perf: Optimize perf_disable
[safe/jmp/linux-2.6] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37  * Each CPU has a list of per CPU events:
38  */
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51  * perf event paranoia level:
52  *  -1 - not paranoid at all
53  *   0 - disallow raw tracepoint access for unpriv
54  *   1 - disallow cpu events for unpriv
55  *   2 - disallow kernel profiling for unpriv
56  */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61 /*
62  * max perf event sample rate
63  */
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66 static atomic64_t perf_event_id;
67
68 /*
69  * Lock for (sysadmin-configurable) event reservations:
70  */
71 static DEFINE_SPINLOCK(perf_resource_lock);
72
73 /*
74  * Architecture provided APIs - weak aliases:
75  */
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77 {
78         return NULL;
79 }
80
81 void __weak hw_perf_disable(void)               { barrier(); }
82 void __weak hw_perf_enable(void)                { barrier(); }
83
84 int __weak
85 hw_perf_group_sched_in(struct perf_event *group_leader,
86                struct perf_cpu_context *cpuctx,
87                struct perf_event_context *ctx)
88 {
89         return 0;
90 }
91
92 void __weak perf_event_print_debug(void)        { }
93
94 static DEFINE_PER_CPU(int, perf_disable_count);
95
96 void perf_disable(void)
97 {
98         if (!__get_cpu_var(perf_disable_count)++)
99                 hw_perf_disable();
100 }
101
102 void perf_enable(void)
103 {
104         if (!--__get_cpu_var(perf_disable_count))
105                 hw_perf_enable();
106 }
107
108 static void get_ctx(struct perf_event_context *ctx)
109 {
110         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111 }
112
113 static void free_ctx(struct rcu_head *head)
114 {
115         struct perf_event_context *ctx;
116
117         ctx = container_of(head, struct perf_event_context, rcu_head);
118         kfree(ctx);
119 }
120
121 static void put_ctx(struct perf_event_context *ctx)
122 {
123         if (atomic_dec_and_test(&ctx->refcount)) {
124                 if (ctx->parent_ctx)
125                         put_ctx(ctx->parent_ctx);
126                 if (ctx->task)
127                         put_task_struct(ctx->task);
128                 call_rcu(&ctx->rcu_head, free_ctx);
129         }
130 }
131
132 static void unclone_ctx(struct perf_event_context *ctx)
133 {
134         if (ctx->parent_ctx) {
135                 put_ctx(ctx->parent_ctx);
136                 ctx->parent_ctx = NULL;
137         }
138 }
139
140 /*
141  * If we inherit events we want to return the parent event id
142  * to userspace.
143  */
144 static u64 primary_event_id(struct perf_event *event)
145 {
146         u64 id = event->id;
147
148         if (event->parent)
149                 id = event->parent->id;
150
151         return id;
152 }
153
154 /*
155  * Get the perf_event_context for a task and lock it.
156  * This has to cope with with the fact that until it is locked,
157  * the context could get moved to another task.
158  */
159 static struct perf_event_context *
160 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161 {
162         struct perf_event_context *ctx;
163
164         rcu_read_lock();
165  retry:
166         ctx = rcu_dereference(task->perf_event_ctxp);
167         if (ctx) {
168                 /*
169                  * If this context is a clone of another, it might
170                  * get swapped for another underneath us by
171                  * perf_event_task_sched_out, though the
172                  * rcu_read_lock() protects us from any context
173                  * getting freed.  Lock the context and check if it
174                  * got swapped before we could get the lock, and retry
175                  * if so.  If we locked the right context, then it
176                  * can't get swapped on us any more.
177                  */
178                 raw_spin_lock_irqsave(&ctx->lock, *flags);
179                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         goto retry;
182                 }
183
184                 if (!atomic_inc_not_zero(&ctx->refcount)) {
185                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186                         ctx = NULL;
187                 }
188         }
189         rcu_read_unlock();
190         return ctx;
191 }
192
193 /*
194  * Get the context for a task and increment its pin_count so it
195  * can't get swapped to another task.  This also increments its
196  * reference count so that the context can't get freed.
197  */
198 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199 {
200         struct perf_event_context *ctx;
201         unsigned long flags;
202
203         ctx = perf_lock_task_context(task, &flags);
204         if (ctx) {
205                 ++ctx->pin_count;
206                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
207         }
208         return ctx;
209 }
210
211 static void perf_unpin_context(struct perf_event_context *ctx)
212 {
213         unsigned long flags;
214
215         raw_spin_lock_irqsave(&ctx->lock, flags);
216         --ctx->pin_count;
217         raw_spin_unlock_irqrestore(&ctx->lock, flags);
218         put_ctx(ctx);
219 }
220
221 static inline u64 perf_clock(void)
222 {
223         return cpu_clock(raw_smp_processor_id());
224 }
225
226 /*
227  * Update the record of the current time in a context.
228  */
229 static void update_context_time(struct perf_event_context *ctx)
230 {
231         u64 now = perf_clock();
232
233         ctx->time += now - ctx->timestamp;
234         ctx->timestamp = now;
235 }
236
237 /*
238  * Update the total_time_enabled and total_time_running fields for a event.
239  */
240 static void update_event_times(struct perf_event *event)
241 {
242         struct perf_event_context *ctx = event->ctx;
243         u64 run_end;
244
245         if (event->state < PERF_EVENT_STATE_INACTIVE ||
246             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247                 return;
248
249         if (ctx->is_active)
250                 run_end = ctx->time;
251         else
252                 run_end = event->tstamp_stopped;
253
254         event->total_time_enabled = run_end - event->tstamp_enabled;
255
256         if (event->state == PERF_EVENT_STATE_INACTIVE)
257                 run_end = event->tstamp_stopped;
258         else
259                 run_end = ctx->time;
260
261         event->total_time_running = run_end - event->tstamp_running;
262 }
263
264 static struct list_head *
265 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
266 {
267         if (event->attr.pinned)
268                 return &ctx->pinned_groups;
269         else
270                 return &ctx->flexible_groups;
271 }
272
273 /*
274  * Add a event from the lists for its context.
275  * Must be called with ctx->mutex and ctx->lock held.
276  */
277 static void
278 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279 {
280         struct perf_event *group_leader = event->group_leader;
281
282         /*
283          * Depending on whether it is a standalone or sibling event,
284          * add it straight to the context's event list, or to the group
285          * leader's sibling list:
286          */
287         if (group_leader == event) {
288                 struct list_head *list;
289
290                 if (is_software_event(event))
291                         event->group_flags |= PERF_GROUP_SOFTWARE;
292
293                 list = ctx_group_list(event, ctx);
294                 list_add_tail(&event->group_entry, list);
295         } else {
296                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297                     !is_software_event(event))
298                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
299
300                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301                 group_leader->nr_siblings++;
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 /*
311  * Remove a event from the lists for its context.
312  * Must be called with ctx->mutex and ctx->lock held.
313  */
314 static void
315 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316 {
317         struct perf_event *sibling, *tmp;
318
319         if (list_empty(&event->group_entry))
320                 return;
321         ctx->nr_events--;
322         if (event->attr.inherit_stat)
323                 ctx->nr_stat--;
324
325         list_del_init(&event->group_entry);
326         list_del_rcu(&event->event_entry);
327
328         if (event->group_leader != event)
329                 event->group_leader->nr_siblings--;
330
331         update_event_times(event);
332
333         /*
334          * If event was in error state, then keep it
335          * that way, otherwise bogus counts will be
336          * returned on read(). The only way to get out
337          * of error state is by explicit re-enabling
338          * of the event
339          */
340         if (event->state > PERF_EVENT_STATE_OFF)
341                 event->state = PERF_EVENT_STATE_OFF;
342
343         /*
344          * If this was a group event with sibling events then
345          * upgrade the siblings to singleton events by adding them
346          * to the context list directly:
347          */
348         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349                 struct list_head *list;
350
351                 list = ctx_group_list(event, ctx);
352                 list_move_tail(&sibling->group_entry, list);
353                 sibling->group_leader = sibling;
354
355                 /* Inherit group flags from the previous leader */
356                 sibling->group_flags = event->group_flags;
357         }
358 }
359
360 static void
361 event_sched_out(struct perf_event *event,
362                   struct perf_cpu_context *cpuctx,
363                   struct perf_event_context *ctx)
364 {
365         if (event->state != PERF_EVENT_STATE_ACTIVE)
366                 return;
367
368         event->state = PERF_EVENT_STATE_INACTIVE;
369         if (event->pending_disable) {
370                 event->pending_disable = 0;
371                 event->state = PERF_EVENT_STATE_OFF;
372         }
373         event->tstamp_stopped = ctx->time;
374         event->pmu->disable(event);
375         event->oncpu = -1;
376
377         if (!is_software_event(event))
378                 cpuctx->active_oncpu--;
379         ctx->nr_active--;
380         if (event->attr.exclusive || !cpuctx->active_oncpu)
381                 cpuctx->exclusive = 0;
382 }
383
384 static void
385 group_sched_out(struct perf_event *group_event,
386                 struct perf_cpu_context *cpuctx,
387                 struct perf_event_context *ctx)
388 {
389         struct perf_event *event;
390
391         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392                 return;
393
394         event_sched_out(group_event, cpuctx, ctx);
395
396         /*
397          * Schedule out siblings (if any):
398          */
399         list_for_each_entry(event, &group_event->sibling_list, group_entry)
400                 event_sched_out(event, cpuctx, ctx);
401
402         if (group_event->attr.exclusive)
403                 cpuctx->exclusive = 0;
404 }
405
406 /*
407  * Cross CPU call to remove a performance event
408  *
409  * We disable the event on the hardware level first. After that we
410  * remove it from the context list.
411  */
412 static void __perf_event_remove_from_context(void *info)
413 {
414         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415         struct perf_event *event = info;
416         struct perf_event_context *ctx = event->ctx;
417
418         /*
419          * If this is a task context, we need to check whether it is
420          * the current task context of this cpu. If not it has been
421          * scheduled out before the smp call arrived.
422          */
423         if (ctx->task && cpuctx->task_ctx != ctx)
424                 return;
425
426         raw_spin_lock(&ctx->lock);
427         /*
428          * Protect the list operation against NMI by disabling the
429          * events on a global level.
430          */
431         perf_disable();
432
433         event_sched_out(event, cpuctx, ctx);
434
435         list_del_event(event, ctx);
436
437         if (!ctx->task) {
438                 /*
439                  * Allow more per task events with respect to the
440                  * reservation:
441                  */
442                 cpuctx->max_pertask =
443                         min(perf_max_events - ctx->nr_events,
444                             perf_max_events - perf_reserved_percpu);
445         }
446
447         perf_enable();
448         raw_spin_unlock(&ctx->lock);
449 }
450
451
452 /*
453  * Remove the event from a task's (or a CPU's) list of events.
454  *
455  * Must be called with ctx->mutex held.
456  *
457  * CPU events are removed with a smp call. For task events we only
458  * call when the task is on a CPU.
459  *
460  * If event->ctx is a cloned context, callers must make sure that
461  * every task struct that event->ctx->task could possibly point to
462  * remains valid.  This is OK when called from perf_release since
463  * that only calls us on the top-level context, which can't be a clone.
464  * When called from perf_event_exit_task, it's OK because the
465  * context has been detached from its task.
466  */
467 static void perf_event_remove_from_context(struct perf_event *event)
468 {
469         struct perf_event_context *ctx = event->ctx;
470         struct task_struct *task = ctx->task;
471
472         if (!task) {
473                 /*
474                  * Per cpu events are removed via an smp call and
475                  * the removal is always successful.
476                  */
477                 smp_call_function_single(event->cpu,
478                                          __perf_event_remove_from_context,
479                                          event, 1);
480                 return;
481         }
482
483 retry:
484         task_oncpu_function_call(task, __perf_event_remove_from_context,
485                                  event);
486
487         raw_spin_lock_irq(&ctx->lock);
488         /*
489          * If the context is active we need to retry the smp call.
490          */
491         if (ctx->nr_active && !list_empty(&event->group_entry)) {
492                 raw_spin_unlock_irq(&ctx->lock);
493                 goto retry;
494         }
495
496         /*
497          * The lock prevents that this context is scheduled in so we
498          * can remove the event safely, if the call above did not
499          * succeed.
500          */
501         if (!list_empty(&event->group_entry))
502                 list_del_event(event, ctx);
503         raw_spin_unlock_irq(&ctx->lock);
504 }
505
506 /*
507  * Update total_time_enabled and total_time_running for all events in a group.
508  */
509 static void update_group_times(struct perf_event *leader)
510 {
511         struct perf_event *event;
512
513         update_event_times(leader);
514         list_for_each_entry(event, &leader->sibling_list, group_entry)
515                 update_event_times(event);
516 }
517
518 /*
519  * Cross CPU call to disable a performance event
520  */
521 static void __perf_event_disable(void *info)
522 {
523         struct perf_event *event = info;
524         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525         struct perf_event_context *ctx = event->ctx;
526
527         /*
528          * If this is a per-task event, need to check whether this
529          * event's task is the current task on this cpu.
530          */
531         if (ctx->task && cpuctx->task_ctx != ctx)
532                 return;
533
534         raw_spin_lock(&ctx->lock);
535
536         /*
537          * If the event is on, turn it off.
