->next;
1064         } while (group != sd->groups);
1065
1066         if (!idlest || 100*this_load < imbalance*min_load)
1067                 return NULL;
1068         return idlest;
1069 }
1070
1071 /*
1072  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1073  */
1074 static int
1075 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1076 {
1077         cpumask_t tmp;
1078         unsigned long load, min_load = ULONG_MAX;
1079         int idlest = -1;
1080         int i;
1081
1082         /* Traverse only the allowed CPUs */
1083         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1084
1085         for_each_cpu_mask(i, tmp) {
1086                 load = source_load(i, 0);
1087
1088                 if (load < min_load || (load == min_load && i == this_cpu)) {
1089                         min_load = load;
1090                         idlest = i;
1091                 }
1092         }
1093
1094         return idlest;
1095 }
1096
1097 /*
1098  * sched_balance_self: balance the current task (running on cpu) in domains
1099  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1100  * SD_BALANCE_EXEC.
1101  *
1102  * Balance, ie. select the least loaded group.
1103  *
1104  * Returns the target CPU number, or the same CPU if no balancing is needed.
1105  *
1106  * preempt must be disabled.
1107  */
1108 static int sched_balance_self(int cpu, int flag)
1109 {
1110         struct task_struct *t = current;
1111         struct sched_domain *tmp, *sd = NULL;
1112
1113         for_each_domain(cpu, tmp)
1114                 if (tmp->flags & flag)
1115                         sd = tmp;
1116
1117         while (sd) {
1118                 cpumask_t span;
1119                 struct sched_group *group;
1120                 int new_cpu;
1121                 int weight;
1122
1123                 span = sd->span;
1124                 group = find_idlest_group(sd, t, cpu);
1125                 if (!group)
1126                         goto nextlevel;
1127
1128                 new_cpu = find_idlest_cpu(group, t, cpu);
1129                 if (new_cpu == -1 || new_cpu == cpu)
1130                         goto nextlevel;
1131
1132                 /* Now try balancing at a lower domain level */
1133                 cpu = new_cpu;
1134 nextlevel:
1135                 sd = NULL;
1136                 weight = cpus_weight(span);
1137                 for_each_domain(cpu, tmp) {
1138                         if (weight <= cpus_weight(tmp->span))
1139                                 break;
1140                         if (tmp->flags & flag)
1141                                 sd = tmp;
1142                 }
1143                 /* while loop will break here if sd == NULL */
1144         }
1145
1146         return cpu;
1147 }
1148
1149 #endif /* CONFIG_SMP */
1150
1151 /*
1152  * wake_idle() will wake a task on an idle cpu if task->cpu is
1153  * not idle and an idle cpu is available.  The span of cpus to
1154  * search starts with cpus closest then further out as needed,
1155  * so we always favor a closer, idle cpu.
1156  *
1157  * Returns the CPU we should wake onto.
1158  */
1159 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1160 static int wake_idle(int cpu, task_t *p)
1161 {
1162         cpumask_t tmp;
1163         struct sched_domain *sd;
1164         int i;
1165
1166         if (idle_cpu(cpu))
1167                 return cpu;
1168
1169         for_each_domain(cpu, sd) {
1170                 if (sd->flags & SD_WAKE_IDLE) {
1171                         cpus_and(tmp, sd->span, p->cpus_allowed);
1172                         for_each_cpu_mask(i, tmp) {
1173                                 if (idle_cpu(i))
1174                                         return i;
1175                         }
1176                 }
1177                 else
1178                         break;
1179         }
1180         return cpu;
1181 }
1182 #else
1183 static inline int wake_idle(int cpu, task_t *p)
1184 {
1185         return cpu;
1186 }
1187 #endif
1188
1189 /***
1190  * try_to_wake_up - wake up a thread
1191  * @p: the to-be-woken-up thread
1192  * @state: the mask of task states that can be woken
1193  * @sync: do a synchronous wakeup?
1194  *
1195  * Put it on the run-queue if it's not already there. The "current"
1196  * thread is always on the run-queue (except when the actual
1197  * re-schedule is in progress), and as such you're allowed to do
1198  * the simpler "current->state = TASK_RUNNING" to mark yourself
1199  * runnable without the overhead of this.
1200  *
1201  * returns failure only if the task is already active.
1202  */
1203 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1204 {
1205         int cpu, this_cpu, success = 0;
1206         unsigned long flags;
1207         long old_state;
1208         runqueue_t *rq;
1209 #ifdef CONFIG_SMP
1210         unsigned long load, this_load;
1211         struct sched_domain *sd, *this_sd = NULL;
1212         int new_cpu;
1213 #endif
1214
1215         rq = task_rq_lock(p, &flags);
1216         old_state = p->state;
1217         if (!(old_state & state))
1218                 goto out;
1219
1220         if (p->array)
1221                 goto out_running;
1222
1223         cpu = task_cpu(p);
1224         this_cpu = smp_processor_id();
1225
1226 #ifdef CONFIG_SMP
1227         if (unlikely(task_running(rq, p)))
1228                 goto out_activate;
1229
1230         new_cpu = cpu;
1231
1232         schedstat_inc(rq, ttwu_cnt);
1233         if (cpu == this_cpu) {
1234                 schedstat_inc(rq, ttwu_local);
1235                 goto out_set_cpu;
1236         }
1237
1238         for_each_domain(this_cpu, sd) {
1239                 if (cpu_isset(cpu, sd->span)) {
1240                         schedstat_inc(sd, ttwu_wake_remote);
1241                         this_sd = sd;
1242                         break;
1243                 }
1244         }
1245
1246         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1247                 goto out_set_cpu;
1248
1249         /*
1250          * Check for affine wakeup and passive balancing possibilities.
1251          */
1252         if (this_sd) {
1253                 int idx = this_sd->wake_idx;
1254                 unsigned int imbalance;
1255
1256                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1257
1258                 load = source_load(cpu, idx);
1259                 this_load = target_load(this_cpu, idx);
1260
1261                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1262
1263                 if (this_sd->flags & SD_WAKE_AFFINE) {
1264                         unsigned long tl = this_load;
1265                         /*
1266                          * If sync wakeup then subtract the (maximum possible)
1267                          * effect of the currently running task from the load
1268                          * of the current CPU:
1269                          */
1270                         if (sync)
1271                                 tl -= SCHED_LOAD_SCALE;
1272
1273                         if ((tl <= load &&
1274                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1275                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1276                                 /*
1277                                  * This domain has SD_WAKE_AFFINE and
1278                                  * p is cache cold in this domain, and
1279                                  * there is no bad imbalance.
1280                                  */
1281                                 schedstat_inc(this_sd, ttwu_move_affine);
1282                                 goto out_set_cpu;
1283                         }
1284                 }
1285
1286                 /*
1287                  * Start passive balancing when half the imbalance_pct
1288                  * limit is reached.
1289                  */
1290                 if (this_sd->flags & SD_WAKE_BALANCE) {
1291                         if (imbalance*this_load <= 100*load) {
1292                                 schedstat_inc(this_sd, ttwu_move_balance);
1293                                 goto out_set_cpu;
1294                         }
1295                 }
1296         }
1297
1298         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1299 out_set_cpu:
1300         new_cpu = wake_idle(new_cpu, p);
1301         if (new_cpu != cpu) {
1302                 set_task_cpu(p, new_cpu);
1303                 task_rq_unlock(rq, &flags);
1304                 /* might preempt at this point */
1305                 rq = task_rq_lock(p, &flags);
1306                 old_state = p->state;
1307                 if (!(old_state & state))
1308                         goto out;
1309                 if (p->array)
1310                         goto out_running;
1311
1312                 this_cpu = smp_processor_id();
1313                 cpu = task_cpu(p);
1314         }
1315
1316 out_activate:
1317 #endif /* CONFIG_SMP */
1318         if (old_state == TASK_UNINTERRUPTIBLE) {
1319                 rq->nr_uninterruptible--;
1320                 /*
1321                  * Tasks on involuntary sleep don't earn
1322                  * sleep_avg beyond just interactive state.
1323                  */
1324                 p->activated = -1;
1325         }
1326
1327         /*
1328          * Tasks that have marked their sleep as noninteractive get
1329          * woken up without updating their sleep average. (i.e. their
1330          * sleep is handled in a priority-neutral manner, no priority
1331          * boost and no penalty.)
1332          */
1333         if (old_state & TASK_NONINTERACTIVE)
1334                 __activate_task(p, rq);
1335         else
1336                 activate_task(p, rq, cpu == this_cpu);
1337         /*
1338          * Sync wakeups (i.e. those types of wakeups where the waker
1339          * has indicated that it will leave the CPU in short order)
1340          * don't trigger a preemption, if the woken up task will run on
1341          * this cpu. (in this case the 'I will reschedule' promise of
1342          * the waker guarantees that the freshly woken up task is going
1343          * to be considered on this CPU.)
1344          */
1345         if (!sync || cpu != this_cpu) {
1346                 if (TASK_PREEMPTS_CURR(p, rq))
1347                         resched_task(rq->curr);
1348         }
1349         success = 1;
1350
1351 out_running:
1352         p->state = TASK_RUNNING;
1353 out:
1354         task_rq_unlock(rq, &flags);
1355
1356         return success;
1357 }
1358
1359 int fastcall wake_up_process(task_t *p)
1360 {
1361         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1362                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1363 }
1364
1365 EXPORT_SYMBOL(wake_up_process);
1366
1367 int fastcall wake_up_state(task_t *p, unsigned int state)
1368 {
1369         return try_to_wake_up(p, state, 0);
1370 }
1371
1372 /*
1373  * Perform scheduler related setup for a newly forked process p.
1374  * p is forked by current.
1375  */
1376 void fastcall sched_fork(task_t *p, int clone_flags)
1377 {
1378         int cpu = get_cpu();
1379
1380 #ifdef CONFIG_SMP
1381         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1382 #endif
1383         set_task_cpu(p, cpu);
1384
1385         /*
1386          * We mark the process as running here, but have not actually
1387          * inserted it onto the runqueue yet. This guarantees that
1388          * nobody will actually run it, and a signal or other external
1389          * event cannot wake it up and insert it on the runqueue either.
1390          */
1391         p->state = TASK_RUNNING;
1392         INIT_LIST_HEAD(&p->run_list);
1393         p->array = NULL;
1394 #ifdef CONFIG_SCHEDSTATS
1395         memset(&p->sched_info, 0, sizeof(p->sched_info));
1396 #endif
1397 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1398         p->oncpu = 0;
1399 #endif
1400 #ifdef CONFIG_PREEMPT
1401         /* Want to start with kernel preemption disabled. */
1402         p->thread_info->preempt_count = 1;
1403 #endif
1404         /*
1405          * Share the timeslice between parent and child, thus the
1406          * total amount of pending timeslices in the system doesn't change,
1407          * resulting in more scheduling fairness.
1408          */
1409         local_irq_disable();
1410         p->time_slice = (current->time_slice + 1) >> 1;
1411         /*
1412          * The remainder of the first timeslice might be recovered by
1413          * the parent if the child exits early enough.
1414          */
1415         p->first_time_slice = 1;
1416         current->time_slice >>= 1;
1417         p->timestamp = sched_clock();
1418         if (unlikely(!current->time_slice)) {
1419                 /*
1420                  * This case is rare, it happens when the parent has only
1421                  * a single jiffy left from its timeslice. Taking the
1422                  * runqueue lock is not a problem.
1423                  */
1424                 current->time_slice = 1;
1425                 scheduler_tick();
1426         }
1427         local_irq_enable();
1428         put_cpu();
1429 }
1430
1431 /*
1432  * wake_up_new_task - wake up a newly created task for the first time.
1433  *
1434  * This function will do some initial scheduler statistics housekeeping
1435  * that must be done for every newly created context, then puts the task
1436  * on the runqueue and wakes it.
1437  */
1438 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1439 {
1440         unsigned long flags;
1441         int this_cpu, cpu;
1442         runqueue_t *rq, *this_rq;
1443
1444         rq = task_rq_lock(p, &flags);
1445         BUG_ON(p->state != TASK_RUNNING);
1446         this_cpu = smp_processor_id();
1447         cpu = task_cpu(p);
1448
1449         /*
1450          * We decrease the sleep average of forking parents
1451          * and children as well, to keep max-interactive tasks
1452          * from forking tasks that are max-interactive. The parent
1453          * (current) is done further down, under its lock.
1454          */
1455         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1456                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1457
1458         p->prio = effective_prio(p);
1459
1460         if (likely(cpu == this_cpu)) {
1461                 if (!(clone_flags & CLONE_VM)) {
1462                         /*
1463                          * The VM isn't cloned, so we're in a good position to
1464                          * do child-runs-first in anticipation of an exec. This
1465                          * usually avoids a lot of COW overhead.
1466                          */
1467                         if (unlikely(!current->array))
1468                                 __activate_task(p, rq);
1469                         else {
1470                                 p->prio = current->prio;
1471                                 list_add_tail(&p->run_list, &current->run_list);
1472                                 p->array = current->array;
1473                                 p->array->nr_active++;
1474                                 inc_nr_running(p, rq);
1475                         }
1476                         set_need_resched();
1477                 } else
1478                         /* Run child last */
1479                         __activate_task(p, rq);
1480                 /*
1481                  * We skip the following code due to cpu == this_cpu
1482                  *
1483                  *   task_rq_unlock(rq, &flags);
1484                  *   this_rq = task_rq_lock(current, &flags);
1485                  */
1486                 this_rq = rq;
1487         } else {
1488                 this_rq = cpu_rq(this_cpu);
1489
1490                 /*
1491                  * Not the local CPU - must adjust timestamp. This should
1492                  * get optimised away in the !CONFIG_SMP case.
1493                  */
1494                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1495                                         + rq->timestamp_last_tick;
1496                 __activate_task(p, rq);
1497                 if (TASK_PREEMPTS_CURR(p, rq))
1498                         resched_task(rq->curr);
1499
1500                 /*
1501                  * Parent and child are on different CPUs, now get the
1502                  * parent runqueue to update the parent's ->sleep_avg:
1503                  */
1504                 task_rq_unlock(rq, &flags);
1505                 this_rq = task_rq_lock(current, &flags);
1506         }
1507         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1508                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1509         task_rq_unlock(this_rq, &flags);
1510 }
1511
1512 /*
1513  * Potentially available exiting-child timeslices are
1514  * retrieved here - this way the parent does not get
1515  * penalized for creating too many threads.
1516  *
1517  * (this cannot be used to 'generate' timeslices
1518  * artificially, because any timeslice recovered here
1519  * was given away by the parent in the first place.)
1520  */
1521 void fastcall sched_exit(task_t *p)
1522 {
1523         unsigned long flags;
1524         runqueue_t *rq;
1525
1526         /*
1527          * If the child was a (relative-) CPU hog then decrease
1528          * the sleep_avg of the parent as well.
1529          */
1530         rq = task_rq_lock(p->parent, &flags);
1531         if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1532                 p->parent->time_slice += p->time_slice;
1533                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1534                         p->parent->time_slice = task_timeslice(p);
1535         }
1536         if (p->sleep_avg < p->parent->sleep_avg)
1537                 p->parent->sleep_avg = p->parent->sleep_avg /
1538                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1539                 (EXIT_WEIGHT + 1);
1540         task_rq_unlock(rq, &flags);
1541 }
1542
1543 /**
1544  * prepare_task_switch - prepare to switch tasks
1545  * @rq: the runqueue preparing to switch
1546  * @next: the task we are going to switch to.
1547  *
1548  * This is called with the rq lock held and interrupts off. It must
1549  * be paired with a subsequent finish_task_switch after the context
1550  * switch.
1551  *
1552  * prepare_task_switch sets up locking and calls architecture specific
1553  * hooks.
1554  */
1555 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1556 {
1557         prepare_lock_switch(rq, next);
1558         prepare_arch_switch(next);
1559 }
1560
1561 /**
1562  * finish_task_switch - clean up after a task-switch
1563  * @rq: runqueue associated with task-switch
1564  * @prev: the thread we just switched away from.
1565  *
1566  * finish_task_switch must be called after the context switch, paired
1567  * with a prepare_task_switch call before the context switch.
1568  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1569  * and do any other architecture-specific cleanup actions.
1570  *
1571  * Note that we may have delayed dropping an mm in context_switch(). If
1572  * so, we finish that here outside of the runqueue lock.  (Doing it
1573  * with the lock held can cause deadlocks; see schedule() for
1574  * details.)
1575  */
1576 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1577         __releases(rq->lock)
1578 {
1579         struct mm_struct *mm = rq->prev_mm;
1580         unsigned long prev_task_flags;
1581
1582         rq->prev_mm = NULL;
1583
1584         /*
1585          * A task struct has one reference for the use as "current".
1586          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1587          * calls schedule one last time. The schedule call will never return,
1588          * and the scheduled task must drop that reference.
1589          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1590          * still held, otherwise prev could be scheduled on another cpu, die
1591          * there before we look at prev->state, and then the reference would
1592          * be dropped twice.
1593          *              Manfred Spraul <manfred@colorfullife.com>
1594          */
1595         prev_task_flags = prev->flags;
1596         finish_arch_switch(prev);
1597         finish_lock_switch(rq, prev);
1598         if (mm)
1599                 mmdrop(mm);
1600         if (unlikely(prev_task_flags & PF_DEAD))
1601                 put_task_struct(prev);
1602 }
1603
1604 /**
1605  * schedule_tail - first thing a freshly forked thread must call.
1606  * @prev: the thread we just switched away from.
1607  */
1608 asmlinkage void schedule_tail(task_t *prev)
1609         __releases(rq->lock)
1610 {
1611         runqueue_t *rq = this_rq();
1612         finish_task_switch(rq, prev);
1613 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1614         /* In this case, finish_task_switch does not reenable preemption */
1615         preempt_enable();
1616 #endif
1617         if (current->set_child_tid)
1618                 put_user(current->pid, current->set_child_tid);
1619 }
1620
1621 /*
1622  * context_switch - switch to the new MM and the new
1623  * thread's register state.
