[PATCH] sched: smp nice bias busy queues on idle rebalance
[safe/jmp/linux-2.6] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long prio_bias;
210         unsigned long cpu_load[3];
211 #endif
212         unsigned long long nr_switches;
213
214         /*
215          * This is part of a global counter where only the total sum
216          * over all CPUs matters. A task can increase this counter on
217          * one CPU and if it got migrated afterwards it may decrease
218          * it on another CPU. Always updated under the runqueue lock:
219          */
220         unsigned long nr_uninterruptible;
221
222         unsigned long expired_timestamp;
223         unsigned long long timestamp_last_tick;
224         task_t *curr, *idle;
225         struct mm_struct *prev_mm;
226         prio_array_t *active, *expired, arrays[2];
227         int best_expired_prio;
228         atomic_t nr_iowait;
229
230 #ifdef CONFIG_SMP
231         struct sched_domain *sd;
232
233         /* For active balancing */
234         int active_balance;
235         int push_cpu;
236
237         task_t *migration_thread;
238         struct list_head migration_queue;
239 #endif
240
241 #ifdef CONFIG_SCHEDSTATS
242         /* latency stats */
243         struct sched_info rq_sched_info;
244
245         /* sys_sched_yield() stats */
246         unsigned long yld_exp_empty;
247         unsigned long yld_act_empty;
248         unsigned long yld_both_empty;
249         unsigned long yld_cnt;
250
251         /* schedule() stats */
252         unsigned long sched_switch;
253         unsigned long sched_cnt;
254         unsigned long sched_goidle;
255
256         /* try_to_wake_up() stats */
257         unsigned long ttwu_cnt;
258         unsigned long ttwu_local;
259 #endif
260 };
261
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
263
264 /*
265  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266  * See detach_destroy_domains: synchronize_sched for details.
267  *
268  * The domain tree of any CPU may only be accessed from within
269  * preempt-disabled sections.
270  */
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273
274 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
275 #define this_rq()               (&__get_cpu_var(runqueues))
276 #define task_rq(p)              cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
278
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next)      do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev)       do { } while (0)
284 #endif
285
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
288 {
289         return rq->curr == p;
290 }
291
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293 {
294 }
295
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 {
298 #ifdef CONFIG_DEBUG_SPINLOCK
299         /* this is a valid case when another task releases the spinlock */
300         rq->lock.owner = current;
301 #endif
302         spin_unlock_irq(&rq->lock);
303 }
304
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
307 {
308 #ifdef CONFIG_SMP
309         return p->oncpu;
310 #else
311         return rq->curr == p;
312 #endif
313 }
314
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316 {
317 #ifdef CONFIG_SMP
318         /*
319          * We can optimise this out completely for !SMP, because the
320          * SMP rebalancing from interrupt is the only thing that cares
321          * here.
322          */
323         next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326         spin_unlock_irq(&rq->lock);
327 #else
328         spin_unlock(&rq->lock);
329 #endif
330 }
331
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333 {
334 #ifdef CONFIG_SMP
335         /*
336          * After ->oncpu is cleared, the task can be moved to a different CPU.
337          * We must ensure this doesn't happen until the switch is completely
338          * finished.
339          */
340         smp_wmb();
341         prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344         local_irq_enable();
345 #endif
346 }
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
348
349 /*
350  * task_rq_lock - lock the runqueue a given task resides on and disable
351  * interrupts.  Note the ordering: we can safely lookup the task_rq without
352  * explicitly disabling preemption.
353  */
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355         __acquires(rq->lock)
356 {
357         struct runqueue *rq;
358
359 repeat_lock_task:
360         local_irq_save(*flags);
361         rq = task_rq(p);
362         spin_lock(&rq->lock);
363         if (unlikely(rq != task_rq(p))) {
364                 spin_unlock_irqrestore(&rq->lock, *flags);
365                 goto repeat_lock_task;
366         }
367         return rq;
368 }
369
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371         __releases(rq->lock)
372 {
373         spin_unlock_irqrestore(&rq->lock, *flags);
374 }
375
376 #ifdef CONFIG_SCHEDSTATS
377 /*
378  * bump this up when changing the output format or the meaning of an existing
379  * format, so that tools can adapt (or abort)
380  */
381 #define SCHEDSTAT_VERSION 12
382
383 static int show_schedstat(struct seq_file *seq, void *v)
384 {
385         int cpu;
386
387         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388         seq_printf(seq, "timestamp %lu\n", jiffies);
389         for_each_online_cpu(cpu) {
390                 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392                 struct sched_domain *sd;
393                 int dcnt = 0;
394 #endif
395
396                 /* runqueue-specific stats */
397                 seq_printf(seq,
398                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399                     cpu, rq->yld_both_empty,
400                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402                     rq->ttwu_cnt, rq->ttwu_local,
403                     rq->rq_sched_info.cpu_time,
404                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406                 seq_printf(seq, "\n");
407
408 #ifdef CONFIG_SMP
409                 /* domain-specific stats */
410                 preempt_disable();
411                 for_each_domain(cpu, sd) {
412                         enum idle_type itype;
413                         char mask_str[NR_CPUS];
414
415                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418                                         itype++) {
419                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420                                     sd->lb_cnt[itype],
421                                     sd->lb_balanced[itype],
422                                     sd->lb_failed[itype],
423                                     sd->lb_imbalance[itype],
424                                     sd->lb_gained[itype],
425                                     sd->lb_hot_gained[itype],
426                                     sd->lb_nobusyq[itype],
427                                     sd->lb_nobusyg[itype]);
428                         }
429                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434                 }
435                 preempt_enable();
436 #endif
437         }
438         return 0;
439 }
440
441 static int schedstat_open(struct inode *inode, struct file *file)
442 {
443         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444         char *buf = kmalloc(size, GFP_KERNEL);
445         struct seq_file *m;
446         int res;
447
448         if (!buf)
449                 return -ENOMEM;
450         res = single_open(file, show_schedstat, NULL);
451         if (!res) {
452                 m = file->private_data;
453                 m->buf = buf;
454                 m->size = size;
455         } else
456                 kfree(buf);
457         return res;
458 }
459
460 struct file_operations proc_schedstat_operations = {
461         .open    = schedstat_open,
462         .read    = seq_read,
463         .llseek  = seq_lseek,
464         .release = single_release,
465 };
466
467 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field)       do { } while (0)
471 # define schedstat_add(rq, field, amt)  do { } while (0)
472 #endif
473
474 /*
475  * rq_lock - lock a given runqueue and disable interrupts.
476  */
477 static inline runqueue_t *this_rq_lock(void)
478         __acquires(rq->lock)
479 {
480         runqueue_t *rq;
481
482         local_irq_disable();
483         rq = this_rq();
484         spin_lock(&rq->lock);
485
486         return rq;
487 }
488
489 #ifdef CONFIG_SCHEDSTATS
490 /*
491  * Called when a process is dequeued from the active array and given
492  * the cpu.  We should note that with the exception of interactive
493  * tasks, the expired queue will become the active queue after the active
494  * queue is empty, without explicitly dequeuing and requeuing tasks in the
495  * expired queue.  (Interactive tasks may be requeued directly to the
496  * active queue, thus delaying tasks in the expired queue from running;
497  * see scheduler_tick()).
498  *
499  * This function is only called from sched_info_arrive(), rather than
500  * dequeue_task(). Even though a task may be queued and dequeued multiple
501  * times as it is shuffled about, we're really interested in knowing how
502  * long it was from the *first* time it was queued to the time that it
503  * finally hit a cpu.
504  */
505 static inline void sched_info_dequeued(task_t *t)
506 {
507         t->sched_info.last_queued = 0;
508 }
509
510 /*
511  * Called when a task finally hits the cpu.  We can now calculate how
512  * long it was waiting to run.  We also note when it began so that we
513  * can keep stats on how long its timeslice is.
514  */
515 static inline void sched_info_arrive(task_t *t)
516 {
517         unsigned long now = jiffies, diff = 0;
518         struct runqueue *rq = task_rq(t);
519
520         if (t->sched_info.last_queued)
521                 diff = now - t->sched_info.last_queued;
522         sched_info_dequeued(t);
523         t->sched_info.run_delay += diff;
524         t->sched_info.last_arrival = now;
525         t->sched_info.pcnt++;
526
527         if (!rq)
528                 return;
529
530         rq->rq_sched_info.run_delay += diff;
531         rq->rq_sched_info.pcnt++;
532 }
533
534 /*
535  * Called when a process is queued into either the active or expired
536  * array.  The time is noted and later used to determine how long we
537  * had to wait for us to reach the cpu.  Since the expired queue will
538  * become the active queue after active queue is empty, without dequeuing
539  * and requeuing any tasks, we are interested in queuing to either. It
540  * is unusual but not impossible for tasks to be dequeued and immediately
541  * requeued in the same or another array: this can happen in sched_yield(),
542  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543  * to runqueue.
544  *
545  * This function is only called from enqueue_task(), but also only updates
546  * the timestamp if it is already not set.  It's assumed that
547  * sched_info_dequeued() will clear that stamp when appropriate.
548  */
549 static inline void sched_info_queued(task_t *t)
550 {
551         if (!t->sched_info.last_queued)
552                 t->sched_info.last_queued = jiffies;
553 }
554
555 /*
556  * Called when a process ceases being the active-running process, either
557  * voluntarily or involuntarily.  Now we can calculate how long we ran.
558  */
559 static inline void sched_info_depart(task_t *t)
560 {
561         struct runqueue *rq = task_rq(t);
562         unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564         t->sched_info.cpu_time += diff;
565
566         if (rq)
567                 rq->rq_sched_info.cpu_time += diff;
568 }
569
570 /*
571  * Called when tasks are switched involuntarily due, typically, to expiring
572  * their time slice.  (This may also be called when switching to or from
573  * the idle task.)  We are only called when prev != next.
574  */
575 static inline void sched_info_switch(task_t *prev, task_t *next)
576 {
577         struct runqueue *rq = task_rq(prev);
578
579         /*
580          * prev now departs the cpu.  It's not interesting to record
581          * stats about how efficient we were at scheduling the idle
582          * process, however.
583          */
584         if (prev != rq->idle)
585                 sched_info_depart(prev);
586
587         if (next != rq->idle)
588                 sched_info_arrive(next);
589 }
590 #else
591 #define sched_info_queued(t)            do { } while (0)
592 #define sched_info_switch(t, next)      do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
594
595 /*
596  * Adding/removing a task to/from a priority array:
597  */
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
599 {
600         array->nr_active--;
601         list_del(&p->run_list);
602         if (list_empty(array->queue + p->prio))
603                 __clear_bit(p->prio, array->bitmap);
604 }
605
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
607 {
608         sched_info_queued(p);
609         list_add_tail(&p->run_list, array->queue + p->prio);
610         __set_bit(p->prio, array->bitmap);
611         array->nr_active++;
612         p->array = array;
613 }
614
615 /*
616  * Put task to the end of the run list without the overhead of dequeue
617  * followed by enqueue.
618  */
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
620 {
621         list_move_tail(&p->run_list, array->queue + p->prio);
622 }
623
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625 {
626         list_add(&p->run_list, array->queue + p->prio);
627         __set_bit(p->prio, array->bitmap);
628         array->nr_active++;
629         p->array = array;
630 }
631
632 /*
633  * effective_prio - return the priority that is based on the static
634  * priority but is modified by bonuses/penalties.
635  *
636  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637  * into the -5 ... 0 ... +5 bonus/penalty range.
638  *
639  * We use 25% of the full 0...39 priority range so that:
640  *
641  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643  *
644  * Both properties are important to certain workloads.
645  */
646 static int effective_prio(task_t *p)
647 {
648         int bonus, prio;
649
650         if (rt_task(p))
651                 return p->prio;
652
653         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655         prio = p->static_prio - bonus;
656         if (prio < MAX_RT_PRIO)
657                 prio = MAX_RT_PRIO;
658         if (prio > MAX_PRIO-1)
659                 prio = MAX_PRIO-1;
660         return prio;
661 }
662
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
665 {
666         rq->prio_bias += MAX_PRIO - prio;
667 }
668
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
670 {
671         rq->prio_bias -= MAX_PRIO - prio;
672 }
673 #else
674 static inline void inc_prio_bias(runqueue_t *rq, int prio)
675 {
676 }
677
678 static inline void dec_prio_bias(runqueue_t *rq, int prio)
679 {
680 }
681 #endif
682
683 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
684 {
685         rq->nr_running++;
686         if (rt_task(p))
687                 inc_prio_bias(rq, p->prio);
688         else
689                 inc_prio_bias(rq, p->static_prio);
690 }
691
692 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
693 {
694         rq->nr_running--;
695         if (rt_task(p))
696                 dec_prio_bias(rq, p->prio);
697         else
698                 dec_prio_bias(rq, p->static_prio);
699 }
700
701 /*
702  * __activate_task - move a task to the runqueue.
703  */
704 static inline void __activate_task(task_t *p, runqueue_t *rq)
705 {
706         enqueue_task(p, rq->active);
707         inc_nr_running(p, rq);
708 }
709
710 /*
711  * __activate_idle_task - move idle task to the _front_ of runqueue.
712  */
713 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
714 {
715         enqueue_task_head(p, rq->active);
716         inc_nr_running(p, rq);
717 }
718
719 static int recalc_task_prio(task_t *p, unsigned long long now)
720 {
721         /* Caller must always ensure 'now >= p->timestamp' */
722         unsigned long long __sleep_time = now - p->timestamp;
723         unsigned long sleep_time;
724
725         if (__sleep_time > NS_MAX_SLEEP_AVG)
726                 sleep_time = NS_MAX_SLEEP_AVG;
727         else
728                 sleep_time = (unsigned long)__sleep_time;
729
730         if (likely(sleep_time > 0)) {
731                 /*
732                  * User tasks that sleep a long time are categorised as
733                  * idle and will get just interactive status to stay active &
734                  * prevent them suddenly becoming cpu hogs and starving
735                  * other processes.
736                  */
737                 if (p->mm && p->activated != -1 &&
738                         sleep_time > INTERACTIVE_SLEEP(p)) {
739                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
740                                                 DEF_TIMESLICE);
741                 } else {
742                         /*
743                          * The lower the sleep avg a task has the more
744                          * rapidly it will rise with sleep time.
745                          */
746                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
747
748                         /*
749                          * Tasks waking from uninterruptible sleep are
750                          * limited in their sleep_avg rise as they
751                          * are likely to be waiting on I/O
752                          */
753                         if (p->activated == -1 && p->mm) {
754                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
755                                         sleep_time = 0;
756                                 else if (p->sleep_avg + sleep_time >=
757                                                 INTERACTIVE_SLEEP(p)) {
758                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
759                                         sleep_time = 0;
760                                 }
761                         }
762
763                         /*
764                          * This code gives a bonus to interactive tasks.
765                          *
766                          * The boost works by updating the 'average sleep time'
767                          * value here, based on ->timestamp. The more time a
768                          * task spends sleeping, the higher the average gets -
769                          * and the higher the priority boost gets as well.
770                          */
771                         p->sleep_avg += sleep_time;
772
773                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
774                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
775                 }
776         }
777
778         return effective_prio(p);
779 }
780
781 /*
782  * activate_task - move a task to the runqueue and do priority recalculation
783  *
784  * Update all the scheduling statistics stuff. (sleep average
785  * calculation, priority modifiers, etc.)
786  */
787 static void activate_task(task_t *p, runqueue_t *rq, int local)
788 {
789         unsigned long long now;
790
791         now = sched_clock();
792 #ifdef CONFIG_SMP
793         if (!local) {
794                 /* Compensate for drifting sched_clock */
795                 runqueue_t *this_rq = this_rq();
796                 now = (now - this_rq->timestamp_last_tick)
797                         + rq->timestamp_last_tick;
798         }
799 #endif
800
801         p->prio = recalc_task_prio(p, now);
802
803         /*
804          * This checks to make sure it's not an uninterruptible task
805          * that is now waking up.
806          */
807         if (!p->activated) {
808                 /*
809                  * Tasks which were woken up by interrupts (ie. hw events)
810                  * are most likely of interactive nature. So we give them
811                  * the credit of extending their sleep time to the period
812                  * of time they spend on the runqueue, waiting for execution
813                  * on a CPU, first time around:
814                  */
815                 if (in_interrupt())
816                         p->activated = 2;
817                 else {
818                         /*
819                          * Normal first-time wakeups get a credit too for
820                          * on-runqueue time, but it will be weighted down:
821                          */
822                         p->activated = 1;
823                 }
824         }
825         p->timestamp = now;
826
827         __activate_task(p, rq);
828 }
829
830 /*
831  * deactivate_task - remove a task from the runqueue.
832  */
833 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
834 {
835         dec_nr_running(p, rq);
836         dequeue_task(p, p->array);
837         p->array = NULL;
838 }
839
840 /*
841  * resched_task - mark a task 'to be rescheduled now'.
842  *
843  * On UP this means the setting of the need_resched flag, on SMP it
844  * might also involve a cross-CPU call to trigger the scheduler on
845  * the target CPU.
846  */
847 #ifdef CONFIG_SMP
848 static void resched_task(task_t *p)
849 {
850         int need_resched, nrpolling;
851
852         assert_spin_locked(&task_rq(p)->lock);
853
854         /* minimise the chance of sending an interrupt to poll_idle() */
855         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
856         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
857         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
858
859         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
860                 smp_send_reschedule(task_cpu(p));
861 }
862 #else
863 static inline void resched_task(task_t *p)
864 {
865         set_tsk_need_resched(p);
866 }
867 #endif
868
869 /**
870  * task_curr - is this task currently executing on a CPU?
871  * @p: the task in question.
872  */
873 inline int task_curr(const task_t *p)
874 {
875         return cpu_curr(task_cpu(p)) == p;
876 }
877
878 #ifdef CONFIG_SMP
879 typedef struct {
880         struct list_head list;
881
882         task_t *task;
883         int dest_cpu;
884
885         struct completion done;
886 } migration_req_t;
887
888 /*
889  * The task's runqueue lock must be held.
890  * Returns true if you have to wait for migration thread.
891  */
892 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
893 {
894         runqueue_t *rq = task_rq(p);
895
896         /*
897          * If the task is not on a runqueue (and not running), then
898          * it is sufficient to simply update the task's cpu field.
899          */
900         if (!p->array && !task_running(rq, p)) {
901                 set_task_cpu(p, dest_cpu);
902                 return 0;
903         }
904
905         init_completion(&req->done);
906         req->task = p;
907         req->dest_cpu = dest_cpu;
908         list_add(&req->list, &rq->migration_queue);
909         return 1;
910 }
911
912 /*
913  * wait_task_inactive - wait for a thread to unschedule.
914  *
915  * The caller must ensure that the task *will* unschedule sometime soon,
916  * else this function might spin for a *long* time. This function can't
917  * be called with interrupts off, or it may introduce deadlock with
918  * smp_call_function() if an IPI is sent by the same process we are
919  * waiting to become inactive.
920  */
921 void wait_task_inactive(task_t *p)
922 {
923         unsigned long flags;
924         runqueue_t *rq;
925         int preempted;
926
927 repeat:
928         rq = task_rq_lock(p, &flags);
929         /* Must be off runqueue entirely, not preempted. */
930         if (unlikely(p->array || task_running(rq, p))) {
931                 /* If it's preempted, we yield.  It could be a while. */
932                 preempted = !task_running(rq, p);
933                 task_rq_unlock(rq, &flags);
934                 cpu_relax();
935                 if (preempted)
936                         yield();
937                 goto repeat;
938         }
939         task_rq_unlock(rq, &flags);
940 }
941
942 /***
943  * kick_process - kick a running thread to enter/exit the kernel
944  * @p: the to-be-kicked thread
945  *
946  * Cause a process which is running on another CPU to enter
947  * kernel-mode, without any delay. (to get signals handled.)
948  *
949  * NOTE: this function doesnt have to take the runqueue lock,
950  * because all it wants to ensure is that the remote task enters
951  * the kernel. If the IPI races and the task has been migrated
952  * to another CPU then no harm is done and the purpose has been
953  * achieved as well.
954  */
955 void kick_process(task_t *p)
956 {
957         int cpu;
958
959         preempt_disable();
960         cpu = task_cpu(p);
961         if ((cpu != smp_processor_id()) && task_curr(p))
962                 smp_send_reschedule(cpu);
963         preempt_enable();
964 }
965
966 /*
967  * Return a low guess at the load of a migration-source cpu.
968  *
969  * We want to under-estimate the load of migration sources, to
970  * balance conservatively.
971  */
972 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
973 {
974         runqueue_t *rq = cpu_rq(cpu);
975         unsigned long source_load, cpu_load = rq->cpu_load[type-1],
976                 load_now = rq->nr_running * SCHED_LOAD_SCALE;
977
978         if (type == 0)
979                 source_load = load_now;
980         else
981                 source_load = min(cpu_load, load_now);
982
983         if (idle == NOT_IDLE || rq->nr_running > 1)
984                 /*
985                  * If we are busy rebalancing the load is biased by
986                  * priority to create 'nice' support across cpus. When
987                  * idle rebalancing we should only bias the source_load if
988                  * there is more than one task running on that queue to
989                  * prevent idle rebalance from trying to pull tasks from a
990                  * queue with only one running task.
