swsusp: use inline functions for changing page flags
[safe/jmp/linux-2.6] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/smp_lock.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/kernel.h>
22 #include <linux/pm.h>
23 #include <linux/device.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34
35 #include "power.h"
36
37 /* List of PBEs needed for restoring the pages that were allocated before
38  * the suspend and included in the suspend image, but have also been
39  * allocated by the "resume" kernel, so their contents cannot be written
40  * directly to their "original" page frames.
41  */
42 struct pbe *restore_pblist;
43
44 /* Pointer to an auxiliary buffer (1 page) */
45 static void *buffer;
46
47 /**
48  *      @safe_needed - on resume, for storing the PBE list and the image,
49  *      we can only use memory pages that do not conflict with the pages
50  *      used before suspend.  The unsafe pages have PageNosaveFree set
51  *      and we count them using unsafe_pages.
52  *
53  *      Each allocated image page is marked as PageNosave and PageNosaveFree
54  *      so that swsusp_free() can release it.
55  */
56
57 #define PG_ANY          0
58 #define PG_SAFE         1
59 #define PG_UNSAFE_CLEAR 1
60 #define PG_UNSAFE_KEEP  0
61
62 static unsigned int allocated_unsafe_pages;
63
64 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
65 {
66         void *res;
67
68         res = (void *)get_zeroed_page(gfp_mask);
69         if (safe_needed)
70                 while (res && swsusp_page_is_free(virt_to_page(res))) {
71                         /* The page is unsafe, mark it for swsusp_free() */
72                         swsusp_set_page_forbidden(virt_to_page(res));
73                         allocated_unsafe_pages++;
74                         res = (void *)get_zeroed_page(gfp_mask);
75                 }
76         if (res) {
77                 swsusp_set_page_forbidden(virt_to_page(res));
78                 swsusp_set_page_free(virt_to_page(res));
79         }
80         return res;
81 }
82
83 unsigned long get_safe_page(gfp_t gfp_mask)
84 {
85         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
86 }
87
88 static struct page *alloc_image_page(gfp_t gfp_mask)
89 {
90         struct page *page;
91
92         page = alloc_page(gfp_mask);
93         if (page) {
94                 swsusp_set_page_forbidden(page);
95                 swsusp_set_page_free(page);
96         }
97         return page;
98 }
99
100 /**
101  *      free_image_page - free page represented by @addr, allocated with
102  *      get_image_page (page flags set by it must be cleared)
103  */
104
105 static inline void free_image_page(void *addr, int clear_nosave_free)
106 {
107         struct page *page;
108
109         BUG_ON(!virt_addr_valid(addr));
110
111         page = virt_to_page(addr);
112
113         swsusp_unset_page_forbidden(page);
114         if (clear_nosave_free)
115                 swsusp_unset_page_free(page);
116
117         __free_page(page);
118 }
119
120 /* struct linked_page is used to build chains of pages */
121
122 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
123
124 struct linked_page {
125         struct linked_page *next;
126         char data[LINKED_PAGE_DATA_SIZE];
127 } __attribute__((packed));
128
129 static inline void
130 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
131 {
132         while (list) {
133                 struct linked_page *lp = list->next;
134
135                 free_image_page(list, clear_page_nosave);
136                 list = lp;
137         }
138 }
139
140 /**
141   *     struct chain_allocator is used for allocating small objects out of
142   *     a linked list of pages called 'the chain'.
143   *
144   *     The chain grows each time when there is no room for a new object in
145   *     the current page.  The allocated objects cannot be freed individually.
146   *     It is only possible to free them all at once, by freeing the entire
147   *     chain.
148   *
149   *     NOTE: The chain allocator may be inefficient if the allocated objects
150   *     are not much smaller than PAGE_SIZE.
151   */
152
153 struct chain_allocator {
154         struct linked_page *chain;      /* the chain */
155         unsigned int used_space;        /* total size of objects allocated out
156                                          * of the current page
157                                          */
158         gfp_t gfp_mask;         /* mask for allocating pages */
159         int safe_needed;        /* if set, only "safe" pages are allocated */
160 };
161
162 static void
163 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
164 {
165         ca->chain = NULL;
166         ca->used_space = LINKED_PAGE_DATA_SIZE;
167         ca->gfp_mask = gfp_mask;
168         ca->safe_needed = safe_needed;
169 }
170
171 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
172 {
173         void *ret;
174
175         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
176                 struct linked_page *lp;
177
178                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
179                 if (!lp)
180                         return NULL;
181
182                 lp->next = ca->chain;
183                 ca->chain = lp;
184                 ca->used_space = 0;
185         }
186         ret = ca->chain->data + ca->used_space;
187         ca->used_space += size;
188         return ret;
189 }
190
191 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
192 {
193         free_list_of_pages(ca->chain, clear_page_nosave);
194         memset(ca, 0, sizeof(struct chain_allocator));
195 }
196
197 /**
198  *      Data types related to memory bitmaps.
199  *
200  *      Memory bitmap is a structure consiting of many linked lists of
201  *      objects.  The main list's elements are of type struct zone_bitmap
202  *      and each of them corresonds to one zone.  For each zone bitmap
203  *      object there is a list of objects of type struct bm_block that
204  *      represent each blocks of bit chunks in which information is
205  *      stored.
206  *
207  *      struct memory_bitmap contains a pointer to the main list of zone
208  *      bitmap objects, a struct bm_position used for browsing the bitmap,
209  *      and a pointer to the list of pages used for allocating all of the
210  *      zone bitmap objects and bitmap block objects.
211  *
212  *      NOTE: It has to be possible to lay out the bitmap in memory
213  *      using only allocations of order 0.  Additionally, the bitmap is
214  *      designed to work with arbitrary number of zones (this is over the
215  *      top for now, but let's avoid making unnecessary assumptions ;-).
216  *
217  *      struct zone_bitmap contains a pointer to a list of bitmap block
218  *      objects and a pointer to the bitmap block object that has been
219  *      most recently used for setting bits.  Additionally, it contains the
220  *      pfns that correspond to the start and end of the represented zone.
221  *
222  *      struct bm_block contains a pointer to the memory page in which
223  *      information is stored (in the form of a block of bit chunks
224  *      of type unsigned long each).  It also contains the pfns that
225  *      correspond to the start and end of the represented memory area and
226  *      the number of bit chunks in the block.
227  *
228  *      NOTE: Memory bitmaps are used for two types of operations only:
229  *      "set a bit" and "find the next bit set".  Moreover, the searching
230  *      is always carried out after all of the "set a bit" operations
231  *      on given bitmap.