1624  */
1625 static inline
1626 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1627 {
1628         struct mm_struct *mm = next->mm;
1629         struct mm_struct *oldmm = prev->active_mm;
1630
1631         if (unlikely(!mm)) {
1632                 next->active_mm = oldmm;
1633                 atomic_inc(&oldmm->mm_count);
1634                 enter_lazy_tlb(oldmm, next);
1635         } else
1636                 switch_mm(oldmm, mm, next);
1637
1638         if (unlikely(!prev->mm)) {
1639                 prev->active_mm = NULL;
1640                 WARN_ON(rq->prev_mm);
1641                 rq->prev_mm = oldmm;
1642         }
1643
1644         /* Here we just switch the register state and the stack. */
1645         switch_to(prev, next, prev);
1646
1647         return prev;
1648 }
1649
1650 /*
1651  * nr_running, nr_uninterruptible and nr_context_switches:
1652  *
1653  * externally visible scheduler statistics: current number of runnable
1654  * threads, current number of uninterruptible-sleeping threads, total
1655  * number of context switches performed since bootup.
1656  */
1657 unsigned long nr_running(void)
1658 {
1659         unsigned long i, sum = 0;
1660
1661         for_each_online_cpu(i)
1662                 sum += cpu_rq(i)->nr_running;
1663
1664         return sum;
1665 }
1666
1667 unsigned long nr_uninterruptible(void)
1668 {
1669         unsigned long i, sum = 0;
1670
1671         for_each_cpu(i)
1672                 sum += cpu_rq(i)->nr_uninterruptible;
1673
1674         /*
1675          * Since we read the counters lockless, it might be slightly
1676          * inaccurate. Do not allow it to go below zero though:
1677          */
1678         if (unlikely((long)sum < 0))
1679                 sum = 0;
1680
1681         return sum;
1682 }
1683
1684 unsigned long long nr_context_switches(void)
1685 {
1686         unsigned long long i, sum = 0;
1687
1688         for_each_cpu(i)
1689                 sum += cpu_rq(i)->nr_switches;
1690
1691         return sum;
1692 }
1693
1694 unsigned long nr_iowait(void)
1695 {
1696         unsigned long i, sum = 0;
1697
1698         for_each_cpu(i)
1699                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1700
1701         return sum;
1702 }
1703
1704 #ifdef CONFIG_SMP
1705
1706 /*
1707  * double_rq_lock - safely lock two runqueues
1708  *
1709  * Note this does not disable interrupts like task_rq_lock,
1710  * you need to do so manually before calling.
1711  */
1712 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1713         __acquires(rq1->lock)
1714         __acquires(rq2->lock)
1715 {
1716         if (rq1 == rq2) {
1717                 spin_lock(&rq1->lock);
1718                 __acquire(rq2->lock);   /* Fake it out ;) */
1719         } else {
1720                 if (rq1 < rq2) {
1721                         spin_lock(&rq1->lock);
1722                         spin_lock(&rq2->lock);
1723                 } else {
1724                         spin_lock(&rq2->lock);
1725                         spin_lock(&rq1->lock);
1726                 }
1727         }
1728 }
1729
1730 /*
1731  * double_rq_unlock - safely unlock two runqueues
1732  *
1733  * Note this does not restore interrupts like task_rq_unlock,
1734  * you need to do so manually after calling.
1735  */
1736 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1737         __releases(rq1->lock)
1738         __releases(rq2->lock)
1739 {
1740         spin_unlock(&rq1->lock);
1741         if (rq1 != rq2)
1742                 spin_unlock(&rq2->lock);
1743         else
1744                 __release(rq2->lock);
1745 }
1746
1747 /*
1748  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1749  */
1750 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1751         __releases(this_rq->lock)
1752         __acquires(busiest->lock)
1753         __acquires(this_rq->lock)
1754 {
1755         if (unlikely(!spin_trylock(&busiest->lock))) {
1756                 if (busiest < this_rq) {
1757                         spin_unlock(&this_rq->lock);
1758                         spin_lock(&busiest->lock);
1759                         spin_lock(&this_rq->lock);
1760                 } else
1761                         spin_lock(&busiest->lock);
1762         }
1763 }
1764
1765 /*
1766  * If dest_cpu is allowed for this process, migrate the task to it.
1767  * This is accomplished by forcing the cpu_allowed mask to only
1768  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1769  * the cpu_allowed mask is restored.
1770  */
1771 static void sched_migrate_task(task_t *p, int dest_cpu)
1772 {
1773         migration_req_t req;
1774         runqueue_t *rq;
1775         unsigned long flags;
1776
1777         rq = task_rq_lock(p, &flags);
1778         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1779             || unlikely(cpu_is_offline(dest_cpu)))
1780                 goto out;
1781
1782         /* force the process onto the specified CPU */
1783         if (migrate_task(p, dest_cpu, &req)) {
1784                 /* Need to wait for migration thread (might exit: take ref). */
1785                 struct task_struct *mt = rq->migration_thread;
1786                 get_task_struct(mt);
1787                 task_rq_unlock(rq, &flags);
1788                 wake_up_process(mt);
1789                 put_task_struct(mt);
1790                 wait_for_completion(&req.done);
1791                 return;
1792         }
1793 out:
1794         task_rq_unlock(rq, &flags);
1795 }
1796
1797 /*
1798  * sched_exec - execve() is a valuable balancing opportunity, because at
1799  * this point the task has the smallest effective memory and cache footprint.
1800  */
1801 void sched_exec(void)
1802 {
1803         int new_cpu, this_cpu = get_cpu();
1804         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1805         put_cpu();
1806         if (new_cpu != this_cpu)
1807                 sched_migrate_task(current, new_cpu);
1808 }
1809
1810 /*
1811  * pull_task - move a task from a remote runqueue to the local runqueue.
1812  * Both runqueues must be locked.
1813  */
1814 static inline
1815 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1816                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1817 {
1818         dequeue_task(p, src_array);
1819         dec_nr_running(p, src_rq);
1820         set_task_cpu(p, this_cpu);
1821         inc_nr_running(p, this_rq);
1822         enqueue_task(p, this_array);
1823         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1824                                 + this_rq->timestamp_last_tick;
1825         /*
1826          * Note that idle threads have a prio of MAX_PRIO, for this test
1827          * to be always true for them.
1828          */
1829         if (TASK_PREEMPTS_CURR(p, this_rq))
1830                 resched_task(this_rq->curr);
1831 }
1832
1833 /*
1834  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1835  */
1836 static inline
1837 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1838                      struct sched_domain *sd, enum idle_type idle,
1839                      int *all_pinned)
1840 {
1841         /*
1842          * We do not migrate tasks that are:
1843          * 1) running (obviously), or
1844          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1845          * 3) are cache-hot on their current CPU.
1846          */
1847         if (!cpu_isset(this_cpu, p->cpus_allowed))
1848                 return 0;
1849         *all_pinned = 0;
1850
1851         if (task_running(rq, p))
1852                 return 0;
1853
1854         /*
1855          * Aggressive migration if:
1856          * 1) task is cache cold, or
1857          * 2) too many balance attempts have failed.
1858          */
1859
1860         if (sd->nr_balance_failed > sd->cache_nice_tries)
1861                 return 1;
1862
1863         if (task_hot(p, rq->timestamp_last_tick, sd))
1864                 return 0;
1865         return 1;
1866 }
1867
1868 /*
1869  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1870  * as part of a balancing operation within "domain". Returns the number of
1871  * tasks moved.
1872  *
1873  * Called with both runqueues locked.
1874  */
1875 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1876                       unsigned long max_nr_move, struct sched_domain *sd,
1877                       enum idle_type idle, int *all_pinned)
1878 {
1879         prio_array_t *array, *dst_array;
1880         struct list_head *head, *curr;
1881         int idx, pulled = 0, pinned = 0;
1882         task_t *tmp;
1883
1884         if (max_nr_move == 0)
1885                 goto out;
1886
1887         pinned = 1;
1888
1889         /*
1890          * We first consider expired tasks. Those will likely not be
1891          * executed in the near future, and they are most likely to
1892          * be cache-cold, thus switching CPUs has the least effect
1893          * on them.
1894          */
1895         if (busiest->expired->nr_active) {
1896                 array = busiest->expired;
1897                 dst_array = this_rq->expired;
1898         } else {
1899                 array = busiest->active;
1900                 dst_array = this_rq->active;
1901         }
1902
1903 new_array:
1904         /* Start searching at priority 0: */
1905         idx = 0;
1906 skip_bitmap:
1907         if (!idx)
1908                 idx = sched_find_first_bit(array->bitmap);
1909         else
1910                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1911         if (idx >= MAX_PRIO) {
1912                 if (array == busiest->expired && busiest->active->nr_active) {
1913                         array = busiest->active;
1914                         dst_array = this_rq->active;
1915                         goto new_array;
1916                 }
1917                 goto out;
1918         }
1919
1920         head = array->queue + idx;
1921         curr = head->prev;
1922 skip_queue:
1923         tmp = list_entry(curr, task_t, run_list);
1924
1925         curr = curr->prev;
1926
1927         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1928                 if (curr != head)
1929                         goto skip_queue;
1930                 idx++;
1931                 goto skip_bitmap;
1932         }
1933
1934 #ifdef CONFIG_SCHEDSTATS
1935         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1936                 schedstat_inc(sd, lb_hot_gained[idle]);
1937 #endif
1938
1939         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1940         pulled++;
1941
1942         /* We only want to steal up to the prescribed number of tasks. */
1943         if (pulled < max_nr_move) {
1944                 if (curr != head)
1945                         goto skip_queue;
1946                 idx++;
1947                 goto skip_bitmap;
1948         }
1949 out:
1950         /*
1951          * Right now, this is the only place pull_task() is called,
1952          * so we can safely collect pull_task() stats here rather than
1953          * inside pull_task().
1954          */
1955         schedstat_add(sd, lb_gained[idle], pulled);
1956
1957         if (all_pinned)
1958                 *all_pinned = pinned;
1959         return pulled;
1960 }
1961
1962 /*
1963  * find_busiest_group finds and returns the busiest CPU group within the
1964  * domain. It calculates and returns the number of tasks which should be
1965  * moved to restore balance via the imbalance parameter.
1966  */
1967 static struct sched_group *
1968 find_busiest_group(struct sched_domain *sd, int this_cpu,
1969                    unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1970 {
1971         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1972         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1973         unsigned long max_pull;
1974         int load_idx;
1975
1976         max_load = this_load = total_load = total_pwr = 0;
1977         if (idle == NOT_IDLE)
1978                 load_idx = sd->busy_idx;
1979         else if (idle == NEWLY_IDLE)
1980                 load_idx = sd->newidle_idx;
1981         else
1982                 load_idx = sd->idle_idx;
1983
1984         do {
1985                 unsigned long load;
1986                 int local_group;
1987                 int i;
1988
1989                 local_group = cpu_isset(this_cpu, group->cpumask);
1990
1991                 /* Tally up the load of all CPUs in the group */
1992                 avg_load = 0;
1993
1994                 for_each_cpu_mask(i, group->cpumask) {
1995                         if (*sd_idle && !idle_cpu(i))
1996                                 *sd_idle = 0;
1997
1998                         /* Bias balancing toward cpus of our domain */
1999                         if (local_group)
2000                                 load = __target_load(i, load_idx, idle);
2001                         else
2002                                 load = __source_load(i, load_idx, idle);
2003
2004                         avg_load += load;
2005                 }
2006
2007                 total_load += avg_load;
2008                 total_pwr += group->cpu_power;
2009
2010                 /* Adjust by relative CPU power of the group */
2011                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2012
2013                 if (local_group) {
2014                         this_load = avg_load;
2015                         this = group;
2016                 } else if (avg_load > max_load) {
2017                         max_load = avg_load;
2018                         busiest = group;
2019                 }
2020                 group = group->next;
2021         } while (group != sd->groups);
2022
2023         if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2024                 goto out_balanced;
2025
2026         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2027
2028         if (this_load >= avg_load ||
2029                         100*max_load <= sd->imbalance_pct*this_load)
2030                 goto out_balanced;
2031
2032         /*
2033          * We're trying to get all the cpus to the average_load, so we don't
2034          * want to push ourselves above the average load, nor do we wish to
2035          * reduce the max loaded cpu below the average load, as either of these
2036          * actions would just result in more rebalancing later, and ping-pong
2037          * tasks around. Thus we look for the minimum possible imbalance.
2038          * Negative imbalances (*we* are more loaded than anyone else) will
2039          * be counted as no imbalance for these purposes -- we can't fix that
2040          * by pulling tasks to us.  Be careful of negative numbers as they'll
2041          * appear as very large values with unsigned longs.
2042          */
2043
2044         /* Don't want to pull so many tasks that a group would go idle */
2045         max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2046
2047         /* How much load to actually move to equalise the imbalance */
2048         *imbalance = min(max_pull * busiest->cpu_power,
2049                                 (avg_load - this_load) * this->cpu_power)
2050                         / SCHED_LOAD_SCALE;
2051
2052         if (*imbalance < SCHED_LOAD_SCALE) {
2053                 unsigned long pwr_now = 0, pwr_move = 0;
2054                 unsigned long tmp;
2055
2056                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2057                         *imbalance = 1;
2058                         return busiest;
2059                 }
2060
2061                 /*
2062                  * OK, we don't have enough imbalance to justify moving tasks,
2063                  * however we may be able to increase total CPU power used by
2064                  * moving them.
2065                  */
2066
2067                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2068                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2069                 pwr_now /= SCHED_LOAD_SCALE;
2070
2071                 /* Amount of load we'd subtract */
2072                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2073                 if (max_load > tmp)
2074                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2075                                                         max_load - tmp);
2076
2077                 /* Amount of load we'd add */
2078                 if (max_load*busiest->cpu_power <
2079                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2080                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2081                 else
2082                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2083                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2084                 pwr_move /= SCHED_LOAD_SCALE;
2085
2086                 /* Move if we gain throughput */
2087                 if (pwr_move <= pwr_now)
2088                         goto out_balanced;
2089
2090                 *imbalance = 1;
2091                 return busiest;
2092         }
2093
2094         /* Get rid of the scaling factor, rounding down as we divide */
2095         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2096         return busiest;
2097
2098 out_balanced:
2099
2100         *imbalance = 0;
2101         return NULL;
2102 }
2103
2104 /*
2105  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2106  */
2107 static runqueue_t *find_busiest_queue(struct sched_group *group,
2108         enum idle_type idle)
2109 {
2110         unsigned long load, max_load = 0;
2111         runqueue_t *busiest = NULL;
2112         int i;
2113
2114         for_each_cpu_mask(i, group->cpumask) {
2115                 load = __source_load(i, 0, idle);
2116
2117                 if (load > max_load) {
2118                         max_load = load;
2119                         busiest = cpu_rq(i);
2120                 }
2121         }
2122
2123         return busiest;
2124 }
2125
2126 /*
2127  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2128  * so long as it is large enough.
2129  */
2130 #define MAX_PINNED_INTERVAL     512
2131
2132 /*
2133  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2134  * tasks if there is an imbalance.
2135  *
2136  * Called with this_rq unlocked.
2137  */
2138 static int load_balance(int this_cpu, runqueue_t *this_rq,
2139                         struct sched_domain *sd, enum idle_type idle)
2140 {
2141         struct sched_group *group;
2142         runqueue_t *busiest;
2143         unsigned long imbalance;
2144         int nr_moved, all_pinned = 0;
2145         int active_balance = 0;
2146         int sd_idle = 0;
2147
2148         if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2149                 sd_idle = 1;
2150
2151         schedstat_inc(sd, lb_cnt[idle]);
2152
2153         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2154         if (!group) {
2155                 schedstat_inc(sd, lb_nobusyg[idle]);
2156                 goto out_balanced;
2157         }
2158
2159         busiest = find_busiest_queue(group, idle);
2160         if (!busiest) {
2161                 schedstat_inc(sd, lb_nobusyq[idle]);
2162                 goto out_balanced;
2163         }
2164
2165         BUG_ON(busiest == this_rq);
2166
2167         schedstat_add(sd, lb_imbalance[idle], imbalance);
2168
2169         nr_moved = 0;
2170         if (busiest->nr_running > 1) {
2171                 /*
2172                  * Attempt to move tasks. If find_busiest_group has found
2173                  * an imbalance but busiest->nr_running <= 1, the group is
2174                  * still unbalanced. nr_moved simply stays zero, so it is
2175                  * correctly treated as an imbalance.
2176                  */
2177                 double_rq_lock(this_rq, busiest);
2178                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2179                                         imbalance, sd, idle, &all_pinned);
2180                 double_rq_unlock(this_rq, busiest);
2181
2182                 /* All tasks on this runqueue were pinned by CPU affinity */
2183                 if (unlikely(all_pinned))
2184                         goto out_balanced;
2185         }
2186
2187         if (!nr_moved) {
2188                 schedstat_inc(sd, lb_failed[idle]);
2189                 sd->nr_balance_failed++;
2190
2191                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2192
2193                         spin_lock(&busiest->lock);
2194
2195                         /* don't kick the migration_thread, if the curr
2196                          * task on busiest cpu can't be moved to this_cpu
2197                          */
2198                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2199                                 spin_unlock(&busiest->lock);
2200                                 all_pinned = 1;
2201                                 goto out_one_pinned;
2202                         }
2203
2204                         if (!busiest->active_balance) {
2205                                 busiest->active_balance = 1;
2206                                 busiest->push_cpu = this_cpu;
2207                                 active_balance = 1;
2208                         }
2209                         spin_unlock(&busiest->lock);
2210                         if (active_balance)
2211                                 wake_up_process(busiest->migration_thread);
2212
2213                         /*
2214                          * We've kicked active balancing, reset the failure
2215                          * counter.
2216                          */
2217                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2218                 }
2219         } else
2220                 sd->nr_balance_failed = 0;
2221
2222         if (likely(!active_balance)) {
2223                 /* We were unbalanced, so reset the balancing interval */
2224                 sd->balance_interval = sd->min_interval;
2225         } else {
2226                 /*
2227                  * If we've begun active balancing, start to back off. This
2228                  * case may not be covered by the all_pinned logic if there
2229                  * is only 1 task on the busy runqueue (because we don't call
2230                  * move_tasks).