991                  */
992                 source_load *= rq->prio_bias;
993
994         return source_load;
995 }
996
997 static inline unsigned long source_load(int cpu, int type)
998 {
999         return __source_load(cpu, type, NOT_IDLE);
1000 }
1001
1002 /*
1003  * Return a high guess at the load of a migration-target cpu
1004  */
1005 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1006 {
1007         runqueue_t *rq = cpu_rq(cpu);
1008         unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1009                 load_now = rq->nr_running * SCHED_LOAD_SCALE;
1010
1011         if (type == 0)
1012                 target_load = load_now;
1013         else
1014                 target_load = max(cpu_load, load_now);
1015
1016         if (idle == NOT_IDLE || rq->nr_running > 1)
1017                 target_load *= rq->prio_bias;
1018
1019         return target_load;
1020 }
1021
1022 static inline unsigned long target_load(int cpu, int type)
1023 {
1024         return __target_load(cpu, type, NOT_IDLE);
1025 }
1026
1027 /*
1028  * find_idlest_group finds and returns the least busy CPU group within the
1029  * domain.
1030  */
1031 static struct sched_group *
1032 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1033 {
1034         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1035         unsigned long min_load = ULONG_MAX, this_load = 0;
1036         int load_idx = sd->forkexec_idx;
1037         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1038
1039         do {
1040                 unsigned long load, avg_load;
1041                 int local_group;
1042                 int i;
1043
1044                 /* Skip over this group if it has no CPUs allowed */
1045                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1046                         goto nextgroup;
1047
1048                 local_group = cpu_isset(this_cpu, group->cpumask);
1049
1050                 /* Tally up the load of all CPUs in the group */
1051                 avg_load = 0;
1052
1053                 for_each_cpu_mask(i, group->cpumask) {
1054                         /* Bias balancing toward cpus of our domain */
1055                         if (local_group)
1056                                 load = source_load(i, load_idx);
1057                         else
1058                                 load = target_load(i, load_idx);
1059
1060                         avg_load += load;
1061                 }
1062
1063                 /* Adjust by relative CPU power of the group */
1064                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1065
1066                 if (local_group) {
1067                         this_load = avg_load;
1068                         this = group;
1069                 } else if (avg_load < min_load) {
1070                         min_load = avg_load;
1071                         idlest = group;
1072                 }
1073 nextgroup:
1074                 group = group->next;
1075         } while (group != sd->groups);
1076
1077         if (!idlest || 100*this_load < imbalance*min_load)
1078                 return NULL;
1079         return idlest;
1080 }
1081
1082 /*
1083  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1084  */
1085 static int
1086 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1087 {
1088         cpumask_t tmp;
1089         unsigned long load, min_load = ULONG_MAX;
1090         int idlest = -1;
1091         int i;
1092
1093         /* Traverse only the allowed CPUs */
1094         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1095
1096         for_each_cpu_mask(i, tmp) {
1097                 load = source_load(i, 0);
1098
1099                 if (load < min_load || (load == min_load && i == this_cpu)) {
1100                         min_load = load;
1101                         idlest = i;
1102                 }
1103         }
1104
1105         return idlest;
1106 }
1107
1108 /*
1109  * sched_balance_self: balance the current task (running on cpu) in domains
1110  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1111  * SD_BALANCE_EXEC.
1112  *
1113  * Balance, ie. select the least loaded group.
1114  *
1115  * Returns the target CPU number, or the same CPU if no balancing is needed.
1116  *
1117  * preempt must be disabled.
1118  */
1119 static int sched_balance_self(int cpu, int flag)
1120 {
1121         struct task_struct *t = current;
1122         struct sched_domain *tmp, *sd = NULL;
1123
1124         for_each_domain(cpu, tmp)
1125                 if (tmp->flags & flag)
1126                         sd = tmp;
1127
1128         while (sd) {
1129                 cpumask_t span;
1130                 struct sched_group *group;
1131                 int new_cpu;
1132                 int weight;
1133
1134                 span = sd->span;
1135                 group = find_idlest_group(sd, t, cpu);
1136                 if (!group)
1137                         goto nextlevel;
1138
1139                 new_cpu = find_idlest_cpu(group, t, cpu);
1140                 if (new_cpu == -1 || new_cpu == cpu)
1141                         goto nextlevel;
1142
1143                 /* Now try balancing at a lower domain level */
1144                 cpu = new_cpu;
1145 nextlevel:
1146                 sd = NULL;
1147                 weight = cpus_weight(span);
1148                 for_each_domain(cpu, tmp) {
1149                         if (weight <= cpus_weight(tmp->span))
1150                                 break;
1151                         if (tmp->flags & flag)
1152                                 sd = tmp;
1153                 }
1154                 /* while loop will break here if sd == NULL */
1155         }
1156
1157         return cpu;
1158 }
1159
1160 #endif /* CONFIG_SMP */
1161
1162 /*
1163  * wake_idle() will wake a task on an idle cpu if task->cpu is
1164  * not idle and an idle cpu is available.  The span of cpus to
1165  * search starts with cpus closest then further out as needed,
1166  * so we always favor a closer, idle cpu.
1167  *
1168  * Returns the CPU we should wake onto.
1169  */
1170 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1171 static int wake_idle(int cpu, task_t *p)
1172 {
1173         cpumask_t tmp;
1174         struct sched_domain *sd;
1175         int i;
1176
1177         if (idle_cpu(cpu))
1178                 return cpu;
1179
1180         for_each_domain(cpu, sd) {
1181                 if (sd->flags & SD_WAKE_IDLE) {
1182                         cpus_and(tmp, sd->span, p->cpus_allowed);
1183                         for_each_cpu_mask(i, tmp) {
1184                                 if (idle_cpu(i))
1185                                         return i;
1186                         }
1187                 }
1188                 else
1189                         break;
1190         }
1191         return cpu;
1192 }
1193 #else
1194 static inline int wake_idle(int cpu, task_t *p)
1195 {
1196         return cpu;
1197 }
1198 #endif
1199
1200 /***
1201  * try_to_wake_up - wake up a thread
1202  * @p: the to-be-woken-up thread
1203  * @state: the mask of task states that can be woken
1204  * @sync: do a synchronous wakeup?
1205  *
1206  * Put it on the run-queue if it's not already there. The "current"
1207  * thread is always on the run-queue (except when the actual
1208  * re-schedule is in progress), and as such you're allowed to do
1209  * the simpler "current->state = TASK_RUNNING" to mark yourself
1210  * runnable without the overhead of this.
1211  *
1212  * returns failure only if the task is already active.
1213  */
1214 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1215 {
1216         int cpu, this_cpu, success = 0;
1217         unsigned long flags;
1218         long old_state;
1219         runqueue_t *rq;
1220 #ifdef CONFIG_SMP
1221         unsigned long load, this_load;
1222         struct sched_domain *sd, *this_sd = NULL;
1223         int new_cpu;
1224 #endif
1225
1226         rq = task_rq_lock(p, &flags);
1227         old_state = p->state;
1228         if (!(old_state & state))
1229                 goto out;
1230
1231         if (p->array)
1232                 goto out_running;
1233
1234         cpu = task_cpu(p);
1235         this_cpu = smp_processor_id();
1236
1237 #ifdef CONFIG_SMP
1238         if (unlikely(task_running(rq, p)))
1239                 goto out_activate;
1240
1241         new_cpu = cpu;
1242
1243         schedstat_inc(rq, ttwu_cnt);
1244         if (cpu == this_cpu) {
1245                 schedstat_inc(rq, ttwu_local);
1246                 goto out_set_cpu;
1247         }
1248
1249         for_each_domain(this_cpu, sd) {
1250                 if (cpu_isset(cpu, sd->span)) {
1251                         schedstat_inc(sd, ttwu_wake_remote);
1252                         this_sd = sd;
1253                         break;
1254                 }
1255         }
1256
1257         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1258                 goto out_set_cpu;
1259
1260         /*
1261          * Check for affine wakeup and passive balancing possibilities.
1262          */
1263         if (this_sd) {
1264                 int idx = this_sd->wake_idx;
1265                 unsigned int imbalance;
1266
1267                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1268
1269                 load = source_load(cpu, idx);
1270                 this_load = target_load(this_cpu, idx);
1271
1272                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1273
1274                 if (this_sd->flags & SD_WAKE_AFFINE) {
1275                         unsigned long tl = this_load;
1276                         /*
1277                          * If sync wakeup then subtract the (maximum possible)
1278                          * effect of the currently running task from the load
1279                          * of the current CPU:
1280                          */
1281                         if (sync)
1282                                 tl -= SCHED_LOAD_SCALE;
1283
1284                         if ((tl <= load &&
1285                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1286                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1287                                 /*
1288                                  * This domain has SD_WAKE_AFFINE and
1289                                  * p is cache cold in this domain, and
1290                                  * there is no bad imbalance.
1291                                  */
1292                                 schedstat_inc(this_sd, ttwu_move_affine);
1293                                 goto out_set_cpu;
1294                         }
1295                 }
1296
1297                 /*
1298                  * Start passive balancing when half the imbalance_pct
1299                  * limit is reached.
1300                  */
1301                 if (this_sd->flags & SD_WAKE_BALANCE) {
1302                         if (imbalance*this_load <= 100*load) {
1303                                 schedstat_inc(this_sd, ttwu_move_balance);
1304                                 goto out_set_cpu;
1305                         }
1306                 }
1307         }
1308
1309         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1310 out_set_cpu:
1311         new_cpu = wake_idle(new_cpu, p);
1312         if (new_cpu != cpu) {
1313                 set_task_cpu(p, new_cpu);
1314                 task_rq_unlock(rq, &flags);
1315                 /* might preempt at this point */
1316                 rq = task_rq_lock(p, &flags);
1317                 old_state = p->state;
1318                 if (!(old_state & state))
1319                         goto out;
1320                 if (p->array)
1321                         goto out_running;
1322
1323                 this_cpu = smp_processor_id();
1324                 cpu = task_cpu(p);
1325         }
1326
1327 out_activate:
1328 #endif /* CONFIG_SMP */
1329         if (old_state == TASK_UNINTERRUPTIBLE) {
1330                 rq->nr_uninterruptible--;
1331                 /*
1332                  * Tasks on involuntary sleep don't earn
1333                  * sleep_avg beyond just interactive state.
1334                  */
1335                 p->activated = -1;
1336         }
1337
1338         /*
1339          * Tasks that have marked their sleep as noninteractive get
1340          * woken up without updating their sleep average. (i.e. their
1341          * sleep is handled in a priority-neutral manner, no priority
1342          * boost and no penalty.)
1343          */
1344         if (old_state & TASK_NONINTERACTIVE)
1345                 __activate_task(p, rq);
1346         else
1347                 activate_task(p, rq, cpu == this_cpu);
1348         /*
1349          * Sync wakeups (i.e. those types of wakeups where the waker
1350          * has indicated that it will leave the CPU in short order)
1351          * don't trigger a preemption, if the woken up task will run on
1352          * this cpu. (in this case the 'I will reschedule' promise of
1353          * the waker guarantees that the freshly woken up task is going
1354          * to be considered on this CPU.)
1355          */
1356         if (!sync || cpu != this_cpu) {
1357                 if (TASK_PREEMPTS_CURR(p, rq))
1358                         resched_task(rq->curr);
1359         }
1360         success = 1;
1361
1362 out_running:
1363         p->state = TASK_RUNNING;
1364 out:
1365         task_rq_unlock(rq, &flags);
1366
1367         return success;
1368 }
1369
1370 int fastcall wake_up_process(task_t *p)
1371 {
1372         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1373                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1374 }
1375
1376 EXPORT_SYMBOL(wake_up_process);
1377
1378 int fastcall wake_up_state(task_t *p, unsigned int state)
1379 {
1380         return try_to_wake_up(p, state, 0);
1381 }
1382
1383 /*
1384  * Perform scheduler related setup for a newly forked process p.
1385  * p is forked by current.
1386  */
1387 void fastcall sched_fork(task_t *p, int clone_flags)
1388 {
1389         int cpu = get_cpu();
1390
1391 #ifdef CONFIG_SMP
1392         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1393 #endif
1394         set_task_cpu(p, cpu);
1395
1396         /*
1397          * We mark the process as running here, but have not actually
1398          * inserted it onto the runqueue yet. This guarantees that
1399          * nobody will actually run it, and a signal or other external
1400          * event cannot wake it up and insert it on the runqueue either.
1401          */
1402         p->state = TASK_RUNNING;
1403         INIT_LIST_HEAD(&p->run_list);
1404         p->array = NULL;
1405 #ifdef CONFIG_SCHEDSTATS
1406         memset(&p->sched_info, 0, sizeof(p->sched_info));
1407 #endif
1408 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1409         p->oncpu = 0;
1410 #endif
1411 #ifdef CONFIG_PREEMPT
1412         /* Want to start with kernel preemption disabled. */
1413         p->thread_info->preempt_count = 1;
1414 #endif
1415         /*
1416          * Share the timeslice between parent and child, thus the
1417          * total amount of pending timeslices in the system doesn't change,
1418          * resulting in more scheduling fairness.
1419          */
1420         local_irq_disable();
1421         p->time_slice = (current->time_slice + 1) >> 1;
1422         /*
1423          * The remainder of the first timeslice might be recovered by
1424          * the parent if the child exits early enough.
1425          */
1426         p->first_time_slice = 1;
1427         current->time_slice >>= 1;
1428         p->timestamp = sched_clock();
1429         if (unlikely(!current->time_slice)) {
1430                 /*
1431                  * This case is rare, it happens when the parent has only
1432                  * a single jiffy left from its timeslice. Taking the
1433                  * runqueue lock is not a problem.
1434                  */
1435                 current->time_slice = 1;
1436                 scheduler_tick();
1437         }
1438         local_irq_enable();
1439         put_cpu();
1440 }
1441
1442 /*
1443  * wake_up_new_task - wake up a newly created task for the first time.
1444  *
1445  * This function will do some initial scheduler statistics housekeeping
1446  * that must be done for every newly created context, then puts the task
1447  * on the runqueue and wakes it.
1448  */
1449 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1450 {
1451         unsigned long flags;
1452         int this_cpu, cpu;
1453         runqueue_t *rq, *this_rq;
1454
1455         rq = task_rq_lock(p, &flags);
1456         BUG_ON(p->state != TASK_RUNNING);
1457         this_cpu = smp_processor_id();
1458         cpu = task_cpu(p);
1459
1460         /*
1461          * We decrease the sleep average of forking parents
1462          * and children as well, to keep max-interactive tasks
1463          * from forking tasks that are max-interactive. The parent
1464          * (current) is done further down, under its lock.
1465          */
1466         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1467                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1468
1469         p->prio = effective_prio(p);
1470
1471         if (likely(cpu == this_cpu)) {
1472                 if (!(clone_flags & CLONE_VM)) {
1473                         /*
1474                          * The VM isn't cloned, so we're in a good position to
1475                          * do child-runs-first in anticipation of an exec. This
1476                          * usually avoids a lot of COW overhead.
1477                          */
1478                         if (unlikely(!current->array))
1479                                 __activate_task(p, rq);
1480                         else {
1481                                 p->prio = current->prio;
1482                                 list_add_tail(&p->run_list, &current->run_list);
1483                                 p->array = current->array;
1484                                 p->array->nr_active++;
1485                                 inc_nr_running(p, rq);
1486                         }
1487                         set_need_resched();
1488                 } else
1489                         /* Run child last */
1490                         __activate_task(p, rq);
1491                 /*
1492                  * We skip the following code due to cpu == this_cpu
1493                  *
1494                  *   task_rq_unlock(rq, &flags);
1495                  *   this_rq = task_rq_lock(current, &flags);
1496                  */
1497                 this_rq = rq;
1498         } else {
1499                 this_rq = cpu_rq(this_cpu);
1500
1501                 /*
1502                  * Not the local CPU - must adjust timestamp. This should
1503                  * get optimised away in the !CONFIG_SMP case.
1504                  */
1505                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1506                                         + rq->timestamp_last_tick;
1507                 __activate_task(p, rq);
1508                 if (TASK_PREEMPTS_CURR(p, rq))
1509                         resched_task(rq->curr);
1510
1511                 /*
1512                  * Parent and child are on different CPUs, now get the
1513                  * parent runqueue to update the parent's ->sleep_avg:
1514                  */
1515                 task_rq_unlock(rq, &flags);
1516                 this_rq = task_rq_lock(current, &flags);
1517         }
1518         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1519                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1520         task_rq_unlock(this_rq, &flags);
1521 }
1522
1523 /*
1524  * Potentially available exiting-child timeslices are
1525  * retrieved here - this way the parent does not get
1526  * penalized for creating too many threads.
1527  *
1528  * (this cannot be used to 'generate' timeslices
1529  * artificially, because any timeslice recovered here
1530  * was given away by the parent in the first place.)
1531  */
1532 void fastcall sched_exit(task_t *p)
1533 {
1534         unsigned long flags;
1535         runqueue_t *rq;
1536
1537         /*
1538          * If the child was a (relative-) CPU hog then decrease
1539          * the sleep_avg of the parent as well.
1540          */
1541         rq = task_rq_lock(p->parent, &flags);
1542         if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1543                 p->parent->time_slice += p->time_slice;
1544                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1545                         p->parent->time_slice = task_timeslice(p);
1546         }
1547         if (p->sleep_avg < p->parent->sleep_avg)
1548                 p->parent->sleep_avg = p->parent->sleep_avg /
1549                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1550                 (EXIT_WEIGHT + 1);
1551         task_rq_unlock(rq, &flags);
1552 }
1553
1554 /**
1555  * prepare_task_switch - prepare to switch tasks
1556  * @rq: the runqueue preparing to switch
1557  * @next: the task we are going to switch to.
1558  *
1559  * This is called with the rq lock held and interrupts off. It must
1560  * be paired with a subsequent finish_task_switch after the context
1561  * switch.
1562  *
1563  * prepare_task_switch sets up locking and calls architecture specific
1564  * hooks.
1565  */
1566 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1567 {
1568         prepare_lock_switch(rq, next);
1569         prepare_arch_switch(next);
1570 }
1571
1572 /**
1573  * finish_task_switch - clean up after a task-switch
1574  * @rq: runqueue associated with task-switch
1575  * @prev: the thread we just switched away from.
1576  *
1577  * finish_task_switch must be called after the context switch, paired
1578  * with a prepare_task_switch call before the context switch.
1579  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1580  * and do any other architecture-specific cleanup actions.
1581  *
1582  * Note that we may have delayed dropping an mm in context_switch(). If
1583  * so, we finish that here outside of the runqueue lock.  (Doing it
1584  * with the lock held can cause deadlocks; see schedule() for
1585  * details.)
1586  */
1587 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1588         __releases(rq->lock)
1589 {
1590         struct mm_struct *mm = rq->prev_mm;
1591         unsigned long prev_task_flags;
1592
1593         rq->prev_mm = NULL;
1594
1595         /*
1596          * A task struct has one reference for the use as "current".
1597          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1598          * calls schedule one last time. The schedule call will never return,
1599          * and the scheduled task must drop that reference.
1600          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1601          * still held, otherwise prev could be scheduled on another cpu, die
1602          * there before we look at prev->state, and then the reference would
1603          * be dropped twice.
1604          *              Manfred Spraul <manfred@colorfullife.com>
1605          */
1606         prev_task_flags = prev->flags;
1607         finish_arch_switch(prev);
1608         finish_lock_switch(rq, prev);
1609         if (mm)
1610                 mmdrop(mm);
1611         if (unlikely(prev_task_flags & PF_DEAD))
1612                 put_task_struct(prev);
1613 }
1614
1615 /**
1616  * schedule_tail - first thing a freshly forked thread must call.
1617  * @prev: the thread we just switched away from.
1618  */
1619 asmlinkage void schedule_tail(task_t *prev)
1620         __releases(rq->lock)
1621 {
1622         runqueue_t *rq = this_rq();
1623         finish_task_switch(rq, prev);
1624 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1625         /* In this case, finish_task_switch does not reenable preemption */
1626         preempt_enable();
1627 #endif
1628         if (current->set_child_tid)
1629                 put_user(current->pid, current->set_child_tid);
1630 }
1631
1632 /*
1633  * context_switch - switch to the new MM and the new
1634  * thread's register state.
1635  */
1636 static inline
1637 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1638 {
1639         struct mm_struct *mm = next->mm;
1640         struct mm_struct *oldmm = prev->active_mm;
1641
1642         if (unlikely(!mm)) {
1643                 next->active_mm = oldmm;
1644                 atomic_inc(&oldmm->mm_count);
1645                 enter_lazy_tlb(oldmm, next);
1646         } else
1647                 switch_mm(oldmm, mm, next);
1648
1649         if (unlikely(!prev->mm)) {
1650                 prev->active_mm = NULL;
1651                 WARN_ON(rq->prev_mm);
1652                 rq->prev_mm = oldmm;
1653         }
1654
1655         /* Here we just switch the register state and the stack. */
1656         switch_to(prev, next, prev);
1657
1658         return prev;
1659 }
1660
1661 /*
1662  * nr_running, nr_uninterruptible and nr_context_switches:
1663  *
1664  * externally visible scheduler statistics: current number of runnable
1665  * threads, current number of uninterruptible-sleeping threads, total
1666  * number of context switches performed since bootup.