232  */
233
234 #define BM_END_OF_MAP   (~0UL)
235
236 #define BM_CHUNKS_PER_BLOCK     (PAGE_SIZE / sizeof(long))
237 #define BM_BITS_PER_CHUNK       (sizeof(long) << 3)
238 #define BM_BITS_PER_BLOCK       (PAGE_SIZE << 3)
239
240 struct bm_block {
241         struct bm_block *next;          /* next element of the list */
242         unsigned long start_pfn;        /* pfn represented by the first bit */
243         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
244         unsigned int size;      /* number of bit chunks */
245         unsigned long *data;    /* chunks of bits representing pages */
246 };
247
248 struct zone_bitmap {
249         struct zone_bitmap *next;       /* next element of the list */
250         unsigned long start_pfn;        /* minimal pfn in this zone */
251         unsigned long end_pfn;          /* maximal pfn in this zone plus 1 */
252         struct bm_block *bm_blocks;     /* list of bitmap blocks */
253         struct bm_block *cur_block;     /* recently used bitmap block */
254 };
255
256 /* strcut bm_position is used for browsing memory bitmaps */
257
258 struct bm_position {
259         struct zone_bitmap *zone_bm;
260         struct bm_block *block;
261         int chunk;
262         int bit;
263 };
264
265 struct memory_bitmap {
266         struct zone_bitmap *zone_bm_list;       /* list of zone bitmaps */
267         struct linked_page *p_list;     /* list of pages used to store zone
268                                          * bitmap objects and bitmap block
269                                          * objects
270                                          */
271         struct bm_position cur; /* most recently used bit position */
272 };
273
274 /* Functions that operate on memory bitmaps */
275
276 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
277 {
278         bm->cur.chunk = 0;
279         bm->cur.bit = -1;
280 }
281
282 static void memory_bm_position_reset(struct memory_bitmap *bm)
283 {
284         struct zone_bitmap *zone_bm;
285
286         zone_bm = bm->zone_bm_list;
287         bm->cur.zone_bm = zone_bm;
288         bm->cur.block = zone_bm->bm_blocks;
289         memory_bm_reset_chunk(bm);
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  */
297
298 static inline struct bm_block *
299 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
300 {
301         struct bm_block *bblist = NULL;
302
303         while (nr_blocks-- > 0) {
304                 struct bm_block *bb;
305
306                 bb = chain_alloc(ca, sizeof(struct bm_block));
307                 if (!bb)
308                         return NULL;
309
310                 bb->next = bblist;
311                 bblist = bb;
312         }
313         return bblist;
314 }
315
316 /**
317  *      create_zone_bm_list - create a list of zone bitmap objects
318  */
319
320 static inline struct zone_bitmap *
321 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
322 {
323         struct zone_bitmap *zbmlist = NULL;
324
325         while (nr_zones-- > 0) {
326                 struct zone_bitmap *zbm;
327
328                 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
329                 if (!zbm)
330                         return NULL;
331
332                 zbm->next = zbmlist;
333                 zbmlist = zbm;
334         }
335         return zbmlist;
336 }
337
338 /**
339   *     memory_bm_create - allocate memory for a memory bitmap
340   */
341
342 static int
343 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
344 {
345         struct chain_allocator ca;
346         struct zone *zone;
347         struct zone_bitmap *zone_bm;
348         struct bm_block *bb;
349         unsigned int nr;
350
351         chain_init(&ca, gfp_mask, safe_needed);
352
353         /* Compute the number of zones */
354         nr = 0;
355         for_each_zone(zone)
356                 if (populated_zone(zone))
357                         nr++;
358
359         /* Allocate the list of zones bitmap objects */
360         zone_bm = create_zone_bm_list(nr, &ca);
361         bm->zone_bm_list = zone_bm;
362         if (!zone_bm) {
363                 chain_free(&ca, PG_UNSAFE_CLEAR);
364                 return -ENOMEM;
365         }
366
367         /* Initialize the zone bitmap objects */
368         for_each_zone(zone) {
369                 unsigned long pfn;
370
371                 if (!populated_zone(zone))
372                         continue;
373
374                 zone_bm->start_pfn = zone->zone_start_pfn;
375                 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
376                 /* Allocate the list of bitmap block objects */
377                 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
378                 bb = create_bm_block_list(nr, &ca);
379                 zone_bm->bm_blocks = bb;
380                 zone_bm->cur_block = bb;
381                 if (!bb)
382                         goto Free;
383
384                 nr = zone->spanned_pages;
385                 pfn = zone->zone_start_pfn;
386                 /* Initialize the bitmap block objects */
387                 while (bb) {
388                         unsigned long *ptr;
389
390                         ptr = get_image_page(gfp_mask, safe_needed);
391                         bb->data = ptr;
392                         if (!ptr)
393                                 goto Free;
394
395                         bb->start_pfn = pfn;
396                         if (nr >= BM_BITS_PER_BLOCK) {
397                                 pfn += BM_BITS_PER_BLOCK;
398                                 bb->size = BM_CHUNKS_PER_BLOCK;
399                                 nr -= BM_BITS_PER_BLOCK;
400                         } else {
401                                 /* This is executed only once in the loop */
402                                 pfn += nr;
403                                 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
404                         }
405                         bb->end_pfn = pfn;
406                         bb = bb->next;
407                 }
408                 zone_bm = zone_bm->next;
409         }
410         bm->p_list = ca.chain;
411         memory_bm_position_reset(bm);
412         return 0;
413
414  Free:
415         bm->p_list = ca.chain;
416         memory_bm_free(bm, PG_UNSAFE_CLEAR);
417         return -ENOMEM;
418 }
419
420 /**
421   *     memory_bm_free - free memory occupied by the memory bitmap @bm
422   */
423
424 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
425 {
426         struct zone_bitmap *zone_bm;
427
428         /* Free the list of bit blocks for each zone_bitmap object */
429         zone_bm = bm->zone_bm_list;
430         while (zone_bm) {
431                 struct bm_block *bb;
432
433                 bb = zone_bm->bm_blocks;
434                 while (bb) {
435                         if (bb->data)
436                                 free_image_page(bb->data, clear_nosave_free);
437                         bb = bb->next;
438                 }
439                 zone_bm = zone_bm->next;
440         }
441         free_list_of_pages(bm->p_list, clear_nosave_free);
442         bm->zone_bm_list = NULL;
443 }
444
445 /**
446  *      memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
447  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
448  *      of @bm->cur_zone_bm are updated.
449  *
450  *      If the bit cannot be set, the function returns -EINVAL .