2231                  */
2232                 if (sd->balance_interval < sd->max_interval)
2233                         sd->balance_interval *= 2;
2234         }
2235
2236         if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2237                 return -1;
2238         return nr_moved;
2239
2240 out_balanced:
2241         schedstat_inc(sd, lb_balanced[idle]);
2242
2243         sd->nr_balance_failed = 0;
2244
2245 out_one_pinned:
2246         /* tune up the balancing interval */
2247         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2248                         (sd->balance_interval < sd->max_interval))
2249                 sd->balance_interval *= 2;
2250
2251         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2252                 return -1;
2253         return 0;
2254 }
2255
2256 /*
2257  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2258  * tasks if there is an imbalance.
2259  *
2260  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2261  * this_rq is locked.
2262  */
2263 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2264                                 struct sched_domain *sd)
2265 {
2266         struct sched_group *group;
2267         runqueue_t *busiest = NULL;
2268         unsigned long imbalance;
2269         int nr_moved = 0;
2270         int sd_idle = 0;
2271
2272         if (sd->flags & SD_SHARE_CPUPOWER)
2273                 sd_idle = 1;
2274
2275         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2276         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2277         if (!group) {
2278                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2279                 goto out_balanced;
2280         }
2281
2282         busiest = find_busiest_queue(group, NEWLY_IDLE);
2283         if (!busiest) {
2284                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2285                 goto out_balanced;
2286         }
2287
2288         BUG_ON(busiest == this_rq);
2289
2290         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2291
2292         nr_moved = 0;
2293         if (busiest->nr_running > 1) {
2294                 /* Attempt to move tasks */
2295                 double_lock_balance(this_rq, busiest);
2296                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2297                                         imbalance, sd, NEWLY_IDLE, NULL);
2298                 spin_unlock(&busiest->lock);
2299         }
2300
2301         if (!nr_moved) {
2302                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2303                 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2304                         return -1;
2305         } else
2306                 sd->nr_balance_failed = 0;
2307
2308         return nr_moved;
2309
2310 out_balanced:
2311         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2312         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2313                 return -1;
2314         sd->nr_balance_failed = 0;
2315         return 0;
2316 }
2317
2318 /*
2319  * idle_balance is called by schedule() if this_cpu is about to become
2320  * idle. Attempts to pull tasks from other CPUs.
2321  */
2322 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2323 {
2324         struct sched_domain *sd;
2325
2326         for_each_domain(this_cpu, sd) {
2327                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2328                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2329                                 /* We've pulled tasks over so stop searching */
2330                                 break;
2331                         }
2332                 }
2333         }
2334 }
2335
2336 /*
2337  * active_load_balance is run by migration threads. It pushes running tasks
2338  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2339  * running on each physical CPU where possible, and avoids physical /
2340  * logical imbalances.
2341  *
2342  * Called with busiest_rq locked.
2343  */
2344 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2345 {
2346         struct sched_domain *sd;
2347         runqueue_t *target_rq;
2348         int target_cpu = busiest_rq->push_cpu;
2349
2350         if (busiest_rq->nr_running <= 1)
2351                 /* no task to move */
2352                 return;
2353
2354         target_rq = cpu_rq(target_cpu);
2355
2356         /*
2357          * This condition is "impossible", if it occurs
2358          * we need to fix it.  Originally reported by
2359          * Bjorn Helgaas on a 128-cpu setup.
2360          */
2361         BUG_ON(busiest_rq == target_rq);
2362
2363         /* move a task from busiest_rq to target_rq */
2364         double_lock_balance(busiest_rq, target_rq);
2365
2366         /* Search for an sd spanning us and the target CPU. */
2367         for_each_domain(target_cpu, sd)
2368                 if ((sd->flags & SD_LOAD_BALANCE) &&
2369                         cpu_isset(busiest_cpu, sd->span))
2370                                 break;
2371
2372         if (unlikely(sd == NULL))
2373                 goto out;
2374
2375         schedstat_inc(sd, alb_cnt);
2376
2377         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2378                 schedstat_inc(sd, alb_pushed);
2379         else
2380                 schedstat_inc(sd, alb_failed);
2381 out:
2382         spin_unlock(&target_rq->lock);
2383 }
2384
2385 /*
2386  * rebalance_tick will get called every timer tick, on every CPU.
2387  *
2388  * It checks each scheduling domain to see if it is due to be balanced,
2389  * and initiates a balancing operation if so.
2390  *
2391  * Balancing parameters are set up in arch_init_sched_domains.
2392  */
2393
2394 /* Don't have all balancing operations going off at once */
2395 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2396
2397 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2398                            enum idle_type idle)
2399 {
2400         unsigned long old_load, this_load;
2401         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2402         struct sched_domain *sd;
2403         int i;
2404
2405         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2406         /* Update our load */
2407         for (i = 0; i < 3; i++) {
2408                 unsigned long new_load = this_load;
2409                 int scale = 1 << i;
2410                 old_load = this_rq->cpu_load[i];
2411                 /*
2412                  * Round up the averaging division if load is increasing. This
2413                  * prevents us from getting stuck on 9 if the load is 10, for
2414                  * example.
2415                  */
2416                 if (new_load > old_load)
2417                         new_load += scale-1;
2418                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2419         }
2420
2421         for_each_domain(this_cpu, sd) {
2422                 unsigned long interval;
2423
2424                 if (!(sd->flags & SD_LOAD_BALANCE))
2425                         continue;
2426
2427                 interval = sd->balance_interval;
2428                 if (idle != SCHED_IDLE)
2429                         interval *= sd->busy_factor;
2430
2431                 /* scale ms to jiffies */
2432                 interval = msecs_to_jiffies(interval);
2433                 if (unlikely(!interval))
2434                         interval = 1;
2435
2436                 if (j - sd->last_balance >= interval) {
2437                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2438                                 /*
2439                                  * We've pulled tasks over so either we're no
2440                                  * longer idle, or one of our SMT siblings is
2441                                  * not idle.
2442                                  */
2443                                 idle = NOT_IDLE;
2444                         }
2445                         sd->last_balance += interval;
2446                 }
2447         }
2448 }
2449 #else
2450 /*
2451  * on UP we do not need to balance between CPUs:
2452  */
2453 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2454 {
2455 }
2456 static inline void idle_balance(int cpu, runqueue_t *rq)
2457 {
2458 }
2459 #endif
2460
2461 static inline int wake_priority_sleeper(runqueue_t *rq)
2462 {
2463         int ret = 0;
2464 #ifdef CONFIG_SCHED_SMT
2465         spin_lock(&rq->lock);
2466         /*
2467          * If an SMT sibling task has been put to sleep for priority
2468          * reasons reschedule the idle task to see if it can now run.
2469          */
2470         if (rq->nr_running) {
2471                 resched_task(rq->idle);
2472                 ret = 1;
2473         }
2474         spin_unlock(&rq->lock);
2475 #endif
2476         return ret;
2477 }
2478
2479 DEFINE_PER_CPU(struct kernel_stat, kstat);
2480
2481 EXPORT_PER_CPU_SYMBOL(kstat);
2482
2483 /*
2484  * This is called on clock ticks and on context switches.
2485  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2486  */
2487 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2488                                     unsigned long long now)
2489 {
2490         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2491         p->sched_time += now - last;
2492 }
2493
2494 /*
2495  * Return current->sched_time plus any more ns on the sched_clock
2496  * that have not yet been banked.
2497  */
2498 unsigned long long current_sched_time(const task_t *tsk)
2499 {
2500         unsigned long long ns;
2501         unsigned long flags;
2502         local_irq_save(flags);
2503         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2504         ns = tsk->sched_time + (sched_clock() - ns);
2505         local_irq_restore(flags);
2506         return ns;
2507 }
2508
2509 /*
2510  * We place interactive tasks back into the active array, if possible.
2511  *
2512  * To guarantee that this does not starve expired tasks we ignore the
2513  * interactivity of a task if the first expired task had to wait more
2514  * than a 'reasonable' amount of time. This deadline timeout is
2515  * load-dependent, as the frequency of array switched decreases with
2516  * increasing number of running tasks. We also ignore the interactivity
2517  * if a better static_prio task has expired:
2518  */
2519 #define EXPIRED_STARVING(rq) \
2520         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2521                 (jiffies - (rq)->expired_timestamp >= \
2522                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2523                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2524
2525 /*
2526  * Account user cpu time to a process.
2527  * @p: the process that the cpu time gets accounted to
2528  * @hardirq_offset: the offset to subtract from hardirq_count()
2529  * @cputime: the cpu time spent in user space since the last update
2530  */
2531 void account_user_time(struct task_struct *p, cputime_t cputime)
2532 {
2533         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2534         cputime64_t tmp;
2535
2536         p->utime = cputime_add(p->utime, cputime);
2537
2538         /* Add user time to cpustat. */
2539         tmp = cputime_to_cputime64(cputime);
2540         if (TASK_NICE(p) > 0)
2541                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2542         else
2543                 cpustat->user = cputime64_add(cpustat->user, tmp);
2544 }
2545
2546 /*
2547  * Account system cpu time to a process.
2548  * @p: the process that the cpu time gets accounted to
2549  * @hardirq_offset: the offset to subtract from hardirq_count()
2550  * @cputime: the cpu time spent in kernel space since the last update
2551  */
2552 void account_system_time(struct task_struct *p, int hardirq_offset,
2553                          cputime_t cputime)
2554 {
2555         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2556         runqueue_t *rq = this_rq();
2557         cputime64_t tmp;
2558
2559         p->stime = cputime_add(p->stime, cputime);
2560
2561         /* Add system time to cpustat. */
2562         tmp = cputime_to_cputime64(cputime);
2563         if (hardirq_count() - hardirq_offset)
2564                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2565         else if (softirq_count())
2566                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2567         else if (p != rq->idle)
2568                 cpustat->system = cputime64_add(cpustat->system, tmp);
2569         else if (atomic_read(&rq->nr_iowait) > 0)
2570                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2571         else
2572                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2573         /* Account for system time used */
2574         acct_update_integrals(p);
2575 }
2576
2577 /*
2578  * Account for involuntary wait time.
2579  * @p: the process from which the cpu time has been stolen
2580  * @steal: the cpu time spent in involuntary wait
2581  */
2582 void account_steal_time(struct task_struct *p, cputime_t steal)
2583 {
2584         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2585         cputime64_t tmp = cputime_to_cputime64(steal);
2586         runqueue_t *rq = this_rq();
2587
2588         if (p == rq->idle) {
2589                 p->stime = cputime_add(p->stime, steal);
2590                 if (atomic_read(&rq->nr_iowait) > 0)
2591                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2592                 else
2593                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2594         } else
2595                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2596 }
2597
2598 /*
2599  * This function gets called by the timer code, with HZ frequency.
2600  * We call it with interrupts disabled.
2601  *
2602  * It also gets called by the fork code, when changing the parent's
2603  * timeslices.
2604  */
2605 void scheduler_tick(void)
2606 {
2607         int cpu = smp_processor_id();
2608         runqueue_t *rq = this_rq();
2609         task_t *p = current;
2610         unsigned long long now = sched_clock();
2611
2612         update_cpu_clock(p, rq, now);
2613
2614         rq->timestamp_last_tick = now;
2615
2616         if (p == rq->idle) {
2617                 if (wake_priority_sleeper(rq))
2618                         goto out;
2619                 rebalance_tick(cpu, rq, SCHED_IDLE);
2620                 return;
2621         }
2622
2623         /* Task might have expired already, but not scheduled off yet */
2624         if (p->array != rq->active) {
2625                 set_tsk_need_resched(p);
2626                 goto out;
2627         }
2628         spin_lock(&rq->lock);
2629         /*
2630          * The task was running during this tick - update the
2631          * time slice counter. Note: we do not update a thread's
2632          * priority until it either goes to sleep or uses up its
2633          * timeslice. This makes it possible for interactive tasks
2634          * to use up their timeslices at their highest priority levels.
2635          */
2636         if (rt_task(p)) {
2637                 /*
2638                  * RR tasks need a special form of timeslice management.
2639                  * FIFO tasks have no timeslices.
2640                  */
2641                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2642                         p->time_slice = task_timeslice(p);
2643                         p->first_time_slice = 0;
2644                         set_tsk_need_resched(p);
2645
2646                         /* put it at the end of the queue: */
2647                         requeue_task(p, rq->active);
2648                 }
2649                 goto out_unlock;
2650         }
2651         if (!--p->time_slice) {
2652                 dequeue_task(p, rq->active);
2653                 set_tsk_need_resched(p);
2654                 p->prio = effective_prio(p);
2655                 p->time_slice = task_timeslice(p);
2656                 p->first_time_slice = 0;
2657
2658                 if (!rq->expired_timestamp)
2659                         rq->expired_timestamp = jiffies;
2660                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2661                         enqueue_task(p, rq->expired);
2662                         if (p->static_prio < rq->best_expired_prio)
2663                                 rq->best_expired_prio = p->static_prio;
2664                 } else
2665                         enqueue_task(p, rq->active);
2666         } else {
2667                 /*
2668                  * Prevent a too long timeslice allowing a task to monopolize
2669                  * the CPU. We do this by splitting up the timeslice into
2670                  * smaller pieces.
2671                  *
2672                  * Note: this does not mean the task's timeslices expire or
2673                  * get lost in any way, they just might be preempted by
2674                  * another task of equal priority. (one with higher
2675                  * priority would have preempted this task already.) We
2676                  * requeue this task to the end of the list on this priority
2677                  * level, which is in essence a round-robin of tasks with
2678                  * equal priority.
2679                  *
2680                  * This only applies to tasks in the interactive
2681                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2682                  */
2683                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2684                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2685                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2686                         (p->array == rq->active)) {
2687
2688                         requeue_task(p, rq->active);
2689                         set_tsk_need_resched(p);
2690                 }
2691         }
2692 out_unlock:
2693         spin_unlock(&rq->lock);
2694 out:
2695         rebalance_tick(cpu, rq, NOT_IDLE);
2696 }
2697
2698 #ifdef CONFIG_SCHED_SMT
2699 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2700 {
2701         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2702         if (rq->curr == rq->idle && rq->nr_running)
2703                 resched_task(rq->idle);
2704 }
2705
2706 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2707 {
2708         struct sched_domain *tmp, *sd = NULL;
2709         cpumask_t sibling_map;
2710         int i;
2711
2712         for_each_domain(this_cpu, tmp)
2713                 if (tmp->flags & SD_SHARE_CPUPOWER)
2714                         sd = tmp;
2715
2716         if (!sd)
2717                 return;
2718
2719         /*
2720          * Unlock the current runqueue because we have to lock in
2721          * CPU order to avoid deadlocks. Caller knows that we might
2722          * unlock. We keep IRQs disabled.
2723          */
2724         spin_unlock(&this_rq->lock);
2725
2726         sibling_map = sd->span;
2727
2728         for_each_cpu_mask(i, sibling_map)
2729                 spin_lock(&cpu_rq(i)->lock);
2730         /*
2731          * We clear this CPU from the mask. This both simplifies the
2732          * inner loop and keps this_rq locked when we exit:
2733          */
2734         cpu_clear(this_cpu, sibling_map);
2735
2736         for_each_cpu_mask(i, sibling_map) {
2737                 runqueue_t *smt_rq = cpu_rq(i);
2738
2739                 wakeup_busy_runqueue(smt_rq);
2740         }
2741
2742         for_each_cpu_mask(i, sibling_map)
2743                 spin_unlock(&cpu_rq(i)->lock);
2744         /*
2745          * We exit with this_cpu's rq still held and IRQs
2746          * still disabled:
2747          */
2748 }
2749
2750 /*
2751  * number of 'lost' timeslices this task wont be able to fully
2752  * utilize, if another task runs on a sibling. This models the
2753  * slowdown effect of other tasks running on siblings:
2754  */
2755 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2756 {
2757         return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2758 }
2759
2760 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2761 {
2762         struct sched_domain *tmp, *sd = NULL;
2763         cpumask_t sibling_map;
2764         prio_array_t *array;
2765         int ret = 0, i;
2766         task_t *p;
2767
2768         for_each_domain(this_cpu, tmp)
2769                 if (tmp->flags & SD_SHARE_CPUPOWER)
2770                         sd = tmp;
2771
2772         if (!sd)
2773                 return 0;
2774
2775         /*
2776          * The same locking rules and details apply as for
2777          * wake_sleeping_dependent():
2778          */
2779         spin_unlock(&this_rq->lock);
2780         sibling_map = sd->span;
2781         for_each_cpu_mask(i, sibling_map)
2782                 spin_lock(&cpu_rq(i)->lock);
2783         cpu_clear(this_cpu, sibling_map);
2784
2785         /*
2786          * Establish next task to be run - it might have gone away because
2787          * we released the runqueue lock above:
2788          */
2789         if (!this_rq->nr_running)
2790                 goto out_unlock;
2791         array = this_rq->active;
2792         if (!array->nr_active)
2793                 array = this_rq->expired;
2794         BUG_ON(!array->nr_active);
2795
2796         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2797                 task_t, run_list);
2798
2799         for_each_cpu_mask(i, sibling_map) {
2800                 runqueue_t *smt_rq = cpu_rq(i);
2801                 task_t *smt_curr = smt_rq->curr;
2802
2803                 /* Kernel threads do not participate in dependent sleeping */
2804                 if (!p->mm || !smt_curr->mm || rt_task(p))
2805                         goto check_smt_task;
2806
2807                 /*
2808                  * If a user task with lower static priority than the
2809                  * running task on the SMT sibling is trying to schedule,
2810                  * delay it till there is proportionately less timeslice
2811                  * left of the sibling task to prevent a lower priority
2812                  * task from using an unfair proportion of the
2813                  * physical cpu's resources. -ck
2814                  */
2815                 if (rt_task(smt_curr)) {
2816                         /*
2817                          * With real time tasks we run non-rt tasks only
2818                          * per_cpu_gain% of the time.
2819                          */
2820                         if ((jiffies % DEF_TIMESLICE) >
2821                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2822                                         ret = 1;
2823                 } else
2824                         if (smt_curr->static_prio < p->static_prio &&
2825                                 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2826                                 smt_slice(smt_curr, sd) > task_timeslice(p))
2827                                         ret = 1;
2828
2829 check_smt_task:
2830                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2831                         rt_task(smt_curr))
2832                                 continue;
2833                 if (!p->mm) {
2834                         wakeup_busy_runqueue(smt_rq);
2835                         continue;
2836                 }
2837
2838                 /*
2839                  * Reschedule a lower priority task on the SMT sibling for
2840                  * it to be put to sleep, or wake it up if it has been put to
2841                  * sleep for priority reasons to see if it should run now.