1667  */
1668 unsigned long nr_running(void)
1669 {
1670         unsigned long i, sum = 0;
1671
1672         for_each_online_cpu(i)
1673                 sum += cpu_rq(i)->nr_running;
1674
1675         return sum;
1676 }
1677
1678 unsigned long nr_uninterruptible(void)
1679 {
1680         unsigned long i, sum = 0;
1681
1682         for_each_cpu(i)
1683                 sum += cpu_rq(i)->nr_uninterruptible;
1684
1685         /*
1686          * Since we read the counters lockless, it might be slightly
1687          * inaccurate. Do not allow it to go below zero though:
1688          */
1689         if (unlikely((long)sum < 0))
1690                 sum = 0;
1691
1692         return sum;
1693 }
1694
1695 unsigned long long nr_context_switches(void)
1696 {
1697         unsigned long long i, sum = 0;
1698
1699         for_each_cpu(i)
1700                 sum += cpu_rq(i)->nr_switches;
1701
1702         return sum;
1703 }
1704
1705 unsigned long nr_iowait(void)
1706 {
1707         unsigned long i, sum = 0;
1708
1709         for_each_cpu(i)
1710                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1711
1712         return sum;
1713 }
1714
1715 #ifdef CONFIG_SMP
1716
1717 /*
1718  * double_rq_lock - safely lock two runqueues
1719  *
1720  * Note this does not disable interrupts like task_rq_lock,
1721  * you need to do so manually before calling.
1722  */
1723 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1724         __acquires(rq1->lock)
1725         __acquires(rq2->lock)
1726 {
1727         if (rq1 == rq2) {
1728                 spin_lock(&rq1->lock);
1729                 __acquire(rq2->lock);   /* Fake it out ;) */
1730         } else {
1731                 if (rq1 < rq2) {
1732                         spin_lock(&rq1->lock);
1733                         spin_lock(&rq2->lock);
1734                 } else {
1735                         spin_lock(&rq2->lock);
1736                         spin_lock(&rq1->lock);
1737                 }
1738         }
1739 }
1740
1741 /*
1742  * double_rq_unlock - safely unlock two runqueues
1743  *
1744  * Note this does not restore interrupts like task_rq_unlock,
1745  * you need to do so manually after calling.
1746  */
1747 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1748         __releases(rq1->lock)
1749         __releases(rq2->lock)
1750 {
1751         spin_unlock(&rq1->lock);
1752         if (rq1 != rq2)
1753                 spin_unlock(&rq2->lock);
1754         else
1755                 __release(rq2->lock);
1756 }
1757
1758 /*
1759  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1760  */
1761 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1762         __releases(this_rq->lock)
1763         __acquires(busiest->lock)
1764         __acquires(this_rq->lock)
1765 {
1766         if (unlikely(!spin_trylock(&busiest->lock))) {
1767                 if (busiest < this_rq) {
1768                         spin_unlock(&this_rq->lock);
1769                         spin_lock(&busiest->lock);
1770                         spin_lock(&this_rq->lock);
1771                 } else
1772                         spin_lock(&busiest->lock);
1773         }
1774 }
1775
1776 /*
1777  * If dest_cpu is allowed for this process, migrate the task to it.
1778  * This is accomplished by forcing the cpu_allowed mask to only
1779  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1780  * the cpu_allowed mask is restored.
1781  */
1782 static void sched_migrate_task(task_t *p, int dest_cpu)
1783 {
1784         migration_req_t req;
1785         runqueue_t *rq;
1786         unsigned long flags;
1787
1788         rq = task_rq_lock(p, &flags);
1789         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1790             || unlikely(cpu_is_offline(dest_cpu)))
1791                 goto out;
1792
1793         /* force the process onto the specified CPU */
1794         if (migrate_task(p, dest_cpu, &req)) {
1795                 /* Need to wait for migration thread (might exit: take ref). */
1796                 struct task_struct *mt = rq->migration_thread;
1797                 get_task_struct(mt);
1798                 task_rq_unlock(rq, &flags);
1799                 wake_up_process(mt);
1800                 put_task_struct(mt);
1801                 wait_for_completion(&req.done);
1802                 return;
1803         }
1804 out:
1805         task_rq_unlock(rq, &flags);
1806 }
1807
1808 /*
1809  * sched_exec - execve() is a valuable balancing opportunity, because at
1810  * this point the task has the smallest effective memory and cache footprint.
1811  */
1812 void sched_exec(void)
1813 {
1814         int new_cpu, this_cpu = get_cpu();
1815         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1816         put_cpu();
1817         if (new_cpu != this_cpu)
1818                 sched_migrate_task(current, new_cpu);
1819 }
1820
1821 /*
1822  * pull_task - move a task from a remote runqueue to the local runqueue.
1823  * Both runqueues must be locked.
1824  */
1825 static inline
1826 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1827                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1828 {
1829         dequeue_task(p, src_array);
1830         dec_nr_running(p, src_rq);
1831         set_task_cpu(p, this_cpu);
1832         inc_nr_running(p, this_rq);
1833         enqueue_task(p, this_array);
1834         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1835                                 + this_rq->timestamp_last_tick;
1836         /*
1837          * Note that idle threads have a prio of MAX_PRIO, for this test
1838          * to be always true for them.
1839          */
1840         if (TASK_PREEMPTS_CURR(p, this_rq))
1841                 resched_task(this_rq->curr);
1842 }
1843
1844 /*
1845  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1846  */
1847 static inline
1848 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1849                      struct sched_domain *sd, enum idle_type idle,
1850                      int *all_pinned)
1851 {
1852         /*
1853          * We do not migrate tasks that are:
1854          * 1) running (obviously), or
1855          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1856          * 3) are cache-hot on their current CPU.
1857          */
1858         if (!cpu_isset(this_cpu, p->cpus_allowed))
1859                 return 0;
1860         *all_pinned = 0;
1861
1862         if (task_running(rq, p))
1863                 return 0;
1864
1865         /*
1866          * Aggressive migration if:
1867          * 1) task is cache cold, or
1868          * 2) too many balance attempts have failed.
1869          */
1870
1871         if (sd->nr_balance_failed > sd->cache_nice_tries)
1872                 return 1;
1873
1874         if (task_hot(p, rq->timestamp_last_tick, sd))
1875                 return 0;
1876         return 1;
1877 }
1878
1879 /*
1880  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1881  * as part of a balancing operation within "domain". Returns the number of
1882  * tasks moved.
1883  *
1884  * Called with both runqueues locked.
1885  */
1886 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1887                       unsigned long max_nr_move, struct sched_domain *sd,
1888                       enum idle_type idle, int *all_pinned)
1889 {
1890         prio_array_t *array, *dst_array;
1891         struct list_head *head, *curr;
1892         int idx, pulled = 0, pinned = 0;
1893         task_t *tmp;
1894
1895         if (max_nr_move == 0)
1896                 goto out;
1897
1898         pinned = 1;
1899
1900         /*
1901          * We first consider expired tasks. Those will likely not be
1902          * executed in the near future, and they are most likely to
1903          * be cache-cold, thus switching CPUs has the least effect
1904          * on them.
1905          */
1906         if (busiest->expired->nr_active) {
1907                 array = busiest->expired;
1908                 dst_array = this_rq->expired;
1909         } else {
1910                 array = busiest->active;
1911                 dst_array = this_rq->active;
1912         }
1913
1914 new_array:
1915         /* Start searching at priority 0: */
1916         idx = 0;
1917 skip_bitmap:
1918         if (!idx)
1919                 idx = sched_find_first_bit(array->bitmap);
1920         else
1921                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1922         if (idx >= MAX_PRIO) {
1923                 if (array == busiest->expired && busiest->active->nr_active) {
1924                         array = busiest->active;
1925                         dst_array = this_rq->active;
1926                         goto new_array;
1927                 }
1928                 goto out;
1929         }
1930
1931         head = array->queue + idx;
1932         curr = head->prev;
1933 skip_queue:
1934         tmp = list_entry(curr, task_t, run_list);
1935
1936         curr = curr->prev;
1937
1938         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1939                 if (curr != head)
1940                         goto skip_queue;
1941                 idx++;
1942                 goto skip_bitmap;
1943         }
1944
1945 #ifdef CONFIG_SCHEDSTATS
1946         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1947                 schedstat_inc(sd, lb_hot_gained[idle]);
1948 #endif
1949
1950         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1951         pulled++;
1952
1953         /* We only want to steal up to the prescribed number of tasks. */
1954         if (pulled < max_nr_move) {
1955                 if (curr != head)
1956                         goto skip_queue;
1957                 idx++;
1958                 goto skip_bitmap;
1959         }
1960 out:
1961         /*
1962          * Right now, this is the only place pull_task() is called,
1963          * so we can safely collect pull_task() stats here rather than
1964          * inside pull_task().
1965          */
1966         schedstat_add(sd, lb_gained[idle], pulled);
1967
1968         if (all_pinned)
1969                 *all_pinned = pinned;
1970         return pulled;
1971 }
1972
1973 /*
1974  * find_busiest_group finds and returns the busiest CPU group within the
1975  * domain. It calculates and returns the number of tasks which should be
1976  * moved to restore balance via the imbalance parameter.
1977  */
1978 static struct sched_group *
1979 find_busiest_group(struct sched_domain *sd, int this_cpu,
1980                    unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1981 {
1982         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1983         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1984         unsigned long max_pull;
1985         int load_idx;
1986
1987         max_load = this_load = total_load = total_pwr = 0;
1988         if (idle == NOT_IDLE)
1989                 load_idx = sd->busy_idx;
1990         else if (idle == NEWLY_IDLE)
1991                 load_idx = sd->newidle_idx;
1992         else
1993                 load_idx = sd->idle_idx;
1994
1995         do {
1996                 unsigned long load;
1997                 int local_group;
1998                 int i;
1999
2000                 local_group = cpu_isset(this_cpu, group->cpumask);
2001
2002                 /* Tally up the load of all CPUs in the group */
2003                 avg_load = 0;
2004
2005                 for_each_cpu_mask(i, group->cpumask) {
2006                         if (*sd_idle && !idle_cpu(i))
2007                                 *sd_idle = 0;
2008
2009                         /* Bias balancing toward cpus of our domain */
2010                         if (local_group)
2011                                 load = __target_load(i, load_idx, idle);
2012                         else
2013                                 load = __source_load(i, load_idx, idle);
2014
2015                         avg_load += load;
2016                 }
2017
2018                 total_load += avg_load;
2019                 total_pwr += group->cpu_power;
2020
2021                 /* Adjust by relative CPU power of the group */
2022                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2023
2024                 if (local_group) {
2025                         this_load = avg_load;
2026                         this = group;
2027                 } else if (avg_load > max_load) {
2028                         max_load = avg_load;
2029                         busiest = group;
2030                 }
2031                 group = group->next;
2032         } while (group != sd->groups);
2033
2034         if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2035                 goto out_balanced;
2036
2037         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2038
2039         if (this_load >= avg_load ||
2040                         100*max_load <= sd->imbalance_pct*this_load)
2041                 goto out_balanced;
2042
2043         /*
2044          * We're trying to get all the cpus to the average_load, so we don't
2045          * want to push ourselves above the average load, nor do we wish to
2046          * reduce the max loaded cpu below the average load, as either of these
2047          * actions would just result in more rebalancing later, and ping-pong
2048          * tasks around. Thus we look for the minimum possible imbalance.
2049          * Negative imbalances (*we* are more loaded than anyone else) will
2050          * be counted as no imbalance for these purposes -- we can't fix that
2051          * by pulling tasks to us.  Be careful of negative numbers as they'll
2052          * appear as very large values with unsigned longs.
2053          */
2054
2055         /* Don't want to pull so many tasks that a group would go idle */
2056         max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2057
2058         /* How much load to actually move to equalise the imbalance */
2059         *imbalance = min(max_pull * busiest->cpu_power,
2060                                 (avg_load - this_load) * this->cpu_power)
2061                         / SCHED_LOAD_SCALE;
2062
2063         if (*imbalance < SCHED_LOAD_SCALE) {
2064                 unsigned long pwr_now = 0, pwr_move = 0;
2065                 unsigned long tmp;
2066
2067                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2068                         *imbalance = 1;
2069                         return busiest;
2070                 }
2071
2072                 /*
2073                  * OK, we don't have enough imbalance to justify moving tasks,
2074                  * however we may be able to increase total CPU power used by
2075                  * moving them.
2076                  */
2077
2078                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2079                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2080                 pwr_now /= SCHED_LOAD_SCALE;
2081
2082                 /* Amount of load we'd subtract */
2083                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2084                 if (max_load > tmp)
2085                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2086                                                         max_load - tmp);
2087
2088                 /* Amount of load we'd add */
2089                 if (max_load*busiest->cpu_power <
2090                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2091                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2092                 else
2093                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2094                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2095                 pwr_move /= SCHED_LOAD_SCALE;
2096
2097                 /* Move if we gain throughput */
2098                 if (pwr_move <= pwr_now)
2099                         goto out_balanced;
2100
2101                 *imbalance = 1;
2102                 return busiest;
2103         }
2104
2105         /* Get rid of the scaling factor, rounding down as we divide */
2106         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2107         return busiest;
2108
2109 out_balanced:
2110
2111         *imbalance = 0;
2112         return NULL;
2113 }
2114
2115 /*
2116  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2117  */
2118 static runqueue_t *find_busiest_queue(struct sched_group *group,
2119         enum idle_type idle)
2120 {
2121         unsigned long load, max_load = 0;
2122         runqueue_t *busiest = NULL;
2123         int i;
2124
2125         for_each_cpu_mask(i, group->cpumask) {
2126                 load = __source_load(i, 0, idle);
2127
2128                 if (load > max_load) {
2129                         max_load = load;
2130                         busiest = cpu_rq(i);
2131                 }
2132         }
2133
2134         return busiest;
2135 }
2136
2137 /*
2138  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2139  * so long as it is large enough.
2140  */
2141 #define MAX_PINNED_INTERVAL     512
2142
2143 /*
2144  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2145  * tasks if there is an imbalance.
2146  *
2147  * Called with this_rq unlocked.
2148  */
2149 static int load_balance(int this_cpu, runqueue_t *this_rq,
2150                         struct sched_domain *sd, enum idle_type idle)
2151 {
2152         struct sched_group *group;
2153         runqueue_t *busiest;
2154         unsigned long imbalance;
2155         int nr_moved, all_pinned = 0;
2156         int active_balance = 0;
2157         int sd_idle = 0;
2158
2159         if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2160                 sd_idle = 1;
2161
2162         schedstat_inc(sd, lb_cnt[idle]);
2163
2164         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2165         if (!group) {
2166                 schedstat_inc(sd, lb_nobusyg[idle]);
2167                 goto out_balanced;
2168         }
2169
2170         busiest = find_busiest_queue(group, idle);
2171         if (!busiest) {
2172                 schedstat_inc(sd, lb_nobusyq[idle]);
2173                 goto out_balanced;
2174         }
2175
2176         BUG_ON(busiest == this_rq);
2177
2178         schedstat_add(sd, lb_imbalance[idle], imbalance);
2179
2180         nr_moved = 0;
2181         if (busiest->nr_running > 1) {
2182                 /*
2183                  * Attempt to move tasks. If find_busiest_group has found
2184                  * an imbalance but busiest->nr_running <= 1, the group is
2185                  * still unbalanced. nr_moved simply stays zero, so it is
2186                  * correctly treated as an imbalance.
2187                  */
2188                 double_rq_lock(this_rq, busiest);
2189                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2190                                         imbalance, sd, idle, &all_pinned);
2191                 double_rq_unlock(this_rq, busiest);
2192
2193                 /* All tasks on this runqueue were pinned by CPU affinity */
2194                 if (unlikely(all_pinned))
2195                         goto out_balanced;
2196         }
2197
2198         if (!nr_moved) {
2199                 schedstat_inc(sd, lb_failed[idle]);
2200                 sd->nr_balance_failed++;
2201
2202                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2203
2204                         spin_lock(&busiest->lock);
2205
2206                         /* don't kick the migration_thread, if the curr
2207                          * task on busiest cpu can't be moved to this_cpu
2208                          */
2209                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2210                                 spin_unlock(&busiest->lock);
2211                                 all_pinned = 1;
2212                                 goto out_one_pinned;
2213                         }
2214
2215                         if (!busiest->active_balance) {
2216                                 busiest->active_balance = 1;
2217                                 busiest->push_cpu = this_cpu;
2218                                 active_balance = 1;
2219                         }
2220                         spin_unlock(&busiest->lock);
2221                         if (active_balance)
2222                                 wake_up_process(busiest->migration_thread);
2223
2224                         /*
2225                          * We've kicked active balancing, reset the failure
2226                          * counter.
2227                          */
2228                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2229                 }
2230         } else
2231                 sd->nr_balance_failed = 0;
2232
2233         if (likely(!active_balance)) {
2234                 /* We were unbalanced, so reset the balancing interval */
2235                 sd->balance_interval = sd->min_interval;
2236         } else {
2237                 /*
2238                  * If we've begun active balancing, start to back off. This
2239                  * case may not be covered by the all_pinned logic if there
2240                  * is only 1 task on the busy runqueue (because we don't call
2241                  * move_tasks).
2242                  */
2243                 if (sd->balance_interval < sd->max_interval)
2244                         sd->balance_interval *= 2;
2245         }
2246
2247         if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2248                 return -1;
2249         return nr_moved;
2250
2251 out_balanced:
2252         schedstat_inc(sd, lb_balanced[idle]);
2253
2254         sd->nr_balance_failed = 0;
2255
2256 out_one_pinned:
2257         /* tune up the balancing interval */
2258         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2259                         (sd->balance_interval < sd->max_interval))
2260                 sd->balance_interval *= 2;
2261
2262         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2263                 return -1;
2264         return 0;
2265 }
2266
2267 /*
2268  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2269  * tasks if there is an imbalance.
2270  *
2271  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2272  * this_rq is locked.
2273  */
2274 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2275                                 struct sched_domain *sd)
2276 {
2277         struct sched_group *group;
2278         runqueue_t *busiest = NULL;
2279         unsigned long imbalance;
2280         int nr_moved = 0;
2281         int sd_idle = 0;
2282
2283         if (sd->flags & SD_SHARE_CPUPOWER)
2284                 sd_idle = 1;
2285
2286         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2287         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2288         if (!group) {
2289                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2290                 goto out_balanced;
2291         }
2292
2293         busiest = find_busiest_queue(group, NEWLY_IDLE);
2294         if (!busiest) {
2295                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2296                 goto out_balanced;
2297         }
2298
2299         BUG_ON(busiest == this_rq);
2300
2301         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2302
2303         nr_moved = 0;
2304         if (busiest->nr_running > 1) {
2305                 /* Attempt to move tasks */
2306                 double_lock_balance(this_rq, busiest);
2307                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2308                                         imbalance, sd, NEWLY_IDLE, NULL);
2309                 spin_unlock(&busiest->lock);
2310         }
2311
2312         if (!nr_moved) {
2313                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2314                 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2315                         return -1;
2316         } else
2317                 sd->nr_balance_failed = 0;
2318
2319         return nr_moved;
2320
2321 out_balanced:
2322         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2323         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2324                 return -1;
2325         sd->nr_balance_failed = 0;
2326         return 0;
2327 }
2328
2329 /*
2330  * idle_balance is called by schedule() if this_cpu is about to become
2331  * idle. Attempts to pull tasks from other CPUs.
2332  */
2333 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2334 {
2335         struct sched_domain *sd;
2336
2337         for_each_domain(this_cpu, sd) {
2338                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2339                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2340                                 /* We've pulled tasks over so stop searching */
2341                                 break;
2342                         }
2343                 }
2344         }
2345 }
2346
2347 /*
2348  * active_load_balance is run by migration threads. It pushes running tasks
2349  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2350  * running on each physical CPU where possible, and avoids physical /
2351  * logical imbalances.
2352  *
2353  * Called with busiest_rq locked.
2354  */
2355 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2356 {
2357         struct sched_domain *sd;
2358         runqueue_t *target_rq;
2359         int target_cpu = busiest_rq->push_cpu;
2360
2361         if (busiest_rq->nr_running <= 1)
2362                 /* no task to move */
2363                 return;
2364
2365         target_rq = cpu_rq(target_cpu);
2366
2367         /*
2368          * This condition is "impossible", if it occurs
2369          * we need to fix it.  Originally reported by
2370          * Bjorn Helgaas on a 128-cpu setup.