538          * If it is in error state, leave it in error state.
539          */
540         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541                 update_context_time(ctx);
542                 update_group_times(event);
543                 if (event == event->group_leader)
544                         group_sched_out(event, cpuctx, ctx);
545                 else
546                         event_sched_out(event, cpuctx, ctx);
547                 event->state = PERF_EVENT_STATE_OFF;
548         }
549
550         raw_spin_unlock(&ctx->lock);
551 }
552
553 /*
554  * Disable a event.
555  *
556  * If event->ctx is a cloned context, callers must make sure that
557  * every task struct that event->ctx->task could possibly point to
558  * remains valid.  This condition is satisifed when called through
559  * perf_event_for_each_child or perf_event_for_each because they
560  * hold the top-level event's child_mutex, so any descendant that
561  * goes to exit will block in sync_child_event.
562  * When called from perf_pending_event it's OK because event->ctx
563  * is the current context on this CPU and preemption is disabled,
564  * hence we can't get into perf_event_task_sched_out for this context.
565  */
566 void perf_event_disable(struct perf_event *event)
567 {
568         struct perf_event_context *ctx = event->ctx;
569         struct task_struct *task = ctx->task;
570
571         if (!task) {
572                 /*
573                  * Disable the event on the cpu that it's on
574                  */
575                 smp_call_function_single(event->cpu, __perf_event_disable,
576                                          event, 1);
577                 return;
578         }
579
580  retry:
581         task_oncpu_function_call(task, __perf_event_disable, event);
582
583         raw_spin_lock_irq(&ctx->lock);
584         /*
585          * If the event is still active, we need to retry the cross-call.
586          */
587         if (event->state == PERF_EVENT_STATE_ACTIVE) {
588                 raw_spin_unlock_irq(&ctx->lock);
589                 goto retry;
590         }
591
592         /*
593          * Since we have the lock this context can't be scheduled
594          * in, so we can change the state safely.
595          */
596         if (event->state == PERF_EVENT_STATE_INACTIVE) {
597                 update_group_times(event);
598                 event->state = PERF_EVENT_STATE_OFF;
599         }
600
601         raw_spin_unlock_irq(&ctx->lock);
602 }
603
604 static int
605 event_sched_in(struct perf_event *event,
606                  struct perf_cpu_context *cpuctx,
607                  struct perf_event_context *ctx)
608 {
609         if (event->state <= PERF_EVENT_STATE_OFF)
610                 return 0;
611
612         event->state = PERF_EVENT_STATE_ACTIVE;
613         event->oncpu = smp_processor_id();
614         /*
615          * The new state must be visible before we turn it on in the hardware:
616          */
617         smp_wmb();
618
619         if (event->pmu->enable(event)) {
620                 event->state = PERF_EVENT_STATE_INACTIVE;
621                 event->oncpu = -1;
622                 return -EAGAIN;
623         }
624
625         event->tstamp_running += ctx->time - event->tstamp_stopped;
626
627         if (!is_software_event(event))
628                 cpuctx->active_oncpu++;
629         ctx->nr_active++;
630
631         if (event->attr.exclusive)
632                 cpuctx->exclusive = 1;
633
634         return 0;
635 }
636
637 static int
638 group_sched_in(struct perf_event *group_event,
639                struct perf_cpu_context *cpuctx,
640                struct perf_event_context *ctx)
641 {
642         struct perf_event *event, *partial_group;
643         int ret;
644
645         if (group_event->state == PERF_EVENT_STATE_OFF)
646                 return 0;
647
648         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649         if (ret)
650                 return ret < 0 ? ret : 0;
651
652         if (event_sched_in(group_event, cpuctx, ctx))
653                 return -EAGAIN;
654
655         /*
656          * Schedule in siblings as one group (if any):
657          */
658         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659                 if (event_sched_in(event, cpuctx, ctx)) {
660                         partial_group = event;
661                         goto group_error;
662                 }
663         }
664
665         return 0;
666
667 group_error:
668         /*
669          * Groups can be scheduled in as one unit only, so undo any
670          * partial group before returning:
671          */
672         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673                 if (event == partial_group)
674                         break;
675                 event_sched_out(event, cpuctx, ctx);
676         }
677         event_sched_out(group_event, cpuctx, ctx);
678
679         return -EAGAIN;
680 }
681
682 /*
683  * Work out whether we can put this event group on the CPU now.
684  */
685 static int group_can_go_on(struct perf_event *event,
686                            struct perf_cpu_context *cpuctx,
687                            int can_add_hw)
688 {
689         /*
690          * Groups consisting entirely of software events can always go on.
691          */
692         if (event->group_flags & PERF_GROUP_SOFTWARE)
693                 return 1;
694         /*
695          * If an exclusive group is already on, no other hardware
696          * events can go on.
697          */
698         if (cpuctx->exclusive)
699                 return 0;
700         /*
701          * If this group is exclusive and there are already
702          * events on the CPU, it can't go on.
703          */
704         if (event->attr.exclusive && cpuctx->active_oncpu)
705                 return 0;
706         /*
707          * Otherwise, try to add it if all previous groups were able
708          * to go on.
709          */
710         return can_add_hw;
711 }
712
713 static void add_event_to_ctx(struct perf_event *event,
714                                struct perf_event_context *ctx)
715 {
716         list_add_event(event, ctx);
717         event->tstamp_enabled = ctx->time;
718         event->tstamp_running = ctx->time;
719         event->tstamp_stopped = ctx->time;
720 }
721
722 /*
723  * Cross CPU call to install and enable a performance event
724  *
725  * Must be called with ctx->mutex held
726  */
727 static void __perf_install_in_context(void *info)
728 {
729         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730         struct perf_event *event = info;
731         struct perf_event_context *ctx = event->ctx;
732         struct perf_event *leader = event->group_leader;
733         int err;
734
735         /*
736          * If this is a task context, we need to check whether it is
737          * the current task context of this cpu. If not it has been
738          * scheduled out before the smp call arrived.
739          * Or possibly this is the right context but it isn't
740          * on this cpu because it had no events.
741          */
742         if (ctx->task && cpuctx->task_ctx != ctx) {
743                 if (cpuctx->task_ctx || ctx->task != current)
744                         return;
745                 cpuctx->task_ctx = ctx;
746         }
747
748         raw_spin_lock(&ctx->lock);
749         ctx->is_active = 1;
750         update_context_time(ctx);
751
752         /*
753          * Protect the list operation against NMI by disabling the
754          * events on a global level. NOP for non NMI based events.
755          */
756         perf_disable();
757
758         add_event_to_ctx(event, ctx);
759
760         if (event->cpu != -1 && event->cpu != smp_processor_id())
761                 goto unlock;
762
763         /*
764          * Don't put the event on if it is disabled or if
765          * it is in a group and the group isn't on.
766          */
767         if (event->state != PERF_EVENT_STATE_INACTIVE ||
768             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769                 goto unlock;
770
771         /*
772          * An exclusive event can't go on if there are already active
773          * hardware events, and no hardware event can go on if there
774          * is already an exclusive event on.
775          */
776         if (!group_can_go_on(event, cpuctx, 1))
777                 err = -EEXIST;
778         else
779                 err = event_sched_in(event, cpuctx, ctx);
780
781         if (err) {
782                 /*
783                  * This event couldn't go on.  If it is in a group
784                  * then we have to pull the whole group off.
785                  * If the event group is pinned then put it in error state.
786                  */
787                 if (leader != event)
788                         group_sched_out(leader, cpuctx, ctx);
789                 if (leader->attr.pinned) {
790                         update_group_times(leader);
791                         leader->state = PERF_EVENT_STATE_ERROR;
792                 }
793         }
794
795         if (!err && !ctx->task && cpuctx->max_pertask)
796                 cpuctx->max_pertask--;
797
798  unlock:
799         perf_enable();
800
801         raw_spin_unlock(&ctx->lock);
802 }
803
804 /*
805  * Attach a performance event to a context
806  *
807  * First we add the event to the list with the hardware enable bit
808  * in event->hw_config cleared.
809  *
810  * If the event is attached to a task which is on a CPU we use a smp
811  * call to enable it in the task context. The task might have been
812  * scheduled away, but we check this in the smp call again.
813  *
814  * Must be called with ctx->mutex held.
815  */
816 static void
817 perf_install_in_context(struct perf_event_context *ctx,
818                         struct perf_event *event,
819                         int cpu)
820 {
821         struct task_struct *task = ctx->task;
822
823         if (!task) {
824                 /*
825                  * Per cpu events are installed via an smp call and
826                  * the install is always successful.
827                  */
828                 smp_call_function_single(cpu, __perf_install_in_context,
829                                          event, 1);
830                 return;
831         }
832
833 retry:
834         task_oncpu_function_call(task, __perf_install_in_context,
835                                  event);
836
837         raw_spin_lock_irq(&ctx->lock);
838         /*
839          * we need to retry the smp call.
840          */
841         if (ctx->is_active && list_empty(&event->group_entry)) {
842                 raw_spin_unlock_irq(&ctx->lock);
843                 goto retry;
844         }
845
846         /*
847          * The lock prevents that this context is scheduled in so we
848          * can add the event safely, if it the call above did not
849          * succeed.
850          */
851         if (list_empty(&event->group_entry))
852                 add_event_to_ctx(event, ctx);
853         raw_spin_unlock_irq(&ctx->lock);
854 }
855
856 /*
857  * Put a event into inactive state and update time fields.
858  * Enabling the leader of a group effectively enables all
859  * the group members that aren't explicitly disabled, so we
860  * have to update their ->tstamp_enabled also.
861  * Note: this works for group members as well as group leaders
862  * since the non-leader members' sibling_lists will be empty.
863  */
864 static void __perf_event_mark_enabled(struct perf_event *event,
865                                         struct perf_event_context *ctx)
866 {
867         struct perf_event *sub;
868
869         event->state = PERF_EVENT_STATE_INACTIVE;
870         event->tstamp_enabled = ctx->time - event->total_time_enabled;
871         list_for_each_entry(sub, &event->sibling_list, group_entry)
872                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873                         sub->tstamp_enabled =
874                                 ctx->time - sub->total_time_enabled;
875 }
876
877 /*
878  * Cross CPU call to enable a performance event
879  */
880 static void __perf_event_enable(void *info)
881 {
882         struct perf_event *event = info;
883         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884         struct perf_event_context *ctx = event->ctx;
885         struct perf_event *leader = event->group_leader;
886         int err;
887
888         /*
889          * If this is a per-task event, need to check whether this
890          * event's task is the current task on this cpu.
891          */
892         if (ctx->task && cpuctx->task_ctx != ctx) {
893                 if (cpuctx->task_ctx || ctx->task != current)
894                         return;
895                 cpuctx->task_ctx = ctx;
896         }
897
898         raw_spin_lock(&ctx->lock);
899         ctx->is_active = 1;
900         update_context_time(ctx);
901
902         if (event->state >= PERF_EVENT_STATE_INACTIVE)
903                 goto unlock;
904         __perf_event_mark_enabled(event, ctx);
905
906         if (event->cpu != -1 && event->cpu != smp_processor_id())
907                 goto unlock;
908
909         /*
910          * If the event is in a group and isn't the group leader,
911          * then don't put it on unless the group is on.
912          */
913         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914                 goto unlock;
915
916         if (!group_can_go_on(event, cpuctx, 1)) {
917                 err = -EEXIST;
918         } else {
919                 perf_disable();
920                 if (event == leader)
921                         err = group_sched_in(event, cpuctx, ctx);
922                 else
923                         err = event_sched_in(event, cpuctx, ctx);
924                 perf_enable();
925         }
926
927         if (err) {
928                 /*
929                  * If this event can't go on and it's part of a
930                  * group, then the whole group has to come off.
931                  */
932                 if (leader != event)
933                         group_sched_out(leader, cpuctx, ctx);
934                 if (leader->attr.pinned) {
935                         update_group_times(leader);
936                         leader->state = PERF_EVENT_STATE_ERROR;
937                 }
938         }
939
940  unlock:
941         raw_spin_unlock(&ctx->lock);
942 }
943
944 /*
945  * Enable a event.
946  *
947  * If event->ctx is a cloned context, callers must make sure that
948  * every task struct that event->ctx->task could possibly point to
949  * remains valid.  This condition is satisfied when called through
950  * perf_event_for_each_child or perf_event_for_each as described
951  * for perf_event_disable.
952  */
953 void perf_event_enable(struct perf_event *event)
954 {
955         struct perf_event_context *ctx = event->ctx;
956         struct task_struct *task = ctx->task;
957
958         if (!task) {
959                 /*
960                  * Enable the event on the cpu that it's on
961                  */
962                 smp_call_function_single(event->cpu, __perf_event_enable,
963                                          event, 1);
964                 return;
965         }
966
967         raw_spin_lock_irq(&ctx->lock);
968         if (event->state >= PERF_EVENT_STATE_INACTIVE)
969                 goto out;
970
971         /*
972          * If the event is in error state, clear that first.
973          * That way, if we see the event in error state below, we
974          * know that it has gone back into error state, as distinct
975          * from the task having been scheduled away before the
976          * cross-call arrived.