451  */
452
453 static int
454 memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
455 {
456         struct zone_bitmap *zone_bm;
457         struct bm_block *bb;
458
459         /* Check if the pfn is from the current zone */
460         zone_bm = bm->cur.zone_bm;
461         if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462                 zone_bm = bm->zone_bm_list;
463                 /* We don't assume that the zones are sorted by pfns */
464                 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
465                         zone_bm = zone_bm->next;
466                         if (unlikely(!zone_bm))
467                                 return -EINVAL;
468                 }
469                 bm->cur.zone_bm = zone_bm;
470         }
471         /* Check if the pfn corresponds to the current bitmap block */
472         bb = zone_bm->cur_block;
473         if (pfn < bb->start_pfn)
474                 bb = zone_bm->bm_blocks;
475
476         while (pfn >= bb->end_pfn) {
477                 bb = bb->next;
478                 if (unlikely(!bb))
479                         return -EINVAL;
480         }
481         zone_bm->cur_block = bb;
482         pfn -= bb->start_pfn;
483         set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK);
484         return 0;
485 }
486
487 /* Two auxiliary functions for memory_bm_next_pfn */
488
489 /* Find the first set bit in the given chunk, if there is one */
490
491 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
492 {
493         bit++;
494         while (bit < BM_BITS_PER_CHUNK) {
495                 if (test_bit(bit, chunk_p))
496                         return bit;
497
498                 bit++;
499         }
500         return -1;
501 }
502
503 /* Find a chunk containing some bits set in given block of bits */
504
505 static inline int next_chunk_in_block(int n, struct bm_block *bb)
506 {
507         n++;
508         while (n < bb->size) {
509                 if (bb->data[n])
510                         return n;
511
512                 n++;
513         }
514         return -1;
515 }
516
517 /**
518  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
519  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
520  *      returned.
521  *
522  *      It is required to run memory_bm_position_reset() before the first call to
523  *      this function.
524  */
525
526 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
527 {
528         struct zone_bitmap *zone_bm;
529         struct bm_block *bb;
530         int chunk;
531         int bit;
532
533         do {
534                 bb = bm->cur.block;
535                 do {
536                         chunk = bm->cur.chunk;
537                         bit = bm->cur.bit;
538                         do {
539                                 bit = next_bit_in_chunk(bit, bb->data + chunk);
540                                 if (bit >= 0)
541                                         goto Return_pfn;
542
543                                 chunk = next_chunk_in_block(chunk, bb);
544                                 bit = -1;
545                         } while (chunk >= 0);
546                         bb = bb->next;
547                         bm->cur.block = bb;
548                         memory_bm_reset_chunk(bm);
549                 } while (bb);
550                 zone_bm = bm->cur.zone_bm->next;
551                 if (zone_bm) {
552                         bm->cur.zone_bm = zone_bm;
553                         bm->cur.block = zone_bm->bm_blocks;
554                         memory_bm_reset_chunk(bm);
555                 }
556         } while (zone_bm);
557         memory_bm_position_reset(bm);
558         return BM_END_OF_MAP;
559
560  Return_pfn:
561         bm->cur.chunk = chunk;
562         bm->cur.bit = bit;
563         return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
564 }
565
566 /**
567  *      snapshot_additional_pages - estimate the number of additional pages
568  *      be needed for setting up the suspend image data structures for given
569  *      zone (usually the returned value is greater than the exact number)
570  */
571
572 unsigned int snapshot_additional_pages(struct zone *zone)
573 {
574         unsigned int res;
575
576         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
577         res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
578         return 2 * res;
579 }
580
581 #ifdef CONFIG_HIGHMEM
582 /**
583  *      count_free_highmem_pages - compute the total number of free highmem
584  *      pages, system-wide.
585  */
586
587 static unsigned int count_free_highmem_pages(void)
588 {
589         struct zone *zone;
590         unsigned int cnt = 0;
591
592         for_each_zone(zone)
593                 if (populated_zone(zone) && is_highmem(zone))
594                         cnt += zone_page_state(zone, NR_FREE_PAGES);
595
596         return cnt;
597 }
598
599 /**
600  *      saveable_highmem_page - Determine whether a highmem page should be
601  *      included in the suspend image.
602  *
603  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
604  *      and it isn't a part of a free chunk of pages.
605  */
606
607 static struct page *saveable_highmem_page(unsigned long pfn)
608 {
609         struct page *page;
610
611         if (!pfn_valid(pfn))
612                 return NULL;
613
614         page = pfn_to_page(pfn);
615
616         BUG_ON(!PageHighMem(page));
617
618         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
619             PageReserved(page))
620                 return NULL;
621
622         return page;
623 }
624
625 /**
626  *      count_highmem_pages - compute the total number of saveable highmem
627  *      pages.
628  */
629
630 unsigned int count_highmem_pages(void)
631 {
632         struct zone *zone;
633         unsigned int n = 0;
634
635         for_each_zone(zone) {
636                 unsigned long pfn, max_zone_pfn;
637
638                 if (!is_highmem(zone))
639                         continue;
640
641                 mark_free_pages(zone);
642                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
643                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
644                         if (saveable_highmem_page(pfn))
645                                 n++;
646         }
647         return n;
648 }
649 #else
650 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
651 static inline unsigned int count_highmem_pages(void) { return 0; }
652 #endif /* CONFIG_HIGHMEM */
653
654 /**
655  *      saveable - Determine whether a non-highmem page should be included in
656  *      the suspend image.
657  *
658  *      We should save the page if it isn't Nosave, and is not in the range
659  *      of pages statically defined as 'unsaveable', and it isn't a part of
660  *      a free chunk of pages.
661  */
662
663 static struct page *saveable_page(unsigned long pfn)
664 {
665         struct page *page;
666
667         if (!pfn_valid(pfn))
668                 return NULL;
669
670         page = pfn_to_page(pfn);
671
672         BUG_ON(PageHighMem(page));
673
674         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
675                 return NULL;
676
677         if (PageReserved(page) && pfn_is_nosave(pfn))
678                 return NULL;
679
680         return page;
681 }
682
683 /**
684  *      count_data_pages - compute the total number of saveable non-highmem
685  *      pages.
686  */
687
688 unsigned int count_data_pages(void)
689 {
690         struct zone *zone;
691         unsigned long pfn, max_zone_pfn;
692         unsigned int n = 0;
693
694         for_each_zone(zone) {
695                 if (is_highmem(zone))
696                         continue;
697
698                 mark_free_pages(zone);
699                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
700                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
701                         if(saveable_page(pfn))
702                                 n++;
703         }
704         return n;
705 }
706
707 /* This is needed, because copy_page and memcpy are not usable for copying
708  * task structs.