2371          */
2372         BUG_ON(busiest_rq == target_rq);
2373
2374         /* move a task from busiest_rq to target_rq */
2375         double_lock_balance(busiest_rq, target_rq);
2376
2377         /* Search for an sd spanning us and the target CPU. */
2378         for_each_domain(target_cpu, sd)
2379                 if ((sd->flags & SD_LOAD_BALANCE) &&
2380                         cpu_isset(busiest_cpu, sd->span))
2381                                 break;
2382
2383         if (unlikely(sd == NULL))
2384                 goto out;
2385
2386         schedstat_inc(sd, alb_cnt);
2387
2388         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2389                 schedstat_inc(sd, alb_pushed);
2390         else
2391                 schedstat_inc(sd, alb_failed);
2392 out:
2393         spin_unlock(&target_rq->lock);
2394 }
2395
2396 /*
2397  * rebalance_tick will get called every timer tick, on every CPU.
2398  *
2399  * It checks each scheduling domain to see if it is due to be balanced,
2400  * and initiates a balancing operation if so.
2401  *
2402  * Balancing parameters are set up in arch_init_sched_domains.
2403  */
2404
2405 /* Don't have all balancing operations going off at once */
2406 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2407
2408 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2409                            enum idle_type idle)
2410 {
2411         unsigned long old_load, this_load;
2412         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2413         struct sched_domain *sd;
2414         int i;
2415
2416         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2417         /* Update our load */
2418         for (i = 0; i < 3; i++) {
2419                 unsigned long new_load = this_load;
2420                 int scale = 1 << i;
2421                 old_load = this_rq->cpu_load[i];
2422                 /*
2423                  * Round up the averaging division if load is increasing. This
2424                  * prevents us from getting stuck on 9 if the load is 10, for
2425                  * example.
2426                  */
2427                 if (new_load > old_load)
2428                         new_load += scale-1;
2429                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2430         }
2431
2432         for_each_domain(this_cpu, sd) {
2433                 unsigned long interval;
2434
2435                 if (!(sd->flags & SD_LOAD_BALANCE))
2436                         continue;
2437
2438                 interval = sd->balance_interval;
2439                 if (idle != SCHED_IDLE)
2440                         interval *= sd->busy_factor;
2441
2442                 /* scale ms to jiffies */
2443                 interval = msecs_to_jiffies(interval);
2444                 if (unlikely(!interval))
2445                         interval = 1;
2446
2447                 if (j - sd->last_balance >= interval) {
2448                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2449                                 /*
2450                                  * We've pulled tasks over so either we're no
2451                                  * longer idle, or one of our SMT siblings is
2452                                  * not idle.
2453                                  */
2454                                 idle = NOT_IDLE;
2455                         }
2456                         sd->last_balance += interval;
2457                 }
2458         }
2459 }
2460 #else
2461 /*
2462  * on UP we do not need to balance between CPUs:
2463  */
2464 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2465 {
2466 }
2467 static inline void idle_balance(int cpu, runqueue_t *rq)
2468 {
2469 }
2470 #endif
2471
2472 static inline int wake_priority_sleeper(runqueue_t *rq)
2473 {
2474         int ret = 0;
2475 #ifdef CONFIG_SCHED_SMT
2476         spin_lock(&rq->lock);
2477         /*
2478          * If an SMT sibling task has been put to sleep for priority
2479          * reasons reschedule the idle task to see if it can now run.
2480          */
2481         if (rq->nr_running) {
2482                 resched_task(rq->idle);
2483                 ret = 1;
2484         }
2485         spin_unlock(&rq->lock);
2486 #endif
2487         return ret;
2488 }
2489
2490 DEFINE_PER_CPU(struct kernel_stat, kstat);
2491
2492 EXPORT_PER_CPU_SYMBOL(kstat);
2493
2494 /*
2495  * This is called on clock ticks and on context switches.
2496  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2497  */
2498 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2499                                     unsigned long long now)
2500 {
2501         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2502         p->sched_time += now - last;
2503 }
2504
2505 /*
2506  * Return current->sched_time plus any more ns on the sched_clock
2507  * that have not yet been banked.
2508  */
2509 unsigned long long current_sched_time(const task_t *tsk)
2510 {
2511         unsigned long long ns;
2512         unsigned long flags;
2513         local_irq_save(flags);
2514         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2515         ns = tsk->sched_time + (sched_clock() - ns);
2516         local_irq_restore(flags);
2517         return ns;
2518 }
2519
2520 /*
2521  * We place interactive tasks back into the active array, if possible.
2522  *
2523  * To guarantee that this does not starve expired tasks we ignore the
2524  * interactivity of a task if the first expired task had to wait more
2525  * than a 'reasonable' amount of time. This deadline timeout is
2526  * load-dependent, as the frequency of array switched decreases with
2527  * increasing number of running tasks. We also ignore the interactivity
2528  * if a better static_prio task has expired:
2529  */
2530 #define EXPIRED_STARVING(rq) \
2531         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2532                 (jiffies - (rq)->expired_timestamp >= \
2533                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2534                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2535
2536 /*
2537  * Account user cpu time to a process.
2538  * @p: the process that the cpu time gets accounted to
2539  * @hardirq_offset: the offset to subtract from hardirq_count()
2540  * @cputime: the cpu time spent in user space since the last update
2541  */
2542 void account_user_time(struct task_struct *p, cputime_t cputime)
2543 {
2544         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2545         cputime64_t tmp;
2546
2547         p->utime = cputime_add(p->utime, cputime);
2548
2549         /* Add user time to cpustat. */
2550         tmp = cputime_to_cputime64(cputime);
2551         if (TASK_NICE(p) > 0)
2552                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2553         else
2554                 cpustat->user = cputime64_add(cpustat->user, tmp);
2555 }
2556
2557 /*
2558  * Account system cpu time to a process.
2559  * @p: the process that the cpu time gets accounted to
2560  * @hardirq_offset: the offset to subtract from hardirq_count()
2561  * @cputime: the cpu time spent in kernel space since the last update
2562  */
2563 void account_system_time(struct task_struct *p, int hardirq_offset,
2564                          cputime_t cputime)
2565 {
2566         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2567         runqueue_t *rq = this_rq();
2568         cputime64_t tmp;
2569
2570         p->stime = cputime_add(p->stime, cputime);
2571
2572         /* Add system time to cpustat. */
2573         tmp = cputime_to_cputime64(cputime);
2574         if (hardirq_count() - hardirq_offset)
2575                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2576         else if (softirq_count())
2577                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2578         else if (p != rq->idle)
2579                 cpustat->system = cputime64_add(cpustat->system, tmp);
2580         else if (atomic_read(&rq->nr_iowait) > 0)
2581                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2582         else
2583                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2584         /* Account for system time used */
2585         acct_update_integrals(p);
2586 }
2587
2588 /*
2589  * Account for involuntary wait time.
2590  * @p: the process from which the cpu time has been stolen
2591  * @steal: the cpu time spent in involuntary wait
2592  */
2593 void account_steal_time(struct task_struct *p, cputime_t steal)
2594 {
2595         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2596         cputime64_t tmp = cputime_to_cputime64(steal);
2597         runqueue_t *rq = this_rq();
2598
2599         if (p == rq->idle) {
2600                 p->stime = cputime_add(p->stime, steal);
2601                 if (atomic_read(&rq->nr_iowait) > 0)
2602                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2603                 else
2604                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2605         } else
2606                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2607 }
2608
2609 /*
2610  * This function gets called by the timer code, with HZ frequency.
2611  * We call it with interrupts disabled.
2612  *
2613  * It also gets called by the fork code, when changing the parent's
2614  * timeslices.
2615  */
2616 void scheduler_tick(void)
2617 {
2618         int cpu = smp_processor_id();
2619         runqueue_t *rq = this_rq();
2620         task_t *p = current;
2621         unsigned long long now = sched_clock();
2622
2623         update_cpu_clock(p, rq, now);
2624
2625         rq->timestamp_last_tick = now;
2626
2627         if (p == rq->idle) {
2628                 if (wake_priority_sleeper(rq))
2629                         goto out;
2630                 rebalance_tick(cpu, rq, SCHED_IDLE);
2631                 return;
2632         }
2633
2634         /* Task might have expired already, but not scheduled off yet */
2635         if (p->array != rq->active) {
2636                 set_tsk_need_resched(p);
2637                 goto out;
2638         }
2639         spin_lock(&rq->lock);
2640         /*
2641          * The task was running during this tick - update the
2642          * time slice counter. Note: we do not update a thread's
2643          * priority until it either goes to sleep or uses up its
2644          * timeslice. This makes it possible for interactive tasks
2645          * to use up their timeslices at their highest priority levels.
2646          */
2647         if (rt_task(p)) {
2648                 /*
2649                  * RR tasks need a special form of timeslice management.
2650                  * FIFO tasks have no timeslices.
2651                  */
2652                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2653                         p->time_slice = task_timeslice(p);
2654                         p->first_time_slice = 0;
2655                         set_tsk_need_resched(p);
2656
2657                         /* put it at the end of the queue: */
2658                         requeue_task(p, rq->active);
2659                 }
2660                 goto out_unlock;
2661         }
2662         if (!--p->time_slice) {
2663                 dequeue_task(p, rq->active);
2664                 set_tsk_need_resched(p);
2665                 p->prio = effective_prio(p);
2666                 p->time_slice = task_timeslice(p);
2667                 p->first_time_slice = 0;
2668
2669                 if (!rq->expired_timestamp)
2670                         rq->expired_timestamp = jiffies;
2671                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2672                         enqueue_task(p, rq->expired);
2673                         if (p->static_prio < rq->best_expired_prio)
2674                                 rq->best_expired_prio = p->static_prio;
2675                 } else
2676                         enqueue_task(p, rq->active);
2677         } else {
2678                 /*
2679                  * Prevent a too long timeslice allowing a task to monopolize
2680                  * the CPU. We do this by splitting up the timeslice into
2681                  * smaller pieces.
2682                  *
2683                  * Note: this does not mean the task's timeslices expire or
2684                  * get lost in any way, they just might be preempted by
2685                  * another task of equal priority. (one with higher
2686                  * priority would have preempted this task already.) We
2687                  * requeue this task to the end of the list on this priority
2688                  * level, which is in essence a round-robin of tasks with
2689                  * equal priority.
2690                  *
2691                  * This only applies to tasks in the interactive
2692                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2693                  */
2694                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2695                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2696                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2697                         (p->array == rq->active)) {
2698
2699                         requeue_task(p, rq->active);
2700                         set_tsk_need_resched(p);
2701                 }
2702         }
2703 out_unlock:
2704         spin_unlock(&rq->lock);
2705 out:
2706         rebalance_tick(cpu, rq, NOT_IDLE);
2707 }
2708
2709 #ifdef CONFIG_SCHED_SMT
2710 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2711 {
2712         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2713         if (rq->curr == rq->idle && rq->nr_running)
2714                 resched_task(rq->idle);
2715 }
2716
2717 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2718 {
2719         struct sched_domain *tmp, *sd = NULL;
2720         cpumask_t sibling_map;
2721         int i;
2722
2723         for_each_domain(this_cpu, tmp)
2724                 if (tmp->flags & SD_SHARE_CPUPOWER)
2725                         sd = tmp;
2726
2727         if (!sd)
2728                 return;
2729
2730         /*
2731          * Unlock the current runqueue because we have to lock in
2732          * CPU order to avoid deadlocks. Caller knows that we might
2733          * unlock. We keep IRQs disabled.
2734          */
2735         spin_unlock(&this_rq->lock);
2736
2737         sibling_map = sd->span;
2738
2739         for_each_cpu_mask(i, sibling_map)
2740                 spin_lock(&cpu_rq(i)->lock);
2741         /*
2742          * We clear this CPU from the mask. This both simplifies the
2743          * inner loop and keps this_rq locked when we exit:
2744          */
2745         cpu_clear(this_cpu, sibling_map);
2746
2747         for_each_cpu_mask(i, sibling_map) {
2748                 runqueue_t *smt_rq = cpu_rq(i);
2749
2750                 wakeup_busy_runqueue(smt_rq);
2751         }
2752
2753         for_each_cpu_mask(i, sibling_map)
2754                 spin_unlock(&cpu_rq(i)->lock);
2755         /*
2756          * We exit with this_cpu's rq still held and IRQs
2757          * still disabled:
2758          */
2759 }
2760
2761 /*
2762  * number of 'lost' timeslices this task wont be able to fully
2763  * utilize, if another task runs on a sibling. This models the
2764  * slowdown effect of other tasks running on siblings:
2765  */
2766 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2767 {
2768         return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2769 }
2770
2771 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2772 {
2773         struct sched_domain *tmp, *sd = NULL;
2774         cpumask_t sibling_map;
2775         prio_array_t *array;
2776         int ret = 0, i;
2777         task_t *p;
2778
2779         for_each_domain(this_cpu, tmp)
2780                 if (tmp->flags & SD_SHARE_CPUPOWER)
2781                         sd = tmp;
2782
2783         if (!sd)
2784                 return 0;
2785
2786         /*
2787          * The same locking rules and details apply as for
2788          * wake_sleeping_dependent():
2789          */
2790         spin_unlock(&this_rq->lock);
2791         sibling_map = sd->span;
2792         for_each_cpu_mask(i, sibling_map)
2793                 spin_lock(&cpu_rq(i)->lock);
2794         cpu_clear(this_cpu, sibling_map);
2795
2796         /*
2797          * Establish next task to be run - it might have gone away because
2798          * we released the runqueue lock above:
2799          */
2800         if (!this_rq->nr_running)
2801                 goto out_unlock;
2802         array = this_rq->active;
2803         if (!array->nr_active)
2804                 array = this_rq->expired;
2805         BUG_ON(!array->nr_active);
2806
2807         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2808                 task_t, run_list);
2809
2810         for_each_cpu_mask(i, sibling_map) {
2811                 runqueue_t *smt_rq = cpu_rq(i);
2812                 task_t *smt_curr = smt_rq->curr;
2813
2814                 /* Kernel threads do not participate in dependent sleeping */
2815                 if (!p->mm || !smt_curr->mm || rt_task(p))
2816                         goto check_smt_task;
2817
2818                 /*
2819                  * If a user task with lower static priority than the
2820                  * running task on the SMT sibling is trying to schedule,
2821                  * delay it till there is proportionately less timeslice
2822                  * left of the sibling task to prevent a lower priority
2823                  * task from using an unfair proportion of the
2824                  * physical cpu's resources. -ck
2825                  */
2826                 if (rt_task(smt_curr)) {
2827                         /*
2828                          * With real time tasks we run non-rt tasks only
2829                          * per_cpu_gain% of the time.
2830                          */
2831                         if ((jiffies % DEF_TIMESLICE) >
2832                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2833                                         ret = 1;
2834                 } else
2835                         if (smt_curr->static_prio < p->static_prio &&
2836                                 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2837                                 smt_slice(smt_curr, sd) > task_timeslice(p))
2838                                         ret = 1;
2839
2840 check_smt_task:
2841                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2842                         rt_task(smt_curr))
2843                                 continue;
2844                 if (!p->mm) {
2845                         wakeup_busy_runqueue(smt_rq);
2846                         continue;
2847                 }
2848
2849                 /*
2850                  * Reschedule a lower priority task on the SMT sibling for
2851                  * it to be put to sleep, or wake it up if it has been put to
2852                  * sleep for priority reasons to see if it should run now.
2853                  */
2854                 if (rt_task(p)) {
2855                         if ((jiffies % DEF_TIMESLICE) >
2856                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2857                                         resched_task(smt_curr);
2858                 } else {
2859                         if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2860                                 smt_slice(p, sd) > task_timeslice(smt_curr))
2861                                         resched_task(smt_curr);
2862                         else
2863                                 wakeup_busy_runqueue(smt_rq);
2864                 }
2865         }
2866 out_unlock:
2867         for_each_cpu_mask(i, sibling_map)
2868                 spin_unlock(&cpu_rq(i)->lock);
2869         return ret;
2870 }
2871 #else
2872 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2873 {
2874 }
2875
2876 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2877 {
2878         return 0;
2879 }
2880 #endif
2881
2882 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2883
2884 void fastcall add_preempt_count(int val)
2885 {
2886         /*
2887          * Underflow?
2888          */
2889         BUG_ON((preempt_count() < 0));
2890         preempt_count() += val;
2891         /*
2892          * Spinlock count overflowing soon?
2893          */
2894         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2895 }
2896 EXPORT_SYMBOL(add_preempt_count);
2897
2898 void fastcall sub_preempt_count(int val)
2899 {
2900         /*
2901          * Underflow?
2902          */
2903         BUG_ON(val > preempt_count());
2904         /*
2905          * Is the spinlock portion underflowing?
2906          */
2907         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2908         preempt_count() -= val;
2909 }
2910 EXPORT_SYMBOL(sub_preempt_count);
2911
2912 #endif
2913
2914 /*
2915  * schedule() is the main scheduler function.
2916  */
2917 asmlinkage void __sched schedule(void)
2918 {
2919         long *switch_count;
2920         task_t *prev, *next;
2921         runqueue_t *rq;
2922         prio_array_t *array;
2923         struct list_head *queue;
2924         unsigned long long now;
2925         unsigned long run_time;
2926         int cpu, idx, new_prio;
2927
2928         /*
2929          * Test if we are atomic.  Since do_exit() needs to call into
2930          * schedule() atomically, we ignore that path for now.
2931          * Otherwise, whine if we are scheduling when we should not be.
2932          */
2933         if (likely(!current->exit_state)) {
2934                 if (unlikely(in_atomic())) {
2935                         printk(KERN_ERR "scheduling while atomic: "
2936                                 "%s/0x%08x/%d\n",
2937                                 current->comm, preempt_count(), current->pid);
2938                         dump_stack();
2939                 }
2940         }
2941         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2942
2943 need_resched:
2944         preempt_disable();
2945         prev = current;
2946         release_kernel_lock(prev);
2947 need_resched_nonpreemptible:
2948         rq = this_rq();
2949
2950         /*
2951          * The idle thread is not allowed to schedule!
2952          * Remove this check after it has been exercised a bit.
2953          */
2954         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2955                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2956                 dump_stack();
2957         }
2958
2959         schedstat_inc(rq, sched_cnt);
2960         now = sched_clock();
2961         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2962                 run_time = now - prev->timestamp;
2963                 if (unlikely((long long)(now - prev->timestamp) < 0))
2964                         run_time = 0;
2965         } else
2966                 run_time = NS_MAX_SLEEP_AVG;
2967
2968         /*
2969          * Tasks charged proportionately less run_time at high sleep_avg to
2970          * delay them losing their interactive status
2971          */
2972         run_time /= (CURRENT_BONUS(prev) ? : 1);
2973
2974         spin_lock_irq(&rq->lock);
2975
2976         if (unlikely(prev->flags & PF_DEAD))
2977                 prev->state = EXIT_DEAD;
2978
2979         switch_count = &prev->nivcsw;
2980         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2981                 switch_count = &prev->nvcsw;
2982                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2983                                 unlikely(signal_pending(prev))))
2984                         prev->state = TASK_RUNNING;
2985                 else {
2986                         if (prev->state == TASK_UNINTERRUPTIBLE)
2987                                 rq->nr_uninterruptible++;
2988                         deactivate_task(prev, rq);
2989                 }
2990         }
2991
2992         cpu = smp_processor_id();
2993         if (unlikely(!rq->nr_running)) {
2994 go_idle:
2995                 idle_balance(cpu, rq);
2996                 if (!rq->nr_running) {
2997                         next = rq->idle;
2998                         rq->expired_timestamp = 0;
2999                         wake_sleeping_dependent(cpu, rq);
3000                         /*
3001                          * wake_sleeping_dependent() might have released
3002                          * the runqueue, so break out if we got new
3003                          * tasks meanwhile:
3004                          */
3005                         if (!rq->nr_running)
3006                                 goto switch_tasks;
3007                 }
3008         } else {
3009                 if (dependent_sleeper(cpu, rq)) {
3010                         next = rq->idle;
3011                         goto switch_tasks;
3012                 }
3013                 /*
3014                  * dependent_sleeper() releases and reacquires the runqueue
3015                  * lock, hence go into the idle loop if the rq went
3016                  * empty meanwhile:
3017                  */
3018                 if (unlikely(!rq->nr_running))
3019                         goto go_idle;
3020         }
3021
3022         array = rq->active;
3023         if (unlikely(!array->nr_active)) {
3024                 /*
3025                  * Switch the active and expired arrays.
