723f5179883e57d054d13bbb53bf2854b70e1b00
[safe/jmp/linux-2.6] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provide system snapshot/restore functionality.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  *
8  * This file is released under the GPLv2, and is based on swsusp.c.
9  *
10  */
11
12
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/suspend.h>
16 #include <linux/smp_lock.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/bootmem.h>
24 #include <linux/syscalls.h>
25 #include <linux/console.h>
26 #include <linux/highmem.h>
27
28 #include <asm/uaccess.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <asm/io.h>
33
34 #include "power.h"
35
36 #ifdef CONFIG_HIGHMEM
37 struct highmem_page {
38         char *data;
39         struct page *page;
40         struct highmem_page *next;
41 };
42
43 static struct highmem_page *highmem_copy;
44
45 static int save_highmem_zone(struct zone *zone)
46 {
47         unsigned long zone_pfn;
48         mark_free_pages(zone);
49         for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
50                 struct page *page;
51                 struct highmem_page *save;
52                 void *kaddr;
53                 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
54
55                 if (!(pfn%1000))
56                         printk(".");
57                 if (!pfn_valid(pfn))
58                         continue;
59                 page = pfn_to_page(pfn);
60                 /*
61                  * This condition results from rvmalloc() sans vmalloc_32()
62                  * and architectural memory reservations. This should be
63                  * corrected eventually when the cases giving rise to this
64                  * are better understood.
65                  */
66                 if (PageReserved(page)) {
67                         printk("highmem reserved page?!\n");
68                         continue;
69                 }
70                 BUG_ON(PageNosave(page));
71                 if (PageNosaveFree(page))
72                         continue;
73                 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
74                 if (!save)
75                         return -ENOMEM;
76                 save->next = highmem_copy;
77                 save->page = page;
78                 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
79                 if (!save->data) {
80                         kfree(save);
81                         return -ENOMEM;
82                 }
83                 kaddr = kmap_atomic(page, KM_USER0);
84                 memcpy(save->data, kaddr, PAGE_SIZE);
85                 kunmap_atomic(kaddr, KM_USER0);
86                 highmem_copy = save;
87         }
88         return 0;
89 }
90
91
92 static int save_highmem(void)
93 {
94         struct zone *zone;
95         int res = 0;
96
97         pr_debug("swsusp: Saving Highmem\n");
98         for_each_zone (zone) {
99                 if (is_highmem(zone))
100                         res = save_highmem_zone(zone);
101                 if (res)
102                         return res;
103         }
104         return 0;
105 }
106
107 int restore_highmem(void)
108 {
109         printk("swsusp: Restoring Highmem\n");
110         while (highmem_copy) {
111                 struct highmem_page *save = highmem_copy;
112                 void *kaddr;
113                 highmem_copy = save->next;
114
115                 kaddr = kmap_atomic(save->page, KM_USER0);
116                 memcpy(kaddr, save->data, PAGE_SIZE);
117                 kunmap_atomic(kaddr, KM_USER0);
118                 free_page((long) save->data);
119                 kfree(save);
120         }
121         return 0;
122 }
123 #else
124 static int save_highmem(void) { return 0; }
125 int restore_highmem(void) { return 0; }
126 #endif /* CONFIG_HIGHMEM */
127
128
129 static int pfn_is_nosave(unsigned long pfn)
130 {
131         unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
132         unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
133         return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
134 }
135
136 /**
137  *      saveable - Determine whether a page should be cloned or not.
138  *      @pfn:   The page
139  *
140  *      We save a page if it's Reserved, and not in the range of pages
141  *      statically defined as 'unsaveable', or if it isn't reserved, and
142  *      isn't part of a free chunk of pages.