977          */
978         if (event->state == PERF_EVENT_STATE_ERROR)
979                 event->state = PERF_EVENT_STATE_OFF;
980
981  retry:
982         raw_spin_unlock_irq(&ctx->lock);
983         task_oncpu_function_call(task, __perf_event_enable, event);
984
985         raw_spin_lock_irq(&ctx->lock);
986
987         /*
988          * If the context is active and the event is still off,
989          * we need to retry the cross-call.
990          */
991         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992                 goto retry;
993
994         /*
995          * Since we have the lock this context can't be scheduled
996          * in, so we can change the state safely.
997          */
998         if (event->state == PERF_EVENT_STATE_OFF)
999                 __perf_event_mark_enabled(event, ctx);
1000
1001  out:
1002         raw_spin_unlock_irq(&ctx->lock);
1003 }
1004
1005 static int perf_event_refresh(struct perf_event *event, int refresh)
1006 {
1007         /*
1008          * not supported on inherited events
1009          */
1010         if (event->attr.inherit)
1011                 return -EINVAL;
1012
1013         atomic_add(refresh, &event->event_limit);
1014         perf_event_enable(event);
1015
1016         return 0;
1017 }
1018
1019 enum event_type_t {
1020         EVENT_FLEXIBLE = 0x1,
1021         EVENT_PINNED = 0x2,
1022         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1023 };
1024
1025 static void ctx_sched_out(struct perf_event_context *ctx,
1026                           struct perf_cpu_context *cpuctx,
1027                           enum event_type_t event_type)
1028 {
1029         struct perf_event *event;
1030
1031         raw_spin_lock(&ctx->lock);
1032         ctx->is_active = 0;
1033         if (likely(!ctx->nr_events))
1034                 goto out;
1035         update_context_time(ctx);
1036
1037         perf_disable();
1038         if (!ctx->nr_active)
1039                 goto out_enable;
1040
1041         if (event_type & EVENT_PINNED)
1042                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043                         group_sched_out(event, cpuctx, ctx);
1044
1045         if (event_type & EVENT_FLEXIBLE)
1046                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047                         group_sched_out(event, cpuctx, ctx);
1048
1049  out_enable:
1050         perf_enable();
1051  out:
1052         raw_spin_unlock(&ctx->lock);
1053 }
1054
1055 /*
1056  * Test whether two contexts are equivalent, i.e. whether they
1057  * have both been cloned from the same version of the same context
1058  * and they both have the same number of enabled events.
1059  * If the number of enabled events is the same, then the set
1060  * of enabled events should be the same, because these are both
1061  * inherited contexts, therefore we can't access individual events
1062  * in them directly with an fd; we can only enable/disable all
1063  * events via prctl, or enable/disable all events in a family
1064  * via ioctl, which will have the same effect on both contexts.
1065  */
1066 static int context_equiv(struct perf_event_context *ctx1,
1067                          struct perf_event_context *ctx2)
1068 {
1069         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070                 && ctx1->parent_gen == ctx2->parent_gen
1071                 && !ctx1->pin_count && !ctx2->pin_count;
1072 }
1073
1074 static void __perf_event_sync_stat(struct perf_event *event,
1075                                      struct perf_event *next_event)
1076 {
1077         u64 value;
1078
1079         if (!event->attr.inherit_stat)
1080                 return;
1081
1082         /*
1083          * Update the event value, we cannot use perf_event_read()
1084          * because we're in the middle of a context switch and have IRQs
1085          * disabled, which upsets smp_call_function_single(), however
1086          * we know the event must be on the current CPU, therefore we
1087          * don't need to use it.
1088          */
1089         switch (event->state) {
1090         case PERF_EVENT_STATE_ACTIVE:
1091                 event->pmu->read(event);
1092                 /* fall-through */
1093
1094         case PERF_EVENT_STATE_INACTIVE:
1095                 update_event_times(event);
1096                 break;
1097
1098         default:
1099                 break;
1100         }
1101
1102         /*
1103          * In order to keep per-task stats reliable we need to flip the event
1104          * values when we flip the contexts.
1105          */
1106         value = atomic64_read(&next_event->count);
1107         value = atomic64_xchg(&event->count, value);
1108         atomic64_set(&next_event->count, value);
1109
1110         swap(event->total_time_enabled, next_event->total_time_enabled);
1111         swap(event->total_time_running, next_event->total_time_running);
1112
1113         /*
1114          * Since we swizzled the values, update the user visible data too.
1115          */
1116         perf_event_update_userpage(event);
1117         perf_event_update_userpage(next_event);
1118 }
1119
1120 #define list_next_entry(pos, member) \
1121         list_entry(pos->member.next, typeof(*pos), member)
1122
1123 static void perf_event_sync_stat(struct perf_event_context *ctx,
1124                                    struct perf_event_context *next_ctx)
1125 {
1126         struct perf_event *event, *next_event;
1127
1128         if (!ctx->nr_stat)
1129                 return;
1130
1131         update_context_time(ctx);
1132
1133         event = list_first_entry(&ctx->event_list,
1134                                    struct perf_event, event_entry);
1135
1136         next_event = list_first_entry(&next_ctx->event_list,
1137                                         struct perf_event, event_entry);
1138
1139         while (&event->event_entry != &ctx->event_list &&
1140                &next_event->event_entry != &next_ctx->event_list) {
1141
1142                 __perf_event_sync_stat(event, next_event);
1143
1144                 event = list_next_entry(event, event_entry);
1145                 next_event = list_next_entry(next_event, event_entry);
1146         }
1147 }
1148
1149 /*
1150  * Called from scheduler to remove the events of the current task,
1151  * with interrupts disabled.
1152  *
1153  * We stop each event and update the event value in event->count.
1154  *
1155  * This does not protect us against NMI, but disable()
1156  * sets the disabled bit in the control field of event _before_
1157  * accessing the event control register. If a NMI hits, then it will
1158  * not restart the event.
1159  */
1160 void perf_event_task_sched_out(struct task_struct *task,
1161                                  struct task_struct *next)
1162 {
1163         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164         struct perf_event_context *ctx = task->perf_event_ctxp;
1165         struct perf_event_context *next_ctx;
1166         struct perf_event_context *parent;
1167         struct pt_regs *regs;
1168         int do_switch = 1;
1169
1170         regs = task_pt_regs(task);
1171         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1172
1173         if (likely(!ctx || !cpuctx->task_ctx))
1174                 return;
1175
1176         rcu_read_lock();
1177         parent = rcu_dereference(ctx->parent_ctx);
1178         next_ctx = next->perf_event_ctxp;
1179         if (parent && next_ctx &&
1180             rcu_dereference(next_ctx->parent_ctx) == parent) {
1181                 /*
1182                  * Looks like the two contexts are clones, so we might be
1183                  * able to optimize the context switch.  We lock both
1184                  * contexts and check that they are clones under the
1185                  * lock (including re-checking that neither has been
1186                  * uncloned in the meantime).  It doesn't matter which
1187                  * order we take the locks because no other cpu could
1188                  * be trying to lock both of these tasks.
1189                  */
1190                 raw_spin_lock(&ctx->lock);
1191                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1192                 if (context_equiv(ctx, next_ctx)) {
1193                         /*
1194                          * XXX do we need a memory barrier of sorts
1195                          * wrt to rcu_dereference() of perf_event_ctxp
1196                          */
1197                         task->perf_event_ctxp = next_ctx;
1198                         next->perf_event_ctxp = ctx;
1199                         ctx->task = next;
1200                         next_ctx->task = task;
1201                         do_switch = 0;
1202
1203                         perf_event_sync_stat(ctx, next_ctx);
1204                 }
1205                 raw_spin_unlock(&next_ctx->lock);
1206                 raw_spin_unlock(&ctx->lock);
1207         }
1208         rcu_read_unlock();
1209
1210         if (do_switch) {
1211                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1212                 cpuctx->task_ctx = NULL;
1213         }
1214 }
1215
1216 static void task_ctx_sched_out(struct perf_event_context *ctx,
1217                                enum event_type_t event_type)
1218 {
1219         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1220
1221         if (!cpuctx->task_ctx)
1222                 return;
1223
1224         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1225                 return;
1226
1227         ctx_sched_out(ctx, cpuctx, event_type);
1228         cpuctx->task_ctx = NULL;
1229 }
1230
1231 /*
1232  * Called with IRQs disabled
1233  */
1234 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1235 {
1236         task_ctx_sched_out(ctx, EVENT_ALL);
1237 }
1238
1239 /*
1240  * Called with IRQs disabled
1241  */
1242 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1243                               enum event_type_t event_type)
1244 {
1245         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1246 }
1247
1248 static void
1249 ctx_pinned_sched_in(struct perf_event_context *ctx,
1250                     struct perf_cpu_context *cpuctx)
1251 {
1252         struct perf_event *event;
1253
1254         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1255                 if (event->state <= PERF_EVENT_STATE_OFF)
1256                         continue;
1257                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1258                         continue;
1259
1260                 if (group_can_go_on(event, cpuctx, 1))
1261                         group_sched_in(event, cpuctx, ctx);
1262
1263                 /*
1264                  * If this pinned group hasn't been scheduled,
1265                  * put it in error state.
1266                  */
1267                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268                         update_group_times(event);
1269                         event->state = PERF_EVENT_STATE_ERROR;
1270                 }
1271         }
1272 }
1273
1274 static void
1275 ctx_flexible_sched_in(struct perf_event_context *ctx,
1276                       struct perf_cpu_context *cpuctx)
1277 {
1278         struct perf_event *event;
1279         int can_add_hw = 1;
1280
1281         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1282                 /* Ignore events in OFF or ERROR state */
1283                 if (event->state <= PERF_EVENT_STATE_OFF)
1284                         continue;
1285                 /*
1286                  * Listen to the 'cpu' scheduling filter constraint
1287                  * of events:
1288                  */
1289                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1290                         continue;
1291
1292                 if (group_can_go_on(event, cpuctx, can_add_hw))
1293                         if (group_sched_in(event, cpuctx, ctx))
1294                                 can_add_hw = 0;
1295         }
1296 }
1297
1298 static void
1299 ctx_sched_in(struct perf_event_context *ctx,
1300              struct perf_cpu_context *cpuctx,
1301              enum event_type_t event_type)
1302 {
1303         raw_spin_lock(&ctx->lock);
1304         ctx->is_active = 1;
1305         if (likely(!ctx->nr_events))
1306                 goto out;
1307
1308         ctx->timestamp = perf_clock();
1309
1310         perf_disable();
1311
1312         /*
1313          * First go through the list and put on any pinned groups
1314          * in order to give them the best chance of going on.
1315          */
1316         if (event_type & EVENT_PINNED)
1317                 ctx_pinned_sched_in(ctx, cpuctx);
1318
1319         /* Then walk through the lower prio flexible groups */
1320         if (event_type & EVENT_FLEXIBLE)
1321                 ctx_flexible_sched_in(ctx, cpuctx);
1322
1323         perf_enable();
1324  out:
1325         raw_spin_unlock(&ctx->lock);
1326 }
1327
1328 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1329                              enum event_type_t event_type)
1330 {
1331         struct perf_event_context *ctx = &cpuctx->ctx;
1332
1333         ctx_sched_in(ctx, cpuctx, event_type);
1334 }
1335
1336 static void task_ctx_sched_in(struct task_struct *task,
1337                               enum event_type_t event_type)
1338 {
1339         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1340         struct perf_event_context *ctx = task->perf_event_ctxp;
1341
1342         if (likely(!ctx))
1343                 return;
1344         if (cpuctx->task_ctx == ctx)
1345                 return;
1346         ctx_sched_in(ctx, cpuctx, event_type);
1347         cpuctx->task_ctx = ctx;
1348 }
1349 /*
1350  * Called from scheduler to add the events of the current task
1351  * with interrupts disabled.
1352  *
1353  * We restore the event value and then enable it.
1354  *
1355  * This does not protect us against NMI, but enable()
1356  * sets the enabled bit in the control field of event _before_
1357  * accessing the event control register. If a NMI hits, then it will
1358  * keep the event running.
1359  */
1360 void perf_event_task_sched_in(struct task_struct *task)
1361 {
1362         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1363         struct perf_event_context *ctx = task->perf_event_ctxp;
1364
1365         if (likely(!ctx))
1366                 return;
1367
1368         if (cpuctx->task_ctx == ctx)
1369                 return;
1370
1371         /*
1372          * We want to keep the following priority order:
1373          * cpu pinned (that don't need to move), task pinned,
1374          * cpu flexible, task flexible.
1375          */
1376         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1377
1378         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1379         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1380         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1381
1382         cpuctx->task_ctx = ctx;
1383 }
1384
1385 #define MAX_INTERRUPTS (~0ULL)
1386
1387 static void perf_log_throttle(struct perf_event *event, int enable);
1388
1389 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1390 {
1391         u64 frequency = event->attr.sample_freq;
1392         u64 sec = NSEC_PER_SEC;
1393         u64 divisor, dividend;
1394
1395         int count_fls, nsec_fls, frequency_fls, sec_fls;
1396
1397         count_fls = fls64(count);
1398         nsec_fls = fls64(nsec);
1399         frequency_fls = fls64(frequency);
1400         sec_fls = 30;
1401
1402         /*
1403          * We got @count in @nsec, with a target of sample_freq HZ
1404          * the target period becomes:
1405          *
1406          *             @count * 10^9
1407          * period = -------------------
1408          *          @nsec * sample_freq
1409          *
1410          */
1411
1412         /*
1413          * Reduce accuracy by one bit such that @a and @b converge
1414          * to a similar magnitude.