709  */
710 static inline void do_copy_page(long *dst, long *src)
711 {
712         int n;
713
714         for (n = PAGE_SIZE / sizeof(long); n; n--)
715                 *dst++ = *src++;
716 }
717
718 #ifdef CONFIG_HIGHMEM
719 static inline struct page *
720 page_is_saveable(struct zone *zone, unsigned long pfn)
721 {
722         return is_highmem(zone) ?
723                         saveable_highmem_page(pfn) : saveable_page(pfn);
724 }
725
726 static inline void
727 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
728 {
729         struct page *s_page, *d_page;
730         void *src, *dst;
731
732         s_page = pfn_to_page(src_pfn);
733         d_page = pfn_to_page(dst_pfn);
734         if (PageHighMem(s_page)) {
735                 src = kmap_atomic(s_page, KM_USER0);
736                 dst = kmap_atomic(d_page, KM_USER1);
737                 do_copy_page(dst, src);
738                 kunmap_atomic(src, KM_USER0);
739                 kunmap_atomic(dst, KM_USER1);
740         } else {
741                 src = page_address(s_page);
742                 if (PageHighMem(d_page)) {
743                         /* Page pointed to by src may contain some kernel
744                          * data modified by kmap_atomic()
745                          */
746                         do_copy_page(buffer, src);
747                         dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
748                         memcpy(dst, buffer, PAGE_SIZE);
749                         kunmap_atomic(dst, KM_USER0);
750                 } else {
751                         dst = page_address(d_page);
752                         do_copy_page(dst, src);
753                 }
754         }
755 }
756 #else
757 #define page_is_saveable(zone, pfn)     saveable_page(pfn)
758
759 static inline void
760 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
761 {
762         do_copy_page(page_address(pfn_to_page(dst_pfn)),
763                         page_address(pfn_to_page(src_pfn)));
764 }
765 #endif /* CONFIG_HIGHMEM */
766
767 static void
768 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
769 {
770         struct zone *zone;
771         unsigned long pfn;
772
773         for_each_zone(zone) {
774                 unsigned long max_zone_pfn;
775
776                 mark_free_pages(zone);
777                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
778                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
779                         if (page_is_saveable(zone, pfn))
780                                 memory_bm_set_bit(orig_bm, pfn);
781         }
782         memory_bm_position_reset(orig_bm);
783         memory_bm_position_reset(copy_bm);
784         do {
785                 pfn = memory_bm_next_pfn(orig_bm);
786                 if (likely(pfn != BM_END_OF_MAP))
787                         copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
788         } while (pfn != BM_END_OF_MAP);
789 }
790
791 /* Total number of image pages */
792 static unsigned int nr_copy_pages;
793 /* Number of pages needed for saving the original pfns of the image pages */
794 static unsigned int nr_meta_pages;
795
796 /**
797  *      swsusp_free - free pages allocated for the suspend.
798  *
799  *      Suspend pages are alocated before the atomic copy is made, so we
800  *      need to release them after the resume.
801  */
802
803 void swsusp_free(void)
804 {
805         struct zone *zone;
806         unsigned long pfn, max_zone_pfn;
807
808         for_each_zone(zone) {
809                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
810                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
811                         if (pfn_valid(pfn)) {
812                                 struct page *page = pfn_to_page(pfn);
813
814                                 if (swsusp_page_is_forbidden(page) &&
815                                     swsusp_page_is_free(page)) {
816                                         swsusp_unset_page_forbidden(page);
817                                         swsusp_unset_page_free(page);
818                                         __free_page(page);
819                                 }
820                         }
821         }
822         nr_copy_pages = 0;
823         nr_meta_pages = 0;
824         restore_pblist = NULL;
825         buffer = NULL;
826 }
827
828 #ifdef CONFIG_HIGHMEM
829 /**
830   *     count_pages_for_highmem - compute the number of non-highmem pages
831   *     that will be necessary for creating copies of highmem pages.
832   */
833
834 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
835 {
836         unsigned int free_highmem = count_free_highmem_pages();
837
838         if (free_highmem >= nr_highmem)
839                 nr_highmem = 0;
840         else
841                 nr_highmem -= free_highmem;
842
843         return nr_highmem;
844 }
845 #else
846 static unsigned int
847 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
848 #endif /* CONFIG_HIGHMEM */
849
850 /**
851  *      enough_free_mem - Make sure we have enough free memory for the
852  *      snapshot image.
853  */
854
855 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
856 {
857         struct zone *zone;
858         unsigned int free = 0, meta = 0;
859
860         for_each_zone(zone) {
861                 meta += snapshot_additional_pages(zone);
862                 if (!is_highmem(zone))
863                         free += zone_page_state(zone, NR_FREE_PAGES);
864         }
865
866         nr_pages += count_pages_for_highmem(nr_highmem);
867         pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
868                 nr_pages, PAGES_FOR_IO, meta, free);
869
870         return free > nr_pages + PAGES_FOR_IO + meta;
871 }
872
873 #ifdef CONFIG_HIGHMEM
874 /**
875  *      get_highmem_buffer - if there are some highmem pages in the suspend
876  *      image, we may need the buffer to copy them and/or load their data.
877  */
878
879 static inline int get_highmem_buffer(int safe_needed)
880 {
881         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
882         return buffer ? 0 : -ENOMEM;
883 }
884
885 /**
886  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
887  *      Try to allocate as many pages as needed, but if the number of free
888  *      highmem pages is lesser than that, allocate them all.
889  */
890
891 static inline unsigned int
892 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
893 {
894         unsigned int to_alloc = count_free_highmem_pages();
895
896         if (to_alloc > nr_highmem)
897                 to_alloc = nr_highmem;
898
899         nr_highmem -= to_alloc;
900         while (to_alloc-- > 0) {
901                 struct page *page;
902
903                 page = alloc_image_page(__GFP_HIGHMEM);
904                 memory_bm_set_bit(bm, page_to_pfn(page));
905         }
906         return nr_highmem;
907 }
908 #else
909 static inline int get_highmem_buffer(int safe_needed) { return 0; }
910
911 static inline unsigned int
912 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
913 #endif /* CONFIG_HIGHMEM */
914
915 /**
916  *      swsusp_alloc - allocate memory for the suspend image
917  *
918  *      We first try to allocate as many highmem pages as there are
919  *      saveable highmem pages in the system.  If that fails, we allocate
920  *      non-highmem pages for the copies of the remaining highmem ones.