2842                  */
2843                 if (rt_task(p)) {
2844                         if ((jiffies % DEF_TIMESLICE) >
2845                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2846                                         resched_task(smt_curr);
2847                 } else {
2848                         if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2849                                 smt_slice(p, sd) > task_timeslice(smt_curr))
2850                                         resched_task(smt_curr);
2851                         else
2852                                 wakeup_busy_runqueue(smt_rq);
2853                 }
2854         }
2855 out_unlock:
2856         for_each_cpu_mask(i, sibling_map)
2857                 spin_unlock(&cpu_rq(i)->lock);
2858         return ret;
2859 }
2860 #else
2861 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2862 {
2863 }
2864
2865 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2866 {
2867         return 0;
2868 }
2869 #endif
2870
2871 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2872
2873 void fastcall add_preempt_count(int val)
2874 {
2875         /*
2876          * Underflow?
2877          */
2878         BUG_ON((preempt_count() < 0));
2879         preempt_count() += val;
2880         /*
2881          * Spinlock count overflowing soon?
2882          */
2883         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2884 }
2885 EXPORT_SYMBOL(add_preempt_count);
2886
2887 void fastcall sub_preempt_count(int val)
2888 {
2889         /*
2890          * Underflow?
2891          */
2892         BUG_ON(val > preempt_count());
2893         /*
2894          * Is the spinlock portion underflowing?
2895          */
2896         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2897         preempt_count() -= val;
2898 }
2899 EXPORT_SYMBOL(sub_preempt_count);
2900
2901 #endif
2902
2903 /*
2904  * schedule() is the main scheduler function.
2905  */
2906 asmlinkage void __sched schedule(void)
2907 {
2908         long *switch_count;
2909         task_t *prev, *next;
2910         runqueue_t *rq;
2911         prio_array_t *array;
2912         struct list_head *queue;
2913         unsigned long long now;
2914         unsigned long run_time;
2915         int cpu, idx, new_prio;
2916
2917         /*
2918          * Test if we are atomic.  Since do_exit() needs to call into
2919          * schedule() atomically, we ignore that path for now.
2920          * Otherwise, whine if we are scheduling when we should not be.
2921          */
2922         if (likely(!current->exit_state)) {
2923                 if (unlikely(in_atomic())) {
2924                         printk(KERN_ERR "scheduling while atomic: "
2925                                 "%s/0x%08x/%d\n",
2926                                 current->comm, preempt_count(), current->pid);
2927                         dump_stack();
2928                 }
2929         }
2930         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2931
2932 need_resched:
2933         preempt_disable();
2934         prev = current;
2935         release_kernel_lock(prev);
2936 need_resched_nonpreemptible:
2937         rq = this_rq();
2938
2939         /*
2940          * The idle thread is not allowed to schedule!
2941          * Remove this check after it has been exercised a bit.
2942          */
2943         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2944                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2945                 dump_stack();
2946         }
2947
2948         schedstat_inc(rq, sched_cnt);
2949         now = sched_clock();
2950         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2951                 run_time = now - prev->timestamp;
2952                 if (unlikely((long long)(now - prev->timestamp) < 0))
2953                         run_time = 0;
2954         } else
2955                 run_time = NS_MAX_SLEEP_AVG;
2956
2957         /*
2958          * Tasks charged proportionately less run_time at high sleep_avg to
2959          * delay them losing their interactive status
2960          */
2961         run_time /= (CURRENT_BONUS(prev) ? : 1);
2962
2963         spin_lock_irq(&rq->lock);
2964
2965         if (unlikely(prev->flags & PF_DEAD))
2966                 prev->state = EXIT_DEAD;
2967
2968         switch_count = &prev->nivcsw;
2969         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2970                 switch_count = &prev->nvcsw;
2971                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2972                                 unlikely(signal_pending(prev))))
2973                         prev->state = TASK_RUNNING;
2974                 else {
2975                         if (prev->state == TASK_UNINTERRUPTIBLE)
2976                                 rq->nr_uninterruptible++;
2977                         deactivate_task(prev, rq);
2978                 }
2979         }
2980
2981         cpu = smp_processor_id();
2982         if (unlikely(!rq->nr_running)) {
2983 go_idle:
2984                 idle_balance(cpu, rq);
2985                 if (!rq->nr_running) {
2986                         next = rq->idle;
2987                         rq->expired_timestamp = 0;
2988                         wake_sleeping_dependent(cpu, rq);
2989                         /*
2990                          * wake_sleeping_dependent() might have released
2991                          * the runqueue, so break out if we got new
2992                          * tasks meanwhile:
2993                          */
2994                         if (!rq->nr_running)
2995                                 goto switch_tasks;
2996                 }
2997         } else {
2998                 if (dependent_sleeper(cpu, rq)) {
2999                         next = rq->idle;
3000                         goto switch_tasks;
3001                 }
3002                 /*
3003                  * dependent_sleeper() releases and reacquires the runqueue
3004                  * lock, hence go into the idle loop if the rq went
3005                  * empty meanwhile:
3006                  */
3007                 if (unlikely(!rq->nr_running))
3008                         goto go_idle;
3009         }
3010
3011         array = rq->active;
3012         if (unlikely(!array->nr_active)) {
3013                 /*
3014                  * Switch the active and expired arrays.
3015                  */
3016                 schedstat_inc(rq, sched_switch);
3017                 rq->active = rq->expired;
3018                 rq->expired = array;
3019                 array = rq->active;
3020                 rq->expired_timestamp = 0;
3021                 rq->best_expired_prio = MAX_PRIO;
3022         }
3023
3024         idx = sched_find_first_bit(array->bitmap);
3025         queue = array->queue + idx;
3026         next = list_entry(queue->next, task_t, run_list);
3027
3028         if (!rt_task(next) && next->activated > 0) {
3029                 unsigned long long delta = now - next->timestamp;
3030                 if (unlikely((long long)(now - next->timestamp) < 0))
3031                         delta = 0;
3032
3033                 if (next->activated == 1)
3034                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3035
3036                 array = next->array;
3037                 new_prio = recalc_task_prio(next, next->timestamp + delta);
3038
3039                 if (unlikely(next->prio != new_prio)) {
3040                         dequeue_task(next, array);
3041                         next->prio = new_prio;
3042                         enqueue_task(next, array);
3043                 } else
3044                         requeue_task(next, array);
3045         }
3046         next->activated = 0;
3047 switch_tasks:
3048         if (next == rq->idle)
3049                 schedstat_inc(rq, sched_goidle);
3050         prefetch(next);
3051         prefetch_stack(next);
3052         clear_tsk_need_resched(prev);
3053         rcu_qsctr_inc(task_cpu(prev));
3054
3055         update_cpu_clock(prev, rq, now);
3056
3057         prev->sleep_avg -= run_time;
3058         if ((long)prev->sleep_avg <= 0)
3059                 prev->sleep_avg = 0;
3060         prev->timestamp = prev->last_ran = now;
3061
3062         sched_info_switch(prev, next);
3063         if (likely(prev != next)) {
3064                 next->timestamp = now;
3065                 rq->nr_switches++;
3066                 rq->curr = next;
3067                 ++*switch_count;
3068
3069                 prepare_task_switch(rq, next);
3070                 prev = context_switch(rq, prev, next);
3071                 barrier();
3072                 /*
3073                  * this_rq must be evaluated again because prev may have moved
3074                  * CPUs since it called schedule(), thus the 'rq' on its stack
3075                  * frame will be invalid.
3076                  */
3077                 finish_task_switch(this_rq(), prev);
3078         } else
3079                 spin_unlock_irq(&rq->lock);
3080
3081         prev = current;
3082         if (unlikely(reacquire_kernel_lock(prev) < 0))
3083                 goto need_resched_nonpreemptible;
3084         preempt_enable_no_resched();
3085         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3086                 goto need_resched;
3087 }
3088
3089 EXPORT_SYMBOL(schedule);
3090
3091 #ifdef CONFIG_PREEMPT
3092 /*
3093  * this is is the entry point to schedule() from in-kernel preemption
3094  * off of preempt_enable.  Kernel preemptions off return from interrupt
3095  * occur there and call schedule directly.
3096  */
3097 asmlinkage void __sched preempt_schedule(void)
3098 {
3099         struct thread_info *ti = current_thread_info();
3100 #ifdef CONFIG_PREEMPT_BKL
3101         struct task_struct *task = current;
3102         int saved_lock_depth;
3103 #endif
3104         /*
3105          * If there is a non-zero preempt_count or interrupts are disabled,
3106          * we do not want to preempt the current task.  Just return..
3107          */
3108         if (unlikely(ti->preempt_count || irqs_disabled()))
3109                 return;
3110
3111 need_resched:
3112         add_preempt_count(PREEMPT_ACTIVE);
3113         /*
3114          * We keep the big kernel semaphore locked, but we
3115          * clear ->lock_depth so that schedule() doesnt
3116          * auto-release the semaphore:
3117          */
3118 #ifdef CONFIG_PREEMPT_BKL
3119         saved_lock_depth = task->lock_depth;
3120         task->lock_depth = -1;
3121 #endif
3122         schedule();
3123 #ifdef CONFIG_PREEMPT_BKL
3124         task->lock_depth = saved_lock_depth;
3125 #endif
3126         sub_preempt_count(PREEMPT_ACTIVE);
3127
3128         /* we could miss a preemption opportunity between schedule and now */
3129         barrier();
3130         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3131                 goto need_resched;
3132 }
3133
3134 EXPORT_SYMBOL(preempt_schedule);
3135
3136 /*
3137  * this is is the entry point to schedule() from kernel preemption
3138  * off of irq context.
3139  * Note, that this is called and return with irqs disabled. This will
3140  * protect us against recursive calling from irq.
3141  */
3142 asmlinkage void __sched preempt_schedule_irq(void)
3143 {
3144         struct thread_info *ti = current_thread_info();
3145 #ifdef CONFIG_PREEMPT_BKL
3146         struct task_struct *task = current;
3147         int saved_lock_depth;
3148 #endif
3149         /* Catch callers which need to be fixed*/
3150         BUG_ON(ti->preempt_count || !irqs_disabled());
3151
3152 need_resched:
3153         add_preempt_count(PREEMPT_ACTIVE);
3154         /*
3155          * We keep the big kernel semaphore locked, but we
3156          * clear ->lock_depth so that schedule() doesnt
3157          * auto-release the semaphore:
3158          */
3159 #ifdef CONFIG_PREEMPT_BKL
3160         saved_lock_depth = task->lock_depth;
3161         task->lock_depth = -1;
3162 #endif
3163         local_irq_enable();
3164         schedule();
3165         local_irq_disable();
3166 #ifdef CONFIG_PREEMPT_BKL
3167         task->lock_depth = saved_lock_depth;
3168 #endif
3169         sub_preempt_count(PREEMPT_ACTIVE);
3170
3171         /* we could miss a preemption opportunity between schedule and now */
3172         barrier();
3173         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3174                 goto need_resched;
3175 }
3176
3177 #endif /* CONFIG_PREEMPT */
3178
3179 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3180                           void *key)
3181 {
3182         task_t *p = curr->private;
3183         return try_to_wake_up(p, mode, sync);
3184 }
3185
3186 EXPORT_SYMBOL(default_wake_function);
3187
3188 /*
3189  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3190  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3191  * number) then we wake all the non-exclusive tasks and one exclusive task.
3192  *
3193  * There are circumstances in which we can try to wake a task which has already
3194  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3195  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3196  */
3197 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3198                              int nr_exclusive, int sync, void *key)
3199 {
3200         struct list_head *tmp, *next;
3201
3202         list_for_each_safe(tmp, next, &q->task_list) {
3203                 wait_queue_t *curr;
3204                 unsigned flags;
3205                 curr = list_entry(tmp, wait_queue_t, task_list);
3206                 flags = curr->flags;
3207                 if (curr->func(curr, mode, sync, key) &&
3208                     (flags & WQ_FLAG_EXCLUSIVE) &&
3209                     !--nr_exclusive)
3210                         break;
3211         }
3212 }
3213
3214 /**
3215  * __wake_up - wake up threads blocked on a waitqueue.
3216  * @q: the waitqueue
3217  * @mode: which threads
3218  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3219  * @key: is directly passed to the wakeup function
3220  */
3221 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3222                         int nr_exclusive, void *key)
3223 {
3224         unsigned long flags;
3225
3226         spin_lock_irqsave(&q->lock, flags);
3227         __wake_up_common(q, mode, nr_exclusive, 0, key);
3228         spin_unlock_irqrestore(&q->lock, flags);
3229 }
3230
3231 EXPORT_SYMBOL(__wake_up);
3232
3233 /*
3234  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3235  */
3236 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3237 {
3238         __wake_up_common(q, mode, 1, 0, NULL);
3239 }
3240
3241 /**
3242  * __wake_up_sync - wake up threads blocked on a waitqueue.
3243  * @q: the waitqueue
3244  * @mode: which threads
3245  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3246  *
3247  * The sync wakeup differs that the waker knows that it will schedule
3248  * away soon, so while the target thread will be woken up, it will not
3249  * be migrated to another CPU - ie. the two threads are 'synchronized'
3250  * with each other. This can prevent needless bouncing between CPUs.
3251  *
3252  * On UP it can prevent extra preemption.
3253  */
3254 void fastcall
3255 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3256 {
3257         unsigned long flags;
3258         int sync = 1;
3259
3260         if (unlikely(!q))
3261                 return;
3262
3263         if (unlikely(!nr_exclusive))
3264                 sync = 0;
3265
3266         spin_lock_irqsave(&q->lock, flags);
3267         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3268         spin_unlock_irqrestore(&q->lock, flags);
3269 }
3270 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3271
3272 void fastcall complete(struct completion *x)
3273 {
3274         unsigned long flags;
3275
3276         spin_lock_irqsave(&x->wait.lock, flags);
3277         x->done++;
3278         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3279                          1, 0, NULL);
3280         spin_unlock_irqrestore(&x->wait.lock, flags);
3281 }
3282 EXPORT_SYMBOL(complete);
3283
3284 void fastcall complete_all(struct completion *x)
3285 {
3286         unsigned long flags;
3287
3288         spin_lock_irqsave(&x->wait.lock, flags);
3289         x->done += UINT_MAX/2;
3290         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3291                          0, 0, NULL);
3292         spin_unlock_irqrestore(&x->wait.lock, flags);
3293 }
3294 EXPORT_SYMBOL(complete_all);
3295
3296 void fastcall __sched wait_for_completion(struct completion *x)
3297 {
3298         might_sleep();
3299         spin_lock_irq(&x->wait.lock);
3300         if (!x->done) {
3301                 DECLARE_WAITQUEUE(wait, current);
3302
3303                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3304                 __add_wait_queue_tail(&x->wait, &wait);
3305                 do {
3306                         __set_current_state(TASK_UNINTERRUPTIBLE);
3307                         spin_unlock_irq(&x->wait.lock);
3308                         schedule();
3309                         spin_lock_irq(&x->wait.lock);
3310                 } while (!x->done);
3311                 __remove_wait_queue(&x->wait, &wait);
3312         }
3313         x->done--;
3314         spin_unlock_irq(&x->wait.lock);
3315 }
3316 EXPORT_SYMBOL(wait_for_completion);
3317
3318 unsigned long fastcall __sched
3319 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3320 {
3321         might_sleep();
3322
3323         spin_lock_irq(&x->wait.lock);
3324         if (!x->done) {
3325                 DECLARE_WAITQUEUE(wait, current);
3326
3327                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3328                 __add_wait_queue_tail(&x->wait, &wait);
3329                 do {
3330                         __set_current_state(TASK_UNINTERRUPTIBLE);
3331                         spin_unlock_irq(&x->wait.lock);
3332                         timeout = schedule_timeout(timeout);
3333                         spin_lock_irq(&x->wait.lock);
3334                         if (!timeout) {
3335                                 __remove_wait_queue(&x->wait, &wait);
3336                                 goto out;
3337                         }
3338                 } while (!x->done);
3339                 __remove_wait_queue(&x->wait, &wait);
3340         }
3341         x->done--;
3342 out:
3343         spin_unlock_irq(&x->wait.lock);
3344         return timeout;
3345 }
3346 EXPORT_SYMBOL(wait_for_completion_timeout);
3347
3348 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3349 {
3350         int ret = 0;
3351
3352         might_sleep();
3353
3354         spin_lock_irq(&x->wait.lock);
3355         if (!x->done) {
3356                 DECLARE_WAITQUEUE(wait, current);
3357
3358                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3359                 __add_wait_queue_tail(&x->wait, &wait);
3360                 do {
3361                         if (signal_pending(current)) {
3362                                 ret = -ERESTARTSYS;
3363                                 __remove_wait_queue(&x->wait, &wait);
3364                                 goto out;
3365                         }
3366                         __set_current_state(TASK_INTERRUPTIBLE);
3367                         spin_unlock_irq(&x->wait.lock);
3368                         schedule();
3369                         spin_lock_irq(&x->wait.lock);
3370                 } while (!x->done);
3371                 __remove_wait_queue(&x->wait, &wait);
3372         }
3373         x->done--;
3374 out:
3375         spin_unlock_irq(&x->wait.lock);
3376
3377         return ret;
3378 }
3379 EXPORT_SYMBOL(wait_for_completion_interruptible);
3380
3381 unsigned long fastcall __sched
3382 wait_for_completion_interruptible_timeout(struct completion *x,
3383                                           unsigned long timeout)
3384 {
3385         might_sleep();
3386
3387         spin_lock_irq(&x->wait.lock);
3388         if (!x->done) {
3389                 DECLARE_WAITQUEUE(wait, current);
3390
3391                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3392                 __add_wait_queue_tail(&x->wait, &wait);
3393                 do {
3394                         if (signal_pending(current)) {
3395                                 timeout = -ERESTARTSYS;
3396                                 __remove_wait_queue(&x->wait, &wait);
3397                                 goto out;
3398                         }
3399                         __set_current_state(TASK_INTERRUPTIBLE);
3400                         spin_unlock_irq(&x->wait.lock);
3401                         timeout = schedule_timeout(timeout);
3402                         spin_lock_irq(&x->wait.lock);
3403                         if (!timeout) {
3404                                 __remove_wait_queue(&x->wait, &wait);
3405                                 goto out;
3406                         }
3407                 } while (!x->done);
3408                 __remove_wait_queue(&x->wait, &wait);
3409         }
3410         x->done--;
3411 out:
3412         spin_unlock_irq(&x->wait.lock);
3413         return timeout;
3414 }
3415 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3416
3417
3418 #define SLEEP_ON_VAR                                    \
3419         unsigned long flags;                            \
3420         wait_queue_t wait;                              \
3421         init_waitqueue_entry(&wait, current);
3422
3423 #define SLEEP_ON_HEAD                                   \
3424         spin_lock_irqsave(&q->lock,flags);              \
3425         __add_wait_queue(q, &wait);                     \
3426         spin_unlock(&q->lock);
3427
3428 #define SLEEP_ON_TAIL                                   \
3429         spin_lock_irq(&q->lock);                        \
3430         __remove_wait_queue(q, &wait);                  \
3431         spin_unlock_irqrestore(&q->lock, flags);
3432
3433 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3434 {
3435         SLEEP_ON_VAR
3436
3437         current->state = TASK_INTERRUPTIBLE;
3438
3439         SLEEP_ON_HEAD
3440         schedule();
3441         SLEEP_ON_TAIL
3442 }
3443
3444 EXPORT_SYMBOL(interruptible_sleep_on);
3445
3446 long fastcall __sched
3447 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3448 {
3449         SLEEP_ON_VAR
3450
3451         current->state = TASK_INTERRUPTIBLE;
3452
3453         SLEEP_ON_HEAD
3454         timeout = schedule_timeout(timeout);
3455         SLEEP_ON_TAIL
3456
3457         return timeout;
3458 }
3459
3460 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3461
3462 void fastcall __sched sleep_on(wait_queue_head_t *q)
3463 {
3464         SLEEP_ON_VAR
3465
3466         current->state = TASK_UNINTERRUPTIBLE;
3467
3468         SLEEP_ON_HEAD
3469         schedule();
3470         SLEEP_ON_TAIL
3471 }
3472
3473 EXPORT_SYMBOL(sleep_on);
3474
3475 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3476 {
3477         SLEEP_ON_VAR
3478
3479         current->state = TASK_UNINTERRUPTIBLE;
3480
3481         SLEEP_ON_HEAD
3482         timeout = schedule_timeout(timeout);
3483         SLEEP_ON_TAIL
3484
3485         return timeout;
3486 }
3487
3488 EXPORT_SYMBOL(sleep_on_timeout);
3489
3490 void set_user_nice(task_t *p, long nice)
3491 {
3492         unsigned long flags;
3493         prio_array_t *array;
3494         runqueue_t *rq;
3495         int old_prio, new_prio, delta;
3496
3497         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3498                 return;
3499         /*
3500          * We have to be careful, if called from sys_setpriority(),
3501          * the task might be in the middle of scheduling on another CPU.