1415          */
1416 #define REDUCE_FLS(a, b)                \
1417 do {                                    \
1418         if (a##_fls > b##_fls) {        \
1419                 a >>= 1;                \
1420                 a##_fls--;              \
1421         } else {                        \
1422                 b >>= 1;                \
1423                 b##_fls--;              \
1424         }                               \
1425 } while (0)
1426
1427         /*
1428          * Reduce accuracy until either term fits in a u64, then proceed with
1429          * the other, so that finally we can do a u64/u64 division.
1430          */
1431         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1432                 REDUCE_FLS(nsec, frequency);
1433                 REDUCE_FLS(sec, count);
1434         }
1435
1436         if (count_fls + sec_fls > 64) {
1437                 divisor = nsec * frequency;
1438
1439                 while (count_fls + sec_fls > 64) {
1440                         REDUCE_FLS(count, sec);
1441                         divisor >>= 1;
1442                 }
1443
1444                 dividend = count * sec;
1445         } else {
1446                 dividend = count * sec;
1447
1448                 while (nsec_fls + frequency_fls > 64) {
1449                         REDUCE_FLS(nsec, frequency);
1450                         dividend >>= 1;
1451                 }
1452
1453                 divisor = nsec * frequency;
1454         }
1455
1456         return div64_u64(dividend, divisor);
1457 }
1458
1459 static void perf_event_stop(struct perf_event *event)
1460 {
1461         if (!event->pmu->stop)
1462                 return event->pmu->disable(event);
1463
1464         return event->pmu->stop(event);
1465 }
1466
1467 static int perf_event_start(struct perf_event *event)
1468 {
1469         if (!event->pmu->start)
1470                 return event->pmu->enable(event);
1471
1472         return event->pmu->start(event);
1473 }
1474
1475 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1476 {
1477         struct hw_perf_event *hwc = &event->hw;
1478         u64 period, sample_period;
1479         s64 delta;
1480
1481         period = perf_calculate_period(event, nsec, count);
1482
1483         delta = (s64)(period - hwc->sample_period);
1484         delta = (delta + 7) / 8; /* low pass filter */
1485
1486         sample_period = hwc->sample_period + delta;
1487
1488         if (!sample_period)
1489                 sample_period = 1;
1490
1491         hwc->sample_period = sample_period;
1492
1493         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1494                 perf_disable();
1495                 perf_event_stop(event);
1496                 atomic64_set(&hwc->period_left, 0);
1497                 perf_event_start(event);
1498                 perf_enable();
1499         }
1500 }
1501
1502 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1503 {
1504         struct perf_event *event;
1505         struct hw_perf_event *hwc;
1506         u64 interrupts, now;
1507         s64 delta;
1508
1509         raw_spin_lock(&ctx->lock);
1510         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1511                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1512                         continue;
1513
1514                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1515                         continue;
1516
1517                 hwc = &event->hw;
1518
1519                 interrupts = hwc->interrupts;
1520                 hwc->interrupts = 0;
1521
1522                 /*
1523                  * unthrottle events on the tick
1524                  */
1525                 if (interrupts == MAX_INTERRUPTS) {
1526                         perf_log_throttle(event, 1);
1527                         event->pmu->unthrottle(event);
1528                 }
1529
1530                 if (!event->attr.freq || !event->attr.sample_freq)
1531                         continue;
1532
1533                 event->pmu->read(event);
1534                 now = atomic64_read(&event->count);
1535                 delta = now - hwc->freq_count_stamp;
1536                 hwc->freq_count_stamp = now;
1537
1538                 if (delta > 0)
1539                         perf_adjust_period(event, TICK_NSEC, delta);
1540         }
1541         raw_spin_unlock(&ctx->lock);
1542 }
1543
1544 /*
1545  * Round-robin a context's events:
1546  */
1547 static void rotate_ctx(struct perf_event_context *ctx)
1548 {
1549         if (!ctx->nr_events)
1550                 return;
1551
1552         raw_spin_lock(&ctx->lock);
1553
1554         /* Rotate the first entry last of non-pinned groups */
1555         list_rotate_left(&ctx->flexible_groups);
1556
1557         raw_spin_unlock(&ctx->lock);
1558 }
1559
1560 void perf_event_task_tick(struct task_struct *curr)
1561 {
1562         struct perf_cpu_context *cpuctx;
1563         struct perf_event_context *ctx;
1564
1565         if (!atomic_read(&nr_events))
1566                 return;
1567
1568         cpuctx = &__get_cpu_var(perf_cpu_context);
1569         ctx = curr->perf_event_ctxp;
1570
1571         perf_disable();
1572
1573         perf_ctx_adjust_freq(&cpuctx->ctx);
1574         if (ctx)
1575                 perf_ctx_adjust_freq(ctx);
1576
1577         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1578         if (ctx)
1579                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1580
1581         rotate_ctx(&cpuctx->ctx);
1582         if (ctx)
1583                 rotate_ctx(ctx);
1584
1585         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1586         if (ctx)
1587                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1588
1589         perf_enable();
1590 }
1591
1592 static int event_enable_on_exec(struct perf_event *event,
1593                                 struct perf_event_context *ctx)
1594 {
1595         if (!event->attr.enable_on_exec)
1596                 return 0;
1597
1598         event->attr.enable_on_exec = 0;
1599         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1600                 return 0;
1601
1602         __perf_event_mark_enabled(event, ctx);
1603
1604         return 1;
1605 }
1606
1607 /*
1608  * Enable all of a task's events that have been marked enable-on-exec.
1609  * This expects task == current.
1610  */
1611 static void perf_event_enable_on_exec(struct task_struct *task)
1612 {
1613         struct perf_event_context *ctx;
1614         struct perf_event *event;
1615         unsigned long flags;
1616         int enabled = 0;
1617         int ret;
1618
1619         local_irq_save(flags);
1620         ctx = task->perf_event_ctxp;
1621         if (!ctx || !ctx->nr_events)
1622                 goto out;
1623
1624         __perf_event_task_sched_out(ctx);
1625
1626         raw_spin_lock(&ctx->lock);
1627
1628         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1629                 ret = event_enable_on_exec(event, ctx);
1630                 if (ret)
1631                         enabled = 1;
1632         }
1633
1634         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1635                 ret = event_enable_on_exec(event, ctx);
1636                 if (ret)
1637                         enabled = 1;
1638         }
1639
1640         /*
1641          * Unclone this context if we enabled any event.
1642          */
1643         if (enabled)
1644                 unclone_ctx(ctx);
1645
1646         raw_spin_unlock(&ctx->lock);
1647
1648         perf_event_task_sched_in(task);
1649  out:
1650         local_irq_restore(flags);
1651 }
1652
1653 /*
1654  * Cross CPU call to read the hardware event
1655  */
1656 static void __perf_event_read(void *info)
1657 {
1658         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1659         struct perf_event *event = info;
1660         struct perf_event_context *ctx = event->ctx;
1661
1662         /*
1663          * If this is a task context, we need to check whether it is
1664          * the current task context of this cpu.  If not it has been
1665          * scheduled out before the smp call arrived.  In that case
1666          * event->count would have been updated to a recent sample
1667          * when the event was scheduled out.
1668          */
1669         if (ctx->task && cpuctx->task_ctx != ctx)
1670                 return;
1671
1672         raw_spin_lock(&ctx->lock);
1673         update_context_time(ctx);
1674         update_event_times(event);
1675         raw_spin_unlock(&ctx->lock);
1676
1677         event->pmu->read(event);
1678 }
1679
1680 static u64 perf_event_read(struct perf_event *event)
1681 {
1682         /*
1683          * If event is enabled and currently active on a CPU, update the
1684          * value in the event structure:
1685          */
1686         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1687                 smp_call_function_single(event->oncpu,
1688                                          __perf_event_read, event, 1);
1689         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1690                 struct perf_event_context *ctx = event->ctx;
1691                 unsigned long flags;
1692
1693                 raw_spin_lock_irqsave(&ctx->lock, flags);
1694                 update_context_time(ctx);
1695                 update_event_times(event);
1696                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1697         }
1698
1699         return atomic64_read(&event->count);
1700 }
1701
1702 /*
1703  * Initialize the perf_event context in a task_struct:
1704  */
1705 static void
1706 __perf_event_init_context(struct perf_event_context *ctx,
1707                             struct task_struct *task)
1708 {
1709         raw_spin_lock_init(&ctx->lock);
1710         mutex_init(&ctx->mutex);
1711         INIT_LIST_HEAD(&ctx->pinned_groups);
1712         INIT_LIST_HEAD(&ctx->flexible_groups);
1713         INIT_LIST_HEAD(&ctx->event_list);
1714         atomic_set(&ctx->refcount, 1);
1715         ctx->task = task;
1716 }
1717
1718 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1719 {
1720         struct perf_event_context *ctx;
1721         struct perf_cpu_context *cpuctx;
1722         struct task_struct *task;
1723         unsigned long flags;
1724         int err;
1725
1726         if (pid == -1 && cpu != -1) {
1727                 /* Must be root to operate on a CPU event: */
1728                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1729                         return ERR_PTR(-EACCES);
1730
1731                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1732                         return ERR_PTR(-EINVAL);
1733
1734                 /*
1735                  * We could be clever and allow to attach a event to an
1736                  * offline CPU and activate it when the CPU comes up, but
1737                  * that's for later.
1738                  */
1739                 if (!cpu_online(cpu))
1740                         return ERR_PTR(-ENODEV);
1741
1742                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1743                 ctx = &cpuctx->ctx;
1744                 get_ctx(ctx);
1745
1746                 return ctx;
1747         }
1748
1749         rcu_read_lock();
1750         if (!pid)
1751                 task = current;
1752         else
1753                 task = find_task_by_vpid(pid);
1754         if (task)
1755                 get_task_struct(task);
1756         rcu_read_unlock();
1757
1758         if (!task)
1759                 return ERR_PTR(-ESRCH);
1760
1761         /*
1762          * Can't attach events to a dying task.
1763          */
1764         err = -ESRCH;
1765         if (task->flags & PF_EXITING)
1766                 goto errout;
1767
1768         /* Reuse ptrace permission checks for now. */
1769         err = -EACCES;
1770         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1771                 goto errout;
1772
1773  retry:
1774         ctx = perf_lock_task_context(task, &flags);
1775         if (ctx) {
1776                 unclone_ctx(ctx);
1777                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1778         }
1779
1780         if (!ctx) {
1781                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1782                 err = -ENOMEM;
1783                 if (!ctx)
1784                         goto errout;
1785                 __perf_event_init_context(ctx, task);
1786                 get_ctx(ctx);
1787                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1788                         /*
1789                          * We raced with some other task; use
1790                          * the context they set.
1791                          */
1792                         kfree(ctx);
1793                         goto retry;
1794                 }
1795                 get_task_struct(task);
1796         }
1797
1798         put_task_struct(task);
1799         return ctx;
1800
1801  errout:
1802         put_task_struct(task);
1803         return ERR_PTR(err);
1804 }
1805
1806 static void perf_event_free_filter(struct perf_event *event);
1807
1808 static void free_event_rcu(struct rcu_head *head)
1809 {
1810         struct perf_event *event;
1811
1812         event = container_of(head, struct perf_event, rcu_head);
1813         if (event->ns)
1814                 put_pid_ns(event->ns);
1815         perf_event_free_filter(event);
1816         kfree(event);
1817 }
1818
1819 static void perf_pending_sync(struct perf_event *event);
1820
1821 static void free_event(struct perf_event *event)
1822 {
1823         perf_pending_sync(event);
1824
1825         if (!event->parent) {
1826                 atomic_dec(&nr_events);
1827                 if (event->attr.mmap)
1828                         atomic_dec(&nr_mmap_events);
1829                 if (event->attr.comm)
1830                         atomic_dec(&nr_comm_events);
1831                 if (event->attr.task)
1832                         atomic_dec(&nr_task_events);
1833         }
1834
1835         if (event->output) {
1836                 fput(event->output->filp);
1837                 event->output = NULL;
1838         }
1839
1840         if (event->destroy)
1841                 event->destroy(event);
1842
1843         put_ctx(event->ctx);
1844         call_rcu(&event->rcu_head, free_event_rcu);
1845 }
1846
1847 int perf_event_release_kernel(struct perf_event *event)
1848 {
1849         struct perf_event_context *ctx = event->ctx;
1850
1851         WARN_ON_ONCE(ctx->parent_ctx);
1852         mutex_lock(&ctx->mutex);
1853         perf_event_remove_from_context(event);
1854         mutex_unlock(&ctx->mutex);
1855
1856         mutex_lock(&event->owner->perf_event_mutex);
1857         list_del_init(&event->owner_entry);
1858         mutex_unlock(&event->owner->perf_event_mutex);
1859         put_task_struct(event->owner);
1860
1861         free_event(event);
1862
1863         return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1866
1867 /*
1868  * Called when the last reference to the file is gone.