921  *
922  *      In this approach it is likely that the copies of highmem pages will
923  *      also be located in the high memory, because of the way in which
924  *      copy_data_pages() works.
925  */
926
927 static int
928 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
929                 unsigned int nr_pages, unsigned int nr_highmem)
930 {
931         int error;
932
933         error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
934         if (error)
935                 goto Free;
936
937         error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
938         if (error)
939                 goto Free;
940
941         if (nr_highmem > 0) {
942                 error = get_highmem_buffer(PG_ANY);
943                 if (error)
944                         goto Free;
945
946                 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
947         }
948         while (nr_pages-- > 0) {
949                 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
950
951                 if (!page)
952                         goto Free;
953
954                 memory_bm_set_bit(copy_bm, page_to_pfn(page));
955         }
956         return 0;
957
958  Free:
959         swsusp_free();
960         return -ENOMEM;
961 }
962
963 /* Memory bitmap used for marking saveable pages (during suspend) or the
964  * suspend image pages (during resume)
965  */
966 static struct memory_bitmap orig_bm;
967 /* Memory bitmap used on suspend for marking allocated pages that will contain
968  * the copies of saveable pages.  During resume it is initially used for
969  * marking the suspend image pages, but then its set bits are duplicated in
970  * @orig_bm and it is released.  Next, on systems with high memory, it may be
971  * used for marking "safe" highmem pages, but it has to be reinitialized for
972  * this purpose.
973  */
974 static struct memory_bitmap copy_bm;
975
976 asmlinkage int swsusp_save(void)
977 {
978         unsigned int nr_pages, nr_highmem;
979
980         printk("swsusp: critical section: \n");
981
982         drain_local_pages();
983         nr_pages = count_data_pages();
984         nr_highmem = count_highmem_pages();
985         printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
986
987         if (!enough_free_mem(nr_pages, nr_highmem)) {
988                 printk(KERN_ERR "swsusp: Not enough free memory\n");
989                 return -ENOMEM;
990         }
991
992         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
993                 printk(KERN_ERR "swsusp: Memory allocation failed\n");
994                 return -ENOMEM;
995         }
996
997         /* During allocating of suspend pagedir, new cold pages may appear.
998          * Kill them.
999          */
1000         drain_local_pages();
1001         copy_data_pages(&copy_bm, &orig_bm);
1002
1003         /*
1004          * End of critical section. From now on, we can write to memory,
1005          * but we should not touch disk. This specially means we must _not_
1006          * touch swap space! Except we must write out our image of course.
1007          */
1008
1009         nr_pages += nr_highmem;
1010         nr_copy_pages = nr_pages;
1011         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1012
1013         printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
1014
1015         return 0;
1016 }
1017
1018 static void init_header(struct swsusp_info *info)
1019 {
1020         memset(info, 0, sizeof(struct swsusp_info));
1021         info->version_code = LINUX_VERSION_CODE;
1022         info->num_physpages = num_physpages;
1023         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1024         info->cpus = num_online_cpus();
1025         info->image_pages = nr_copy_pages;
1026         info->pages = nr_copy_pages + nr_meta_pages + 1;
1027         info->size = info->pages;
1028         info->size <<= PAGE_SHIFT;
1029 }
1030
1031 /**
1032  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1033  *      are stored in the array @buf[] (1 page at a time)
1034  */
1035
1036 static inline void
1037 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1038 {
1039         int j;
1040
1041         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1042                 buf[j] = memory_bm_next_pfn(bm);
1043                 if (unlikely(buf[j] == BM_END_OF_MAP))
1044                         break;
1045         }
1046 }
1047
1048 /**
1049  *      snapshot_read_next - used for reading the system memory snapshot.
1050  *
1051  *      On the first call to it @handle should point to a zeroed
1052  *      snapshot_handle structure.  The structure gets updated and a pointer
1053  *      to it should be passed to this function every next time.
1054  *
1055  *      The @count parameter should contain the number of bytes the caller
1056  *      wants to read from the snapshot.  It must not be zero.
1057  *
1058  *      On success the function returns a positive number.  Then, the caller
1059  *      is allowed to read up to the returned number of bytes from the memory
1060  *      location computed by the data_of() macro.  The number returned
1061  *      may be smaller than @count, but this only happens if the read would
1062  *      cross a page boundary otherwise.
1063  *
1064  *      The function returns 0 to indicate the end of data stream condition,
1065  *      and a negative number is returned on error.  In such cases the
1066  *      structure pointed to by @handle is not updated and should not be used
1067  *      any more.
1068  */
1069
1070 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1071 {
1072         if (handle->cur > nr_meta_pages + nr_copy_pages)
1073                 return 0;
1074
1075         if (!buffer) {
1076                 /* This makes the buffer be freed by swsusp_free() */
1077                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1078                 if (!buffer)
1079                         return -ENOMEM;
1080         }
1081         if (!handle->offset) {
1082                 init_header((struct swsusp_info *)buffer);
1083                 handle->buffer = buffer;
1084                 memory_bm_position_reset(&orig_bm);
1085                 memory_bm_position_reset(&copy_bm);
1086         }
1087         if (handle->prev < handle->cur) {
1088                 if (handle->cur <= nr_meta_pages) {
1089                         memset(buffer, 0, PAGE_SIZE);
1090                         pack_pfns(buffer, &orig_bm);
1091                 } else {
1092                         struct page *page;
1093
1094                         page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1095                         if (PageHighMem(page)) {
1096                                 /* Highmem pages are copied to the buffer,
1097                                  * because we can't return with a kmapped
1098                                  * highmem page (we may not be called again).