3502          */
3503         rq = task_rq_lock(p, &flags);
3504         /*
3505          * The RT priorities are set via sched_setscheduler(), but we still
3506          * allow the 'normal' nice value to be set - but as expected
3507          * it wont have any effect on scheduling until the task is
3508          * not SCHED_NORMAL:
3509          */
3510         if (rt_task(p)) {
3511                 p->static_prio = NICE_TO_PRIO(nice);
3512                 goto out_unlock;
3513         }
3514         array = p->array;
3515         if (array) {
3516                 dequeue_task(p, array);
3517                 dec_prio_bias(rq, p->static_prio);
3518         }
3519
3520         old_prio = p->prio;
3521         new_prio = NICE_TO_PRIO(nice);
3522         delta = new_prio - old_prio;
3523         p->static_prio = NICE_TO_PRIO(nice);
3524         p->prio += delta;
3525
3526         if (array) {
3527                 enqueue_task(p, array);
3528                 inc_prio_bias(rq, p->static_prio);
3529                 /*
3530                  * If the task increased its priority or is running and
3531                  * lowered its priority, then reschedule its CPU:
3532                  */
3533                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3534                         resched_task(rq->curr);
3535         }
3536 out_unlock:
3537         task_rq_unlock(rq, &flags);
3538 }
3539
3540 EXPORT_SYMBOL(set_user_nice);
3541
3542 /*
3543  * can_nice - check if a task can reduce its nice value
3544  * @p: task
3545  * @nice: nice value
3546  */
3547 int can_nice(const task_t *p, const int nice)
3548 {
3549         /* convert nice value [19,-20] to rlimit style value [1,40] */
3550         int nice_rlim = 20 - nice;
3551         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3552                 capable(CAP_SYS_NICE));
3553 }
3554
3555 #ifdef __ARCH_WANT_SYS_NICE
3556
3557 /*
3558  * sys_nice - change the priority of the current process.
3559  * @increment: priority increment
3560  *
3561  * sys_setpriority is a more generic, but much slower function that
3562  * does similar things.
3563  */
3564 asmlinkage long sys_nice(int increment)
3565 {
3566         int retval;
3567         long nice;
3568
3569         /*
3570          * Setpriority might change our priority at the same moment.
3571          * We don't have to worry. Conceptually one call occurs first
3572          * and we have a single winner.
3573          */
3574         if (increment < -40)
3575                 increment = -40;
3576         if (increment > 40)
3577                 increment = 40;
3578
3579         nice = PRIO_TO_NICE(current->static_prio) + increment;
3580         if (nice < -20)
3581                 nice = -20;
3582         if (nice > 19)
3583                 nice = 19;
3584
3585         if (increment < 0 && !can_nice(current, nice))
3586                 return -EPERM;
3587
3588         retval = security_task_setnice(current, nice);
3589         if (retval)
3590                 return retval;
3591
3592         set_user_nice(current, nice);
3593         return 0;
3594 }
3595
3596 #endif
3597
3598 /**
3599  * task_prio - return the priority value of a given task.
3600  * @p: the task in question.
3601  *
3602  * This is the priority value as seen by users in /proc.
3603  * RT tasks are offset by -200. Normal tasks are centered
3604  * around 0, value goes from -16 to +15.
3605  */
3606 int task_prio(const task_t *p)
3607 {
3608         return p->prio - MAX_RT_PRIO;
3609 }
3610
3611 /**
3612  * task_nice - return the nice value of a given task.
3613  * @p: the task in question.
3614  */
3615 int task_nice(const task_t *p)
3616 {
3617         return TASK_NICE(p);
3618 }
3619 EXPORT_SYMBOL_GPL(task_nice);
3620
3621 /**
3622  * idle_cpu - is a given cpu idle currently?
3623  * @cpu: the processor in question.
3624  */
3625 int idle_cpu(int cpu)
3626 {
3627         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3628 }
3629
3630 /**
3631  * idle_task - return the idle task for a given cpu.
3632  * @cpu: the processor in question.
3633  */
3634 task_t *idle_task(int cpu)
3635 {
3636         return cpu_rq(cpu)->idle;
3637 }
3638
3639 /**
3640  * find_process_by_pid - find a process with a matching PID value.
3641  * @pid: the pid in question.
3642  */
3643 static inline task_t *find_process_by_pid(pid_t pid)
3644 {
3645         return pid ? find_task_by_pid(pid) : current;
3646 }
3647
3648 /* Actually do priority change: must hold rq lock. */
3649 static void __setscheduler(struct task_struct *p, int policy, int prio)
3650 {
3651         BUG_ON(p->array);
3652         p->policy = policy;
3653         p->rt_priority = prio;
3654         if (policy != SCHED_NORMAL)
3655                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3656         else
3657                 p->prio = p->static_prio;
3658 }
3659
3660 /**
3661  * sched_setscheduler - change the scheduling policy and/or RT priority of
3662  * a thread.
3663  * @p: the task in question.
3664  * @policy: new policy.
3665  * @param: structure containing the new RT priority.
3666  */
3667 int sched_setscheduler(struct task_struct *p, int policy,
3668                        struct sched_param *param)
3669 {
3670         int retval;
3671         int oldprio, oldpolicy = -1;
3672         prio_array_t *array;
3673         unsigned long flags;
3674         runqueue_t *rq;
3675
3676 recheck:
3677         /* double check policy once rq lock held */
3678         if (policy < 0)
3679                 policy = oldpolicy = p->policy;
3680         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3681                                 policy != SCHED_NORMAL)
3682                         return -EINVAL;
3683         /*
3684          * Valid priorities for SCHED_FIFO and SCHED_RR are
3685          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3686          */
3687         if (param->sched_priority < 0 ||
3688             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3689             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3690                 return -EINVAL;
3691         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3692                 return -EINVAL;
3693
3694         /*
3695          * Allow unprivileged RT tasks to decrease priority:
3696          */
3697         if (!capable(CAP_SYS_NICE)) {
3698                 /* can't change policy */
3699                 if (policy != p->policy &&
3700                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3701                         return -EPERM;
3702                 /* can't increase priority */
3703                 if (policy != SCHED_NORMAL &&
3704                     param->sched_priority > p->rt_priority &&
3705                     param->sched_priority >
3706                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3707                         return -EPERM;
3708                 /* can't change other user's priorities */
3709                 if ((current->euid != p->euid) &&
3710                     (current->euid != p->uid))
3711                         return -EPERM;
3712         }
3713
3714         retval = security_task_setscheduler(p, policy, param);
3715         if (retval)
3716                 return retval;
3717         /*
3718          * To be able to change p->policy safely, the apropriate
3719          * runqueue lock must be held.
3720          */
3721         rq = task_rq_lock(p, &flags);
3722         /* recheck policy now with rq lock held */
3723         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3724                 policy = oldpolicy = -1;
3725                 task_rq_unlock(rq, &flags);
3726                 goto recheck;
3727         }
3728         array = p->array;
3729         if (array)
3730                 deactivate_task(p, rq);
3731         oldprio = p->prio;
3732         __setscheduler(p, policy, param->sched_priority);
3733         if (array) {
3734                 __activate_task(p, rq);
3735                 /*
3736                  * Reschedule if we are currently running on this runqueue and
3737                  * our priority decreased, or if we are not currently running on
3738                  * this runqueue and our priority is higher than the current's
3739                  */
3740                 if (task_running(rq, p)) {
3741                         if (p->prio > oldprio)
3742                                 resched_task(rq->curr);
3743                 } else if (TASK_PREEMPTS_CURR(p, rq))
3744                         resched_task(rq->curr);
3745         }
3746         task_rq_unlock(rq, &flags);
3747         return 0;
3748 }
3749 EXPORT_SYMBOL_GPL(sched_setscheduler);
3750
3751 static int
3752 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3753 {
3754         int retval;
3755         struct sched_param lparam;
3756         struct task_struct *p;
3757
3758         if (!param || pid < 0)
3759                 return -EINVAL;
3760         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3761                 return -EFAULT;
3762         read_lock_irq(&tasklist_lock);
3763         p = find_process_by_pid(pid);
3764         if (!p) {
3765                 read_unlock_irq(&tasklist_lock);
3766                 return -ESRCH;
3767         }
3768         retval = sched_setscheduler(p, policy, &lparam);
3769         read_unlock_irq(&tasklist_lock);
3770         return retval;
3771 }
3772
3773 /**
3774  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775  * @pid: the pid in question.
3776  * @policy: new policy.
3777  * @param: structure containing the new RT priority.
3778  */
3779 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3780                                        struct sched_param __user *param)
3781 {
3782         return do_sched_setscheduler(pid, policy, param);
3783 }
3784
3785 /**
3786  * sys_sched_setparam - set/change the RT priority of a thread
3787  * @pid: the pid in question.
3788  * @param: structure containing the new RT priority.
3789  */
3790 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3791 {
3792         return do_sched_setscheduler(pid, -1, param);
3793 }
3794
3795 /**
3796  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3797  * @pid: the pid in question.
3798  */
3799 asmlinkage long sys_sched_getscheduler(pid_t pid)
3800 {
3801         int retval = -EINVAL;
3802         task_t *p;
3803
3804         if (pid < 0)
3805                 goto out_nounlock;
3806
3807         retval = -ESRCH;
3808         read_lock(&tasklist_lock);
3809         p = find_process_by_pid(pid);
3810         if (p) {
3811                 retval = security_task_getscheduler(p);
3812                 if (!retval)
3813                         retval = p->policy;
3814         }
3815         read_unlock(&tasklist_lock);
3816
3817 out_nounlock:
3818         return retval;
3819 }
3820
3821 /**
3822  * sys_sched_getscheduler - get the RT priority of a thread
3823  * @pid: the pid in question.
3824  * @param: structure containing the RT priority.
3825  */
3826 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3827 {
3828         struct sched_param lp;
3829         int retval = -EINVAL;
3830         task_t *p;
3831
3832         if (!param || pid < 0)
3833                 goto out_nounlock;
3834
3835         read_lock(&tasklist_lock);
3836         p = find_process_by_pid(pid);
3837         retval = -ESRCH;
3838         if (!p)
3839                 goto out_unlock;
3840
3841         retval = security_task_getscheduler(p);
3842         if (retval)
3843                 goto out_unlock;
3844
3845         lp.sched_priority = p->rt_priority;
3846         read_unlock(&tasklist_lock);
3847
3848         /*
3849          * This one might sleep, we cannot do it with a spinlock held ...
3850          */
3851         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3852
3853 out_nounlock:
3854         return retval;
3855
3856 out_unlock:
3857         read_unlock(&tasklist_lock);
3858         return retval;
3859 }
3860
3861 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3862 {
3863         task_t *p;
3864         int retval;
3865         cpumask_t cpus_allowed;
3866
3867         lock_cpu_hotplug();
3868         read_lock(&tasklist_lock);
3869
3870         p = find_process_by_pid(pid);
3871         if (!p) {
3872                 read_unlock(&tasklist_lock);
3873                 unlock_cpu_hotplug();
3874                 return -ESRCH;
3875         }
3876
3877         /*
3878          * It is not safe to call set_cpus_allowed with the
3879          * tasklist_lock held.  We will bump the task_struct's
3880          * usage count and then drop tasklist_lock.
3881          */
3882         get_task_struct(p);
3883         read_unlock(&tasklist_lock);
3884
3885         retval = -EPERM;
3886         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3887                         !capable(CAP_SYS_NICE))
3888                 goto out_unlock;
3889
3890         cpus_allowed = cpuset_cpus_allowed(p);
3891         cpus_and(new_mask, new_mask, cpus_allowed);
3892         retval = set_cpus_allowed(p, new_mask);
3893
3894 out_unlock:
3895         put_task_struct(p);
3896         unlock_cpu_hotplug();
3897         return retval;
3898 }
3899
3900 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3901                              cpumask_t *new_mask)
3902 {
3903         if (len < sizeof(cpumask_t)) {
3904                 memset(new_mask, 0, sizeof(cpumask_t));
3905         } else if (len > sizeof(cpumask_t)) {
3906                 len = sizeof(cpumask_t);
3907         }
3908         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3909 }
3910
3911 /**
3912  * sys_sched_setaffinity - set the cpu affinity of a process
3913  * @pid: pid of the process
3914  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3915  * @user_mask_ptr: user-space pointer to the new cpu mask
3916  */
3917 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3918                                       unsigned long __user *user_mask_ptr)
3919 {
3920         cpumask_t new_mask;
3921         int retval;
3922
3923         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3924         if (retval)
3925                 return retval;
3926
3927         return sched_setaffinity(pid, new_mask);
3928 }
3929
3930 /*
3931  * Represents all cpu's present in the system
3932  * In systems capable of hotplug, this map could dynamically grow
3933  * as new cpu's are detected in the system via any platform specific
3934  * method, such as ACPI for e.g.
3935  */
3936
3937 cpumask_t cpu_present_map;
3938 EXPORT_SYMBOL(cpu_present_map);
3939
3940 #ifndef CONFIG_SMP
3941 cpumask_t cpu_online_map = CPU_MASK_ALL;
3942 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3943 #endif
3944
3945 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3946 {
3947         int retval;
3948         task_t *p;
3949
3950         lock_cpu_hotplug();
3951         read_lock(&tasklist_lock);
3952
3953         retval = -ESRCH;
3954         p = find_process_by_pid(pid);
3955         if (!p)
3956                 goto out_unlock;
3957
3958         retval = 0;
3959         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3960
3961 out_unlock:
3962         read_unlock(&tasklist_lock);
3963         unlock_cpu_hotplug();
3964         if (retval)
3965                 return retval;
3966
3967         return 0;
3968 }
3969
3970 /**
3971  * sys_sched_getaffinity - get the cpu affinity of a process
3972  * @pid: pid of the process
3973  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3974  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3975  */
3976 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3977                                       unsigned long __user *user_mask_ptr)
3978 {
3979         int ret;
3980         cpumask_t mask;
3981
3982         if (len < sizeof(cpumask_t))
3983                 return -EINVAL;
3984
3985         ret = sched_getaffinity(pid, &mask);
3986         if (ret < 0)
3987                 return ret;
3988
3989         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3990                 return -EFAULT;
3991
3992         return sizeof(cpumask_t);
3993 }
3994
3995 /**
3996  * sys_sched_yield - yield the current processor to other threads.
3997  *
3998  * this function yields the current CPU by moving the calling thread
3999  * to the expired array. If there are no other threads running on this
4000  * CPU then this function will return.
4001  */
4002 asmlinkage long sys_sched_yield(void)
4003 {
4004         runqueue_t *rq = this_rq_lock();
4005         prio_array_t *array = current->array;
4006         prio_array_t *target = rq->expired;
4007
4008         schedstat_inc(rq, yld_cnt);
4009         /*
4010          * We implement yielding by moving the task into the expired
4011          * queue.
4012          *
4013          * (special rule: RT tasks will just roundrobin in the active
4014          *  array.)