1869  */
1870 static int perf_release(struct inode *inode, struct file *file)
1871 {
1872         struct perf_event *event = file->private_data;
1873
1874         file->private_data = NULL;
1875
1876         return perf_event_release_kernel(event);
1877 }
1878
1879 static int perf_event_read_size(struct perf_event *event)
1880 {
1881         int entry = sizeof(u64); /* value */
1882         int size = 0;
1883         int nr = 1;
1884
1885         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1886                 size += sizeof(u64);
1887
1888         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1889                 size += sizeof(u64);
1890
1891         if (event->attr.read_format & PERF_FORMAT_ID)
1892                 entry += sizeof(u64);
1893
1894         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1895                 nr += event->group_leader->nr_siblings;
1896                 size += sizeof(u64);
1897         }
1898
1899         size += entry * nr;
1900
1901         return size;
1902 }
1903
1904 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1905 {
1906         struct perf_event *child;
1907         u64 total = 0;
1908
1909         *enabled = 0;
1910         *running = 0;
1911
1912         mutex_lock(&event->child_mutex);
1913         total += perf_event_read(event);
1914         *enabled += event->total_time_enabled +
1915                         atomic64_read(&event->child_total_time_enabled);
1916         *running += event->total_time_running +
1917                         atomic64_read(&event->child_total_time_running);
1918
1919         list_for_each_entry(child, &event->child_list, child_list) {
1920                 total += perf_event_read(child);
1921                 *enabled += child->total_time_enabled;
1922                 *running += child->total_time_running;
1923         }
1924         mutex_unlock(&event->child_mutex);
1925
1926         return total;
1927 }
1928 EXPORT_SYMBOL_GPL(perf_event_read_value);
1929
1930 static int perf_event_read_group(struct perf_event *event,
1931                                    u64 read_format, char __user *buf)
1932 {
1933         struct perf_event *leader = event->group_leader, *sub;
1934         int n = 0, size = 0, ret = -EFAULT;
1935         struct perf_event_context *ctx = leader->ctx;
1936         u64 values[5];
1937         u64 count, enabled, running;
1938
1939         mutex_lock(&ctx->mutex);
1940         count = perf_event_read_value(leader, &enabled, &running);
1941
1942         values[n++] = 1 + leader->nr_siblings;
1943         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1944                 values[n++] = enabled;
1945         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1946                 values[n++] = running;
1947         values[n++] = count;
1948         if (read_format & PERF_FORMAT_ID)
1949                 values[n++] = primary_event_id(leader);
1950
1951         size = n * sizeof(u64);
1952
1953         if (copy_to_user(buf, values, size))
1954                 goto unlock;
1955
1956         ret = size;
1957
1958         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1959                 n = 0;
1960
1961                 values[n++] = perf_event_read_value(sub, &enabled, &running);
1962                 if (read_format & PERF_FORMAT_ID)
1963                         values[n++] = primary_event_id(sub);
1964
1965                 size = n * sizeof(u64);
1966
1967                 if (copy_to_user(buf + ret, values, size)) {
1968                         ret = -EFAULT;
1969                         goto unlock;
1970                 }
1971
1972                 ret += size;
1973         }
1974 unlock:
1975         mutex_unlock(&ctx->mutex);
1976
1977         return ret;
1978 }
1979
1980 static int perf_event_read_one(struct perf_event *event,
1981                                  u64 read_format, char __user *buf)
1982 {
1983         u64 enabled, running;
1984         u64 values[4];
1985         int n = 0;
1986
1987         values[n++] = perf_event_read_value(event, &enabled, &running);
1988         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989                 values[n++] = enabled;
1990         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991                 values[n++] = running;
1992         if (read_format & PERF_FORMAT_ID)
1993                 values[n++] = primary_event_id(event);
1994
1995         if (copy_to_user(buf, values, n * sizeof(u64)))
1996                 return -EFAULT;
1997
1998         return n * sizeof(u64);
1999 }
2000
2001 /*
2002  * Read the performance event - simple non blocking version for now
2003  */
2004 static ssize_t
2005 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2006 {
2007         u64 read_format = event->attr.read_format;
2008         int ret;
2009
2010         /*
2011          * Return end-of-file for a read on a event that is in
2012          * error state (i.e. because it was pinned but it couldn't be
2013          * scheduled on to the CPU at some point).
2014          */
2015         if (event->state == PERF_EVENT_STATE_ERROR)
2016                 return 0;
2017
2018         if (count < perf_event_read_size(event))
2019                 return -ENOSPC;
2020
2021         WARN_ON_ONCE(event->ctx->parent_ctx);
2022         if (read_format & PERF_FORMAT_GROUP)
2023                 ret = perf_event_read_group(event, read_format, buf);
2024         else
2025                 ret = perf_event_read_one(event, read_format, buf);
2026
2027         return ret;
2028 }
2029
2030 static ssize_t
2031 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2032 {
2033         struct perf_event *event = file->private_data;
2034
2035         return perf_read_hw(event, buf, count);
2036 }
2037
2038 static unsigned int perf_poll(struct file *file, poll_table *wait)
2039 {
2040         struct perf_event *event = file->private_data;
2041         struct perf_mmap_data *data;
2042         unsigned int events = POLL_HUP;
2043
2044         rcu_read_lock();
2045         data = rcu_dereference(event->data);
2046         if (data)
2047                 events = atomic_xchg(&data->poll, 0);
2048         rcu_read_unlock();
2049
2050         poll_wait(file, &event->waitq, wait);
2051
2052         return events;
2053 }
2054
2055 static void perf_event_reset(struct perf_event *event)
2056 {
2057         (void)perf_event_read(event);
2058         atomic64_set(&event->count, 0);
2059         perf_event_update_userpage(event);
2060 }
2061
2062 /*
2063  * Holding the top-level event's child_mutex means that any
2064  * descendant process that has inherited this event will block
2065  * in sync_child_event if it goes to exit, thus satisfying the
2066  * task existence requirements of perf_event_enable/disable.
2067  */
2068 static void perf_event_for_each_child(struct perf_event *event,
2069                                         void (*func)(struct perf_event *))
2070 {
2071         struct perf_event *child;
2072
2073         WARN_ON_ONCE(event->ctx->parent_ctx);
2074         mutex_lock(&event->child_mutex);
2075         func(event);
2076         list_for_each_entry(child, &event->child_list, child_list)
2077                 func(child);
2078         mutex_unlock(&event->child_mutex);
2079 }
2080
2081 static void perf_event_for_each(struct perf_event *event,
2082                                   void (*func)(struct perf_event *))
2083 {
2084         struct perf_event_context *ctx = event->ctx;
2085         struct perf_event *sibling;
2086
2087         WARN_ON_ONCE(ctx->parent_ctx);
2088         mutex_lock(&ctx->mutex);
2089         event = event->group_leader;
2090
2091         perf_event_for_each_child(event, func);
2092         func(event);
2093         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2094                 perf_event_for_each_child(event, func);
2095         mutex_unlock(&ctx->mutex);
2096 }
2097
2098 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2099 {
2100         struct perf_event_context *ctx = event->ctx;
2101         unsigned long size;
2102         int ret = 0;
2103         u64 value;
2104
2105         if (!event->attr.sample_period)
2106                 return -EINVAL;
2107
2108         size = copy_from_user(&value, arg, sizeof(value));
2109         if (size != sizeof(value))
2110                 return -EFAULT;
2111
2112         if (!value)
2113                 return -EINVAL;
2114
2115         raw_spin_lock_irq(&ctx->lock);
2116         if (event->attr.freq) {
2117                 if (value > sysctl_perf_event_sample_rate) {
2118                         ret = -EINVAL;
2119                         goto unlock;
2120                 }
2121
2122                 event->attr.sample_freq = value;
2123         } else {
2124                 event->attr.sample_period = value;
2125                 event->hw.sample_period = value;
2126         }
2127 unlock:
2128         raw_spin_unlock_irq(&ctx->lock);
2129
2130         return ret;
2131 }
2132
2133 static int perf_event_set_output(struct perf_event *event, int output_fd);
2134 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2135
2136 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2137 {
2138         struct perf_event *event = file->private_data;
2139         void (*func)(struct perf_event *);
2140         u32 flags = arg;
2141
2142         switch (cmd) {
2143         case PERF_EVENT_IOC_ENABLE:
2144                 func = perf_event_enable;
2145                 break;
2146         case PERF_EVENT_IOC_DISABLE:
2147                 func = perf_event_disable;
2148                 break;
2149         case PERF_EVENT_IOC_RESET:
2150                 func = perf_event_reset;
2151                 break;
2152
2153         case PERF_EVENT_IOC_REFRESH:
2154                 return perf_event_refresh(event, arg);
2155
2156         case PERF_EVENT_IOC_PERIOD:
2157                 return perf_event_period(event, (u64 __user *)arg);
2158
2159         case PERF_EVENT_IOC_SET_OUTPUT:
2160                 return perf_event_set_output(event, arg);
2161
2162         case PERF_EVENT_IOC_SET_FILTER:
2163                 return perf_event_set_filter(event, (void __user *)arg);
2164
2165         default:
2166                 return -ENOTTY;
2167         }
2168
2169         if (flags & PERF_IOC_FLAG_GROUP)
2170                 perf_event_for_each(event, func);
2171         else
2172                 perf_event_for_each_child(event, func);
2173
2174         return 0;
2175 }
2176
2177 int perf_event_task_enable(void)
2178 {
2179         struct perf_event *event;
2180
2181         mutex_lock(&current->perf_event_mutex);
2182         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2183                 perf_event_for_each_child(event, perf_event_enable);
2184         mutex_unlock(&current->perf_event_mutex);
2185
2186         return 0;
2187 }
2188
2189 int perf_event_task_disable(void)
2190 {
2191         struct perf_event *event;
2192
2193         mutex_lock(&current->perf_event_mutex);
2194         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2195                 perf_event_for_each_child(event, perf_event_disable);
2196         mutex_unlock(&current->perf_event_mutex);
2197
2198         return 0;
2199 }
2200
2201 #ifndef PERF_EVENT_INDEX_OFFSET
2202 # define PERF_EVENT_INDEX_OFFSET 0
2203 #endif
2204
2205 static int perf_event_index(struct perf_event *event)
2206 {
2207         if (event->state != PERF_EVENT_STATE_ACTIVE)
2208                 return 0;
2209
2210         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2211 }
2212
2213 /*
2214  * Callers need to ensure there can be no nesting of this function, otherwise
2215  * the seqlock logic goes bad. We can not serialize this because the arch
2216  * code calls this from NMI context.
2217  */
2218 void perf_event_update_userpage(struct perf_event *event)
2219 {
2220         struct perf_event_mmap_page *userpg;
2221         struct perf_mmap_data *data;
2222
2223         rcu_read_lock();
2224         data = rcu_dereference(event->data);
2225         if (!data)
2226                 goto unlock;
2227
2228         userpg = data->user_page;
2229
2230         /*
2231          * Disable preemption so as to not let the corresponding user-space
2232          * spin too long if we get preempted.
2233          */
2234         preempt_disable();
2235         ++userpg->lock;
2236         barrier();
2237         userpg->index = perf_event_index(event);
2238         userpg->offset = atomic64_read(&event->count);
2239         if (event->state == PERF_EVENT_STATE_ACTIVE)
2240                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2241
2242         userpg->time_enabled = event->total_time_enabled +
2243                         atomic64_read(&event->child_total_time_enabled);
2244
2245         userpg->time_running = event->total_time_running +
2246                         atomic64_read(&event->child_total_time_running);
2247
2248         barrier();
2249         ++userpg->lock;
2250         preempt_enable();
2251 unlock:
2252         rcu_read_unlock();
2253 }
2254
2255 static unsigned long perf_data_size(struct perf_mmap_data *data)
2256 {
2257         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2258 }
2259
2260 #ifndef CONFIG_PERF_USE_VMALLOC
2261
2262 /*
2263  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2264  */
2265
2266 static struct page *
2267 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2268 {
2269         if (pgoff > data->nr_pages)
2270                 return NULL;
2271
2272         if (pgoff == 0)
2273                 return virt_to_page(data->user_page);
2274
2275         return virt_to_page(data->data_pages[pgoff - 1]);
2276 }
2277
2278 static struct perf_mmap_data *
2279 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2280 {
2281         struct perf_mmap_data *data;
2282         unsigned long size;
2283         int i;
2284
2285         WARN_ON(atomic_read(&event->mmap_count));
2286
2287         size = sizeof(struct perf_mmap_data);
2288         size += nr_pages * sizeof(void *);
2289
2290         data = kzalloc(size, GFP_KERNEL);
2291         if (!data)
2292                 goto fail;
2293
2294         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2295         if (!data->user_page)
2296                 goto fail_user_page;
2297
2298         for (i = 0; i < nr_pages; i++) {
2299                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2300                 if (!data->data_pages[i])
2301                         goto fail_data_pages;
2302         }
2303
2304         data->data_order = 0;
2305         data->nr_pages = nr_pages;
2306
2307         return data;
2308
2309 fail_data_pages:
2310         for (i--; i >= 0; i--)
2311                 free_page((unsigned long)data->data_pages[i]);
2312
2313         free_page((unsigned long)data->user_page);
2314
2315 fail_user_page:
2316         kfree(data);
2317
2318 fail:
2319         return NULL;
2320 }
2321
2322 static void perf_mmap_free_page(unsigned long addr)
2323 {
2324         struct page *page = virt_to_page((void *)addr);
2325
2326         page->mapping = NULL;
2327         __free_page(page);
2328 }
2329
2330 static void perf_mmap_data_free(struct perf_mmap_data *data)
2331 {
2332         int i;
2333
2334         perf_mmap_free_page((unsigned long)data->user_page);
2335         for (i = 0; i < data->nr_pages; i++)
2336                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2337         kfree(data);
2338 }
2339
2340 #else
2341
2342 /*
2343  * Back perf_mmap() with vmalloc memory.