1099                                  */
1100                                 void *kaddr;
1101
1102                                 kaddr = kmap_atomic(page, KM_USER0);
1103                                 memcpy(buffer, kaddr, PAGE_SIZE);
1104                                 kunmap_atomic(kaddr, KM_USER0);
1105                                 handle->buffer = buffer;
1106                         } else {
1107                                 handle->buffer = page_address(page);
1108                         }
1109                 }
1110                 handle->prev = handle->cur;
1111         }
1112         handle->buf_offset = handle->cur_offset;
1113         if (handle->cur_offset + count >= PAGE_SIZE) {
1114                 count = PAGE_SIZE - handle->cur_offset;
1115                 handle->cur_offset = 0;
1116                 handle->cur++;
1117         } else {
1118                 handle->cur_offset += count;
1119         }
1120         handle->offset += count;
1121         return count;
1122 }
1123
1124 /**
1125  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1126  *      the image during resume, because they conflict with the pages that
1127  *      had been used before suspend
1128  */
1129
1130 static int mark_unsafe_pages(struct memory_bitmap *bm)
1131 {
1132         struct zone *zone;
1133         unsigned long pfn, max_zone_pfn;
1134
1135         /* Clear page flags */
1136         for_each_zone(zone) {
1137                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1138                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1139                         if (pfn_valid(pfn))
1140                                 swsusp_unset_page_free(pfn_to_page(pfn));
1141         }
1142
1143         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1144         memory_bm_position_reset(bm);
1145         do {
1146                 pfn = memory_bm_next_pfn(bm);
1147                 if (likely(pfn != BM_END_OF_MAP)) {
1148                         if (likely(pfn_valid(pfn)))
1149                                 swsusp_set_page_free(pfn_to_page(pfn));
1150                         else
1151                                 return -EFAULT;
1152                 }
1153         } while (pfn != BM_END_OF_MAP);
1154
1155         allocated_unsafe_pages = 0;
1156
1157         return 0;
1158 }
1159
1160 static void
1161 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1162 {
1163         unsigned long pfn;
1164
1165         memory_bm_position_reset(src);
1166         pfn = memory_bm_next_pfn(src);
1167         while (pfn != BM_END_OF_MAP) {
1168                 memory_bm_set_bit(dst, pfn);
1169                 pfn = memory_bm_next_pfn(src);
1170         }
1171 }
1172
1173 static inline int check_header(struct swsusp_info *info)
1174 {
1175         char *reason = NULL;
1176
1177         if (info->version_code != LINUX_VERSION_CODE)
1178                 reason = "kernel version";
1179         if (info->num_physpages != num_physpages)
1180                 reason = "memory size";
1181         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1182                 reason = "system type";
1183         if (strcmp(info->uts.release,init_utsname()->release))
1184                 reason = "kernel release";
1185         if (strcmp(info->uts.version,init_utsname()->version))
1186                 reason = "version";
1187         if (strcmp(info->uts.machine,init_utsname()->machine))
1188                 reason = "machine";
1189         if (reason) {
1190                 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1191                 return -EPERM;
1192         }
1193         return 0;
1194 }
1195
1196 /**
1197  *      load header - check the image header and copy data from it
1198  */
1199
1200 static int
1201 load_header(struct swsusp_info *info)
1202 {
1203         int error;
1204
1205         restore_pblist = NULL;
1206         error = check_header(info);
1207         if (!error) {
1208                 nr_copy_pages = info->image_pages;
1209                 nr_meta_pages = info->pages - info->image_pages - 1;
1210         }
1211         return error;
1212 }
1213
1214 /**
1215  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1216  *      the corresponding bit in the memory bitmap @bm
1217  */
1218
1219 static inline void
1220 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1221 {
1222         int j;
1223
1224         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1225                 if (unlikely(buf[j] == BM_END_OF_MAP))
1226                         break;
1227
1228                 memory_bm_set_bit(bm, buf[j]);
1229         }
1230 }
1231
1232 /* List of "safe" pages that may be used to store data loaded from the suspend
1233  * image
1234  */
1235 static struct linked_page *safe_pages_list;
1236
1237 #ifdef CONFIG_HIGHMEM
1238 /* struct highmem_pbe is used for creating the list of highmem pages that
1239  * should be restored atomically during the resume from disk, because the page
1240  * frames they have occupied before the suspend are in use.
1241  */
1242 struct highmem_pbe {
1243         struct page *copy_page; /* data is here now */
1244         struct page *orig_page; /* data was here before the suspend */
1245         struct highmem_pbe *next;
1246 };
1247
1248 /* List of highmem PBEs needed for restoring the highmem pages that were
1249  * allocated before the suspend and included in the suspend image, but have
1250  * also been allocated by the "resume" kernel, so their contents cannot be
1251  * written directly to their "original" page frames.
1252  */
1253 static struct highmem_pbe *highmem_pblist;
1254
1255 /**
1256  *      count_highmem_image_pages - compute the number of highmem pages in the
1257  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1258  *      image pages are assumed to be set.
1259  */
1260
1261 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1262 {
1263         unsigned long pfn;
1264         unsigned int cnt = 0;
1265
1266         memory_bm_position_reset(bm);
1267         pfn = memory_bm_next_pfn(bm);
1268         while (pfn != BM_END_OF_MAP) {
1269                 if (PageHighMem(pfn_to_page(pfn)))
1270                         cnt++;
1271
1272                 pfn = memory_bm_next_pfn(bm);
1273         }
1274         return cnt;
1275 }
1276
1277 /**
1278  *      prepare_highmem_image - try to allocate as many highmem pages as
1279  *      there are highmem image pages (@nr_highmem_p points to the variable
1280  *      containing the number of highmem image pages).  The pages that are
1281  *      "safe" (ie. will not be overwritten when the suspend image is
1282  *      restored) have the corresponding bits set in @bm (it must be
1283  *      unitialized).
1284  *
1285  *      NOTE: This function should not be called if there are no highmem
1286  *      image pages.
1287  */
1288
1289 static unsigned int safe_highmem_pages;
1290
1291 static struct memory_bitmap *safe_highmem_bm;
1292
1293 static int
1294 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1295 {
1296         unsigned int to_alloc;
1297
1298         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1299                 return -ENOMEM;
1300
1301         if (get_highmem_buffer(PG_SAFE))
1302                 return -ENOMEM;
1303
1304         to_alloc = count_free_highmem_pages();
1305         if (to_alloc > *nr_highmem_p)
1306                 to_alloc = *nr_highmem_p;
1307         else
1308                 *nr_highmem_p = to_alloc;
1309
1310         safe_highmem_pages = 0;
1311         while (to_alloc-- > 0) {
1312                 struct page *page;
1313
1314                 page = alloc_page(__GFP_HIGHMEM);
1315                 if (!swsusp_page_is_free(page)) {
1316                         /* The page is "safe", set its bit the bitmap */
1317                         memory_bm_set_bit(bm, page_to_pfn(page));
1318                         safe_highmem_pages++;
1319                 }
1320                 /* Mark the page as allocated */
1321                 swsusp_set_page_forbidden(page);
1322                 swsusp_set_page_free(page);
1323         }
1324         memory_bm_position_reset(bm);
1325         safe_highmem_bm = bm;
1326         return 0;
1327 }
1328
1329 /**
1330  *      get_highmem_page_buffer - for given highmem image page find the buffer
1331  *      that suspend_write_next() should set for its caller to write to.