4015          */
4016         if (rt_task(current))
4017                 target = rq->active;
4018
4019         if (array->nr_active == 1) {
4020                 schedstat_inc(rq, yld_act_empty);
4021                 if (!rq->expired->nr_active)
4022                         schedstat_inc(rq, yld_both_empty);
4023         } else if (!rq->expired->nr_active)
4024                 schedstat_inc(rq, yld_exp_empty);
4025
4026         if (array != target) {
4027                 dequeue_task(current, array);
4028                 enqueue_task(current, target);
4029         } else
4030                 /*
4031                  * requeue_task is cheaper so perform that if possible.
4032                  */
4033                 requeue_task(current, array);
4034
4035         /*
4036          * Since we are going to call schedule() anyway, there's
4037          * no need to preempt or enable interrupts:
4038          */
4039         __release(rq->lock);
4040         _raw_spin_unlock(&rq->lock);
4041         preempt_enable_no_resched();
4042
4043         schedule();
4044
4045         return 0;
4046 }
4047
4048 static inline void __cond_resched(void)
4049 {
4050         /*
4051          * The BKS might be reacquired before we have dropped
4052          * PREEMPT_ACTIVE, which could trigger a second
4053          * cond_resched() call.
4054          */
4055         if (unlikely(preempt_count()))
4056                 return;
4057         do {
4058                 add_preempt_count(PREEMPT_ACTIVE);
4059                 schedule();
4060                 sub_preempt_count(PREEMPT_ACTIVE);
4061         } while (need_resched());
4062 }
4063
4064 int __sched cond_resched(void)
4065 {
4066         if (need_resched()) {
4067                 __cond_resched();
4068                 return 1;
4069         }
4070         return 0;
4071 }
4072
4073 EXPORT_SYMBOL(cond_resched);
4074
4075 /*
4076  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4077  * call schedule, and on return reacquire the lock.
4078  *
4079  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
4080  * operations here to prevent schedule() from being called twice (once via
4081  * spin_unlock(), once by hand).
4082  */
4083 int cond_resched_lock(spinlock_t *lock)
4084 {
4085         int ret = 0;
4086
4087         if (need_lockbreak(lock)) {
4088                 spin_unlock(lock);
4089                 cpu_relax();
4090                 ret = 1;
4091                 spin_lock(lock);
4092         }
4093         if (need_resched()) {
4094                 _raw_spin_unlock(lock);
4095                 preempt_enable_no_resched();
4096                 __cond_resched();
4097                 ret = 1;
4098                 spin_lock(lock);
4099         }
4100         return ret;
4101 }
4102
4103 EXPORT_SYMBOL(cond_resched_lock);
4104
4105 int __sched cond_resched_softirq(void)
4106 {
4107         BUG_ON(!in_softirq());
4108
4109         if (need_resched()) {
4110                 __local_bh_enable();
4111                 __cond_resched();
4112                 local_bh_disable();
4113                 return 1;
4114         }
4115         return 0;
4116 }
4117
4118 EXPORT_SYMBOL(cond_resched_softirq);
4119
4120
4121 /**
4122  * yield - yield the current processor to other threads.
4123  *
4124  * this is a shortcut for kernel-space yielding - it marks the
4125  * thread runnable and calls sys_sched_yield().
4126  */
4127 void __sched yield(void)
4128 {
4129         set_current_state(TASK_RUNNING);
4130         sys_sched_yield();
4131 }
4132
4133 EXPORT_SYMBOL(yield);
4134
4135 /*
4136  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4137  * that process accounting knows that this is a task in IO wait state.
4138  *
4139  * But don't do that if it is a deliberate, throttling IO wait (this task
4140  * has set its backing_dev_info: the queue against which it should throttle)
4141  */
4142 void __sched io_schedule(void)
4143 {
4144         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4145
4146         atomic_inc(&rq->nr_iowait);
4147         schedule();
4148         atomic_dec(&rq->nr_iowait);
4149 }
4150
4151 EXPORT_SYMBOL(io_schedule);
4152
4153 long __sched io_schedule_timeout(long timeout)
4154 {
4155         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4156         long ret;
4157
4158         atomic_inc(&rq->nr_iowait);
4159         ret = schedule_timeout(timeout);
4160         atomic_dec(&rq->nr_iowait);
4161         return ret;
4162 }
4163
4164 /**
4165  * sys_sched_get_priority_max - return maximum RT priority.
4166  * @policy: scheduling class.
4167  *
4168  * this syscall returns the maximum rt_priority that can be used
4169  * by a given scheduling class.
4170  */
4171 asmlinkage long sys_sched_get_priority_max(int policy)
4172 {
4173         int ret = -EINVAL;
4174
4175         switch (policy) {
4176         case SCHED_FIFO:
4177         case SCHED_RR:
4178                 ret = MAX_USER_RT_PRIO-1;
4179                 break;
4180         case SCHED_NORMAL:
4181                 ret = 0;
4182                 break;
4183         }
4184         return ret;
4185 }
4186
4187 /**
4188  * sys_sched_get_priority_min - return minimum RT priority.
4189  * @policy: scheduling class.
4190  *
4191  * this syscall returns the minimum rt_priority that can be used
4192  * by a given scheduling class.
4193  */
4194 asmlinkage long sys_sched_get_priority_min(int policy)
4195 {
4196         int ret = -EINVAL;
4197
4198         switch (policy) {
4199         case SCHED_FIFO:
4200         case SCHED_RR:
4201                 ret = 1;
4202                 break;
4203         case SCHED_NORMAL:
4204                 ret = 0;
4205         }
4206         return ret;
4207 }
4208
4209 /**
4210  * sys_sched_rr_get_interval - return the default timeslice of a process.
4211  * @pid: pid of the process.
4212  * @interval: userspace pointer to the timeslice value.
4213  *
4214  * this syscall writes the default timeslice value of a given process
4215  * into the user-space timespec buffer. A value of '0' means infinity.
4216  */
4217 asmlinkage
4218 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4219 {
4220         int retval = -EINVAL;
4221         struct timespec t;
4222         task_t *p;
4223
4224         if (pid < 0)
4225                 goto out_nounlock;
4226
4227         retval = -ESRCH;
4228         read_lock(&tasklist_lock);
4229         p = find_process_by_pid(pid);
4230         if (!p)
4231                 goto out_unlock;
4232
4233         retval = security_task_getscheduler(p);
4234         if (retval)
4235                 goto out_unlock;
4236
4237         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4238                                 0 : task_timeslice(p), &t);
4239         read_unlock(&tasklist_lock);
4240         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4241 out_nounlock:
4242         return retval;
4243 out_unlock:
4244         read_unlock(&tasklist_lock);
4245         return retval;
4246 }
4247
4248 static inline struct task_struct *eldest_child(struct task_struct *p)
4249 {
4250         if (list_empty(&p->children)) return NULL;
4251         return list_entry(p->children.next,struct task_struct,sibling);
4252 }
4253
4254 static inline struct task_struct *older_sibling(struct task_struct *p)
4255 {
4256         if (p->sibling.prev==&p->parent->children) return NULL;
4257         return list_entry(p->sibling.prev,struct task_struct,sibling);
4258 }
4259
4260 static inline struct task_struct *younger_sibling(struct task_struct *p)
4261 {
4262         if (p->sibling.next==&p->parent->children) return NULL;
4263         return list_entry(p->sibling.next,struct task_struct,sibling);
4264 }
4265
4266 static void show_task(task_t *p)
4267 {
4268         task_t *relative;
4269         unsigned state;
4270         unsigned long free = 0;
4271         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4272
4273         printk("%-13.13s ", p->comm);
4274         state = p->state ? __ffs(p->state) + 1 : 0;
4275         if (state < ARRAY_SIZE(stat_nam))
4276                 printk(stat_nam[state]);
4277         else
4278                 printk("?");
4279 #if (BITS_PER_LONG == 32)
4280         if (state == TASK_RUNNING)
4281                 printk(" running ");
4282         else
4283                 printk(" %08lX ", thread_saved_pc(p));
4284 #else
4285         if (state == TASK_RUNNING)
4286                 printk("  running task   ");
4287         else
4288                 printk(" %016lx ", thread_saved_pc(p));
4289 #endif
4290 #ifdef CONFIG_DEBUG_STACK_USAGE
4291         {
4292                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4293                 while (!*n)
4294                         n++;
4295                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4296         }
4297 #endif
4298         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4299         if ((relative = eldest_child(p)))
4300                 printk("%5d ", relative->pid);
4301         else
4302                 printk("      ");
4303         if ((relative = younger_sibling(p)))
4304                 printk("%7d", relative->pid);
4305         else
4306                 printk("       ");
4307         if ((relative = older_sibling(p)))
4308                 printk(" %5d", relative->pid);
4309         else
4310                 printk("      ");
4311         if (!p->mm)
4312                 printk(" (L-TLB)\n");
4313         else
4314                 printk(" (NOTLB)\n");
4315
4316         if (state != TASK_RUNNING)
4317                 show_stack(p, NULL);
4318 }
4319
4320 void show_state(void)
4321 {
4322         task_t *g, *p;
4323
4324 #if (BITS_PER_LONG == 32)
4325         printk("\n"
4326                "                                               sibling\n");
4327         printk("  task             PC      pid father child younger older\n");
4328 #else
4329         printk("\n"
4330                "                                                       sibling\n");
4331         printk("  task                 PC          pid father child younger older\n");
4332 #endif
4333         read_lock(&tasklist_lock);
4334         do_each_thread(g, p) {
4335                 /*
4336                  * reset the NMI-timeout, listing all files on a slow
4337                  * console might take alot of time:
4338                  */
4339                 touch_nmi_watchdog();
4340                 show_task(p);
4341         } while_each_thread(g, p);
4342
4343         read_unlock(&tasklist_lock);
4344 }
4345
4346 /**
4347  * init_idle - set up an idle thread for a given CPU
4348  * @idle: task in question
4349  * @cpu: cpu the idle task belongs to
4350  *
4351  * NOTE: this function does not set the idle thread's NEED_RESCHED
4352  * flag, to make booting more robust.
4353  */
4354 void __devinit init_idle(task_t *idle, int cpu)
4355 {
4356         runqueue_t *rq = cpu_rq(cpu);
4357         unsigned long flags;
4358
4359         idle->sleep_avg = 0;
4360         idle->array = NULL;
4361         idle->prio = MAX_PRIO;
4362         idle->state = TASK_RUNNING;
4363         idle->cpus_allowed = cpumask_of_cpu(cpu);
4364         set_task_cpu(idle, cpu);
4365
4366         spin_lock_irqsave(&rq->lock, flags);
4367         rq->curr = rq->idle = idle;
4368 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4369         idle->oncpu = 1;
4370 #endif
4371         spin_unlock_irqrestore(&rq->lock, flags);
4372
4373         /* Set the preempt count _outside_ the spinlocks! */
4374 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4375         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4376 #else
4377         idle->thread_info->preempt_count = 0;
4378 #endif
4379 }
4380
4381 /*
4382  * In a system that switches off the HZ timer nohz_cpu_mask
4383  * indicates which cpus entered this state. This is used
4384  * in the rcu update to wait only for active cpus. For system
4385  * which do not switch off the HZ timer nohz_cpu_mask should
4386  * always be CPU_MASK_NONE.
4387  */
4388 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4389
4390 #ifdef CONFIG_SMP
4391 /*
4392  * This is how migration works:
4393  *
4394  * 1) we queue a migration_req_t structure in the source CPU's
4395  *    runqueue and wake up that CPU's migration thread.
4396  * 2) we down() the locked semaphore => thread blocks.
4397  * 3) migration thread wakes up (implicitly it forces the migrated
4398  *    thread off the CPU)
4399  * 4) it gets the migration request and checks whether the migrated
4400  *    task is still in the wrong runqueue.
4401  * 5) if it's in the wrong runqueue then the migration thread removes
4402  *    it and puts it into the right queue.
4403  * 6) migration thread up()s the semaphore.
4404  * 7) we wake up and the migration is done.
4405  */
4406
4407 /*
4408  * Change a given task's CPU affinity. Migrate the thread to a
4409  * proper CPU and schedule it away if the CPU it's executing on
4410  * is removed from the allowed bitmask.
4411  *
4412  * NOTE: the caller must have a valid reference to the task, the
4413  * task must not exit() & deallocate itself prematurely.  The
4414  * call is not atomic; no spinlocks may be held.
4415  */
4416 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4417 {
4418         unsigned long flags;
4419         int ret = 0;
4420         migration_req_t req;
4421         runqueue_t *rq;
4422
4423         rq = task_rq_lock(p, &flags);
4424         if (!cpus_intersects(new_mask, cpu_online_map)) {
4425                 ret = -EINVAL;
4426                 goto out;
4427         }
4428
4429         p->cpus_allowed = new_mask;
4430         /* Can the task run on the task's current CPU? If so, we're done */
4431         if (cpu_isset(task_cpu(p), new_mask))
4432                 goto out;
4433
4434         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4435                 /* Need help from migration thread: drop lock and wait. */
4436                 task_rq_unlock(rq, &flags);
4437                 wake_up_process(rq->migration_thread);
4438                 wait_for_completion(&req.done);
4439                 tlb_migrate_finish(p->mm);
4440                 return 0;
4441         }
4442 out:
4443         task_rq_unlock(rq, &flags);
4444         return ret;
4445 }
4446
4447 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4448
4449 /*
4450  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4451  * this because either it can't run here any more (set_cpus_allowed()
4452  * away from this CPU, or CPU going down), or because we're
4453  * attempting to rebalance this task on exec (sched_exec).
4454  *
4455  * So we race with normal scheduler movements, but that's OK, as long
4456  * as the task is no longer on this CPU.
4457  */
4458 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4459 {
4460         runqueue_t *rq_dest, *rq_src;
4461
4462         if (unlikely(cpu_is_offline(dest_cpu)))
4463                 return;
4464
4465         rq_src = cpu_rq(src_cpu);
4466         rq_dest = cpu_rq(dest_cpu);
4467
4468         double_rq_lock(rq_src, rq_dest);
4469         /* Already moved. */
4470         if (task_cpu(p) != src_cpu)
4471                 goto out;
4472         /* Affinity changed (again). */
4473         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4474                 goto out;
4475
4476         set_task_cpu(p, dest_cpu);
4477         if (p->array) {
4478                 /*
4479                  * Sync timestamp with rq_dest's before activating.
4480                  * The same thing could be achieved by doing this step
4481                  * afterwards, and pretending it was a local activate.
4482                  * This way is cleaner and logically correct.
4483                  */
4484                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4485                                 + rq_dest->timestamp_last_tick;
4486                 deactivate_task(p, rq_src);
4487                 activate_task(p, rq_dest, 0);
4488                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4489                         resched_task(rq_dest->curr);
4490         }
4491
4492 out:
4493         double_rq_unlock(rq_src, rq_dest);
4494 }
4495
4496 /*
4497  * migration_thread - this is a highprio system thread that performs
4498  * thread migration by bumping thread off CPU then 'pushing' onto
4499  * another runqueue.
4500  */
4501 static int migration_thread(void *data)
4502 {
4503         runqueue_t *rq;
4504         int cpu = (long)data;
4505
4506         rq = cpu_rq(cpu);
4507         BUG_ON(rq->migration_thread != current);
4508
4509         set_current_state(TASK_INTERRUPTIBLE);
4510         while (!kthread_should_stop()) {
4511                 struct list_head *head;
4512                 migration_req_t *req;
4513
4514                 try_to_freeze();
4515
4516                 spin_lock_irq(&rq->lock);
4517
4518                 if (cpu_is_offline(cpu)) {
4519                         spin_unlock_irq(&rq->lock);
4520                         goto wait_to_die;
4521                 }
4522
4523                 if (rq->active_balance) {
4524                         active_load_balance(rq, cpu);
4525                         rq->active_balance = 0;
4526                 }
4527
4528                 head = &rq->migration_queue;
4529
4530                 if (list_empty(head)) {
4531                         spin_unlock_irq(&rq->lock);
4532                         schedule();
4533                         set_current_state(TASK_INTERRUPTIBLE);
4534                         continue;
4535                 }
4536                 req = list_entry(head->next, migration_req_t, list);
4537                 list_del_init(head->next);
4538
4539                 spin_unlock(&rq->lock);
4540                 __migrate_task(req->task, cpu, req->dest_cpu);
4541                 local_irq_enable();
4542
4543                 complete(&req->done);
4544         }
4545         __set_current_state(TASK_RUNNING);
4546         return 0;
4547
4548 wait_to_die:
4549         /* Wait for kthread_stop */
4550         set_current_state(TASK_INTERRUPTIBLE);
4551         while (!kthread_should_stop()) {
4552                 schedule();
4553                 set_current_state(TASK_INTERRUPTIBLE);
4554         }
4555         __set_current_state(TASK_RUNNING);
4556         return 0;
4557 }
4558
4559 #ifdef CONFIG_HOTPLUG_CPU
4560 /* Figure out where task on dead CPU should go, use force if neccessary. */
4561 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4562 {
4563         int dest_cpu;
4564         cpumask_t mask;
4565
4566         /* On same node? */
4567         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4568         cpus_and(mask, mask, tsk->cpus_allowed);
4569         dest_cpu = any_online_cpu(mask);
4570
4571         /* On any allowed CPU? */
4572         if (dest_cpu == NR_CPUS)
4573                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4574
4575         /* No more Mr. Nice Guy. */
4576         if (dest_cpu == NR_CPUS) {
4577                 cpus_setall(tsk->cpus_allowed);
4578                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4579
4580                 /*
4581                  * Don't tell them about moving exiting tasks or
4582                  * kernel threads (both mm NULL), since they never
4583                  * leave kernel.