2344  *
2345  * Required for architectures that have d-cache aliasing issues.
2346  */
2347
2348 static struct page *
2349 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2350 {
2351         if (pgoff > (1UL << data->data_order))
2352                 return NULL;
2353
2354         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2355 }
2356
2357 static void perf_mmap_unmark_page(void *addr)
2358 {
2359         struct page *page = vmalloc_to_page(addr);
2360
2361         page->mapping = NULL;
2362 }
2363
2364 static void perf_mmap_data_free_work(struct work_struct *work)
2365 {
2366         struct perf_mmap_data *data;
2367         void *base;
2368         int i, nr;
2369
2370         data = container_of(work, struct perf_mmap_data, work);
2371         nr = 1 << data->data_order;
2372
2373         base = data->user_page;
2374         for (i = 0; i < nr + 1; i++)
2375                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2376
2377         vfree(base);
2378         kfree(data);
2379 }
2380
2381 static void perf_mmap_data_free(struct perf_mmap_data *data)
2382 {
2383         schedule_work(&data->work);
2384 }
2385
2386 static struct perf_mmap_data *
2387 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2388 {
2389         struct perf_mmap_data *data;
2390         unsigned long size;
2391         void *all_buf;
2392
2393         WARN_ON(atomic_read(&event->mmap_count));
2394
2395         size = sizeof(struct perf_mmap_data);
2396         size += sizeof(void *);
2397
2398         data = kzalloc(size, GFP_KERNEL);
2399         if (!data)
2400                 goto fail;
2401
2402         INIT_WORK(&data->work, perf_mmap_data_free_work);
2403
2404         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2405         if (!all_buf)
2406                 goto fail_all_buf;
2407
2408         data->user_page = all_buf;
2409         data->data_pages[0] = all_buf + PAGE_SIZE;
2410         data->data_order = ilog2(nr_pages);
2411         data->nr_pages = 1;
2412
2413         return data;
2414
2415 fail_all_buf:
2416         kfree(data);
2417
2418 fail:
2419         return NULL;
2420 }
2421
2422 #endif
2423
2424 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2425 {
2426         struct perf_event *event = vma->vm_file->private_data;
2427         struct perf_mmap_data *data;
2428         int ret = VM_FAULT_SIGBUS;
2429
2430         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2431                 if (vmf->pgoff == 0)
2432                         ret = 0;
2433                 return ret;
2434         }
2435
2436         rcu_read_lock();
2437         data = rcu_dereference(event->data);
2438         if (!data)
2439                 goto unlock;
2440
2441         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2442                 goto unlock;
2443
2444         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2445         if (!vmf->page)
2446                 goto unlock;
2447
2448         get_page(vmf->page);
2449         vmf->page->mapping = vma->vm_file->f_mapping;
2450         vmf->page->index   = vmf->pgoff;
2451
2452         ret = 0;
2453 unlock:
2454         rcu_read_unlock();
2455
2456         return ret;
2457 }
2458
2459 static void
2460 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2461 {
2462         long max_size = perf_data_size(data);
2463
2464         atomic_set(&data->lock, -1);
2465
2466         if (event->attr.watermark) {
2467                 data->watermark = min_t(long, max_size,
2468                                         event->attr.wakeup_watermark);
2469         }
2470
2471         if (!data->watermark)
2472                 data->watermark = max_size / 2;
2473
2474
2475         rcu_assign_pointer(event->data, data);
2476 }
2477
2478 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2479 {
2480         struct perf_mmap_data *data;
2481
2482         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2483         perf_mmap_data_free(data);
2484 }
2485
2486 static void perf_mmap_data_release(struct perf_event *event)
2487 {
2488         struct perf_mmap_data *data = event->data;
2489
2490         WARN_ON(atomic_read(&event->mmap_count));
2491
2492         rcu_assign_pointer(event->data, NULL);
2493         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2494 }
2495
2496 static void perf_mmap_open(struct vm_area_struct *vma)
2497 {
2498         struct perf_event *event = vma->vm_file->private_data;
2499
2500         atomic_inc(&event->mmap_count);
2501 }
2502
2503 static void perf_mmap_close(struct vm_area_struct *vma)
2504 {
2505         struct perf_event *event = vma->vm_file->private_data;
2506
2507         WARN_ON_ONCE(event->ctx->parent_ctx);
2508         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2509                 unsigned long size = perf_data_size(event->data);
2510                 struct user_struct *user = current_user();
2511
2512                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2513                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2514                 perf_mmap_data_release(event);
2515                 mutex_unlock(&event->mmap_mutex);
2516         }
2517 }
2518
2519 static const struct vm_operations_struct perf_mmap_vmops = {
2520         .open           = perf_mmap_open,
2521         .close          = perf_mmap_close,
2522         .fault          = perf_mmap_fault,
2523         .page_mkwrite   = perf_mmap_fault,
2524 };
2525
2526 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2527 {
2528         struct perf_event *event = file->private_data;
2529         unsigned long user_locked, user_lock_limit;
2530         struct user_struct *user = current_user();
2531         unsigned long locked, lock_limit;
2532         struct perf_mmap_data *data;
2533         unsigned long vma_size;
2534         unsigned long nr_pages;
2535         long user_extra, extra;
2536         int ret = 0;
2537
2538         if (!(vma->vm_flags & VM_SHARED))
2539                 return -EINVAL;
2540
2541         vma_size = vma->vm_end - vma->vm_start;
2542         nr_pages = (vma_size / PAGE_SIZE) - 1;
2543
2544         /*
2545          * If we have data pages ensure they're a power-of-two number, so we
2546          * can do bitmasks instead of modulo.
2547          */
2548         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2549                 return -EINVAL;
2550
2551         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2552                 return -EINVAL;
2553
2554         if (vma->vm_pgoff != 0)
2555                 return -EINVAL;
2556
2557         WARN_ON_ONCE(event->ctx->parent_ctx);
2558         mutex_lock(&event->mmap_mutex);
2559         if (event->output) {
2560                 ret = -EINVAL;
2561                 goto unlock;
2562         }
2563
2564         if (atomic_inc_not_zero(&event->mmap_count)) {
2565                 if (nr_pages != event->data->nr_pages)
2566                         ret = -EINVAL;
2567                 goto unlock;
2568         }
2569
2570         user_extra = nr_pages + 1;
2571         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2572
2573         /*
2574          * Increase the limit linearly with more CPUs:
2575          */
2576         user_lock_limit *= num_online_cpus();
2577
2578         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2579
2580         extra = 0;
2581         if (user_locked > user_lock_limit)
2582                 extra = user_locked - user_lock_limit;
2583
2584         lock_limit = rlimit(RLIMIT_MEMLOCK);
2585         lock_limit >>= PAGE_SHIFT;
2586         locked = vma->vm_mm->locked_vm + extra;
2587
2588         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2589                 !capable(CAP_IPC_LOCK)) {
2590                 ret = -EPERM;
2591                 goto unlock;
2592         }
2593
2594         WARN_ON(event->data);
2595
2596         data = perf_mmap_data_alloc(event, nr_pages);
2597         ret = -ENOMEM;
2598         if (!data)
2599                 goto unlock;
2600
2601         ret = 0;
2602         perf_mmap_data_init(event, data);
2603
2604         atomic_set(&event->mmap_count, 1);
2605         atomic_long_add(user_extra, &user->locked_vm);
2606         vma->vm_mm->locked_vm += extra;
2607         event->data->nr_locked = extra;
2608         if (vma->vm_flags & VM_WRITE)
2609                 event->data->writable = 1;
2610
2611 unlock:
2612         mutex_unlock(&event->mmap_mutex);
2613
2614         vma->vm_flags |= VM_RESERVED;
2615         vma->vm_ops = &perf_mmap_vmops;
2616
2617         return ret;
2618 }
2619
2620 static int perf_fasync(int fd, struct file *filp, int on)
2621 {
2622         struct inode *inode = filp->f_path.dentry->d_inode;
2623         struct perf_event *event = filp->private_data;
2624         int retval;
2625
2626         mutex_lock(&inode->i_mutex);
2627         retval = fasync_helper(fd, filp, on, &event->fasync);
2628         mutex_unlock(&inode->i_mutex);
2629
2630         if (retval < 0)
2631                 return retval;
2632
2633         return 0;
2634 }
2635
2636 static const struct file_operations perf_fops = {
2637         .release                = perf_release,
2638         .read                   = perf_read,
2639         .poll                   = perf_poll,
2640         .unlocked_ioctl         = perf_ioctl,
2641         .compat_ioctl           = perf_ioctl,
2642         .mmap                   = perf_mmap,
2643         .fasync                 = perf_fasync,
2644 };
2645
2646 /*
2647  * Perf event wakeup
2648  *
2649  * If there's data, ensure we set the poll() state and publish everything
2650  * to user-space before waking everybody up.
2651  */
2652
2653 void perf_event_wakeup(struct perf_event *event)
2654 {
2655         wake_up_all(&event->waitq);
2656
2657         if (event->pending_kill) {
2658                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2659                 event->pending_kill = 0;
2660         }
2661 }
2662
2663 /*
2664  * Pending wakeups
2665  *
2666  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2667  *
2668  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2669  * single linked list and use cmpxchg() to add entries lockless.
2670  */
2671
2672 static void perf_pending_event(struct perf_pending_entry *entry)
2673 {
2674         struct perf_event *event = container_of(entry,
2675                         struct perf_event, pending);
2676
2677         if (event->pending_disable) {
2678                 event->pending_disable = 0;
2679                 __perf_event_disable(event);
2680         }
2681
2682         if (event->pending_wakeup) {
2683                 event->pending_wakeup = 0;
2684                 perf_event_wakeup(event);
2685         }
2686 }
2687
2688 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2689
2690 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2691         PENDING_TAIL,
2692 };
2693
2694 static void perf_pending_queue(struct perf_pending_entry *entry,
2695                                void (*func)(struct perf_pending_entry *))
2696 {
2697         struct perf_pending_entry **head;
2698
2699         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2700                 return;
2701
2702         entry->func = func;
2703
2704         head = &get_cpu_var(perf_pending_head);
2705
2706         do {
2707                 entry->next = *head;
2708         } while (cmpxchg(head, entry->next, entry) != entry->next);
2709
2710         set_perf_event_pending();
2711
2712         put_cpu_var(perf_pending_head);
2713 }
2714
2715 static int __perf_pending_run(void)
2716 {
2717         struct perf_pending_entry *list;
2718         int nr = 0;
2719
2720         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2721         while (list != PENDING_TAIL) {
2722                 void (*func)(struct perf_pending_entry *);
2723                 struct perf_pending_entry *entry = list;
2724
2725                 list = list->next;
2726
2727                 func = entry->func;
2728                 entry->next = NULL;
2729                 /*
2730                  * Ensure we observe the unqueue before we issue the wakeup,
2731                  * so that we won't be waiting forever.
2732                  * -- see perf_not_pending().
2733                  */
2734                 smp_wmb();
2735
2736                 func(entry);
2737                 nr++;
2738         }
2739
2740         return nr;
2741 }
2742
2743 static inline int perf_not_pending(struct perf_event *event)
2744 {
2745         /*
2746          * If we flush on whatever cpu we run, there is a chance we don't
2747          * need to wait.
2748          */
2749         get_cpu();
2750         __perf_pending_run();
2751         put_cpu();
2752
2753         /*
2754          * Ensure we see the proper queue state before going to sleep
2755          * so that we do not miss the wakeup. -- see perf_pending_handle()
2756          */
2757         smp_rmb();
2758         return event->pending.next == NULL;
2759 }
2760
2761 static void perf_pending_sync(struct perf_event *event)
2762 {
2763         wait_event(event->waitq, perf_not_pending(event));
2764 }
2765
2766 void perf_event_do_pending(void)
2767 {
2768         __perf_pending_run();
2769 }
2770
2771 /*
2772  * Callchain support -- arch specific
2773  */
2774
2775 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2776 {
2777         return NULL;
2778 }
2779
2780 /*
2781  * Output
2782  */
2783 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2784                               unsigned long offset, unsigned long head)
2785 {
2786         unsigned long mask;
2787
2788         if (!data->writable)
2789                 return true;
2790
2791         mask = perf_data_size(data) - 1;
2792
2793         offset = (offset - tail) & mask;
2794         head   = (head   - tail) & mask;
2795
2796         if ((int)(head - offset) < 0)
2797                 return false;
2798
2799         return true;
2800 }
2801
2802 static void perf_output_wakeup(struct perf_output_handle *handle)
2803 {
2804         atomic_set(&handle->data->poll, POLL_IN);
2805
2806         if (handle->nmi) {
2807                 handle->event->pending_wakeup = 1;
2808                 perf_pending_queue(&handle->event->pending,
2809                                    perf_pending_event);
2810         } else
2811                 perf_event_wakeup(handle->event);
2812 }
2813
2814 /*
2815  * Curious locking construct.