3026                  */
3027                 schedstat_inc(rq, sched_switch);
3028                 rq->active = rq->expired;
3029                 rq->expired = array;
3030                 array = rq->active;
3031                 rq->expired_timestamp = 0;
3032                 rq->best_expired_prio = MAX_PRIO;
3033         }
3034
3035         idx = sched_find_first_bit(array->bitmap);
3036         queue = array->queue + idx;
3037         next = list_entry(queue->next, task_t, run_list);
3038
3039         if (!rt_task(next) && next->activated > 0) {
3040                 unsigned long long delta = now - next->timestamp;
3041                 if (unlikely((long long)(now - next->timestamp) < 0))
3042                         delta = 0;
3043
3044                 if (next->activated == 1)
3045                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3046
3047                 array = next->array;
3048                 new_prio = recalc_task_prio(next, next->timestamp + delta);
3049
3050                 if (unlikely(next->prio != new_prio)) {
3051                         dequeue_task(next, array);
3052                         next->prio = new_prio;
3053                         enqueue_task(next, array);
3054                 } else
3055                         requeue_task(next, array);
3056         }
3057         next->activated = 0;
3058 switch_tasks:
3059         if (next == rq->idle)
3060                 schedstat_inc(rq, sched_goidle);
3061         prefetch(next);
3062         prefetch_stack(next);
3063         clear_tsk_need_resched(prev);
3064         rcu_qsctr_inc(task_cpu(prev));
3065
3066         update_cpu_clock(prev, rq, now);
3067
3068         prev->sleep_avg -= run_time;
3069         if ((long)prev->sleep_avg <= 0)
3070                 prev->sleep_avg = 0;
3071         prev->timestamp = prev->last_ran = now;
3072
3073         sched_info_switch(prev, next);
3074         if (likely(prev != next)) {
3075                 next->timestamp = now;
3076                 rq->nr_switches++;
3077                 rq->curr = next;
3078                 ++*switch_count;
3079
3080                 prepare_task_switch(rq, next);
3081                 prev = context_switch(rq, prev, next);
3082                 barrier();
3083                 /*
3084                  * this_rq must be evaluated again because prev may have moved
3085                  * CPUs since it called schedule(), thus the 'rq' on its stack
3086                  * frame will be invalid.
3087                  */
3088                 finish_task_switch(this_rq(), prev);
3089         } else
3090                 spin_unlock_irq(&rq->lock);
3091
3092         prev = current;
3093         if (unlikely(reacquire_kernel_lock(prev) < 0))
3094                 goto need_resched_nonpreemptible;
3095         preempt_enable_no_resched();
3096         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3097                 goto need_resched;
3098 }
3099
3100 EXPORT_SYMBOL(schedule);
3101
3102 #ifdef CONFIG_PREEMPT
3103 /*
3104  * this is is the entry point to schedule() from in-kernel preemption
3105  * off of preempt_enable.  Kernel preemptions off return from interrupt
3106  * occur there and call schedule directly.
3107  */
3108 asmlinkage void __sched preempt_schedule(void)
3109 {
3110         struct thread_info *ti = current_thread_info();
3111 #ifdef CONFIG_PREEMPT_BKL
3112         struct task_struct *task = current;
3113         int saved_lock_depth;
3114 #endif
3115         /*
3116          * If there is a non-zero preempt_count or interrupts are disabled,
3117          * we do not want to preempt the current task.  Just return..
3118          */
3119         if (unlikely(ti->preempt_count || irqs_disabled()))
3120                 return;
3121
3122 need_resched:
3123         add_preempt_count(PREEMPT_ACTIVE);
3124         /*
3125          * We keep the big kernel semaphore locked, but we
3126          * clear ->lock_depth so that schedule() doesnt
3127          * auto-release the semaphore:
3128          */
3129 #ifdef CONFIG_PREEMPT_BKL
3130         saved_lock_depth = task->lock_depth;
3131         task->lock_depth = -1;
3132 #endif
3133         schedule();
3134 #ifdef CONFIG_PREEMPT_BKL
3135         task->lock_depth = saved_lock_depth;
3136 #endif
3137         sub_preempt_count(PREEMPT_ACTIVE);
3138
3139         /* we could miss a preemption opportunity between schedule and now */
3140         barrier();
3141         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3142                 goto need_resched;
3143 }
3144
3145 EXPORT_SYMBOL(preempt_schedule);
3146
3147 /*
3148  * this is is the entry point to schedule() from kernel preemption
3149  * off of irq context.
3150  * Note, that this is called and return with irqs disabled. This will
3151  * protect us against recursive calling from irq.
3152  */
3153 asmlinkage void __sched preempt_schedule_irq(void)
3154 {
3155         struct thread_info *ti = current_thread_info();
3156 #ifdef CONFIG_PREEMPT_BKL
3157         struct task_struct *task = current;
3158         int saved_lock_depth;
3159 #endif
3160         /* Catch callers which need to be fixed*/
3161         BUG_ON(ti->preempt_count || !irqs_disabled());
3162
3163 need_resched:
3164         add_preempt_count(PREEMPT_ACTIVE);
3165         /*
3166          * We keep the big kernel semaphore locked, but we
3167          * clear ->lock_depth so that schedule() doesnt
3168          * auto-release the semaphore:
3169          */
3170 #ifdef CONFIG_PREEMPT_BKL
3171         saved_lock_depth = task->lock_depth;
3172         task->lock_depth = -1;
3173 #endif
3174         local_irq_enable();
3175         schedule();
3176         local_irq_disable();
3177 #ifdef CONFIG_PREEMPT_BKL
3178         task->lock_depth = saved_lock_depth;
3179 #endif
3180         sub_preempt_count(PREEMPT_ACTIVE);
3181
3182         /* we could miss a preemption opportunity between schedule and now */
3183         barrier();
3184         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3185                 goto need_resched;
3186 }
3187
3188 #endif /* CONFIG_PREEMPT */
3189
3190 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3191                           void *key)
3192 {
3193         task_t *p = curr->private;
3194         return try_to_wake_up(p, mode, sync);
3195 }
3196
3197 EXPORT_SYMBOL(default_wake_function);
3198
3199 /*
3200  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3201  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3202  * number) then we wake all the non-exclusive tasks and one exclusive task.
3203  *
3204  * There are circumstances in which we can try to wake a task which has already
3205  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3206  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3207  */
3208 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3209                              int nr_exclusive, int sync, void *key)
3210 {
3211         struct list_head *tmp, *next;
3212
3213         list_for_each_safe(tmp, next, &q->task_list) {
3214                 wait_queue_t *curr;
3215                 unsigned flags;
3216                 curr = list_entry(tmp, wait_queue_t, task_list);
3217                 flags = curr->flags;
3218                 if (curr->func(curr, mode, sync, key) &&
3219                     (flags & WQ_FLAG_EXCLUSIVE) &&
3220                     !--nr_exclusive)
3221                         break;
3222         }
3223 }
3224
3225 /**
3226  * __wake_up - wake up threads blocked on a waitqueue.
3227  * @q: the waitqueue
3228  * @mode: which threads
3229  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3230  * @key: is directly passed to the wakeup function
3231  */
3232 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3233                         int nr_exclusive, void *key)
3234 {
3235         unsigned long flags;
3236
3237         spin_lock_irqsave(&q->lock, flags);
3238         __wake_up_common(q, mode, nr_exclusive, 0, key);
3239         spin_unlock_irqrestore(&q->lock, flags);
3240 }
3241
3242 EXPORT_SYMBOL(__wake_up);
3243
3244 /*
3245  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3246  */
3247 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3248 {
3249         __wake_up_common(q, mode, 1, 0, NULL);
3250 }
3251
3252 /**
3253  * __wake_up_sync - wake up threads blocked on a waitqueue.
3254  * @q: the waitqueue
3255  * @mode: which threads
3256  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3257  *
3258  * The sync wakeup differs that the waker knows that it will schedule
3259  * away soon, so while the target thread will be woken up, it will not
3260  * be migrated to another CPU - ie. the two threads are 'synchronized'
3261  * with each other. This can prevent needless bouncing between CPUs.
3262  *
3263  * On UP it can prevent extra preemption.
3264  */
3265 void fastcall
3266 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3267 {
3268         unsigned long flags;
3269         int sync = 1;
3270
3271         if (unlikely(!q))
3272                 return;
3273
3274         if (unlikely(!nr_exclusive))
3275                 sync = 0;
3276
3277         spin_lock_irqsave(&q->lock, flags);
3278         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3279         spin_unlock_irqrestore(&q->lock, flags);
3280 }
3281 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3282
3283 void fastcall complete(struct completion *x)
3284 {
3285         unsigned long flags;
3286
3287         spin_lock_irqsave(&x->wait.lock, flags);
3288         x->done++;
3289         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3290                          1, 0, NULL);
3291         spin_unlock_irqrestore(&x->wait.lock, flags);
3292 }
3293 EXPORT_SYMBOL(complete);
3294
3295 void fastcall complete_all(struct completion *x)
3296 {
3297         unsigned long flags;
3298
3299         spin_lock_irqsave(&x->wait.lock, flags);
3300         x->done += UINT_MAX/2;
3301         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3302                          0, 0, NULL);
3303         spin_unlock_irqrestore(&x->wait.lock, flags);
3304 }
3305 EXPORT_SYMBOL(complete_all);
3306
3307 void fastcall __sched wait_for_completion(struct completion *x)
3308 {
3309         might_sleep();
3310         spin_lock_irq(&x->wait.lock);
3311         if (!x->done) {
3312                 DECLARE_WAITQUEUE(wait, current);
3313
3314                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3315                 __add_wait_queue_tail(&x->wait, &wait);
3316                 do {
3317                         __set_current_state(TASK_UNINTERRUPTIBLE);
3318                         spin_unlock_irq(&x->wait.lock);
3319                         schedule();
3320                         spin_lock_irq(&x->wait.lock);
3321                 } while (!x->done);
3322                 __remove_wait_queue(&x->wait, &wait);
3323         }
3324         x->done--;
3325         spin_unlock_irq(&x->wait.lock);
3326 }
3327 EXPORT_SYMBOL(wait_for_completion);
3328
3329 unsigned long fastcall __sched
3330 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3331 {
3332         might_sleep();
3333
3334         spin_lock_irq(&x->wait.lock);
3335         if (!x->done) {
3336                 DECLARE_WAITQUEUE(wait, current);
3337
3338                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3339                 __add_wait_queue_tail(&x->wait, &wait);
3340                 do {
3341                         __set_current_state(TASK_UNINTERRUPTIBLE);
3342                         spin_unlock_irq(&x->wait.lock);
3343                         timeout = schedule_timeout(timeout);
3344                         spin_lock_irq(&x->wait.lock);
3345                         if (!timeout) {
3346                                 __remove_wait_queue(&x->wait, &wait);
3347                                 goto out;
3348                         }
3349                 } while (!x->done);
3350                 __remove_wait_queue(&x->wait, &wait);
3351         }
3352         x->done--;
3353 out:
3354         spin_unlock_irq(&x->wait.lock);
3355         return timeout;
3356 }
3357 EXPORT_SYMBOL(wait_for_completion_timeout);
3358
3359 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3360 {
3361         int ret = 0;
3362
3363         might_sleep();
3364
3365         spin_lock_irq(&x->wait.lock);
3366         if (!x->done) {
3367                 DECLARE_WAITQUEUE(wait, current);
3368
3369                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3370                 __add_wait_queue_tail(&x->wait, &wait);
3371                 do {
3372                         if (signal_pending(current)) {
3373                                 ret = -ERESTARTSYS;
3374                                 __remove_wait_queue(&x->wait, &wait);
3375                                 goto out;
3376                         }
3377                         __set_current_state(TASK_INTERRUPTIBLE);
3378                         spin_unlock_irq(&x->wait.lock);
3379                         schedule();
3380                         spin_lock_irq(&x->wait.lock);
3381                 } while (!x->done);
3382                 __remove_wait_queue(&x->wait, &wait);
3383         }
3384         x->done--;
3385 out:
3386         spin_unlock_irq(&x->wait.lock);
3387
3388         return ret;
3389 }
3390 EXPORT_SYMBOL(wait_for_completion_interruptible);
3391
3392 unsigned long fastcall __sched
3393 wait_for_completion_interruptible_timeout(struct completion *x,
3394                                           unsigned long timeout)
3395 {
3396         might_sleep();
3397
3398         spin_lock_irq(&x->wait.lock);
3399         if (!x->done) {
3400                 DECLARE_WAITQUEUE(wait, current);
3401
3402                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3403                 __add_wait_queue_tail(&x->wait, &wait);
3404                 do {
3405                         if (signal_pending(current)) {
3406                                 timeout = -ERESTARTSYS;
3407                                 __remove_wait_queue(&x->wait, &wait);
3408                                 goto out;
3409                         }
3410                         __set_current_state(TASK_INTERRUPTIBLE);
3411                         spin_unlock_irq(&x->wait.lock);
3412                         timeout = schedule_timeout(timeout);
3413                         spin_lock_irq(&x->wait.lock);
3414                         if (!timeout) {
3415                                 __remove_wait_queue(&x->wait, &wait);
3416                                 goto out;
3417                         }
3418                 } while (!x->done);
3419                 __remove_wait_queue(&x->wait, &wait);
3420         }
3421         x->done--;
3422 out:
3423         spin_unlock_irq(&x->wait.lock);
3424         return timeout;
3425 }
3426 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3427
3428
3429 #define SLEEP_ON_VAR                                    \
3430         unsigned long flags;                            \
3431         wait_queue_t wait;                              \
3432         init_waitqueue_entry(&wait, current);
3433
3434 #define SLEEP_ON_HEAD                                   \
3435         spin_lock_irqsave(&q->lock,flags);              \
3436         __add_wait_queue(q, &wait);                     \
3437         spin_unlock(&q->lock);
3438
3439 #define SLEEP_ON_TAIL                                   \
3440         spin_lock_irq(&q->lock);                        \
3441         __remove_wait_queue(q, &wait);                  \
3442         spin_unlock_irqrestore(&q->lock, flags);
3443
3444 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3445 {
3446         SLEEP_ON_VAR
3447
3448         current->state = TASK_INTERRUPTIBLE;
3449
3450         SLEEP_ON_HEAD
3451         schedule();
3452         SLEEP_ON_TAIL
3453 }
3454
3455 EXPORT_SYMBOL(interruptible_sleep_on);
3456
3457 long fastcall __sched
3458 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3459 {
3460         SLEEP_ON_VAR
3461
3462         current->state = TASK_INTERRUPTIBLE;
3463
3464         SLEEP_ON_HEAD
3465         timeout = schedule_timeout(timeout);
3466         SLEEP_ON_TAIL
3467
3468         return timeout;
3469 }
3470
3471 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3472
3473 void fastcall __sched sleep_on(wait_queue_head_t *q)
3474 {
3475         SLEEP_ON_VAR
3476
3477         current->state = TASK_UNINTERRUPTIBLE;
3478
3479         SLEEP_ON_HEAD
3480         schedule();
3481         SLEEP_ON_TAIL
3482 }
3483
3484 EXPORT_SYMBOL(sleep_on);
3485
3486 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3487 {
3488         SLEEP_ON_VAR
3489
3490         current->state = TASK_UNINTERRUPTIBLE;
3491
3492         SLEEP_ON_HEAD
3493         timeout = schedule_timeout(timeout);
3494         SLEEP_ON_TAIL
3495
3496         return timeout;
3497 }
3498
3499 EXPORT_SYMBOL(sleep_on_timeout);
3500
3501 void set_user_nice(task_t *p, long nice)
3502 {
3503         unsigned long flags;
3504         prio_array_t *array;
3505         runqueue_t *rq;
3506         int old_prio, new_prio, delta;
3507
3508         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3509                 return;
3510         /*
3511          * We have to be careful, if called from sys_setpriority(),
3512          * the task might be in the middle of scheduling on another CPU.
3513          */
3514         rq = task_rq_lock(p, &flags);
3515         /*
3516          * The RT priorities are set via sched_setscheduler(), but we still
3517          * allow the 'normal' nice value to be set - but as expected
3518          * it wont have any effect on scheduling until the task is
3519          * not SCHED_NORMAL:
3520          */
3521         if (rt_task(p)) {
3522                 p->static_prio = NICE_TO_PRIO(nice);
3523                 goto out_unlock;
3524         }
3525         array = p->array;
3526         if (array) {
3527                 dequeue_task(p, array);
3528                 dec_prio_bias(rq, p->static_prio);
3529         }
3530
3531         old_prio = p->prio;
3532         new_prio = NICE_TO_PRIO(nice);
3533         delta = new_prio - old_prio;
3534         p->static_prio = NICE_TO_PRIO(nice);
3535         p->prio += delta;
3536
3537         if (array) {
3538                 enqueue_task(p, array);
3539                 inc_prio_bias(rq, p->static_prio);
3540                 /*
3541                  * If the task increased its priority or is running and
3542                  * lowered its priority, then reschedule its CPU:
3543                  */
3544                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3545                         resched_task(rq->curr);
3546         }
3547 out_unlock:
3548         task_rq_unlock(rq, &flags);
3549 }
3550
3551 EXPORT_SYMBOL(set_user_nice);
3552
3553 /*
3554  * can_nice - check if a task can reduce its nice value
3555  * @p: task
3556  * @nice: nice value
3557  */
3558 int can_nice(const task_t *p, const int nice)
3559 {
3560         /* convert nice value [19,-20] to rlimit style value [1,40] */
3561         int nice_rlim = 20 - nice;
3562         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3563                 capable(CAP_SYS_NICE));
3564 }
3565
3566 #ifdef __ARCH_WANT_SYS_NICE
3567
3568 /*
3569  * sys_nice - change the priority of the current process.
3570  * @increment: priority increment
3571  *
3572  * sys_setpriority is a more generic, but much slower function that
3573  * does similar things.
3574  */
3575 asmlinkage long sys_nice(int increment)
3576 {
3577         int retval;
3578         long nice;
3579
3580         /*
3581          * Setpriority might change our priority at the same moment.
3582          * We don't have to worry. Conceptually one call occurs first
3583          * and we have a single winner.
3584          */
3585         if (increment < -40)
3586                 increment = -40;
3587         if (increment > 40)
3588                 increment = 40;
3589
3590         nice = PRIO_TO_NICE(current->static_prio) + increment;
3591         if (nice < -20)
3592                 nice = -20;
3593         if (nice > 19)
3594                 nice = 19;
3595
3596         if (increment < 0 && !can_nice(current, nice))
3597                 return -EPERM;
3598
3599         retval = security_task_setnice(current, nice);
3600         if (retval)
3601                 return retval;
3602
3603         set_user_nice(current, nice);
3604         return 0;
3605 }
3606
3607 #endif
3608
3609 /**
3610  * task_prio - return the priority value of a given task.
3611  * @p: the task in question.
3612  *
3613  * This is the priority value as seen by users in /proc.
3614  * RT tasks are offset by -200. Normal tasks are centered
3615  * around 0, value goes from -16 to +15.
3616  */
3617 int task_prio(const task_t *p)
3618 {
3619         return p->prio - MAX_RT_PRIO;
3620 }
3621
3622 /**
3623  * task_nice - return the nice value of a given task.
3624  * @p: the task in question.
3625  */
3626 int task_nice(const task_t *p)
3627 {
3628         return TASK_NICE(p);
3629 }
3630 EXPORT_SYMBOL_GPL(task_nice);
3631
3632 /**
3633  * idle_cpu - is a given cpu idle currently?
3634  * @cpu: the processor in question.
3635  */
3636 int idle_cpu(int cpu)
3637 {
3638         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3639 }
3640
3641 /**
3642  * idle_task - return the idle task for a given cpu.
3643  * @cpu: the processor in question.
3644  */
3645 task_t *idle_task(int cpu)
3646 {
3647         return cpu_rq(cpu)->idle;
3648 }
3649
3650 /**
3651  * find_process_by_pid - find a process with a matching PID value.
3652  * @pid: the pid in question.
3653  */
3654 static inline task_t *find_process_by_pid(pid_t pid)
3655 {
3656         return pid ? find_task_by_pid(pid) : current;
3657 }
3658
3659 /* Actually do priority change: must hold rq lock. */
3660 static void __setscheduler(struct task_struct *p, int policy, int prio)
3661 {
3662         BUG_ON(p->array);
3663         p->policy = policy;
3664         p->rt_priority = prio;
3665         if (policy != SCHED_NORMAL)
3666                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3667         else
3668                 p->prio = p->static_prio;
3669 }
3670
3671 /**
3672  * sched_setscheduler - change the scheduling policy and/or RT priority of
3673  * a thread.
3674  * @p: the task in question.
3675  * @policy: new policy.
3676  * @param: structure containing the new RT priority.
3677  */
3678 int sched_setscheduler(struct task_struct *p, int policy,
3679                        struct sched_param *param)
3680 {
3681         int retval;
3682         int oldprio, oldpolicy = -1;
3683         prio_array_t *array;
3684         unsigned long flags;
3685         runqueue_t *rq;
3686
3687 recheck:
3688         /* double check policy once rq lock held */
3689         if (policy < 0)
3690                 policy = oldpolicy = p->policy;
3691         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3692                                 policy != SCHED_NORMAL)
3693                         return -EINVAL;
3694         /*
3695          * Valid priorities for SCHED_FIFO and SCHED_RR are
3696          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3697          */
3698         if (param->sched_priority < 0 ||
3699             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3700             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3701                 return -EINVAL;
3702         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3703                 return -EINVAL;
3704
3705         /*
3706          * Allow unprivileged RT tasks to decrease priority:
3707          */
3708         if (!capable(CAP_SYS_NICE)) {
3709                 /* can't change policy */
3710                 if (policy != p->policy &&
3711                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3712                         return -EPERM;
3713                 /* can't increase priority */
3714                 if (policy != SCHED_NORMAL &&
3715                     param->sched_priority > p->rt_priority &&
3716                     param->sched_priority >
3717                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3718                         return -EPERM;
3719                 /* can't change other user's priorities */
3720                 if ((current->euid != p->euid) &&
3721                     (current->euid != p->uid))
3722                         return -EPERM;
3723         }
3724
3725         retval = security_task_setscheduler(p, policy, param);
3726         if (retval)
3727                 return retval;
3728         /*
3729          * To be able to change p->policy safely, the apropriate
3730          * runqueue lock must be held.