4584                  */
4585                 if (tsk->mm && printk_ratelimit())
4586                         printk(KERN_INFO "process %d (%s) no "
4587                                "longer affine to cpu%d\n",
4588                                tsk->pid, tsk->comm, dead_cpu);
4589         }
4590         __migrate_task(tsk, dead_cpu, dest_cpu);
4591 }
4592
4593 /*
4594  * While a dead CPU has no uninterruptible tasks queued at this point,
4595  * it might still have a nonzero ->nr_uninterruptible counter, because
4596  * for performance reasons the counter is not stricly tracking tasks to
4597  * their home CPUs. So we just add the counter to another CPU's counter,
4598  * to keep the global sum constant after CPU-down:
4599  */
4600 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4601 {
4602         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4603         unsigned long flags;
4604
4605         local_irq_save(flags);
4606         double_rq_lock(rq_src, rq_dest);
4607         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4608         rq_src->nr_uninterruptible = 0;
4609         double_rq_unlock(rq_src, rq_dest);
4610         local_irq_restore(flags);
4611 }
4612
4613 /* Run through task list and migrate tasks from the dead cpu. */
4614 static void migrate_live_tasks(int src_cpu)
4615 {
4616         struct task_struct *tsk, *t;
4617
4618         write_lock_irq(&tasklist_lock);
4619
4620         do_each_thread(t, tsk) {
4621                 if (tsk == current)
4622                         continue;
4623
4624                 if (task_cpu(tsk) == src_cpu)
4625                         move_task_off_dead_cpu(src_cpu, tsk);
4626         } while_each_thread(t, tsk);
4627
4628         write_unlock_irq(&tasklist_lock);
4629 }
4630
4631 /* Schedules idle task to be the next runnable task on current CPU.
4632  * It does so by boosting its priority to highest possible and adding it to
4633  * the _front_ of runqueue. Used by CPU offline code.
4634  */
4635 void sched_idle_next(void)
4636 {
4637         int cpu = smp_processor_id();
4638         runqueue_t *rq = this_rq();
4639         struct task_struct *p = rq->idle;
4640         unsigned long flags;
4641
4642         /* cpu has to be offline */
4643         BUG_ON(cpu_online(cpu));
4644
4645         /* Strictly not necessary since rest of the CPUs are stopped by now
4646          * and interrupts disabled on current cpu.
4647          */
4648         spin_lock_irqsave(&rq->lock, flags);
4649
4650         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4651         /* Add idle task to _front_ of it's priority queue */
4652         __activate_idle_task(p, rq);
4653
4654         spin_unlock_irqrestore(&rq->lock, flags);
4655 }
4656
4657 /* Ensures that the idle task is using init_mm right before its cpu goes
4658  * offline.
4659  */
4660 void idle_task_exit(void)
4661 {
4662         struct mm_struct *mm = current->active_mm;
4663
4664         BUG_ON(cpu_online(smp_processor_id()));
4665
4666         if (mm != &init_mm)
4667                 switch_mm(mm, &init_mm, current);
4668         mmdrop(mm);
4669 }
4670
4671 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4672 {
4673         struct runqueue *rq = cpu_rq(dead_cpu);
4674
4675         /* Must be exiting, otherwise would be on tasklist. */
4676         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4677
4678         /* Cannot have done final schedule yet: would have vanished. */
4679         BUG_ON(tsk->flags & PF_DEAD);
4680
4681         get_task_struct(tsk);
4682
4683         /*
4684          * Drop lock around migration; if someone else moves it,
4685          * that's OK.  No task can be added to this CPU, so iteration is
4686          * fine.
4687          */
4688         spin_unlock_irq(&rq->lock);
4689         move_task_off_dead_cpu(dead_cpu, tsk);
4690         spin_lock_irq(&rq->lock);
4691
4692         put_task_struct(tsk);
4693 }
4694
4695 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4696 static void migrate_dead_tasks(unsigned int dead_cpu)
4697 {
4698         unsigned arr, i;
4699         struct runqueue *rq = cpu_rq(dead_cpu);
4700
4701         for (arr = 0; arr < 2; arr++) {
4702                 for (i = 0; i < MAX_PRIO; i++) {
4703                         struct list_head *list = &rq->arrays[arr].queue[i];
4704                         while (!list_empty(list))
4705                                 migrate_dead(dead_cpu,
4706                                              list_entry(list->next, task_t,
4707                                                         run_list));
4708                 }
4709         }
4710 }
4711 #endif /* CONFIG_HOTPLUG_CPU */
4712
4713 /*
4714  * migration_call - callback that gets triggered when a CPU is added.
4715  * Here we can start up the necessary migration thread for the new CPU.
4716  */
4717 static int migration_call(struct notifier_block *nfb, unsigned long action,
4718                           void *hcpu)
4719 {
4720         int cpu = (long)hcpu;
4721         struct task_struct *p;
4722         struct runqueue *rq;
4723         unsigned long flags;
4724
4725         switch (action) {
4726         case CPU_UP_PREPARE:
4727                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4728                 if (IS_ERR(p))
4729                         return NOTIFY_BAD;
4730                 p->flags |= PF_NOFREEZE;
4731                 kthread_bind(p, cpu);
4732                 /* Must be high prio: stop_machine expects to yield to it. */
4733                 rq = task_rq_lock(p, &flags);
4734                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4735                 task_rq_unlock(rq, &flags);
4736                 cpu_rq(cpu)->migration_thread = p;
4737                 break;
4738         case CPU_ONLINE:
4739                 /* Strictly unneccessary, as first user will wake it. */
4740                 wake_up_process(cpu_rq(cpu)->migration_thread);
4741                 break;
4742 #ifdef CONFIG_HOTPLUG_CPU
4743         case CPU_UP_CANCELED:
4744                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4745                 kthread_bind(cpu_rq(cpu)->migration_thread,
4746                              any_online_cpu(cpu_online_map));
4747                 kthread_stop(cpu_rq(cpu)->migration_thread);
4748                 cpu_rq(cpu)->migration_thread = NULL;
4749                 break;
4750         case CPU_DEAD:
4751                 migrate_live_tasks(cpu);
4752                 rq = cpu_rq(cpu);
4753                 kthread_stop(rq->migration_thread);
4754                 rq->migration_thread = NULL;
4755                 /* Idle task back to normal (off runqueue, low prio) */
4756                 rq = task_rq_lock(rq->idle, &flags);
4757                 deactivate_task(rq->idle, rq);
4758                 rq->idle->static_prio = MAX_PRIO;
4759                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4760                 migrate_dead_tasks(cpu);
4761                 task_rq_unlock(rq, &flags);
4762                 migrate_nr_uninterruptible(rq);
4763                 BUG_ON(rq->nr_running != 0);
4764
4765                 /* No need to migrate the tasks: it was best-effort if
4766                  * they didn't do lock_cpu_hotplug().  Just wake up
4767                  * the requestors. */
4768                 spin_lock_irq(&rq->lock);
4769                 while (!list_empty(&rq->migration_queue)) {
4770                         migration_req_t *req;
4771                         req = list_entry(rq->migration_queue.next,
4772                                          migration_req_t, list);
4773                         list_del_init(&req->list);
4774                         complete(&req->done);
4775                 }
4776                 spin_unlock_irq(&rq->lock);
4777                 break;
4778 #endif
4779         }
4780         return NOTIFY_OK;
4781 }
4782
4783 /* Register at highest priority so that task migration (migrate_all_tasks)
4784  * happens before everything else.
4785  */
4786 static struct notifier_block __devinitdata migration_notifier = {
4787         .notifier_call = migration_call,
4788         .priority = 10
4789 };
4790
4791 int __init migration_init(void)
4792 {
4793         void *cpu = (void *)(long)smp_processor_id();
4794         /* Start one for boot CPU. */
4795         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4796         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4797         register_cpu_notifier(&migration_notifier);
4798         return 0;
4799 }
4800 #endif
4801
4802 #ifdef CONFIG_SMP
4803 #undef SCHED_DOMAIN_DEBUG
4804 #ifdef SCHED_DOMAIN_DEBUG
4805 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4806 {
4807         int level = 0;
4808
4809         if (!sd) {
4810                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4811                 return;
4812         }
4813
4814         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4815
4816         do {
4817                 int i;
4818                 char str[NR_CPUS];
4819                 struct sched_group *group = sd->groups;
4820                 cpumask_t groupmask;
4821
4822                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4823                 cpus_clear(groupmask);
4824
4825                 printk(KERN_DEBUG);
4826                 for (i = 0; i < level + 1; i++)
4827                         printk(" ");
4828                 printk("domain %d: ", level);
4829
4830                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4831                         printk("does not load-balance\n");
4832                         if (sd->parent)
4833                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4834                         break;
4835                 }
4836
4837                 printk("span %s\n", str);
4838
4839                 if (!cpu_isset(cpu, sd->span))
4840                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4841                 if (!cpu_isset(cpu, group->cpumask))
4842                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4843
4844                 printk(KERN_DEBUG);
4845                 for (i = 0; i < level + 2; i++)
4846                         printk(" ");
4847                 printk("groups:");
4848                 do {
4849                         if (!group) {
4850                                 printk("\n");
4851                                 printk(KERN_ERR "ERROR: group is NULL\n");
4852                                 break;
4853                         }
4854
4855                         if (!group->cpu_power) {
4856                                 printk("\n");
4857                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4858                         }
4859
4860                         if (!cpus_weight(group->cpumask)) {
4861                                 printk("\n");
4862                                 printk(KERN_ERR "ERROR: empty group\n");
4863                         }
4864
4865                         if (cpus_intersects(groupmask, group->cpumask)) {
4866                                 printk("\n");
4867                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4868                         }
4869
4870                         cpus_or(groupmask, groupmask, group->cpumask);
4871
4872                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4873                         printk(" %s", str);
4874
4875                         group = group->next;
4876                 } while (group != sd->groups);
4877                 printk("\n");
4878
4879                 if (!cpus_equal(sd->span, groupmask))
4880                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4881
4882                 level++;
4883                 sd = sd->parent;
4884
4885                 if (sd) {
4886                         if (!cpus_subset(groupmask, sd->span))
4887                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4888                 }
4889
4890         } while (sd);
4891 }
4892 #else
4893 #define sched_domain_debug(sd, cpu) {}
4894 #endif
4895
4896 static int sd_degenerate(struct sched_domain *sd)
4897 {
4898         if (cpus_weight(sd->span) == 1)
4899                 return 1;
4900
4901         /* Following flags need at least 2 groups */
4902         if (sd->flags & (SD_LOAD_BALANCE |
4903                          SD_BALANCE_NEWIDLE |
4904                          SD_BALANCE_FORK |
4905                          SD_BALANCE_EXEC)) {
4906                 if (sd->groups != sd->groups->next)
4907                         return 0;
4908         }
4909
4910         /* Following flags don't use groups */
4911         if (sd->flags & (SD_WAKE_IDLE |
4912                          SD_WAKE_AFFINE |
4913                          SD_WAKE_BALANCE))
4914                 return 0;
4915
4916         return 1;
4917 }
4918
4919 static int sd_parent_degenerate(struct sched_domain *sd,
4920                                                 struct sched_domain *parent)
4921 {
4922         unsigned long cflags = sd->flags, pflags = parent->flags;
4923
4924         if (sd_degenerate(parent))
4925                 return 1;
4926
4927         if (!cpus_equal(sd->span, parent->span))
4928                 return 0;
4929
4930         /* Does parent contain flags not in child? */
4931         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4932         if (cflags & SD_WAKE_AFFINE)
4933                 pflags &= ~SD_WAKE_BALANCE;
4934         /* Flags needing groups don't count if only 1 group in parent */
4935         if (parent->groups == parent->groups->next) {
4936                 pflags &= ~(SD_LOAD_BALANCE |
4937                                 SD_BALANCE_NEWIDLE |
4938                                 SD_BALANCE_FORK |
4939                                 SD_BALANCE_EXEC);
4940         }
4941         if (~cflags & pflags)
4942                 return 0;
4943
4944         return 1;
4945 }
4946
4947 /*
4948  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4949  * hold the hotplug lock.
4950  */
4951 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4952 {
4953         runqueue_t *rq = cpu_rq(cpu);
4954         struct sched_domain *tmp;
4955
4956         /* Remove the sched domains which do not contribute to scheduling. */
4957         for (tmp = sd; tmp; tmp = tmp->parent) {
4958                 struct sched_domain *parent = tmp->parent;
4959                 if (!parent)
4960                         break;
4961                 if (sd_parent_degenerate(tmp, parent))
4962                         tmp->parent = parent->parent;
4963         }
4964
4965         if (sd && sd_degenerate(sd))
4966                 sd = sd->parent;
4967
4968         sched_domain_debug(sd, cpu);
4969
4970         rcu_assign_pointer(rq->sd, sd);
4971 }
4972
4973 /* cpus with isolated domains */
4974 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4975
4976 /* Setup the mask of cpus configured for isolated domains */
4977 static int __init isolated_cpu_setup(char *str)
4978 {
4979         int ints[NR_CPUS], i;
4980
4981         str = get_options(str, ARRAY_SIZE(ints), ints);
4982         cpus_clear(cpu_isolated_map);
4983         for (i = 1; i <= ints[0]; i++)
4984                 if (ints[i] < NR_CPUS)
4985                         cpu_set(ints[i], cpu_isolated_map);
4986         return 1;
4987 }
4988
4989 __setup ("isolcpus=", isolated_cpu_setup);
4990
4991 /*
4992  * init_sched_build_groups takes an array of groups, the cpumask we wish
4993  * to span, and a pointer to a function which identifies what group a CPU
4994  * belongs to. The return value of group_fn must be a valid index into the
4995  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4996  * keep track of groups covered with a cpumask_t).
4997  *
4998  * init_sched_build_groups will build a circular linked list of the groups
4999  * covered by the given span, and will set each group's ->cpumask correctly,
5000  * and ->cpu_power to 0.
5001  */
5002 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5003                                     int (*group_fn)(int cpu))
5004 {
5005         struct sched_group *first = NULL, *last = NULL;
5006         cpumask_t covered = CPU_MASK_NONE;
5007         int i;
5008
5009         for_each_cpu_mask(i, span) {
5010                 int group = group_fn(i);
5011                 struct sched_group *sg = &groups[group];
5012                 int j;
5013
5014                 if (cpu_isset(i, covered))
5015                         continue;
5016
5017                 sg->cpumask = CPU_MASK_NONE;
5018                 sg->cpu_power = 0;
5019
5020                 for_each_cpu_mask(j, span) {
5021                         if (group_fn(j) != group)
5022                                 continue;
5023
5024                         cpu_set(j, covered);
5025                         cpu_set(j, sg->cpumask);
5026                 }
5027                 if (!first)
5028                         first = sg;
5029                 if (last)
5030                         last->next = sg;
5031                 last = sg;
5032         }
5033         last->next = first;
5034 }
5035
5036 #define SD_NODES_PER_DOMAIN 16
5037
5038 #ifdef CONFIG_NUMA
5039 /**
5040  * find_next_best_node - find the next node to include in a sched_domain
5041  * @node: node whose sched_domain we're building
5042  * @used_nodes: nodes already in the sched_domain
5043  *
5044  * Find the next node to include in a given scheduling domain.  Simply
5045  * finds the closest node not already in the @used_nodes map.
5046  *
5047  * Should use nodemask_t.
5048  */
5049 static int find_next_best_node(int node, unsigned long *used_nodes)
5050 {
5051         int i, n, val, min_val, best_node = 0;
5052
5053         min_val = INT_MAX;
5054
5055         for (i = 0; i < MAX_NUMNODES; i++) {
5056                 /* Start at @node */
5057                 n = (node + i) % MAX_NUMNODES;
5058
5059                 if (!nr_cpus_node(n))
5060                         continue;
5061
5062                 /* Skip already used nodes */
5063                 if (test_bit(n, used_nodes))
5064                         continue;
5065
5066                 /* Simple min distance search */
5067                 val = node_distance(node, n);
5068
5069                 if (val < min_val) {
5070                         min_val = val;
5071                         best_node = n;
5072                 }
5073         }
5074
5075         set_bit(best_node, used_nodes);
5076         return best_node;
5077 }
5078
5079 /**
5080  * sched_domain_node_span - get a cpumask for a node's sched_domain
5081  * @node: node whose cpumask we're constructing
5082  * @size: number of nodes to include in this span
5083  *
5084  * Given a node, construct a good cpumask for its sched_domain to span.  It
5085  * should be one that prevents unnecessary balancing, but also spreads tasks
5086  * out optimally.
5087  */
5088 static cpumask_t sched_domain_node_span(int node)
5089 {
5090         int i;
5091         cpumask_t span, nodemask;
5092         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5093
5094         cpus_clear(span);
5095         bitmap_zero(used_nodes, MAX_NUMNODES);
5096
5097         nodemask = node_to_cpumask(node);
5098         cpus_or(span, span, nodemask);
5099         set_bit(node, used_nodes);
5100
5101         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5102                 int next_node = find_next_best_node(node, used_nodes);
5103                 nodemask = node_to_cpumask(next_node);
5104                 cpus_or(span, span, nodemask);
5105         }
5106
5107         return span;
5108 }
5109 #endif
5110
5111 /*
5112  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5113  * can switch it on easily if needed.
5114  */
5115 #ifdef CONFIG_SCHED_SMT
5116 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5117 static struct sched_group sched_group_cpus[NR_CPUS];
5118 static int cpu_to_cpu_group(int cpu)
5119 {
5120         return cpu;
5121 }
5122 #endif
5123
5124 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5125 static struct sched_group sched_group_phys[NR_CPUS];
5126 static int cpu_to_phys_group(int cpu)
5127 {
5128 #ifdef CONFIG_SCHED_SMT
5129         return first_cpu(cpu_sibling_map[cpu]);
5130 #else
5131         return cpu;
5132 #endif
5133 }
5134
5135 #ifdef CONFIG_NUMA
5136 /*
5137  * The init_sched_build_groups can't handle what we want to do with node
5138  * groups, so roll our own. Now each node has its own list of groups which
5139  * gets dynamically allocated.
5140  */
5141 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5142 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5143
5144 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5145 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5146
5147 static int cpu_to_allnodes_group(int cpu)
5148 {
5149         return cpu_to_node(cpu);
5150 }
5151 #endif
5152
5153 /*
5154  * Build sched domains for a given set of cpus and attach the sched domains
5155  * to the individual cpus
5156  */
5157 void build_sched_domains(const cpumask_t *cpu_map)
5158 {
5159         int i;
5160 #ifdef CONFIG_NUMA
5161         struct sched_group **sched_group_nodes = NULL;
5162         struct sched_group *sched_group_allnodes = NULL;
5163
5164         /*
5165          * Allocate the per-node list of sched groups
5166          */
5167         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5168                                            GFP_ATOMIC);
5169         if (!sched_group_nodes) {
5170                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5171                 return;
5172         }
5173         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5174 #endif
5175
5176         /*
5177          * Set up domains for cpus specified by the cpu_map.