2816  *
2817  * We need to ensure a later event_id doesn't publish a head when a former
2818  * event_id isn't done writing. However since we need to deal with NMIs we
2819  * cannot fully serialize things.
2820  *
2821  * What we do is serialize between CPUs so we only have to deal with NMI
2822  * nesting on a single CPU.
2823  *
2824  * We only publish the head (and generate a wakeup) when the outer-most
2825  * event_id completes.
2826  */
2827 static void perf_output_lock(struct perf_output_handle *handle)
2828 {
2829         struct perf_mmap_data *data = handle->data;
2830         int cur, cpu = get_cpu();
2831
2832         handle->locked = 0;
2833
2834         for (;;) {
2835                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2836                 if (cur == -1) {
2837                         handle->locked = 1;
2838                         break;
2839                 }
2840                 if (cur == cpu)
2841                         break;
2842
2843                 cpu_relax();
2844         }
2845 }
2846
2847 static void perf_output_unlock(struct perf_output_handle *handle)
2848 {
2849         struct perf_mmap_data *data = handle->data;
2850         unsigned long head;
2851         int cpu;
2852
2853         data->done_head = data->head;
2854
2855         if (!handle->locked)
2856                 goto out;
2857
2858 again:
2859         /*
2860          * The xchg implies a full barrier that ensures all writes are done
2861          * before we publish the new head, matched by a rmb() in userspace when
2862          * reading this position.
2863          */
2864         while ((head = atomic_long_xchg(&data->done_head, 0)))
2865                 data->user_page->data_head = head;
2866
2867         /*
2868          * NMI can happen here, which means we can miss a done_head update.
2869          */
2870
2871         cpu = atomic_xchg(&data->lock, -1);
2872         WARN_ON_ONCE(cpu != smp_processor_id());
2873
2874         /*
2875          * Therefore we have to validate we did not indeed do so.
2876          */
2877         if (unlikely(atomic_long_read(&data->done_head))) {
2878                 /*
2879                  * Since we had it locked, we can lock it again.
2880                  */
2881                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2882                         cpu_relax();
2883
2884                 goto again;
2885         }
2886
2887         if (atomic_xchg(&data->wakeup, 0))
2888                 perf_output_wakeup(handle);
2889 out:
2890         put_cpu();
2891 }
2892
2893 void perf_output_copy(struct perf_output_handle *handle,
2894                       const void *buf, unsigned int len)
2895 {
2896         unsigned int pages_mask;
2897         unsigned long offset;
2898         unsigned int size;
2899         void **pages;
2900
2901         offset          = handle->offset;
2902         pages_mask      = handle->data->nr_pages - 1;
2903         pages           = handle->data->data_pages;
2904
2905         do {
2906                 unsigned long page_offset;
2907                 unsigned long page_size;
2908                 int nr;
2909
2910                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2911                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2912                 page_offset = offset & (page_size - 1);
2913                 size        = min_t(unsigned int, page_size - page_offset, len);
2914
2915                 memcpy(pages[nr] + page_offset, buf, size);
2916
2917                 len         -= size;
2918                 buf         += size;
2919                 offset      += size;
2920         } while (len);
2921
2922         handle->offset = offset;
2923
2924         /*
2925          * Check we didn't copy past our reservation window, taking the
2926          * possible unsigned int wrap into account.
2927          */
2928         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2929 }
2930
2931 int perf_output_begin(struct perf_output_handle *handle,
2932                       struct perf_event *event, unsigned int size,
2933                       int nmi, int sample)
2934 {
2935         struct perf_event *output_event;
2936         struct perf_mmap_data *data;
2937         unsigned long tail, offset, head;
2938         int have_lost;
2939         struct {
2940                 struct perf_event_header header;
2941                 u64                      id;
2942                 u64                      lost;
2943         } lost_event;
2944
2945         rcu_read_lock();
2946         /*
2947          * For inherited events we send all the output towards the parent.
2948          */
2949         if (event->parent)
2950                 event = event->parent;
2951
2952         output_event = rcu_dereference(event->output);
2953         if (output_event)
2954                 event = output_event;
2955
2956         data = rcu_dereference(event->data);
2957         if (!data)
2958                 goto out;
2959
2960         handle->data    = data;
2961         handle->event   = event;
2962         handle->nmi     = nmi;
2963         handle->sample  = sample;
2964
2965         if (!data->nr_pages)
2966                 goto fail;
2967
2968         have_lost = atomic_read(&data->lost);
2969         if (have_lost)
2970                 size += sizeof(lost_event);
2971
2972         perf_output_lock(handle);
2973
2974         do {
2975                 /*
2976                  * Userspace could choose to issue a mb() before updating the
2977                  * tail pointer. So that all reads will be completed before the
2978                  * write is issued.
2979                  */
2980                 tail = ACCESS_ONCE(data->user_page->data_tail);
2981                 smp_rmb();
2982                 offset = head = atomic_long_read(&data->head);
2983                 head += size;
2984                 if (unlikely(!perf_output_space(data, tail, offset, head)))
2985                         goto fail;
2986         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2987
2988         handle->offset  = offset;
2989         handle->head    = head;
2990
2991         if (head - tail > data->watermark)
2992                 atomic_set(&data->wakeup, 1);
2993
2994         if (have_lost) {
2995                 lost_event.header.type = PERF_RECORD_LOST;
2996                 lost_event.header.misc = 0;
2997                 lost_event.header.size = sizeof(lost_event);
2998                 lost_event.id          = event->id;
2999                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3000
3001                 perf_output_put(handle, lost_event);
3002         }
3003
3004         return 0;
3005
3006 fail:
3007         atomic_inc(&data->lost);
3008         perf_output_unlock(handle);
3009 out:
3010         rcu_read_unlock();
3011
3012         return -ENOSPC;
3013 }
3014
3015 void perf_output_end(struct perf_output_handle *handle)
3016 {
3017         struct perf_event *event = handle->event;
3018         struct perf_mmap_data *data = handle->data;
3019
3020         int wakeup_events = event->attr.wakeup_events;
3021
3022         if (handle->sample && wakeup_events) {
3023                 int events = atomic_inc_return(&data->events);
3024                 if (events >= wakeup_events) {
3025                         atomic_sub(wakeup_events, &data->events);
3026                         atomic_set(&data->wakeup, 1);
3027                 }
3028         }
3029
3030         perf_output_unlock(handle);
3031         rcu_read_unlock();
3032 }
3033
3034 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3035 {
3036         /*
3037          * only top level events have the pid namespace they were created in
3038          */
3039         if (event->parent)
3040                 event = event->parent;
3041
3042         return task_tgid_nr_ns(p, event->ns);
3043 }
3044
3045 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3046 {
3047         /*
3048          * only top level events have the pid namespace they were created in
3049          */
3050         if (event->parent)
3051                 event = event->parent;
3052
3053         return task_pid_nr_ns(p, event->ns);
3054 }
3055
3056 static void perf_output_read_one(struct perf_output_handle *handle,
3057                                  struct perf_event *event)
3058 {
3059         u64 read_format = event->attr.read_format;
3060         u64 values[4];
3061         int n = 0;
3062
3063         values[n++] = atomic64_read(&event->count);
3064         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3065                 values[n++] = event->total_time_enabled +
3066                         atomic64_read(&event->child_total_time_enabled);
3067         }
3068         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3069                 values[n++] = event->total_time_running +
3070                         atomic64_read(&event->child_total_time_running);
3071         }
3072         if (read_format & PERF_FORMAT_ID)
3073                 values[n++] = primary_event_id(event);
3074
3075         perf_output_copy(handle, values, n * sizeof(u64));
3076 }
3077
3078 /*
3079  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3080  */
3081 static void perf_output_read_group(struct perf_output_handle *handle,
3082                             struct perf_event *event)
3083 {
3084         struct perf_event *leader = event->group_leader, *sub;
3085         u64 read_format = event->attr.read_format;
3086         u64 values[5];
3087         int n = 0;
3088
3089         values[n++] = 1 + leader->nr_siblings;
3090
3091         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3092                 values[n++] = leader->total_time_enabled;
3093
3094         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3095                 values[n++] = leader->total_time_running;
3096
3097         if (leader != event)
3098                 leader->pmu->read(leader);
3099
3100         values[n++] = atomic64_read(&leader->count);
3101         if (read_format & PERF_FORMAT_ID)
3102                 values[n++] = primary_event_id(leader);
3103
3104         perf_output_copy(handle, values, n * sizeof(u64));
3105
3106         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3107                 n = 0;
3108
3109                 if (sub != event)
3110                         sub->pmu->read(sub);
3111
3112                 values[n++] = atomic64_read(&sub->count);
3113                 if (read_format & PERF_FORMAT_ID)
3114                         values[n++] = primary_event_id(sub);
3115
3116                 perf_output_copy(handle, values, n * sizeof(u64));
3117         }
3118 }
3119
3120 static void perf_output_read(struct perf_output_handle *handle,
3121                              struct perf_event *event)
3122 {
3123         if (event->attr.read_format & PERF_FORMAT_GROUP)
3124                 perf_output_read_group(handle, event);
3125         else
3126                 perf_output_read_one(handle, event);
3127 }
3128
3129 void perf_output_sample(struct perf_output_handle *handle,
3130                         struct perf_event_header *header,
3131                         struct perf_sample_data *data,
3132                         struct perf_event *event)
3133 {
3134         u64 sample_type = data->type;
3135
3136         perf_output_put(handle, *header);
3137
3138         if (sample_type & PERF_SAMPLE_IP)
3139                 perf_output_put(handle, data->ip);
3140
3141         if (sample_type & PERF_SAMPLE_TID)
3142                 perf_output_put(handle, data->tid_entry);
3143
3144         if (sample_type & PERF_SAMPLE_TIME)
3145                 perf_output_put(handle, data->time);
3146
3147         if (sample_type & PERF_SAMPLE_ADDR)
3148                 perf_output_put(handle, data->addr);
3149
3150         if (sample_type & PERF_SAMPLE_ID)
3151                 perf_output_put(handle, data->id);
3152
3153         if (sample_type & PERF_SAMPLE_STREAM_ID)
3154                 perf_output_put(handle, data->stream_id);
3155
3156         if (sample_type & PERF_SAMPLE_CPU)
3157                 perf_output_put(handle, data->cpu_entry);
3158
3159         if (sample_type & PERF_SAMPLE_PERIOD)
3160                 perf_output_put(handle, data->period);
3161
3162         if (sample_type & PERF_SAMPLE_READ)
3163                 perf_output_read(handle, event);
3164
3165         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3166                 if (data->callchain) {
3167                         int size = 1;
3168
3169                         if (data->callchain)
3170                                 size += data->callchain->nr;
3171
3172                         size *= sizeof(u64);
3173
3174                         perf_output_copy(handle, data->callchain, size);
3175                 } else {
3176                         u64 nr = 0;
3177                         perf_output_put(handle, nr);
3178                 }
3179         }
3180
3181         if (sample_type & PERF_SAMPLE_RAW) {
3182                 if (data->raw) {
3183                         perf_output_put(handle, data->raw->size);
3184                         perf_output_copy(handle, data->raw->data,
3185                                          data->raw->size);
3186                 } else {
3187                         struct {
3188                                 u32     size;
3189                                 u32     data;
3190                         } raw = {
3191                                 .size = sizeof(u32),
3192                                 .data = 0,
3193                         };
3194                         perf_output_put(handle, raw);
3195                 }
3196         }
3197 }
3198
3199 void perf_prepare_sample(struct perf_event_header *header,
3200                          struct perf_sample_data *data,
3201                          struct perf_event *event,
3202                          struct pt_regs *regs)
3203 {
3204         u64 sample_type = event->attr.sample_type;
3205
3206         data->type = sample_type;
3207
3208         header->type = PERF_RECORD_SAMPLE;
3209         header->size = sizeof(*header);
3210
3211         header->misc = 0;
3212         header->misc |= perf_misc_flags(regs);
3213
3214         if (sample_type & PERF_SAMPLE_IP) {
3215                 data->ip = perf_instruction_pointer(regs);
3216
3217                 header->size += sizeof(data->ip);
3218         }
3219
3220         if (sample_type & PERF_SAMPLE_TID) {
3221                 /* namespace issues */
3222                 data->tid_entry.pid = perf_event_pid(event, current);
3223                 data->tid_entry.tid = perf_event_tid(event, current);
3224
3225                 header->size += sizeof(data->tid_entry);
3226         }
3227
3228         if (sample_type & PERF_SAMPLE_TIME) {
3229                 data->time = perf_clock();
3230
3231                 header->size += sizeof(data->time);
3232         }
3233
3234         if (sample_type & PERF_SAMPLE_ADDR)
3235                 header->size += sizeof(data->addr);
3236
3237         if (sample_type & PERF_SAMPLE_ID) {
3238                 data->id = primary_event_id(event);
3239
3240                 header->size += sizeof(data->id);
3241         }
3242
3243         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3244                 data->stream_id = event->id;
3245
3246                 header->size += sizeof(data->stream_id);
3247         }
3248
3249         if (sample_type & PERF_SAMPLE_CPU) {
3250                 data->cpu_entry.cpu             = raw_smp_processor_id();