3731          */
3732         rq = task_rq_lock(p, &flags);
3733         /* recheck policy now with rq lock held */
3734         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3735                 policy = oldpolicy = -1;
3736                 task_rq_unlock(rq, &flags);
3737                 goto recheck;
3738         }
3739         array = p->array;
3740         if (array)
3741                 deactivate_task(p, rq);
3742         oldprio = p->prio;
3743         __setscheduler(p, policy, param->sched_priority);
3744         if (array) {
3745                 __activate_task(p, rq);
3746                 /*
3747                  * Reschedule if we are currently running on this runqueue and
3748                  * our priority decreased, or if we are not currently running on
3749                  * this runqueue and our priority is higher than the current's
3750                  */
3751                 if (task_running(rq, p)) {
3752                         if (p->prio > oldprio)
3753                                 resched_task(rq->curr);
3754                 } else if (TASK_PREEMPTS_CURR(p, rq))
3755                         resched_task(rq->curr);
3756         }
3757         task_rq_unlock(rq, &flags);
3758         return 0;
3759 }
3760 EXPORT_SYMBOL_GPL(sched_setscheduler);
3761
3762 static int
3763 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3764 {
3765         int retval;
3766         struct sched_param lparam;
3767         struct task_struct *p;
3768
3769         if (!param || pid < 0)
3770                 return -EINVAL;
3771         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3772                 return -EFAULT;
3773         read_lock_irq(&tasklist_lock);
3774         p = find_process_by_pid(pid);
3775         if (!p) {
3776                 read_unlock_irq(&tasklist_lock);
3777                 return -ESRCH;
3778         }
3779         retval = sched_setscheduler(p, policy, &lparam);
3780         read_unlock_irq(&tasklist_lock);
3781         return retval;
3782 }
3783
3784 /**
3785  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3786  * @pid: the pid in question.
3787  * @policy: new policy.
3788  * @param: structure containing the new RT priority.
3789  */
3790 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3791                                        struct sched_param __user *param)
3792 {
3793         return do_sched_setscheduler(pid, policy, param);
3794 }
3795
3796 /**
3797  * sys_sched_setparam - set/change the RT priority of a thread
3798  * @pid: the pid in question.
3799  * @param: structure containing the new RT priority.
3800  */
3801 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3802 {
3803         return do_sched_setscheduler(pid, -1, param);
3804 }
3805
3806 /**
3807  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3808  * @pid: the pid in question.
3809  */
3810 asmlinkage long sys_sched_getscheduler(pid_t pid)
3811 {
3812         int retval = -EINVAL;
3813         task_t *p;
3814
3815         if (pid < 0)
3816                 goto out_nounlock;
3817
3818         retval = -ESRCH;
3819         read_lock(&tasklist_lock);
3820         p = find_process_by_pid(pid);
3821         if (p) {
3822                 retval = security_task_getscheduler(p);
3823                 if (!retval)
3824                         retval = p->policy;
3825         }
3826         read_unlock(&tasklist_lock);
3827
3828 out_nounlock:
3829         return retval;
3830 }
3831
3832 /**
3833  * sys_sched_getscheduler - get the RT priority of a thread
3834  * @pid: the pid in question.
3835  * @param: structure containing the RT priority.
3836  */
3837 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3838 {
3839         struct sched_param lp;
3840         int retval = -EINVAL;
3841         task_t *p;
3842
3843         if (!param || pid < 0)
3844                 goto out_nounlock;
3845
3846         read_lock(&tasklist_lock);
3847         p = find_process_by_pid(pid);
3848         retval = -ESRCH;
3849         if (!p)
3850                 goto out_unlock;
3851
3852         retval = security_task_getscheduler(p);
3853         if (retval)
3854                 goto out_unlock;
3855
3856         lp.sched_priority = p->rt_priority;
3857         read_unlock(&tasklist_lock);
3858
3859         /*
3860          * This one might sleep, we cannot do it with a spinlock held ...
3861          */
3862         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3863
3864 out_nounlock:
3865         return retval;
3866
3867 out_unlock:
3868         read_unlock(&tasklist_lock);
3869         return retval;
3870 }
3871
3872 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3873 {
3874         task_t *p;
3875         int retval;
3876         cpumask_t cpus_allowed;
3877
3878         lock_cpu_hotplug();
3879         read_lock(&tasklist_lock);
3880
3881         p = find_process_by_pid(pid);
3882         if (!p) {
3883                 read_unlock(&tasklist_lock);
3884                 unlock_cpu_hotplug();
3885                 return -ESRCH;
3886         }
3887
3888         /*
3889          * It is not safe to call set_cpus_allowed with the
3890          * tasklist_lock held.  We will bump the task_struct's
3891          * usage count and then drop tasklist_lock.
3892          */
3893         get_task_struct(p);
3894         read_unlock(&tasklist_lock);
3895
3896         retval = -EPERM;
3897         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3898                         !capable(CAP_SYS_NICE))
3899                 goto out_unlock;
3900
3901         cpus_allowed = cpuset_cpus_allowed(p);
3902         cpus_and(new_mask, new_mask, cpus_allowed);
3903         retval = set_cpus_allowed(p, new_mask);
3904
3905 out_unlock:
3906         put_task_struct(p);
3907         unlock_cpu_hotplug();
3908         return retval;
3909 }
3910
3911 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3912                              cpumask_t *new_mask)
3913 {
3914         if (len < sizeof(cpumask_t)) {
3915                 memset(new_mask, 0, sizeof(cpumask_t));
3916         } else if (len > sizeof(cpumask_t)) {
3917                 len = sizeof(cpumask_t);
3918         }
3919         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3920 }
3921
3922 /**
3923  * sys_sched_setaffinity - set the cpu affinity of a process
3924  * @pid: pid of the process
3925  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3926  * @user_mask_ptr: user-space pointer to the new cpu mask
3927  */
3928 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3929                                       unsigned long __user *user_mask_ptr)
3930 {
3931         cpumask_t new_mask;
3932         int retval;
3933
3934         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3935         if (retval)
3936                 return retval;
3937
3938         return sched_setaffinity(pid, new_mask);
3939 }
3940
3941 /*
3942  * Represents all cpu's present in the system
3943  * In systems capable of hotplug, this map could dynamically grow
3944  * as new cpu's are detected in the system via any platform specific
3945  * method, such as ACPI for e.g.
3946  */
3947
3948 cpumask_t cpu_present_map;
3949 EXPORT_SYMBOL(cpu_present_map);
3950
3951 #ifndef CONFIG_SMP
3952 cpumask_t cpu_online_map = CPU_MASK_ALL;
3953 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3954 #endif
3955
3956 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3957 {
3958         int retval;
3959         task_t *p;
3960
3961         lock_cpu_hotplug();
3962         read_lock(&tasklist_lock);
3963
3964         retval = -ESRCH;
3965         p = find_process_by_pid(pid);
3966         if (!p)
3967                 goto out_unlock;
3968
3969         retval = 0;
3970         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3971
3972 out_unlock:
3973         read_unlock(&tasklist_lock);
3974         unlock_cpu_hotplug();
3975         if (retval)
3976                 return retval;
3977
3978         return 0;
3979 }
3980
3981 /**
3982  * sys_sched_getaffinity - get the cpu affinity of a process
3983  * @pid: pid of the process
3984  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3985  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3986  */
3987 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3988                                       unsigned long __user *user_mask_ptr)
3989 {
3990         int ret;
3991         cpumask_t mask;
3992
3993         if (len < sizeof(cpumask_t))
3994                 return -EINVAL;
3995
3996         ret = sched_getaffinity(pid, &mask);
3997         if (ret < 0)
3998                 return ret;
3999
4000         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4001                 return -EFAULT;
4002
4003         return sizeof(cpumask_t);
4004 }
4005
4006 /**
4007  * sys_sched_yield - yield the current processor to other threads.
4008  *
4009  * this function yields the current CPU by moving the calling thread
4010  * to the expired array. If there are no other threads running on this
4011  * CPU then this function will return.
4012  */
4013 asmlinkage long sys_sched_yield(void)
4014 {
4015         runqueue_t *rq = this_rq_lock();
4016         prio_array_t *array = current->array;
4017         prio_array_t *target = rq->expired;
4018
4019         schedstat_inc(rq, yld_cnt);
4020         /*
4021          * We implement yielding by moving the task into the expired
4022          * queue.
4023          *
4024          * (special rule: RT tasks will just roundrobin in the active
4025          *  array.)
4026          */
4027         if (rt_task(current))
4028                 target = rq->active;
4029
4030         if (array->nr_active == 1) {
4031                 schedstat_inc(rq, yld_act_empty);
4032                 if (!rq->expired->nr_active)
4033                         schedstat_inc(rq, yld_both_empty);
4034         } else if (!rq->expired->nr_active)
4035                 schedstat_inc(rq, yld_exp_empty);
4036
4037         if (array != target) {
4038                 dequeue_task(current, array);
4039                 enqueue_task(current, target);
4040         } else
4041                 /*
4042                  * requeue_task is cheaper so perform that if possible.
4043                  */
4044                 requeue_task(current, array);
4045
4046         /*
4047          * Since we are going to call schedule() anyway, there's
4048          * no need to preempt or enable interrupts:
4049          */
4050         __release(rq->lock);
4051         _raw_spin_unlock(&rq->lock);
4052         preempt_enable_no_resched();
4053
4054         schedule();
4055
4056         return 0;
4057 }
4058
4059 static inline void __cond_resched(void)
4060 {
4061         /*
4062          * The BKS might be reacquired before we have dropped
4063          * PREEMPT_ACTIVE, which could trigger a second
4064          * cond_resched() call.
4065          */
4066         if (unlikely(preempt_count()))
4067                 return;
4068         do {
4069                 add_preempt_count(PREEMPT_ACTIVE);
4070                 schedule();
4071                 sub_preempt_count(PREEMPT_ACTIVE);
4072         } while (need_resched());
4073 }
4074
4075 int __sched cond_resched(void)
4076 {
4077         if (need_resched()) {
4078                 __cond_resched();
4079                 return 1;
4080         }
4081         return 0;
4082 }
4083
4084 EXPORT_SYMBOL(cond_resched);
4085
4086 /*
4087  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4088  * call schedule, and on return reacquire the lock.
4089  *
4090  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
4091  * operations here to prevent schedule() from being called twice (once via
4092  * spin_unlock(), once by hand).
4093  */
4094 int cond_resched_lock(spinlock_t *lock)
4095 {
4096         int ret = 0;
4097
4098         if (need_lockbreak(lock)) {
4099                 spin_unlock(lock);
4100                 cpu_relax();
4101                 ret = 1;
4102                 spin_lock(lock);
4103         }
4104         if (need_resched()) {
4105                 _raw_spin_unlock(lock);
4106                 preempt_enable_no_resched();
4107                 __cond_resched();
4108                 ret = 1;
4109                 spin_lock(lock);
4110         }
4111         return ret;
4112 }
4113
4114 EXPORT_SYMBOL(cond_resched_lock);
4115
4116 int __sched cond_resched_softirq(void)
4117 {
4118         BUG_ON(!in_softirq());
4119
4120         if (need_resched()) {
4121                 __local_bh_enable();
4122                 __cond_resched();
4123                 local_bh_disable();
4124                 return 1;
4125         }
4126         return 0;
4127 }
4128
4129 EXPORT_SYMBOL(cond_resched_softirq);
4130
4131
4132 /**
4133  * yield - yield the current processor to other threads.
4134  *
4135  * this is a shortcut for kernel-space yielding - it marks the
4136  * thread runnable and calls sys_sched_yield().
4137  */
4138 void __sched yield(void)
4139 {
4140         set_current_state(TASK_RUNNING);
4141         sys_sched_yield();
4142 }
4143
4144 EXPORT_SYMBOL(yield);
4145
4146 /*
4147  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4148  * that process accounting knows that this is a task in IO wait state.
4149  *
4150  * But don't do that if it is a deliberate, throttling IO wait (this task
4151  * has set its backing_dev_info: the queue against which it should throttle)
4152  */
4153 void __sched io_schedule(void)
4154 {
4155         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4156
4157         atomic_inc(&rq->nr_iowait);
4158         schedule();
4159         atomic_dec(&rq->nr_iowait);
4160 }
4161
4162 EXPORT_SYMBOL(io_schedule);
4163
4164 long __sched io_schedule_timeout(long timeout)
4165 {
4166         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4167         long ret;
4168
4169         atomic_inc(&rq->nr_iowait);
4170         ret = schedule_timeout(timeout);
4171         atomic_dec(&rq->nr_iowait);
4172         return ret;
4173 }
4174
4175 /**
4176  * sys_sched_get_priority_max - return maximum RT priority.
4177  * @policy: scheduling class.
4178  *
4179  * this syscall returns the maximum rt_priority that can be used
4180  * by a given scheduling class.
4181  */
4182 asmlinkage long sys_sched_get_priority_max(int policy)
4183 {
4184         int ret = -EINVAL;
4185
4186         switch (policy) {
4187         case SCHED_FIFO:
4188         case SCHED_RR:
4189                 ret = MAX_USER_RT_PRIO-1;
4190                 break;
4191         case SCHED_NORMAL:
4192                 ret = 0;
4193                 break;
4194         }
4195         return ret;
4196 }
4197
4198 /**
4199  * sys_sched_get_priority_min - return minimum RT priority.
4200  * @policy: scheduling class.
4201  *
4202  * this syscall returns the minimum rt_priority that can be used
4203  * by a given scheduling class.
4204  */
4205 asmlinkage long sys_sched_get_priority_min(int policy)
4206 {
4207         int ret = -EINVAL;
4208
4209         switch (policy) {
4210         case SCHED_FIFO:
4211         case SCHED_RR:
4212                 ret = 1;
4213                 break;
4214         case SCHED_NORMAL:
4215                 ret = 0;
4216         }
4217         return ret;
4218 }
4219
4220 /**
4221  * sys_sched_rr_get_interval - return the default timeslice of a process.
4222  * @pid: pid of the process.
4223  * @interval: userspace pointer to the timeslice value.
4224  *
4225  * this syscall writes the default timeslice value of a given process
4226  * into the user-space timespec buffer. A value of '0' means infinity.
4227  */
4228 asmlinkage
4229 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4230 {
4231         int retval = -EINVAL;
4232         struct timespec t;
4233         task_t *p;
4234
4235         if (pid < 0)
4236                 goto out_nounlock;
4237
4238         retval = -ESRCH;
4239         read_lock(&tasklist_lock);
4240         p = find_process_by_pid(pid);
4241         if (!p)
4242                 goto out_unlock;
4243
4244         retval = security_task_getscheduler(p);
4245         if (retval)
4246                 goto out_unlock;
4247
4248         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4249                                 0 : task_timeslice(p), &t);
4250         read_unlock(&tasklist_lock);
4251         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4252 out_nounlock:
4253         return retval;
4254 out_unlock:
4255         read_unlock(&tasklist_lock);
4256         return retval;
4257 }
4258
4259 static inline struct task_struct *eldest_child(struct task_struct *p)
4260 {
4261         if (list_empty(&p->children)) return NULL;
4262         return list_entry(p->children.next,struct task_struct,sibling);
4263 }
4264
4265 static inline struct task_struct *older_sibling(struct task_struct *p)
4266 {
4267         if (p->sibling.prev==&p->parent->children) return NULL;
4268         return list_entry(p->sibling.prev,struct task_struct,sibling);
4269 }
4270
4271 static inline struct task_struct *younger_sibling(struct task_struct *p)
4272 {
4273         if (p->sibling.next==&p->parent->children) return NULL;
4274         return list_entry(p->sibling.next,struct task_struct,sibling);
4275 }
4276
4277 static void show_task(task_t *p)
4278 {
4279         task_t *relative;
4280         unsigned state;
4281         unsigned long free = 0;
4282         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4283
4284         printk("%-13.13s ", p->comm);
4285         state = p->state ? __ffs(p->state) + 1 : 0;
4286         if (state < ARRAY_SIZE(stat_nam))
4287                 printk(stat_nam[state]);
4288         else
4289                 printk("?");
4290 #if (BITS_PER_LONG == 32)
4291         if (state == TASK_RUNNING)
4292                 printk(" running ");
4293         else
4294                 printk(" %08lX ", thread_saved_pc(p));
4295 #else
4296         if (state == TASK_RUNNING)
4297                 printk("  running task   ");
4298         else
4299                 printk(" %016lx ", thread_saved_pc(p));
4300 #endif
4301 #ifdef CONFIG_DEBUG_STACK_USAGE
4302         {
4303                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4304                 while (!*n)
4305                         n++;
4306                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4307         }
4308 #endif
4309         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4310         if ((relative = eldest_child(p)))
4311                 printk("%5d ", relative->pid);
4312         else
4313                 printk("      ");
4314         if ((relative = younger_sibling(p)))
4315                 printk("%7d", relative->pid);
4316         else
4317                 printk("       ");
4318         if ((relative = older_sibling(p)))
4319                 printk(" %5d", relative->pid);
4320         else
4321                 printk("      ");
4322         if (!p->mm)
4323                 printk(" (L-TLB)\n");
4324         else
4325                 printk(" (NOTLB)\n");
4326
4327         if (state != TASK_RUNNING)
4328                 show_stack(p, NULL);
4329 }
4330
4331 void show_state(void)
4332 {
4333         task_t *g, *p;
4334
4335 #if (BITS_PER_LONG == 32)
4336         printk("\n"
4337                "                                               sibling\n");
4338         printk("  task             PC      pid father child younger older\n");
4339 #else
4340         printk("\n"
4341                "                                                       sibling\n");
4342         printk("  task                 PC          pid father child younger older\n");
4343 #endif
4344         read_lock(&tasklist_lock);
4345         do_each_thread(g, p) {
4346                 /*
4347                  * reset the NMI-timeout, listing all files on a slow
4348                  * console might take alot of time:
4349                  */
4350                 touch_nmi_watchdog();
4351                 show_task(p);
4352         } while_each_thread(g, p);
4353
4354         read_unlock(&tasklist_lock);
4355 }
4356
4357 /**
4358  * init_idle - set up an idle thread for a given CPU
4359  * @idle: task in question
4360  * @cpu: cpu the idle task belongs to
4361  *
4362  * NOTE: this function does not set the idle thread's NEED_RESCHED
4363  * flag, to make booting more robust.
4364  */
4365 void __devinit init_idle(task_t *idle, int cpu)
4366 {
4367         runqueue_t *rq = cpu_rq(cpu);
4368         unsigned long flags;
4369
4370         idle->sleep_avg = 0;
4371         idle->array = NULL;
4372         idle->prio = MAX_PRIO;
4373         idle->state = TASK_RUNNING;
4374         idle->cpus_allowed = cpumask_of_cpu(cpu);
4375         set_task_cpu(idle, cpu);
4376
4377         spin_lock_irqsave(&rq->lock, flags);
4378         rq->curr = rq->idle = idle;
4379 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4380         idle->oncpu = 1;
4381 #endif
4382         spin_unlock_irqrestore(&rq->lock, flags);
4383
4384         /* Set the preempt count _outside_ the spinlocks! */
4385 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4386         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4387 #else
4388         idle->thread_info->preempt_count = 0;
4389 #endif
4390 }
4391
4392 /*
4393  * In a system that switches off the HZ timer nohz_cpu_mask
4394  * indicates which cpus entered this state. This is used
4395  * in the rcu update to wait only for active cpus. For system
4396  * which do not switch off the HZ timer nohz_cpu_mask should
4397  * always be CPU_MASK_NONE.
4398  */
4399 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4400
4401 #ifdef CONFIG_SMP
4402 /*
4403  * This is how migration works:
4404  *
4405  * 1) we queue a migration_req_t structure in the source CPU's
4406  *    runqueue and wake up that CPU's migration thread.
4407  * 2) we down() the locked semaphore => thread blocks.
4408  * 3) migration thread wakes up (implicitly it forces the migrated
4409  *    thread off the CPU)
4410  * 4) it gets the migration request and checks whether the migrated
4411  *    task is still in the wrong runqueue.
4412  * 5) if it's in the wrong runqueue then the migration thread removes
4413  *    it and puts it into the right queue.
4414  * 6) migration thread up()s the semaphore.
4415  * 7) we wake up and the migration is done.
4416  */
4417
4418 /*
4419  * Change a given task's CPU affinity. Migrate the thread to a
4420  * proper CPU and schedule it away if the CPU it's executing on
4421  * is removed from the allowed bitmask.
4422  *
4423  * NOTE: the caller must have a valid reference to the task, the
4424  * task must not exit() & deallocate itself prematurely.  The
4425  * call is not atomic; no spinlocks may be held.