1332  *
1333  *      If the page is to be saved to its "original" page frame or a copy of
1334  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1335  *      the copy of the page is to be made in normal memory, so the address of
1336  *      the copy is returned.
1337  *
1338  *      If @buffer is returned, the caller of suspend_write_next() will write
1339  *      the page's contents to @buffer, so they will have to be copied to the
1340  *      right location on the next call to suspend_write_next() and it is done
1341  *      with the help of copy_last_highmem_page().  For this purpose, if
1342  *      @buffer is returned, @last_highmem page is set to the page to which
1343  *      the data will have to be copied from @buffer.
1344  */
1345
1346 static struct page *last_highmem_page;
1347
1348 static void *
1349 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1350 {
1351         struct highmem_pbe *pbe;
1352         void *kaddr;
1353
1354         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1355                 /* We have allocated the "original" page frame and we can
1356                  * use it directly to store the loaded page.
1357                  */
1358                 last_highmem_page = page;
1359                 return buffer;
1360         }
1361         /* The "original" page frame has not been allocated and we have to
1362          * use a "safe" page frame to store the loaded page.
1363          */
1364         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1365         if (!pbe) {
1366                 swsusp_free();
1367                 return NULL;
1368         }
1369         pbe->orig_page = page;
1370         if (safe_highmem_pages > 0) {
1371                 struct page *tmp;
1372
1373                 /* Copy of the page will be stored in high memory */
1374                 kaddr = buffer;
1375                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1376                 safe_highmem_pages--;
1377                 last_highmem_page = tmp;
1378                 pbe->copy_page = tmp;
1379         } else {
1380                 /* Copy of the page will be stored in normal memory */
1381                 kaddr = safe_pages_list;
1382                 safe_pages_list = safe_pages_list->next;
1383                 pbe->copy_page = virt_to_page(kaddr);
1384         }
1385         pbe->next = highmem_pblist;
1386         highmem_pblist = pbe;
1387         return kaddr;
1388 }
1389
1390 /**
1391  *      copy_last_highmem_page - copy the contents of a highmem image from
1392  *      @buffer, where the caller of snapshot_write_next() has place them,
1393  *      to the right location represented by @last_highmem_page .
1394  */
1395
1396 static void copy_last_highmem_page(void)
1397 {
1398         if (last_highmem_page) {
1399                 void *dst;
1400
1401                 dst = kmap_atomic(last_highmem_page, KM_USER0);
1402                 memcpy(dst, buffer, PAGE_SIZE);
1403                 kunmap_atomic(dst, KM_USER0);
1404                 last_highmem_page = NULL;
1405         }
1406 }
1407
1408 static inline int last_highmem_page_copied(void)
1409 {
1410         return !last_highmem_page;
1411 }
1412
1413 static inline void free_highmem_data(void)
1414 {
1415         if (safe_highmem_bm)
1416                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1417
1418         if (buffer)
1419                 free_image_page(buffer, PG_UNSAFE_CLEAR);
1420 }
1421 #else
1422 static inline int get_safe_write_buffer(void) { return 0; }
1423
1424 static unsigned int
1425 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1426
1427 static inline int
1428 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1429 {
1430         return 0;
1431 }
1432
1433 static inline void *
1434 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1435 {
1436         return NULL;
1437 }
1438
1439 static inline void copy_last_highmem_page(void) {}
1440 static inline int last_highmem_page_copied(void) { return 1; }
1441 static inline void free_highmem_data(void) {}
1442 #endif /* CONFIG_HIGHMEM */
1443
1444 /**
1445  *      prepare_image - use the memory bitmap @bm to mark the pages that will
1446  *      be overwritten in the process of restoring the system memory state
1447  *      from the suspend image ("unsafe" pages) and allocate memory for the
1448  *      image.
1449  *
1450  *      The idea is to allocate a new memory bitmap first and then allocate
1451  *      as many pages as needed for the image data, but not to assign these
1452  *      pages to specific tasks initially.  Instead, we just mark them as
1453  *      allocated and create a lists of "safe" pages that will be used
1454  *      later.  On systems with high memory a list of "safe" highmem pages is
1455  *      also created.
1456  */
1457
1458 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1459
1460 static int
1461 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1462 {
1463         unsigned int nr_pages, nr_highmem;
1464         struct linked_page *sp_list, *lp;
1465         int error;
1466
1467         /* If there is no highmem, the buffer will not be necessary */
1468         free_image_page(buffer, PG_UNSAFE_CLEAR);
1469         buffer = NULL;
1470
1471         nr_highmem = count_highmem_image_pages(bm);
1472         error = mark_unsafe_pages(bm);
1473         if (error)
1474                 goto Free;
1475
1476         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1477         if (error)
1478                 goto Free;
1479
1480         duplicate_memory_bitmap(new_bm, bm);
1481         memory_bm_free(bm, PG_UNSAFE_KEEP);
1482         if (nr_highmem > 0) {
1483                 error = prepare_highmem_image(bm, &nr_highmem);
1484                 if (error)
1485                         goto Free;
1486         }
1487         /* Reserve some safe pages for potential later use.
1488          *
1489          * NOTE: This way we make sure there will be enough safe pages for the
1490          * chain_alloc() in get_buffer().  It is a bit wasteful, but
1491          * nr_copy_pages cannot be greater than 50% of the memory anyway.
1492          */
1493         sp_list = NULL;
1494         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1495         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1496         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1497         while (nr_pages > 0) {
1498                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1499                 if (!lp) {
1500                         error = -ENOMEM;
1501                         goto Free;
1502                 }
1503                 lp->next = sp_list;
1504                 sp_list = lp;
1505                 nr_pages--;
1506         }
1507         /* Preallocate memory for the image */
1508         safe_pages_list = NULL;
1509         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1510         while (nr_pages > 0) {
1511                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1512                 if (!lp) {
1513                         error = -ENOMEM;
1514                         goto Free;
1515                 }
1516                 if (!swsusp_page_is_free(virt_to_page(lp))) {
1517                         /* The page is "safe", add it to the list */
1518                         lp->next = safe_pages_list;
1519                         safe_pages_list = lp;
1520                 }
1521                 /* Mark the page as allocated */
1522                 swsusp_set_page_forbidden(virt_to_page(lp));
1523                 swsusp_set_page_free(virt_to_page(lp));
1524                 nr_pages--;
1525         }
1526         /* Free the reserved safe pages so that chain_alloc() can use them */
1527         while (sp_list) {
1528                 lp = sp_list->next;
1529                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1530                 sp_list = lp;
1531         }
1532         return 0;
1533
1534  Free:
1535         swsusp_free();
1536         return error;
1537 }
1538
1539 /**
1540  *      get_buffer - compute the address that snapshot_write_next() should
1541  *      set for its caller to write to.