143  */
144
145 static int saveable(struct zone *zone, unsigned long *zone_pfn)
146 {
147         unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
148         struct page *page;
149
150         if (!pfn_valid(pfn))
151                 return 0;
152
153         page = pfn_to_page(pfn);
154         BUG_ON(PageReserved(page) && PageNosave(page));
155         if (PageNosave(page))
156                 return 0;
157         if (PageReserved(page) && pfn_is_nosave(pfn)) {
158                 pr_debug("[nosave pfn 0x%lx]", pfn);
159                 return 0;
160         }
161         if (PageNosaveFree(page))
162                 return 0;
163
164         return 1;
165 }
166
167 static unsigned count_data_pages(void)
168 {
169         struct zone *zone;
170         unsigned long zone_pfn;
171         unsigned int n = 0;
172
173         for_each_zone (zone) {
174                 if (is_highmem(zone))
175                         continue;
176                 mark_free_pages(zone);
177                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
178                         n += saveable(zone, &zone_pfn);
179         }
180         return n;
181 }
182
183 static void copy_data_pages(struct pbe *pblist)
184 {
185         struct zone *zone;
186         unsigned long zone_pfn;
187         struct pbe *pbe, *p;
188
189         pbe = pblist;
190         for_each_zone (zone) {
191                 if (is_highmem(zone))
192                         continue;
193                 mark_free_pages(zone);
194                 /* This is necessary for swsusp_free() */
195                 for_each_pb_page (p, pblist)
196                         SetPageNosaveFree(virt_to_page(p));
197                 for_each_pbe (p, pblist)
198                         SetPageNosaveFree(virt_to_page(p->address));
199                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
200                         if (saveable(zone, &zone_pfn)) {
201                                 struct page *page;
202                                 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
203                                 BUG_ON(!pbe);
204                                 pbe->orig_address = (unsigned long)page_address(page);
205                                 /* copy_page is not usable for copying task structs. */
206                                 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
207                                 pbe = pbe->next;
208                         }
209                 }
210         }
211         BUG_ON(pbe);
212 }
213
214
215 /**
216  *      free_pagedir - free pages allocated with alloc_pagedir()
217  */
218
219 static void free_pagedir(struct pbe *pblist)
220 {
221         struct pbe *pbe;
222
223         while (pblist) {
224                 pbe = (pblist + PB_PAGE_SKIP)->next;
225                 ClearPageNosave(virt_to_page(pblist));
226                 ClearPageNosaveFree(virt_to_page(pblist));
227                 free_page((unsigned long)pblist);
228                 pblist = pbe;
229         }
230 }
231
232 /**
233  *      fill_pb_page - Create a list of PBEs on a given memory page
234  */
235
236 static inline void fill_pb_page(struct pbe *pbpage)
237 {
238         struct pbe *p;
239
240         p = pbpage;
241         pbpage += PB_PAGE_SKIP;
242         do
243                 p->next = p + 1;
244         while (++p < pbpage);
245 }
246
247 /**
248  *      create_pbe_list - Create a list of PBEs on top of a given chain
249  *      of memory pages allocated with alloc_pagedir()
250  */
251
252 void create_pbe_list(struct pbe *pblist, unsigned int nr_pages)
253 {
254         struct pbe *pbpage, *p;
255         unsigned int num = PBES_PER_PAGE;
256
257         for_each_pb_page (pbpage, pblist) {
258                 if (num >= nr_pages)
259                         break;
260
261                 fill_pb_page(pbpage);
262                 num += PBES_PER_PAGE;
263         }
264         if (pbpage) {
265                 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
266                         p->next = p + 1;
267                 p->next = NULL;
268         }
269         pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
270 }
271
272 static void *alloc_image_page(void)
273 {
274         void *res = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
275         if (res) {
276                 SetPageNosave(virt_to_page(res));
277                 SetPageNosaveFree(virt_to_page(res));
278         }
279         return res;
280 }
281
282 /**
283  *      alloc_pagedir - Allocate the page directory.
284  *
285  *      First, determine exactly how many pages we need and
286  *      allocate them.
287  *
288  *      We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
289  *      struct pbe elements (pbes) and the last element in the page points
290  *      to the next page.
291  *
292  *      On each page we set up a list of struct_pbe elements.