4426  */
4427 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4428 {
4429         unsigned long flags;
4430         int ret = 0;
4431         migration_req_t req;
4432         runqueue_t *rq;
4433
4434         rq = task_rq_lock(p, &flags);
4435         if (!cpus_intersects(new_mask, cpu_online_map)) {
4436                 ret = -EINVAL;
4437                 goto out;
4438         }
4439
4440         p->cpus_allowed = new_mask;
4441         /* Can the task run on the task's current CPU? If so, we're done */
4442         if (cpu_isset(task_cpu(p), new_mask))
4443                 goto out;
4444
4445         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4446                 /* Need help from migration thread: drop lock and wait. */
4447                 task_rq_unlock(rq, &flags);
4448                 wake_up_process(rq->migration_thread);
4449                 wait_for_completion(&req.done);
4450                 tlb_migrate_finish(p->mm);
4451                 return 0;
4452         }
4453 out:
4454         task_rq_unlock(rq, &flags);
4455         return ret;
4456 }
4457
4458 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4459
4460 /*
4461  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4462  * this because either it can't run here any more (set_cpus_allowed()
4463  * away from this CPU, or CPU going down), or because we're
4464  * attempting to rebalance this task on exec (sched_exec).
4465  *
4466  * So we race with normal scheduler movements, but that's OK, as long
4467  * as the task is no longer on this CPU.
4468  */
4469 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4470 {
4471         runqueue_t *rq_dest, *rq_src;
4472
4473         if (unlikely(cpu_is_offline(dest_cpu)))
4474                 return;
4475
4476         rq_src = cpu_rq(src_cpu);
4477         rq_dest = cpu_rq(dest_cpu);
4478
4479         double_rq_lock(rq_src, rq_dest);
4480         /* Already moved. */
4481         if (task_cpu(p) != src_cpu)
4482                 goto out;
4483         /* Affinity changed (again). */
4484         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4485                 goto out;
4486
4487         set_task_cpu(p, dest_cpu);
4488         if (p->array) {
4489                 /*
4490                  * Sync timestamp with rq_dest's before activating.
4491                  * The same thing could be achieved by doing this step
4492                  * afterwards, and pretending it was a local activate.
4493                  * This way is cleaner and logically correct.
4494                  */
4495                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4496                                 + rq_dest->timestamp_last_tick;
4497                 deactivate_task(p, rq_src);
4498                 activate_task(p, rq_dest, 0);
4499                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4500                         resched_task(rq_dest->curr);
4501         }
4502
4503 out:
4504         double_rq_unlock(rq_src, rq_dest);
4505 }
4506
4507 /*
4508  * migration_thread - this is a highprio system thread that performs
4509  * thread migration by bumping thread off CPU then 'pushing' onto
4510  * another runqueue.
4511  */
4512 static int migration_thread(void *data)
4513 {
4514         runqueue_t *rq;
4515         int cpu = (long)data;
4516
4517         rq = cpu_rq(cpu);
4518         BUG_ON(rq->migration_thread != current);
4519
4520         set_current_state(TASK_INTERRUPTIBLE);
4521         while (!kthread_should_stop()) {
4522                 struct list_head *head;
4523                 migration_req_t *req;
4524
4525                 try_to_freeze();
4526
4527                 spin_lock_irq(&rq->lock);
4528
4529                 if (cpu_is_offline(cpu)) {
4530                         spin_unlock_irq(&rq->lock);
4531                         goto wait_to_die;
4532                 }
4533
4534                 if (rq->active_balance) {
4535                         active_load_balance(rq, cpu);
4536                         rq->active_balance = 0;
4537                 }
4538
4539                 head = &rq->migration_queue;
4540
4541                 if (list_empty(head)) {
4542                         spin_unlock_irq(&rq->lock);
4543                         schedule();
4544                         set_current_state(TASK_INTERRUPTIBLE);
4545                         continue;
4546                 }
4547                 req = list_entry(head->next, migration_req_t, list);
4548                 list_del_init(head->next);
4549
4550                 spin_unlock(&rq->lock);
4551                 __migrate_task(req->task, cpu, req->dest_cpu);
4552                 local_irq_enable();
4553
4554                 complete(&req->done);
4555         }
4556         __set_current_state(TASK_RUNNING);
4557         return 0;
4558
4559 wait_to_die:
4560         /* Wait for kthread_stop */
4561         set_current_state(TASK_INTERRUPTIBLE);
4562         while (!kthread_should_stop()) {
4563                 schedule();
4564                 set_current_state(TASK_INTERRUPTIBLE);
4565         }
4566         __set_current_state(TASK_RUNNING);
4567         return 0;
4568 }
4569
4570 #ifdef CONFIG_HOTPLUG_CPU
4571 /* Figure out where task on dead CPU should go, use force if neccessary. */
4572 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4573 {
4574         int dest_cpu;
4575         cpumask_t mask;
4576
4577         /* On same node? */
4578         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4579         cpus_and(mask, mask, tsk->cpus_allowed);
4580         dest_cpu = any_online_cpu(mask);
4581
4582         /* On any allowed CPU? */
4583         if (dest_cpu == NR_CPUS)
4584                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4585
4586         /* No more Mr. Nice Guy. */
4587         if (dest_cpu == NR_CPUS) {
4588                 cpus_setall(tsk->cpus_allowed);
4589                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4590
4591                 /*
4592                  * Don't tell them about moving exiting tasks or
4593                  * kernel threads (both mm NULL), since they never
4594                  * leave kernel.
4595                  */
4596                 if (tsk->mm && printk_ratelimit())
4597                         printk(KERN_INFO "process %d (%s) no "
4598                                "longer affine to cpu%d\n",
4599                                tsk->pid, tsk->comm, dead_cpu);
4600         }
4601         __migrate_task(tsk, dead_cpu, dest_cpu);
4602 }
4603
4604 /*
4605  * While a dead CPU has no uninterruptible tasks queued at this point,
4606  * it might still have a nonzero ->nr_uninterruptible counter, because
4607  * for performance reasons the counter is not stricly tracking tasks to
4608  * their home CPUs. So we just add the counter to another CPU's counter,
4609  * to keep the global sum constant after CPU-down:
4610  */
4611 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4612 {
4613         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4614         unsigned long flags;
4615
4616         local_irq_save(flags);
4617         double_rq_lock(rq_src, rq_dest);
4618         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4619         rq_src->nr_uninterruptible = 0;
4620         double_rq_unlock(rq_src, rq_dest);
4621         local_irq_restore(flags);
4622 }
4623
4624 /* Run through task list and migrate tasks from the dead cpu. */
4625 static void migrate_live_tasks(int src_cpu)
4626 {
4627         struct task_struct *tsk, *t;
4628
4629         write_lock_irq(&tasklist_lock);
4630
4631         do_each_thread(t, tsk) {
4632                 if (tsk == current)
4633                         continue;
4634
4635                 if (task_cpu(tsk) == src_cpu)
4636                         move_task_off_dead_cpu(src_cpu, tsk);
4637         } while_each_thread(t, tsk);
4638
4639         write_unlock_irq(&tasklist_lock);
4640 }
4641
4642 /* Schedules idle task to be the next runnable task on current CPU.
4643  * It does so by boosting its priority to highest possible and adding it to
4644  * the _front_ of runqueue. Used by CPU offline code.
4645  */
4646 void sched_idle_next(void)
4647 {
4648         int cpu = smp_processor_id();
4649         runqueue_t *rq = this_rq();
4650         struct task_struct *p = rq->idle;
4651         unsigned long flags;
4652
4653         /* cpu has to be offline */
4654         BUG_ON(cpu_online(cpu));
4655
4656         /* Strictly not necessary since rest of the CPUs are stopped by now
4657          * and interrupts disabled on current cpu.
4658          */
4659         spin_lock_irqsave(&rq->lock, flags);
4660
4661         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4662         /* Add idle task to _front_ of it's priority queue */
4663         __activate_idle_task(p, rq);
4664
4665         spin_unlock_irqrestore(&rq->lock, flags);
4666 }
4667
4668 /* Ensures that the idle task is using init_mm right before its cpu goes
4669  * offline.
4670  */
4671 void idle_task_exit(void)
4672 {
4673         struct mm_struct *mm = current->active_mm;
4674
4675         BUG_ON(cpu_online(smp_processor_id()));
4676
4677         if (mm != &init_mm)
4678                 switch_mm(mm, &init_mm, current);
4679         mmdrop(mm);
4680 }
4681
4682 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4683 {
4684         struct runqueue *rq = cpu_rq(dead_cpu);
4685
4686         /* Must be exiting, otherwise would be on tasklist. */
4687         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4688
4689         /* Cannot have done final schedule yet: would have vanished. */
4690         BUG_ON(tsk->flags & PF_DEAD);
4691
4692         get_task_struct(tsk);
4693
4694         /*
4695          * Drop lock around migration; if someone else moves it,
4696          * that's OK.  No task can be added to this CPU, so iteration is
4697          * fine.
4698          */
4699         spin_unlock_irq(&rq->lock);
4700         move_task_off_dead_cpu(dead_cpu, tsk);
4701         spin_lock_irq(&rq->lock);
4702
4703         put_task_struct(tsk);
4704 }
4705
4706 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4707 static void migrate_dead_tasks(unsigned int dead_cpu)
4708 {
4709         unsigned arr, i;
4710         struct runqueue *rq = cpu_rq(dead_cpu);
4711
4712         for (arr = 0; arr < 2; arr++) {
4713                 for (i = 0; i < MAX_PRIO; i++) {
4714                         struct list_head *list = &rq->arrays[arr].queue[i];
4715                         while (!list_empty(list))
4716                                 migrate_dead(dead_cpu,
4717                                              list_entry(list->next, task_t,
4718                                                         run_list));
4719                 }
4720         }
4721 }
4722 #endif /* CONFIG_HOTPLUG_CPU */
4723
4724 /*
4725  * migration_call - callback that gets triggered when a CPU is added.
4726  * Here we can start up the necessary migration thread for the new CPU.
4727  */
4728 static int migration_call(struct notifier_block *nfb, unsigned long action,
4729                           void *hcpu)
4730 {
4731         int cpu = (long)hcpu;
4732         struct task_struct *p;
4733         struct runqueue *rq;
4734         unsigned long flags;
4735
4736         switch (action) {
4737         case CPU_UP_PREPARE:
4738                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4739                 if (IS_ERR(p))
4740                         return NOTIFY_BAD;
4741                 p->flags |= PF_NOFREEZE;
4742                 kthread_bind(p, cpu);
4743                 /* Must be high prio: stop_machine expects to yield to it. */
4744                 rq = task_rq_lock(p, &flags);
4745                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4746                 task_rq_unlock(rq, &flags);
4747                 cpu_rq(cpu)->migration_thread = p;
4748                 break;
4749         case CPU_ONLINE:
4750                 /* Strictly unneccessary, as first user will wake it. */
4751                 wake_up_process(cpu_rq(cpu)->migration_thread);
4752                 break;
4753 #ifdef CONFIG_HOTPLUG_CPU
4754         case CPU_UP_CANCELED:
4755                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4756                 kthread_bind(cpu_rq(cpu)->migration_thread,
4757                              any_online_cpu(cpu_online_map));
4758                 kthread_stop(cpu_rq(cpu)->migration_thread);
4759                 cpu_rq(cpu)->migration_thread = NULL;
4760                 break;
4761         case CPU_DEAD:
4762                 migrate_live_tasks(cpu);
4763                 rq = cpu_rq(cpu);
4764                 kthread_stop(rq->migration_thread);
4765                 rq->migration_thread = NULL;
4766                 /* Idle task back to normal (off runqueue, low prio) */
4767                 rq = task_rq_lock(rq->idle, &flags);
4768                 deactivate_task(rq->idle, rq);
4769                 rq->idle->static_prio = MAX_PRIO;
4770                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4771                 migrate_dead_tasks(cpu);
4772                 task_rq_unlock(rq, &flags);
4773                 migrate_nr_uninterruptible(rq);
4774                 BUG_ON(rq->nr_running != 0);
4775
4776                 /* No need to migrate the tasks: it was best-effort if
4777                  * they didn't do lock_cpu_hotplug().  Just wake up
4778                  * the requestors. */
4779                 spin_lock_irq(&rq->lock);
4780                 while (!list_empty(&rq->migration_queue)) {
4781                         migration_req_t *req;
4782                         req = list_entry(rq->migration_queue.next,
4783                                          migration_req_t, list);
4784                         list_del_init(&req->list);
4785                         complete(&req->done);
4786                 }
4787                 spin_unlock_irq(&rq->lock);
4788                 break;
4789 #endif
4790         }
4791         return NOTIFY_OK;
4792 }
4793
4794 /* Register at highest priority so that task migration (migrate_all_tasks)
4795  * happens before everything else.
4796  */
4797 static struct notifier_block __devinitdata migration_notifier = {
4798         .notifier_call = migration_call,
4799         .priority = 10
4800 };
4801
4802 int __init migration_init(void)
4803 {
4804         void *cpu = (void *)(long)smp_processor_id();
4805         /* Start one for boot CPU. */
4806         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4807         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4808         register_cpu_notifier(&migration_notifier);
4809         return 0;
4810 }
4811 #endif
4812
4813 #ifdef CONFIG_SMP
4814 #undef SCHED_DOMAIN_DEBUG
4815 #ifdef SCHED_DOMAIN_DEBUG
4816 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4817 {
4818         int level = 0;
4819
4820         if (!sd) {
4821                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4822                 return;
4823         }
4824
4825         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4826
4827         do {
4828                 int i;
4829                 char str[NR_CPUS];
4830                 struct sched_group *group = sd->groups;
4831                 cpumask_t groupmask;
4832
4833                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4834                 cpus_clear(groupmask);
4835
4836                 printk(KERN_DEBUG);
4837                 for (i = 0; i < level + 1; i++)
4838                         printk(" ");
4839                 printk("domain %d: ", level);
4840
4841                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4842                         printk("does not load-balance\n");
4843                         if (sd->parent)
4844                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4845                         break;
4846                 }
4847
4848                 printk("span %s\n", str);
4849
4850                 if (!cpu_isset(cpu, sd->span))
4851                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4852                 if (!cpu_isset(cpu, group->cpumask))
4853                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4854
4855                 printk(KERN_DEBUG);
4856                 for (i = 0; i < level + 2; i++)
4857                         printk(" ");
4858                 printk("groups:");
4859                 do {
4860                         if (!group) {
4861                                 printk("\n");
4862                                 printk(KERN_ERR "ERROR: group is NULL\n");
4863                                 break;
4864                         }
4865
4866                         if (!group->cpu_power) {
4867                                 printk("\n");
4868                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4869                         }
4870
4871                         if (!cpus_weight(group->cpumask)) {
4872                                 printk("\n");
4873                                 printk(KERN_ERR "ERROR: empty group\n");
4874                         }
4875
4876                         if (cpus_intersects(groupmask, group->cpumask)) {
4877                                 printk("\n");
4878                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4879                         }
4880
4881                         cpus_or(groupmask, groupmask, group->cpumask);
4882
4883                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4884                         printk(" %s", str);
4885
4886                         group = group->next;
4887                 } while (group != sd->groups);
4888                 printk("\n");
4889
4890                 if (!cpus_equal(sd->span, groupmask))
4891                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4892
4893                 level++;
4894                 sd = sd->parent;
4895
4896                 if (sd) {
4897                         if (!cpus_subset(groupmask, sd->span))
4898                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4899                 }
4900
4901         } while (sd);
4902 }
4903 #else
4904 #define sched_domain_debug(sd, cpu) {}
4905 #endif
4906
4907 static int sd_degenerate(struct sched_domain *sd)
4908 {
4909         if (cpus_weight(sd->span) == 1)
4910                 return 1;
4911
4912         /* Following flags need at least 2 groups */
4913         if (sd->flags & (SD_LOAD_BALANCE |
4914                          SD_BALANCE_NEWIDLE |
4915                          SD_BALANCE_FORK |
4916                          SD_BALANCE_EXEC)) {
4917                 if (sd->groups != sd->groups->next)
4918                         return 0;
4919         }
4920
4921         /* Following flags don't use groups */
4922         if (sd->flags & (SD_WAKE_IDLE |
4923                          SD_WAKE_AFFINE |
4924                          SD_WAKE_BALANCE))
4925                 return 0;
4926
4927         return 1;
4928 }
4929
4930 static int sd_parent_degenerate(struct sched_domain *sd,
4931                                                 struct sched_domain *parent)
4932 {
4933         unsigned long cflags = sd->flags, pflags = parent->flags;
4934
4935         if (sd_degenerate(parent))
4936                 return 1;
4937
4938         if (!cpus_equal(sd->span, parent->span))
4939                 return 0;
4940
4941         /* Does parent contain flags not in child? */
4942         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4943         if (cflags & SD_WAKE_AFFINE)
4944                 pflags &= ~SD_WAKE_BALANCE;
4945         /* Flags needing groups don't count if only 1 group in parent */
4946         if (parent->groups == parent->groups->next) {
4947                 pflags &= ~(SD_LOAD_BALANCE |
4948                                 SD_BALANCE_NEWIDLE |
4949                                 SD_BALANCE_FORK |
4950                                 SD_BALANCE_EXEC);
4951         }
4952         if (~cflags & pflags)
4953                 return 0;
4954
4955         return 1;
4956 }
4957
4958 /*
4959  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4960  * hold the hotplug lock.
4961  */
4962 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4963 {
4964         runqueue_t *rq = cpu_rq(cpu);
4965         struct sched_domain *tmp;
4966
4967         /* Remove the sched domains which do not contribute to scheduling. */
4968         for (tmp = sd; tmp; tmp = tmp->parent) {
4969                 struct sched_domain *parent = tmp->parent;
4970                 if (!parent)
4971                         break;
4972                 if (sd_parent_degenerate(tmp, parent))
4973                         tmp->parent = parent->parent;
4974         }
4975
4976         if (sd && sd_degenerate(sd))
4977                 sd = sd->parent;
4978
4979         sched_domain_debug(sd, cpu);
4980
4981         rcu_assign_pointer(rq->sd, sd);
4982 }
4983
4984 /* cpus with isolated domains */
4985 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4986
4987 /* Setup the mask of cpus configured for isolated domains */
4988 static int __init isolated_cpu_setup(char *str)
4989 {
4990         int ints[NR_CPUS], i;
4991
4992         str = get_options(str, ARRAY_SIZE(ints), ints);
4993         cpus_clear(cpu_isolated_map);
4994         for (i = 1; i <= ints[0]; i++)
4995                 if (ints[i] < NR_CPUS)
4996                         cpu_set(ints[i], cpu_isolated_map);
4997         return 1;
4998 }
4999
5000 __setup ("isolcpus=", isolated_cpu_setup);
5001
5002 /*
5003  * init_sched_build_groups takes an array of groups, the cpumask we wish
5004  * to span, and a pointer to a function which identifies what group a CPU
5005  * belongs to. The return value of group_fn must be a valid index into the
5006  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5007  * keep track of groups covered with a cpumask_t).
5008  *
5009  * init_sched_build_groups will build a circular linked list of the groups
5010  * covered by the given span, and will set each group's ->cpumask correctly,
5011  * and ->cpu_power to 0.
5012  */
5013 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5014                                     int (*group_fn)(int cpu))
5015 {
5016         struct sched_group *first = NULL, *last = NULL;
5017         cpumask_t covered = CPU_MASK_NONE;
5018         int i;
5019
5020         for_each_cpu_mask(i, span) {
5021                 int group = group_fn(i);
5022                 struct sched_group *sg = &groups[group];
5023                 int j;
5024
5025                 if (cpu_isset(i, covered))
5026                         continue;
5027
5028                 sg->cpumask = CPU_MASK_NONE;
5029                 sg->cpu_power = 0;
5030
5031                 for_each_cpu_mask(j, span) {
5032                         if (group_fn(j) != group)
5033                                 continue;
5034
5035                         cpu_set(j, covered);
5036                         cpu_set(j, sg->cpumask);
5037                 }
5038                 if (!first)
5039                         first = sg;
5040                 if (last)
5041                         last->next = sg;
5042                 last = sg;
5043         }
5044         last->next = first;
5045 }
5046
5047 #define SD_NODES_PER_DOMAIN 16
5048
5049 #ifdef CONFIG_NUMA
5050 /**
5051  * find_next_best_node - find the next node to include in a sched_domain
5052  * @node: node whose sched_domain we're building
5053  * @used_nodes: nodes already in the sched_domain
5054  *
5055  * Find the next node to include in a given scheduling domain.  Simply
5056  * finds the closest node not already in the @used_nodes map.
5057  *
5058  * Should use nodemask_t.
5059  */
5060 static int find_next_best_node(int node, unsigned long *used_nodes)
5061 {
5062         int i, n, val, min_val, best_node = 0;
5063
5064         min_val = INT_MAX;
5065
5066         for (i = 0; i < MAX_NUMNODES; i++) {
5067                 /* Start at @node */
5068                 n = (node + i) % MAX_NUMNODES;
5069
5070                 if (!nr_cpus_node(n))
5071                         continue;
5072
5073                 /* Skip already used nodes */
5074                 if (test_bit(n, used_nodes))
5075                         continue;
5076
5077                 /* Simple min distance search */
5078                 val = node_distance(node, n);
5079
5080                 if (val < min_val) {
5081                         min_val = val;
5082                         best_node = n;
5083                 }
5084         }
5085
5086         set_bit(best_node, used_nodes);
5087         return best_node;
5088 }
5089
5090 /**
5091  * sched_domain_node_span - get a cpumask for a node's sched_domain
5092  * @node: node whose cpumask we're constructing
5093  * @size: number of nodes to include in this span
5094  *
5095  * Given a node, construct a good cpumask for its sched_domain to span.  It
5096  * should be one that prevents unnecessary balancing, but also spreads tasks
5097  * out optimally.