5178          */
5179         for_each_cpu_mask(i, *cpu_map) {
5180                 int group;
5181                 struct sched_domain *sd = NULL, *p;
5182                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5183
5184                 cpus_and(nodemask, nodemask, *cpu_map);
5185
5186 #ifdef CONFIG_NUMA
5187                 if (cpus_weight(*cpu_map)
5188                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5189                         if (!sched_group_allnodes) {
5190                                 sched_group_allnodes
5191                                         = kmalloc(sizeof(struct sched_group)
5192                                                         * MAX_NUMNODES,
5193                                                   GFP_KERNEL);
5194                                 if (!sched_group_allnodes) {
5195                                         printk(KERN_WARNING
5196                                         "Can not alloc allnodes sched group\n");
5197                                         break;
5198                                 }
5199                                 sched_group_allnodes_bycpu[i]
5200                                                 = sched_group_allnodes;
5201                         }
5202                         sd = &per_cpu(allnodes_domains, i);
5203                         *sd = SD_ALLNODES_INIT;
5204                         sd->span = *cpu_map;
5205                         group = cpu_to_allnodes_group(i);
5206                         sd->groups = &sched_group_allnodes[group];
5207                         p = sd;
5208                 } else
5209                         p = NULL;
5210
5211                 sd = &per_cpu(node_domains, i);
5212                 *sd = SD_NODE_INIT;
5213                 sd->span = sched_domain_node_span(cpu_to_node(i));
5214                 sd->parent = p;
5215                 cpus_and(sd->span, sd->span, *cpu_map);
5216 #endif
5217
5218                 p = sd;
5219                 sd = &per_cpu(phys_domains, i);
5220                 group = cpu_to_phys_group(i);
5221                 *sd = SD_CPU_INIT;
5222                 sd->span = nodemask;
5223                 sd->parent = p;
5224                 sd->groups = &sched_group_phys[group];
5225
5226 #ifdef CONFIG_SCHED_SMT
5227                 p = sd;
5228                 sd = &per_cpu(cpu_domains, i);
5229                 group = cpu_to_cpu_group(i);
5230                 *sd = SD_SIBLING_INIT;
5231                 sd->span = cpu_sibling_map[i];
5232                 cpus_and(sd->span, sd->span, *cpu_map);
5233                 sd->parent = p;
5234                 sd->groups = &sched_group_cpus[group];
5235 #endif
5236         }
5237
5238 #ifdef CONFIG_SCHED_SMT
5239         /* Set up CPU (sibling) groups */
5240         for_each_cpu_mask(i, *cpu_map) {
5241                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5242                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5243                 if (i != first_cpu(this_sibling_map))
5244                         continue;
5245
5246                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5247                                                 &cpu_to_cpu_group);
5248         }
5249 #endif
5250
5251         /* Set up physical groups */
5252         for (i = 0; i < MAX_NUMNODES; i++) {
5253                 cpumask_t nodemask = node_to_cpumask(i);
5254
5255                 cpus_and(nodemask, nodemask, *cpu_map);
5256                 if (cpus_empty(nodemask))
5257                         continue;
5258
5259                 init_sched_build_groups(sched_group_phys, nodemask,
5260                                                 &cpu_to_phys_group);
5261         }
5262
5263 #ifdef CONFIG_NUMA
5264         /* Set up node groups */
5265         if (sched_group_allnodes)
5266                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5267                                         &cpu_to_allnodes_group);
5268
5269         for (i = 0; i < MAX_NUMNODES; i++) {
5270                 /* Set up node groups */
5271                 struct sched_group *sg, *prev;
5272                 cpumask_t nodemask = node_to_cpumask(i);
5273                 cpumask_t domainspan;
5274                 cpumask_t covered = CPU_MASK_NONE;
5275                 int j;
5276
5277                 cpus_and(nodemask, nodemask, *cpu_map);
5278                 if (cpus_empty(nodemask)) {
5279                         sched_group_nodes[i] = NULL;
5280                         continue;
5281                 }
5282
5283                 domainspan = sched_domain_node_span(i);
5284                 cpus_and(domainspan, domainspan, *cpu_map);
5285
5286                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5287                 sched_group_nodes[i] = sg;
5288                 for_each_cpu_mask(j, nodemask) {
5289                         struct sched_domain *sd;
5290                         sd = &per_cpu(node_domains, j);
5291                         sd->groups = sg;
5292                         if (sd->groups == NULL) {
5293                                 /* Turn off balancing if we have no groups */
5294                                 sd->flags = 0;
5295                         }
5296                 }
5297                 if (!sg) {
5298                         printk(KERN_WARNING
5299                         "Can not alloc domain group for node %d\n", i);
5300                         continue;
5301                 }
5302                 sg->cpu_power = 0;
5303                 sg->cpumask = nodemask;
5304                 cpus_or(covered, covered, nodemask);
5305                 prev = sg;
5306
5307                 for (j = 0; j < MAX_NUMNODES; j++) {
5308                         cpumask_t tmp, notcovered;
5309                         int n = (i + j) % MAX_NUMNODES;
5310
5311                         cpus_complement(notcovered, covered);
5312                         cpus_and(tmp, notcovered, *cpu_map);
5313                         cpus_and(tmp, tmp, domainspan);
5314                         if (cpus_empty(tmp))
5315                                 break;
5316
5317                         nodemask = node_to_cpumask(n);
5318                         cpus_and(tmp, tmp, nodemask);
5319                         if (cpus_empty(tmp))
5320                                 continue;
5321
5322                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5323                         if (!sg) {
5324                                 printk(KERN_WARNING
5325                                 "Can not alloc domain group for node %d\n", j);
5326                                 break;
5327                         }
5328                         sg->cpu_power = 0;
5329                         sg->cpumask = tmp;
5330                         cpus_or(covered, covered, tmp);
5331                         prev->next = sg;
5332                         prev = sg;
5333                 }
5334                 prev->next = sched_group_nodes[i];
5335         }
5336 #endif
5337
5338         /* Calculate CPU power for physical packages and nodes */
5339         for_each_cpu_mask(i, *cpu_map) {
5340                 int power;
5341                 struct sched_domain *sd;
5342 #ifdef CONFIG_SCHED_SMT
5343                 sd = &per_cpu(cpu_domains, i);
5344                 power = SCHED_LOAD_SCALE;
5345                 sd->groups->cpu_power = power;
5346 #endif
5347
5348                 sd = &per_cpu(phys_domains, i);
5349                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5350                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5351                 sd->groups->cpu_power = power;
5352
5353 #ifdef CONFIG_NUMA
5354                 sd = &per_cpu(allnodes_domains, i);
5355                 if (sd->groups) {
5356                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5357                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5358                         sd->groups->cpu_power = power;
5359                 }
5360 #endif
5361         }
5362
5363 #ifdef CONFIG_NUMA
5364         for (i = 0; i < MAX_NUMNODES; i++) {
5365                 struct sched_group *sg = sched_group_nodes[i];
5366                 int j;
5367
5368                 if (sg == NULL)
5369                         continue;
5370 next_sg:
5371                 for_each_cpu_mask(j, sg->cpumask) {
5372                         struct sched_domain *sd;
5373                         int power;
5374
5375                         sd = &per_cpu(phys_domains, j);
5376                         if (j != first_cpu(sd->groups->cpumask)) {
5377                                 /*
5378                                  * Only add "power" once for each
5379                                  * physical package.
5380                                  */
5381                                 continue;
5382                         }
5383                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5384                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5385
5386                         sg->cpu_power += power;
5387                 }
5388                 sg = sg->next;
5389                 if (sg != sched_group_nodes[i])
5390                         goto next_sg;
5391         }
5392 #endif
5393
5394         /* Attach the domains */
5395         for_each_cpu_mask(i, *cpu_map) {
5396                 struct sched_domain *sd;
5397 #ifdef CONFIG_SCHED_SMT
5398                 sd = &per_cpu(cpu_domains, i);
5399 #else
5400                 sd = &per_cpu(phys_domains, i);
5401 #endif
5402                 cpu_attach_domain(sd, i);
5403         }
5404 }
5405 /*
5406  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5407  */
5408 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5409 {
5410         cpumask_t cpu_default_map;
5411
5412         /*
5413          * Setup mask for cpus without special case scheduling requirements.
5414          * For now this just excludes isolated cpus, but could be used to
5415          * exclude other special cases in the future.
5416          */
5417         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5418
5419         build_sched_domains(&cpu_default_map);
5420 }
5421
5422 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5423 {
5424 #ifdef CONFIG_NUMA
5425         int i;
5426         int cpu;
5427
5428         for_each_cpu_mask(cpu, *cpu_map) {
5429                 struct sched_group *sched_group_allnodes
5430                         = sched_group_allnodes_bycpu[cpu];
5431                 struct sched_group **sched_group_nodes
5432                         = sched_group_nodes_bycpu[cpu];
5433
5434                 if (sched_group_allnodes) {
5435                         kfree(sched_group_allnodes);
5436                         sched_group_allnodes_bycpu[cpu] = NULL;
5437                 }
5438
5439                 if (!sched_group_nodes)
5440                         continue;
5441
5442                 for (i = 0; i < MAX_NUMNODES; i++) {
5443                         cpumask_t nodemask = node_to_cpumask(i);
5444                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5445
5446                         cpus_and(nodemask, nodemask, *cpu_map);
5447                         if (cpus_empty(nodemask))
5448                                 continue;
5449
5450                         if (sg == NULL)
5451                                 continue;
5452                         sg = sg->next;
5453 next_sg:
5454                         oldsg = sg;
5455                         sg = sg->next;
5456                         kfree(oldsg);
5457                         if (oldsg != sched_group_nodes[i])
5458                                 goto next_sg;
5459                 }
5460                 kfree(sched_group_nodes);
5461                 sched_group_nodes_bycpu[cpu] = NULL;
5462         }
5463 #endif
5464 }
5465
5466 /*
5467  * Detach sched domains from a group of cpus specified in cpu_map
5468  * These cpus will now be attached to the NULL domain
5469  */
5470 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5471 {
5472         int i;
5473
5474         for_each_cpu_mask(i, *cpu_map)
5475                 cpu_attach_domain(NULL, i);
5476         synchronize_sched();
5477         arch_destroy_sched_domains(cpu_map);
5478 }
5479
5480 /*
5481  * Partition sched domains as specified by the cpumasks below.
5482  * This attaches all cpus from the cpumasks to the NULL domain,
5483  * waits for a RCU quiescent period, recalculates sched
5484  * domain information and then attaches them back to the
5485  * correct sched domains
5486  * Call with hotplug lock held
5487  */
5488 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5489 {
5490         cpumask_t change_map;
5491
5492         cpus_and(*partition1, *partition1, cpu_online_map);
5493         cpus_and(*partition2, *partition2, cpu_online_map);
5494         cpus_or(change_map, *partition1, *partition2);
5495
5496         /* Detach sched domains from all of the affected cpus */
5497         detach_destroy_domains(&change_map);
5498         if (!cpus_empty(*partition1))
5499                 build_sched_domains(partition1);
5500         if (!cpus_empty(*partition2))
5501                 build_sched_domains(partition2);
5502 }
5503
5504 #ifdef CONFIG_HOTPLUG_CPU
5505 /*
5506  * Force a reinitialization of the sched domains hierarchy.  The domains
5507  * and groups cannot be updated in place without racing with the balancing
5508  * code, so we temporarily attach all running cpus to the NULL domain
5509  * which will prevent rebalancing while the sched domains are recalculated.
5510  */
5511 static int update_sched_domains(struct notifier_block *nfb,
5512                                 unsigned long action, void *hcpu)
5513 {
5514         switch (action) {
5515         case CPU_UP_PREPARE:
5516         case CPU_DOWN_PREPARE:
5517                 detach_destroy_domains(&cpu_online_map);
5518                 return NOTIFY_OK;
5519
5520         case CPU_UP_CANCELED:
5521         case CPU_DOWN_FAILED:
5522         case CPU_ONLINE:
5523         case CPU_DEAD:
5524                 /*
5525                  * Fall through and re-initialise the domains.
5526                  */
5527                 break;
5528         default:
5529                 return NOTIFY_DONE;
5530         }
5531
5532         /* The hotplug lock is already held by cpu_up/cpu_down */
5533         arch_init_sched_domains(&cpu_online_map);
5534
5535         return NOTIFY_OK;
5536 }
5537 #endif
5538
5539 void __init sched_init_smp(void)
5540 {
5541         lock_cpu_hotplug();
5542         arch_init_sched_domains(&cpu_online_map);
5543         unlock_cpu_hotplug();
5544         /* XXX: Theoretical race here - CPU may be hotplugged now */
5545         hotcpu_notifier(update_sched_domains, 0);
5546 }
5547 #else
5548 void __init sched_init_smp(void)
5549 {
5550 }
5551 #endif /* CONFIG_SMP */
5552
5553 int in_sched_functions(unsigned long addr)
5554 {
5555         /* Linker adds these: start and end of __sched functions */
5556         extern char __sched_text_start[], __sched_text_end[];
5557         return in_lock_functions(addr) ||
5558                 (addr >= (unsigned long)__sched_text_start
5559                 && addr < (unsigned long)__sched_text_end);
5560 }
5561
5562 void __init sched_init(void)
5563 {
5564         runqueue_t *rq;
5565         int i, j, k;
5566
5567         for (i = 0; i < NR_CPUS; i++) {
5568                 prio_array_t *array;
5569
5570                 rq = cpu_rq(i);
5571                 spin_lock_init(&rq->lock);
5572                 rq->nr_running = 0;
5573                 rq->active = rq->arrays;
5574                 rq->expired = rq->arrays + 1;
5575                 rq->best_expired_prio = MAX_PRIO;
5576
5577 #ifdef CONFIG_SMP
5578                 rq->sd = NULL;
5579                 for (j = 1; j < 3; j++)
5580                         rq->cpu_load[j] = 0;
5581                 rq->active_balance = 0;
5582                 rq->push_cpu = 0;
5583                 rq->migration_thread = NULL;
5584                 INIT_LIST_HEAD(&rq->migration_queue);
5585 #endif
5586                 atomic_set(&rq->nr_iowait, 0);
5587
5588                 for (j = 0; j < 2; j++) {
5589                         array = rq->arrays + j;
5590                         for (k = 0; k < MAX_PRIO; k++) {
5591                                 INIT_LIST_HEAD(array->queue + k);
5592                                 __clear_bit(k, array->bitmap);
5593                         }
5594                         // delimiter for bitsearch
5595                         __set_bit(MAX_PRIO, array->bitmap);
5596                 }
5597         }
5598
5599         /*
5600          * The boot idle thread does lazy MMU switching as well:
5601          */
5602         atomic_inc(&init_mm.mm_count);
5603         enter_lazy_tlb(&init_mm, current);
5604
5605         /*
5606          * Make us the idle thread. Technically, schedule() should not be
5607          * called from this thread, however somewhere below it might be,
5608          * but because we are the idle thread, we just pick up running again
5609          * when this runqueue becomes "idle".
5610          */
5611         init_idle(current, smp_processor_id());
5612 }
5613
5614 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5615 void __might_sleep(char *file, int line)
5616 {
5617 #if defined(in_atomic)
5618         static unsigned long prev_jiffy;        /* ratelimiting */
5619
5620         if ((in_atomic() || irqs_disabled()) &&
5621             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5622                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5623                         return;
5624                 prev_jiffy = jiffies;
5625                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5626                                 " context at %s:%d\n", file, line);
5627                 printk("in_atomic():%d, irqs_disabled():%d\n",
5628                         in_atomic(), irqs_disabled());
5629                 dump_stack();
5630         }
5631 #endif
5632 }
5633 EXPORT_SYMBOL(__might_sleep);
5634 #endif
5635
5636 #ifdef CONFIG_MAGIC_SYSRQ
5637 void normalize_rt_tasks(void)
5638 {
5639         struct task_struct *p;
5640         prio_array_t *array;
5641         unsigned long flags;
5642         runqueue_t *rq;
5643
5644         read_lock_irq(&tasklist_lock);
5645         for_each_process (p) {
5646                 if (!rt_task(p))
5647                         continue;
5648
5649                 rq = task_rq_lock(p, &flags);
5650
5651                 array = p->array;
5652                 if (array)
5653                         deactivate_task(p, task_rq(p));
5654                 __setscheduler(p, SCHED_NORMAL, 0);
5655                 if (array) {
5656                         __activate_task(p, task_rq(p));
5657                         resched_task(rq->curr);
5658                 }
5659
5660                 task_rq_unlock(rq, &flags);
5661         }
5662         read_unlock_irq(&tasklist_lock);
5663 }
5664
5665 #endif /* CONFIG_MAGIC_SYSRQ */
5666
5667 #ifdef CONFIG_IA64
5668 /*
5669  * These functions are only useful for the IA64 MCA handling.
5670  *
5671  * They can only be called when the whole system has been
5672  * stopped - every CPU needs to be quiescent, and no scheduling
5673  * activity can take place. Using them for anything else would
5674  * be a serious bug, and as a result, they aren't even visible
5675  * under any other configuration.
5676  */
5677
5678 /**
5679  * curr_task - return the current task for a given cpu.
5680  * @cpu: the processor in question.
5681  *
5682  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5683  */
5684 task_t *curr_task(int cpu)
5685 {
5686         return cpu_curr(cpu);
5687 }
5688
5689 /**
5690  * set_curr_task - set the current task for a given cpu.
5691  * @cpu: the processor in question.
5692  * @p: the task pointer to set.
5693  *
5694  * Description: This function must only be used when non-maskable interrupts
5695  * are serviced on a separate stack.  It allows the architecture to switch the
5696  * notion of the current task on a cpu in a non-blocking manner.  This function
5697  * must be called with all CPU's synchronized, and interrupts disabled, the
5698  * and caller must save the original value of the current task (see
5699  * curr_task() above) and restore that value before reenabling interrupts and
5700  * re-starting the system.
5701  *
5702  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5703  */
5704 void set_curr_task(int cpu, task_t *p)
5705 {
5706         cpu_curr(cpu) = p;
5707 }
5708
5709 #endif