1542  */
1543
1544 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1545 {
1546         struct pbe *pbe;
1547         struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1548
1549         if (PageHighMem(page))
1550                 return get_highmem_page_buffer(page, ca);
1551
1552         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1553                 /* We have allocated the "original" page frame and we can
1554                  * use it directly to store the loaded page.
1555                  */
1556                 return page_address(page);
1557
1558         /* The "original" page frame has not been allocated and we have to
1559          * use a "safe" page frame to store the loaded page.
1560          */
1561         pbe = chain_alloc(ca, sizeof(struct pbe));
1562         if (!pbe) {
1563                 swsusp_free();
1564                 return NULL;
1565         }
1566         pbe->orig_address = page_address(page);
1567         pbe->address = safe_pages_list;
1568         safe_pages_list = safe_pages_list->next;
1569         pbe->next = restore_pblist;
1570         restore_pblist = pbe;
1571         return pbe->address;
1572 }
1573
1574 /**
1575  *      snapshot_write_next - used for writing the system memory snapshot.
1576  *
1577  *      On the first call to it @handle should point to a zeroed
1578  *      snapshot_handle structure.  The structure gets updated and a pointer
1579  *      to it should be passed to this function every next time.
1580  *
1581  *      The @count parameter should contain the number of bytes the caller
1582  *      wants to write to the image.  It must not be zero.
1583  *
1584  *      On success the function returns a positive number.  Then, the caller
1585  *      is allowed to write up to the returned number of bytes to the memory
1586  *      location computed by the data_of() macro.  The number returned
1587  *      may be smaller than @count, but this only happens if the write would
1588  *      cross a page boundary otherwise.
1589  *
1590  *      The function returns 0 to indicate the "end of file" condition,
1591  *      and a negative number is returned on error.  In such cases the
1592  *      structure pointed to by @handle is not updated and should not be used
1593  *      any more.
1594  */
1595
1596 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1597 {
1598         static struct chain_allocator ca;
1599         int error = 0;
1600
1601         /* Check if we have already loaded the entire image */
1602         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1603                 return 0;
1604
1605         if (handle->offset == 0) {
1606                 if (!buffer)
1607                         /* This makes the buffer be freed by swsusp_free() */
1608                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1609
1610                 if (!buffer)
1611                         return -ENOMEM;
1612
1613                 handle->buffer = buffer;
1614         }
1615         handle->sync_read = 1;
1616         if (handle->prev < handle->cur) {
1617                 if (handle->prev == 0) {
1618                         error = load_header(buffer);
1619                         if (error)
1620                                 return error;
1621
1622                         error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1623                         if (error)
1624                                 return error;
1625
1626                 } else if (handle->prev <= nr_meta_pages) {
1627                         unpack_orig_pfns(buffer, &copy_bm);
1628                         if (handle->prev == nr_meta_pages) {
1629                                 error = prepare_image(&orig_bm, &copy_bm);
1630                                 if (error)
1631                                         return error;
1632
1633                                 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1634                                 memory_bm_position_reset(&orig_bm);
1635                                 restore_pblist = NULL;
1636                                 handle->buffer = get_buffer(&orig_bm, &ca);
1637                                 handle->sync_read = 0;
1638                                 if (!handle->buffer)
1639                                         return -ENOMEM;
1640                         }
1641                 } else {
1642                         copy_last_highmem_page();
1643                         handle->buffer = get_buffer(&orig_bm, &ca);
1644                         if (handle->buffer != buffer)
1645                                 handle->sync_read = 0;
1646                 }
1647                 handle->prev = handle->cur;
1648         }
1649         handle->buf_offset = handle->cur_offset;
1650         if (handle->cur_offset + count >= PAGE_SIZE) {
1651                 count = PAGE_SIZE - handle->cur_offset;
1652                 handle->cur_offset = 0;
1653                 handle->cur++;
1654         } else {
1655                 handle->cur_offset += count;
1656         }
1657         handle->offset += count;
1658         return count;
1659 }
1660
1661 /**
1662  *      snapshot_write_finalize - must be called after the last call to
1663  *      snapshot_write_next() in case the last page in the image happens
1664  *      to be a highmem page and its contents should be stored in the
1665  *      highmem.  Additionally, it releases the memory that will not be
1666  *      used any more.
1667  */
1668
1669 void snapshot_write_finalize(struct snapshot_handle *handle)
1670 {
1671         copy_last_highmem_page();
1672         /* Free only if we have loaded the image entirely */
1673         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1674                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1675                 free_highmem_data();
1676         }
1677 }
1678
1679 int snapshot_image_loaded(struct snapshot_handle *handle)
1680 {
1681         return !(!nr_copy_pages || !last_highmem_page_copied() ||
1682                         handle->cur <= nr_meta_pages + nr_copy_pages);
1683 }
1684
1685 #ifdef CONFIG_HIGHMEM
1686 /* Assumes that @buf is ready and points to a "safe" page */
1687 static inline void
1688 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1689 {
1690         void *kaddr1, *kaddr2;
1691
1692         kaddr1 = kmap_atomic(p1, KM_USER0);
1693         kaddr2 = kmap_atomic(p2, KM_USER1);
1694         memcpy(buf, kaddr1, PAGE_SIZE);
1695         memcpy(kaddr1, kaddr2, PAGE_SIZE);
1696         memcpy(kaddr2, buf, PAGE_SIZE);
1697         kunmap_atomic(kaddr1, KM_USER0);
1698         kunmap_atomic(kaddr2, KM_USER1);
1699 }
1700
1701 /**
1702  *      restore_highmem - for each highmem page that was allocated before
1703  *      the suspend and included in the suspend image, and also has been
1704  *      allocated by the "resume" kernel swap its current (ie. "before
1705  *      resume") contents with the previous (ie. "before suspend") one.
1706  *
1707  *      If the resume eventually fails, we can call this function once
1708  *      again and restore the "before resume" highmem state.
1709  */
1710
1711 int restore_highmem(void)
1712 {
1713         struct highmem_pbe *pbe = highmem_pblist;
1714         void *buf;
1715
1716         if (!pbe)
1717                 return 0;
1718
1719         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1720         if (!buf)
1721                 return -ENOMEM;
1722
1723         while (pbe) {
1724                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1725                 pbe = pbe->next;
1726         }
1727         free_image_page(buf, PG_UNSAFE_CLEAR);
1728         return 0;
1729 }
1730 #endif /* CONFIG_HIGHMEM */