5098  */
5099 static cpumask_t sched_domain_node_span(int node)
5100 {
5101         int i;
5102         cpumask_t span, nodemask;
5103         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5104
5105         cpus_clear(span);
5106         bitmap_zero(used_nodes, MAX_NUMNODES);
5107
5108         nodemask = node_to_cpumask(node);
5109         cpus_or(span, span, nodemask);
5110         set_bit(node, used_nodes);
5111
5112         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5113                 int next_node = find_next_best_node(node, used_nodes);
5114                 nodemask = node_to_cpumask(next_node);
5115                 cpus_or(span, span, nodemask);
5116         }
5117
5118         return span;
5119 }
5120 #endif
5121
5122 /*
5123  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5124  * can switch it on easily if needed.
5125  */
5126 #ifdef CONFIG_SCHED_SMT
5127 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5128 static struct sched_group sched_group_cpus[NR_CPUS];
5129 static int cpu_to_cpu_group(int cpu)
5130 {
5131         return cpu;
5132 }
5133 #endif
5134
5135 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5136 static struct sched_group sched_group_phys[NR_CPUS];
5137 static int cpu_to_phys_group(int cpu)
5138 {
5139 #ifdef CONFIG_SCHED_SMT
5140         return first_cpu(cpu_sibling_map[cpu]);
5141 #else
5142         return cpu;
5143 #endif
5144 }
5145
5146 #ifdef CONFIG_NUMA
5147 /*
5148  * The init_sched_build_groups can't handle what we want to do with node
5149  * groups, so roll our own. Now each node has its own list of groups which
5150  * gets dynamically allocated.
5151  */
5152 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5153 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5154
5155 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5156 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5157
5158 static int cpu_to_allnodes_group(int cpu)
5159 {
5160         return cpu_to_node(cpu);
5161 }
5162 #endif
5163
5164 /*
5165  * Build sched domains for a given set of cpus and attach the sched domains
5166  * to the individual cpus
5167  */
5168 void build_sched_domains(const cpumask_t *cpu_map)
5169 {
5170         int i;
5171 #ifdef CONFIG_NUMA
5172         struct sched_group **sched_group_nodes = NULL;
5173         struct sched_group *sched_group_allnodes = NULL;
5174
5175         /*
5176          * Allocate the per-node list of sched groups
5177          */
5178         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5179                                            GFP_ATOMIC);
5180         if (!sched_group_nodes) {
5181                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5182                 return;
5183         }
5184         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5185 #endif
5186
5187         /*
5188          * Set up domains for cpus specified by the cpu_map.
5189          */
5190         for_each_cpu_mask(i, *cpu_map) {
5191                 int group;
5192                 struct sched_domain *sd = NULL, *p;
5193                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5194
5195                 cpus_and(nodemask, nodemask, *cpu_map);
5196
5197 #ifdef CONFIG_NUMA
5198                 if (cpus_weight(*cpu_map)
5199                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5200                         if (!sched_group_allnodes) {
5201                                 sched_group_allnodes
5202                                         = kmalloc(sizeof(struct sched_group)
5203                                                         * MAX_NUMNODES,
5204                                                   GFP_KERNEL);
5205                                 if (!sched_group_allnodes) {
5206                                         printk(KERN_WARNING
5207                                         "Can not alloc allnodes sched group\n");
5208                                         break;
5209                                 }
5210                                 sched_group_allnodes_bycpu[i]
5211                                                 = sched_group_allnodes;
5212                         }
5213                         sd = &per_cpu(allnodes_domains, i);
5214                         *sd = SD_ALLNODES_INIT;
5215                         sd->span = *cpu_map;
5216                         group = cpu_to_allnodes_group(i);
5217                         sd->groups = &sched_group_allnodes[group];
5218                         p = sd;
5219                 } else
5220                         p = NULL;
5221
5222                 sd = &per_cpu(node_domains, i);
5223                 *sd = SD_NODE_INIT;
5224                 sd->span = sched_domain_node_span(cpu_to_node(i));
5225                 sd->parent = p;
5226                 cpus_and(sd->span, sd->span, *cpu_map);
5227 #endif
5228
5229                 p = sd;
5230                 sd = &per_cpu(phys_domains, i);
5231                 group = cpu_to_phys_group(i);
5232                 *sd = SD_CPU_INIT;
5233                 sd->span = nodemask;
5234                 sd->parent = p;
5235                 sd->groups = &sched_group_phys[group];
5236
5237 #ifdef CONFIG_SCHED_SMT
5238                 p = sd;
5239                 sd = &per_cpu(cpu_domains, i);
5240                 group = cpu_to_cpu_group(i);
5241                 *sd = SD_SIBLING_INIT;
5242                 sd->span = cpu_sibling_map[i];
5243                 cpus_and(sd->span, sd->span, *cpu_map);
5244                 sd->parent = p;
5245                 sd->groups = &sched_group_cpus[group];
5246 #endif
5247         }
5248
5249 #ifdef CONFIG_SCHED_SMT
5250         /* Set up CPU (sibling) groups */
5251         for_each_cpu_mask(i, *cpu_map) {
5252                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5253                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5254                 if (i != first_cpu(this_sibling_map))
5255                         continue;
5256
5257                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5258                                                 &cpu_to_cpu_group);
5259         }
5260 #endif
5261
5262         /* Set up physical groups */
5263         for (i = 0; i < MAX_NUMNODES; i++) {
5264                 cpumask_t nodemask = node_to_cpumask(i);
5265
5266                 cpus_and(nodemask, nodemask, *cpu_map);
5267                 if (cpus_empty(nodemask))
5268                         continue;
5269
5270                 init_sched_build_groups(sched_group_phys, nodemask,
5271                                                 &cpu_to_phys_group);
5272         }
5273
5274 #ifdef CONFIG_NUMA
5275         /* Set up node groups */
5276         if (sched_group_allnodes)
5277                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5278                                         &cpu_to_allnodes_group);
5279
5280         for (i = 0; i < MAX_NUMNODES; i++) {
5281                 /* Set up node groups */
5282                 struct sched_group *sg, *prev;
5283                 cpumask_t nodemask = node_to_cpumask(i);
5284                 cpumask_t domainspan;
5285                 cpumask_t covered = CPU_MASK_NONE;
5286                 int j;
5287
5288                 cpus_and(nodemask, nodemask, *cpu_map);
5289                 if (cpus_empty(nodemask)) {
5290                         sched_group_nodes[i] = NULL;
5291                         continue;
5292                 }
5293
5294                 domainspan = sched_domain_node_span(i);
5295                 cpus_and(domainspan, domainspan, *cpu_map);
5296
5297                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5298                 sched_group_nodes[i] = sg;
5299                 for_each_cpu_mask(j, nodemask) {
5300                         struct sched_domain *sd;
5301                         sd = &per_cpu(node_domains, j);
5302                         sd->groups = sg;
5303                         if (sd->groups == NULL) {
5304                                 /* Turn off balancing if we have no groups */
5305                                 sd->flags = 0;
5306                         }
5307                 }
5308                 if (!sg) {
5309                         printk(KERN_WARNING
5310                         "Can not alloc domain group for node %d\n", i);
5311                         continue;
5312                 }
5313                 sg->cpu_power = 0;
5314                 sg->cpumask = nodemask;
5315                 cpus_or(covered, covered, nodemask);
5316                 prev = sg;
5317
5318                 for (j = 0; j < MAX_NUMNODES; j++) {
5319                         cpumask_t tmp, notcovered;
5320                         int n = (i + j) % MAX_NUMNODES;
5321
5322                         cpus_complement(notcovered, covered);
5323                         cpus_and(tmp, notcovered, *cpu_map);
5324                         cpus_and(tmp, tmp, domainspan);
5325                         if (cpus_empty(tmp))
5326                                 break;
5327
5328                         nodemask = node_to_cpumask(n);
5329                         cpus_and(tmp, tmp, nodemask);
5330                         if (cpus_empty(tmp))
5331                                 continue;
5332
5333                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5334                         if (!sg) {
5335                                 printk(KERN_WARNING
5336                                 "Can not alloc domain group for node %d\n", j);
5337                                 break;
5338                         }
5339                         sg->cpu_power = 0;
5340                         sg->cpumask = tmp;
5341                         cpus_or(covered, covered, tmp);
5342                         prev->next = sg;
5343                         prev = sg;
5344                 }
5345                 prev->next = sched_group_nodes[i];
5346         }
5347 #endif
5348
5349         /* Calculate CPU power for physical packages and nodes */
5350         for_each_cpu_mask(i, *cpu_map) {
5351                 int power;
5352                 struct sched_domain *sd;
5353 #ifdef CONFIG_SCHED_SMT
5354                 sd = &per_cpu(cpu_domains, i);
5355                 power = SCHED_LOAD_SCALE;
5356                 sd->groups->cpu_power = power;
5357 #endif
5358
5359                 sd = &per_cpu(phys_domains, i);
5360                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5361                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5362                 sd->groups->cpu_power = power;
5363
5364 #ifdef CONFIG_NUMA
5365                 sd = &per_cpu(allnodes_domains, i);
5366                 if (sd->groups) {
5367                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5368                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5369                         sd->groups->cpu_power = power;
5370                 }
5371 #endif
5372         }
5373
5374 #ifdef CONFIG_NUMA
5375         for (i = 0; i < MAX_NUMNODES; i++) {
5376                 struct sched_group *sg = sched_group_nodes[i];
5377                 int j;
5378
5379                 if (sg == NULL)
5380                         continue;
5381 next_sg:
5382                 for_each_cpu_mask(j, sg->cpumask) {
5383                         struct sched_domain *sd;
5384                         int power;
5385
5386                         sd = &per_cpu(phys_domains, j);
5387                         if (j != first_cpu(sd->groups->cpumask)) {
5388                                 /*
5389                                  * Only add "power" once for each
5390                                  * physical package.
5391                                  */
5392                                 continue;
5393                         }
5394                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5395                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5396
5397                         sg->cpu_power += power;
5398                 }
5399                 sg = sg->next;
5400                 if (sg != sched_group_nodes[i])
5401                         goto next_sg;
5402         }
5403 #endif
5404
5405         /* Attach the domains */
5406         for_each_cpu_mask(i, *cpu_map) {
5407                 struct sched_domain *sd;
5408 #ifdef CONFIG_SCHED_SMT
5409                 sd = &per_cpu(cpu_domains, i);
5410 #else
5411                 sd = &per_cpu(phys_domains, i);
5412 #endif
5413                 cpu_attach_domain(sd, i);
5414         }
5415 }
5416 /*
5417  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5418  */
5419 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5420 {
5421         cpumask_t cpu_default_map;
5422
5423         /*
5424          * Setup mask for cpus without special case scheduling requirements.
5425          * For now this just excludes isolated cpus, but could be used to
5426          * exclude other special cases in the future.
5427          */
5428         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5429
5430         build_sched_domains(&cpu_default_map);
5431 }
5432
5433 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5434 {
5435 #ifdef CONFIG_NUMA
5436         int i;
5437         int cpu;
5438
5439         for_each_cpu_mask(cpu, *cpu_map) {
5440                 struct sched_group *sched_group_allnodes
5441                         = sched_group_allnodes_bycpu[cpu];
5442                 struct sched_group **sched_group_nodes
5443                         = sched_group_nodes_bycpu[cpu];
5444
5445                 if (sched_group_allnodes) {
5446                         kfree(sched_group_allnodes);
5447                         sched_group_allnodes_bycpu[cpu] = NULL;
5448                 }
5449
5450                 if (!sched_group_nodes)
5451                         continue;
5452
5453                 for (i = 0; i < MAX_NUMNODES; i++) {
5454                         cpumask_t nodemask = node_to_cpumask(i);
5455                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5456
5457                         cpus_and(nodemask, nodemask, *cpu_map);
5458                         if (cpus_empty(nodemask))
5459                                 continue;
5460
5461                         if (sg == NULL)
5462                                 continue;
5463                         sg = sg->next;
5464 next_sg:
5465                         oldsg = sg;
5466                         sg = sg->next;
5467                         kfree(oldsg);
5468                         if (oldsg != sched_group_nodes[i])
5469                                 goto next_sg;
5470                 }
5471                 kfree(sched_group_nodes);
5472                 sched_group_nodes_bycpu[cpu] = NULL;
5473         }
5474 #endif
5475 }
5476
5477 /*
5478  * Detach sched domains from a group of cpus specified in cpu_map
5479  * These cpus will now be attached to the NULL domain
5480  */
5481 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5482 {
5483         int i;
5484
5485         for_each_cpu_mask(i, *cpu_map)
5486                 cpu_attach_domain(NULL, i);
5487         synchronize_sched();
5488         arch_destroy_sched_domains(cpu_map);
5489 }
5490
5491 /*
5492  * Partition sched domains as specified by the cpumasks below.
5493  * This attaches all cpus from the cpumasks to the NULL domain,
5494  * waits for a RCU quiescent period, recalculates sched
5495  * domain information and then attaches them back to the
5496  * correct sched domains
5497  * Call with hotplug lock held
5498  */
5499 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5500 {
5501         cpumask_t change_map;
5502
5503         cpus_and(*partition1, *partition1, cpu_online_map);
5504         cpus_and(*partition2, *partition2, cpu_online_map);
5505         cpus_or(change_map, *partition1, *partition2);
5506
5507         /* Detach sched domains from all of the affected cpus */
5508         detach_destroy_domains(&change_map);
5509         if (!cpus_empty(*partition1))
5510                 build_sched_domains(partition1);
5511         if (!cpus_empty(*partition2))
5512                 build_sched_domains(partition2);
5513 }
5514
5515 #ifdef CONFIG_HOTPLUG_CPU
5516 /*
5517  * Force a reinitialization of the sched domains hierarchy.  The domains
5518  * and groups cannot be updated in place without racing with the balancing
5519  * code, so we temporarily attach all running cpus to the NULL domain
5520  * which will prevent rebalancing while the sched domains are recalculated.
5521  */
5522 static int update_sched_domains(struct notifier_block *nfb,
5523                                 unsigned long action, void *hcpu)
5524 {
5525         switch (action) {
5526         case CPU_UP_PREPARE:
5527         case CPU_DOWN_PREPARE:
5528                 detach_destroy_domains(&cpu_online_map);
5529                 return NOTIFY_OK;
5530
5531         case CPU_UP_CANCELED:
5532         case CPU_DOWN_FAILED:
5533         case CPU_ONLINE:
5534         case CPU_DEAD:
5535                 /*
5536                  * Fall through and re-initialise the domains.
5537                  */
5538                 break;
5539         default:
5540                 return NOTIFY_DONE;
5541         }
5542
5543         /* The hotplug lock is already held by cpu_up/cpu_down */
5544         arch_init_sched_domains(&cpu_online_map);
5545
5546         return NOTIFY_OK;
5547 }
5548 #endif
5549
5550 void __init sched_init_smp(void)
5551 {
5552         lock_cpu_hotplug();
5553         arch_init_sched_domains(&cpu_online_map);
5554         unlock_cpu_hotplug();
5555         /* XXX: Theoretical race here - CPU may be hotplugged now */
5556         hotcpu_notifier(update_sched_domains, 0);
5557 }
5558 #else
5559 void __init sched_init_smp(void)
5560 {
5561 }
5562 #endif /* CONFIG_SMP */
5563
5564 int in_sched_functions(unsigned long addr)
5565 {
5566         /* Linker adds these: start and end of __sched functions */
5567         extern char __sched_text_start[], __sched_text_end[];
5568         return in_lock_functions(addr) ||
5569                 (addr >= (unsigned long)__sched_text_start
5570                 && addr < (unsigned long)__sched_text_end);
5571 }
5572
5573 void __init sched_init(void)
5574 {
5575         runqueue_t *rq;
5576         int i, j, k;
5577
5578         for (i = 0; i < NR_CPUS; i++) {
5579                 prio_array_t *array;
5580
5581                 rq = cpu_rq(i);
5582                 spin_lock_init(&rq->lock);
5583                 rq->nr_running = 0;
5584                 rq->active = rq->arrays;
5585                 rq->expired = rq->arrays + 1;
5586                 rq->best_expired_prio = MAX_PRIO;
5587
5588 #ifdef CONFIG_SMP
5589                 rq->sd = NULL;
5590                 for (j = 1; j < 3; j++)
5591                         rq->cpu_load[j] = 0;
5592                 rq->active_balance = 0;
5593                 rq->push_cpu = 0;
5594                 rq->migration_thread = NULL;
5595                 INIT_LIST_HEAD(&rq->migration_queue);
5596 #endif
5597                 atomic_set(&rq->nr_iowait, 0);
5598
5599                 for (j = 0; j < 2; j++) {
5600                         array = rq->arrays + j;
5601                         for (k = 0; k < MAX_PRIO; k++) {
5602                                 INIT_LIST_HEAD(array->queue + k);
5603                                 __clear_bit(k, array->bitmap);
5604                         }
5605                         // delimiter for bitsearch
5606                         __set_bit(MAX_PRIO, array->bitmap);
5607                 }
5608         }
5609
5610         /*
5611          * The boot idle thread does lazy MMU switching as well:
5612          */
5613         atomic_inc(&init_mm.mm_count);
5614         enter_lazy_tlb(&init_mm, current);
5615
5616         /*
5617          * Make us the idle thread. Technically, schedule() should not be
5618          * called from this thread, however somewhere below it might be,
5619          * but because we are the idle thread, we just pick up running again
5620          * when this runqueue becomes "idle".
5621          */
5622         init_idle(current, smp_processor_id());
5623 }
5624
5625 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5626 void __might_sleep(char *file, int line)
5627 {
5628 #if defined(in_atomic)
5629         static unsigned long prev_jiffy;        /* ratelimiting */
5630
5631         if ((in_atomic() || irqs_disabled()) &&
5632             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5633                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5634                         return;
5635                 prev_jiffy = jiffies;
5636                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5637                                 " context at %s:%d\n", file, line);
5638                 printk("in_atomic():%d, irqs_disabled():%d\n",
5639                         in_atomic(), irqs_disabled());
5640                 dump_stack();
5641         }
5642 #endif
5643 }
5644 EXPORT_SYMBOL(__might_sleep);
5645 #endif
5646
5647 #ifdef CONFIG_MAGIC_SYSRQ
5648 void normalize_rt_tasks(void)
5649 {
5650         struct task_struct *p;
5651         prio_array_t *array;
5652         unsigned long flags;
5653         runqueue_t *rq;
5654
5655         read_lock_irq(&tasklist_lock);
5656         for_each_process (p) {
5657                 if (!rt_task(p))
5658                         continue;
5659
5660                 rq = task_rq_lock(p, &flags);
5661
5662                 array = p->array;
5663                 if (array)
5664                         deactivate_task(p, task_rq(p));
5665                 __setscheduler(p, SCHED_NORMAL, 0);
5666                 if (array) {
5667                         __activate_task(p, task_rq(p));
5668                         resched_task(rq->curr);
5669                 }
5670
5671                 task_rq_unlock(rq, &flags);
5672         }
5673         read_unlock_irq(&tasklist_lock);
5674 }
5675
5676 #endif /* CONFIG_MAGIC_SYSRQ */
5677
5678 #ifdef CONFIG_IA64
5679 /*
5680  * These functions are only useful for the IA64 MCA handling.
5681  *
5682  * They can only be called when the whole system has been
5683  * stopped - every CPU needs to be quiescent, and no scheduling
5684  * activity can take place. Using them for anything else would
5685  * be a serious bug, and as a result, they aren't even visible
5686  * under any other configuration.
5687  */
5688
5689 /**
5690  * curr_task - return the current task for a given cpu.
5691  * @cpu: the processor in question.
5692  *
5693  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5694  */
5695 task_t *curr_task(int cpu)
5696 {
5697         return cpu_curr(cpu);
5698 }
5699
5700 /**
5701  * set_curr_task - set the current task for a given cpu.
5702  * @cpu: the processor in question.
5703  * @p: the task pointer to set.
5704  *
5705  * Description: This function must only be used when non-maskable interrupts
5706  * are serviced on a separate stack.  It allows the architecture to switch the
5707  * notion of the current task on a cpu in a non-blocking manner.  This function
5708  * must be called with all CPU's synchronized, and interrupts disabled, the
5709  * and caller must save the original value of the current task (see
5710  * curr_task() above) and restore that value before reenabling interrupts and
5711  * re-starting the system.
5712  *
5713  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5714  */
5715 void set_curr_task(int cpu, task_t *p)
5716 {
5717         cpu_curr(cpu) = p;
5718 }
5719
5720 #endif