293  */
294
295 struct pbe *alloc_pagedir(unsigned int nr_pages)
296 {
297         unsigned int num;
298         struct pbe *pblist, *pbe;
299
300         if (!nr_pages)
301                 return NULL;
302
303         pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
304         pblist = alloc_image_page();
305         /* FIXME: rewrite this ugly loop */
306         for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
307                         pbe = pbe->next, num += PBES_PER_PAGE) {
308                 pbe += PB_PAGE_SKIP;
309                 pbe->next = alloc_image_page();
310         }
311         if (!pbe) { /* get_zeroed_page() failed */
312                 free_pagedir(pblist);
313                 pblist = NULL;
314         }
315         return pblist;
316 }
317
318 /**
319  * Free pages we allocated for suspend. Suspend pages are alocated
320  * before atomic copy, so we need to free them after resume.
321  */
322
323 void swsusp_free(void)
324 {
325         struct zone *zone;
326         unsigned long zone_pfn;
327
328         for_each_zone(zone) {
329                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
330                         if (pfn_valid(zone_pfn + zone->zone_start_pfn)) {
331                                 struct page *page;
332                                 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
333                                 if (PageNosave(page) && PageNosaveFree(page)) {
334                                         ClearPageNosave(page);
335                                         ClearPageNosaveFree(page);
336                                         free_page((long) page_address(page));
337                                 }
338                         }
339         }
340 }
341
342
343 /**
344  *      enough_free_mem - Make sure we enough free memory to snapshot.
345  *
346  *      Returns TRUE or FALSE after checking the number of available
347  *      free pages.
348  */
349
350 static int enough_free_mem(unsigned int nr_pages)
351 {
352         pr_debug("swsusp: available memory: %u pages\n", nr_free_pages());
353         return nr_free_pages() > (nr_pages + PAGES_FOR_IO +
354                 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
355 }
356
357
358 static struct pbe *swsusp_alloc(unsigned int nr_pages)
359 {
360         struct pbe *pblist, *p;
361
362         if (!(pblist = alloc_pagedir(nr_pages))) {
363                 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
364                 return NULL;
365         }
366         create_pbe_list(pblist, nr_pages);
367
368         for_each_pbe (p, pblist) {
369                 p->address = (unsigned long)alloc_image_page();
370                 if (!p->address) {
371                         printk(KERN_ERR "suspend: Allocating image pages failed.\n");
372                         swsusp_free();
373                         return NULL;
374                 }
375         }
376
377         return pblist;
378 }
379
380 asmlinkage int swsusp_save(void)
381 {
382         unsigned int nr_pages;
383
384         pr_debug("swsusp: critical section: \n");
385         if (save_highmem()) {
386                 printk(KERN_CRIT "swsusp: Not enough free pages for highmem\n");
387                 restore_highmem();
388                 return -ENOMEM;
389         }
390
391         drain_local_pages();
392         nr_pages = count_data_pages();
393         printk("swsusp: Need to copy %u pages\n", nr_pages);
394
395         pr_debug("swsusp: pages needed: %u + %lu + %u, free: %u\n",
396                  nr_pages,
397                  (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE,
398                  PAGES_FOR_IO, nr_free_pages());
399
400         /* This is needed because of the fixed size of swsusp_info */
401         if (MAX_PBES < (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE)
402                 return -ENOSPC;
403
404         if (!enough_free_mem(nr_pages)) {
405                 printk(KERN_ERR "swsusp: Not enough free memory\n");
406                 return -ENOMEM;
407         }
408
409         if (!enough_swap(nr_pages)) {
410                 printk(KERN_ERR "swsusp: Not enough free swap\n");
411                 return -ENOSPC;
412         }
413
414         pagedir_nosave = swsusp_alloc(nr_pages);
415         if (!pagedir_nosave)
416                 return -ENOMEM;
417
418         /* During allocating of suspend pagedir, new cold pages may appear.
419          * Kill them.
420          */
421         drain_local_pages();
422         copy_data_pages(pagedir_nosave);
423
424         /*
425          * End of critical section. From now on, we can write to memory,
426          * but we should not touch disk. This specially means we must _not_
427          * touch swap space! Except we must write out our image of course.
428          */
429
430         nr_copy_pages = nr_pages;
431
432         printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
433         return 0;
434 }