3251                 data->cpu_entry.reserved        = 0;
3252
3253                 header->size += sizeof(data->cpu_entry);
3254         }
3255
3256         if (sample_type & PERF_SAMPLE_PERIOD)
3257                 header->size += sizeof(data->period);
3258
3259         if (sample_type & PERF_SAMPLE_READ)
3260                 header->size += perf_event_read_size(event);
3261
3262         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3263                 int size = 1;
3264
3265                 data->callchain = perf_callchain(regs);
3266
3267                 if (data->callchain)
3268                         size += data->callchain->nr;
3269
3270                 header->size += size * sizeof(u64);
3271         }
3272
3273         if (sample_type & PERF_SAMPLE_RAW) {
3274                 int size = sizeof(u32);
3275
3276                 if (data->raw)
3277                         size += data->raw->size;
3278                 else
3279                         size += sizeof(u32);
3280
3281                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3282                 header->size += size;
3283         }
3284 }
3285
3286 static void perf_event_output(struct perf_event *event, int nmi,
3287                                 struct perf_sample_data *data,
3288                                 struct pt_regs *regs)
3289 {
3290         struct perf_output_handle handle;
3291         struct perf_event_header header;
3292
3293         perf_prepare_sample(&header, data, event, regs);
3294
3295         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3296                 return;
3297
3298         perf_output_sample(&handle, &header, data, event);
3299
3300         perf_output_end(&handle);
3301 }
3302
3303 /*
3304  * read event_id
3305  */
3306
3307 struct perf_read_event {
3308         struct perf_event_header        header;
3309
3310         u32                             pid;
3311         u32                             tid;
3312 };
3313
3314 static void
3315 perf_event_read_event(struct perf_event *event,
3316                         struct task_struct *task)
3317 {
3318         struct perf_output_handle handle;
3319         struct perf_read_event read_event = {
3320                 .header = {
3321                         .type = PERF_RECORD_READ,
3322                         .misc = 0,
3323                         .size = sizeof(read_event) + perf_event_read_size(event),
3324                 },
3325                 .pid = perf_event_pid(event, task),
3326                 .tid = perf_event_tid(event, task),
3327         };
3328         int ret;
3329
3330         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3331         if (ret)
3332                 return;
3333
3334         perf_output_put(&handle, read_event);
3335         perf_output_read(&handle, event);
3336
3337         perf_output_end(&handle);
3338 }
3339
3340 /*
3341  * task tracking -- fork/exit
3342  *
3343  * enabled by: attr.comm | attr.mmap | attr.task
3344  */
3345
3346 struct perf_task_event {
3347         struct task_struct              *task;
3348         struct perf_event_context       *task_ctx;
3349
3350         struct {
3351                 struct perf_event_header        header;
3352
3353                 u32                             pid;
3354                 u32                             ppid;
3355                 u32                             tid;
3356                 u32                             ptid;
3357                 u64                             time;
3358         } event_id;
3359 };
3360
3361 static void perf_event_task_output(struct perf_event *event,
3362                                      struct perf_task_event *task_event)
3363 {
3364         struct perf_output_handle handle;
3365         int size;
3366         struct task_struct *task = task_event->task;
3367         int ret;
3368
3369         size  = task_event->event_id.header.size;
3370         ret = perf_output_begin(&handle, event, size, 0, 0);
3371
3372         if (ret)
3373                 return;
3374
3375         task_event->event_id.pid = perf_event_pid(event, task);
3376         task_event->event_id.ppid = perf_event_pid(event, current);
3377
3378         task_event->event_id.tid = perf_event_tid(event, task);
3379         task_event->event_id.ptid = perf_event_tid(event, current);
3380
3381         perf_output_put(&handle, task_event->event_id);
3382
3383         perf_output_end(&handle);
3384 }
3385
3386 static int perf_event_task_match(struct perf_event *event)
3387 {
3388         if (event->state < PERF_EVENT_STATE_INACTIVE)
3389                 return 0;
3390
3391         if (event->cpu != -1 && event->cpu != smp_processor_id())
3392                 return 0;
3393
3394         if (event->attr.comm || event->attr.mmap || event->attr.task)
3395                 return 1;
3396
3397         return 0;
3398 }
3399
3400 static void perf_event_task_ctx(struct perf_event_context *ctx,
3401                                   struct perf_task_event *task_event)
3402 {
3403         struct perf_event *event;
3404
3405         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3406                 if (perf_event_task_match(event))
3407                         perf_event_task_output(event, task_event);
3408         }
3409 }
3410
3411 static void perf_event_task_event(struct perf_task_event *task_event)
3412 {
3413         struct perf_cpu_context *cpuctx;
3414         struct perf_event_context *ctx = task_event->task_ctx;
3415
3416         rcu_read_lock();
3417         cpuctx = &get_cpu_var(perf_cpu_context);
3418         perf_event_task_ctx(&cpuctx->ctx, task_event);
3419         if (!ctx)
3420                 ctx = rcu_dereference(current->perf_event_ctxp);
3421         if (ctx)
3422                 perf_event_task_ctx(ctx, task_event);
3423         put_cpu_var(perf_cpu_context);
3424         rcu_read_unlock();
3425 }
3426
3427 static void perf_event_task(struct task_struct *task,
3428                               struct perf_event_context *task_ctx,
3429                               int new)
3430 {
3431         struct perf_task_event task_event;
3432
3433         if (!atomic_read(&nr_comm_events) &&
3434             !atomic_read(&nr_mmap_events) &&
3435             !atomic_read(&nr_task_events))
3436                 return;
3437
3438         task_event = (struct perf_task_event){
3439                 .task     = task,
3440                 .task_ctx = task_ctx,
3441                 .event_id    = {
3442                         .header = {
3443                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3444                                 .misc = 0,
3445                                 .size = sizeof(task_event.event_id),
3446                         },
3447                         /* .pid  */
3448                         /* .ppid */
3449                         /* .tid  */
3450                         /* .ptid */
3451                         .time = perf_clock(),
3452                 },
3453         };
3454
3455         perf_event_task_event(&task_event);
3456 }
3457
3458 void perf_event_fork(struct task_struct *task)
3459 {
3460         perf_event_task(task, NULL, 1);
3461 }
3462
3463 /*
3464  * comm tracking
3465  */
3466
3467 struct perf_comm_event {
3468         struct task_struct      *task;
3469         char                    *comm;
3470         int                     comm_size;
3471
3472         struct {
3473                 struct perf_event_header        header;
3474
3475                 u32                             pid;
3476                 u32                             tid;
3477         } event_id;
3478 };
3479
3480 static void perf_event_comm_output(struct perf_event *event,
3481                                      struct perf_comm_event *comm_event)
3482 {
3483         struct perf_output_handle handle;
3484         int size = comm_event->event_id.header.size;
3485         int ret = perf_output_begin(&handle, event, size, 0, 0);
3486
3487         if (ret)
3488                 return;
3489
3490         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3491         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3492
3493         perf_output_put(&handle, comm_event->event_id);
3494         perf_output_copy(&handle, comm_event->comm,
3495                                    comm_event->comm_size);
3496         perf_output_end(&handle);
3497 }
3498
3499 static int perf_event_comm_match(struct perf_event *event)
3500 {
3501         if (event->state < PERF_EVENT_STATE_INACTIVE)
3502                 return 0;
3503
3504         if (event->cpu != -1 && event->cpu != smp_processor_id())
3505                 return 0;
3506
3507         if (event->attr.comm)
3508                 return 1;
3509
3510         return 0;
3511 }
3512
3513 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3514                                   struct perf_comm_event *comm_event)
3515 {
3516         struct perf_event *event;
3517
3518         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3519                 if (perf_event_comm_match(event))
3520                         perf_event_comm_output(event, comm_event);
3521         }
3522 }
3523
3524 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3525 {
3526         struct perf_cpu_context *cpuctx;
3527         struct perf_event_context *ctx;
3528         unsigned int size;
3529         char comm[TASK_COMM_LEN];
3530
3531         memset(comm, 0, sizeof(comm));
3532         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3533         size = ALIGN(strlen(comm)+1, sizeof(u64));
3534
3535         comm_event->comm = comm;
3536         comm_event->comm_size = size;
3537
3538         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3539
3540         rcu_read_lock();
3541         cpuctx = &get_cpu_var(perf_cpu_context);
3542         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3543         ctx = rcu_dereference(current->perf_event_ctxp);
3544         if (ctx)
3545                 perf_event_comm_ctx(ctx, comm_event);
3546         put_cpu_var(perf_cpu_context);
3547         rcu_read_unlock();
3548 }
3549
3550 void perf_event_comm(struct task_struct *task)
3551 {
3552         struct perf_comm_event comm_event;
3553
3554         if (task->perf_event_ctxp)
3555                 perf_event_enable_on_exec(task);
3556
3557         if (!atomic_read(&nr_comm_events))
3558                 return;
3559
3560         comm_event = (struct perf_comm_event){
3561                 .task   = task,
3562                 /* .comm      */
3563                 /* .comm_size */
3564                 .event_id  = {
3565                         .header = {
3566                                 .type = PERF_RECORD_COMM,
3567                                 .misc = 0,
3568                                 /* .size */
3569                         },
3570                         /* .pid */
3571                         /* .tid */
3572                 },
3573         };
3574
3575         perf_event_comm_event(&comm_event);
3576 }
3577
3578 /*
3579  * mmap tracking
3580  */
3581
3582 struct perf_mmap_event {
3583         struct vm_area_struct   *vma;
3584
3585         const char              *file_name;
3586         int                     file_size;
3587
3588         struct {
3589                 struct perf_event_header        header;
3590
3591                 u32                             pid;
3592                 u32                             tid;
3593                 u64                             start;
3594                 u64                             len;
3595                 u64                             pgoff;
3596         } event_id;
3597 };
3598
3599 static void perf_event_mmap_output(struct perf_event *event,
3600                                      struct perf_mmap_event *mmap_event)
3601 {
3602         struct perf_output_handle handle;
3603         int size = mmap_event->event_id.header.size;
3604         int ret = perf_output_begin(&handle, event, size, 0, 0);
3605
3606         if (ret)
3607                 return;
3608
3609         mmap_event->event_id.pid = perf_event_pid(event, current);
3610         mmap_event->event_id.tid = perf_event_tid(event, current);
3611
3612         perf_output_put(&handle, mmap_event->event_id);
3613         perf_output_copy(&handle, mmap_event->file_name,
3614                                    mmap_event->file_size);
3615         perf_output_end(&handle);
3616 }
3617
3618 static int perf_event_mmap_match(struct perf_event *event,
3619                                    struct perf_mmap_event *mmap_event)
3620 {
3621         if (event->state < PERF_EVENT_STATE_INACTIVE)
3622                 return 0;
3623
3624         if (event->cpu != -1 && event->cpu != smp_processor_id())
3625                 return 0;
3626
3627         if (event->attr.mmap)
3628                 return 1;
3629
3630         return 0;
3631 }
3632
3633 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3634                                   struct perf_mmap_event *mmap_event)
3635 {
3636         struct perf_event *event;
3637
3638         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3639                 if (perf_event_mmap_match(event, mmap_event))
3640                         perf_event_mmap_output(event, mmap_event);
3641         }
3642 }
3643
3644 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3645 {
3646         struct perf_cpu_context *cpuctx;
3647         struct perf_event_context *ctx;
3648         struct vm_area_struct *vma = mmap_event->vma;
3649         struct file *file = vma->vm_file;
3650         unsigned int size;
3651         char tmp[16];
3652         char *buf = NULL;
3653         const char *name;
3654
3655         memset(tmp, 0, sizeof(tmp));
3656
3657         if (file) {
3658                 /*
3659                  * d_path works from the end of the buffer backwards, so we
3660                  * need to add enough zero bytes after the string to handle
3661                  * the 64bit alignment we do later.
3662                  */
3663                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3664                 if (!buf) {
3665                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3666                         goto got_name;
3667                 }
3668                 name = d_path(&file->f_path, buf, PATH_MAX);
3669                 if (IS_ERR(name)) {
3670                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3671                         goto got_name;
3672                 }
3673         } else {
3674                 if (arch_vma_name(mmap_event->vma)) {
3675                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3676                                        sizeof(tmp));
3677                         goto got_name;
3678                 }
3679
3680                 if (!vma->vm_mm) {
3681                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3682                         goto got_name;
3683                 }
3684
3685                 name = strncpy(tmp, "//anon", sizeof(tmp));
3686                 goto got_name;
3687         }
3688
3689 got_name:
3690         size = ALIGN(strlen(name)+1, sizeof(u64));
3691
3692         mmap_event->file_name = name;
3693         mmap_event->file_size = size;
3694
3695         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3696
3697         rcu_read_lock();
3698         cpuctx = &get_cpu_var(perf_cpu_context);
3699         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3700         ctx = rcu_dereference(current->perf_event_ctxp);
3701         if (ctx)
3702                 perf_event_mmap_ctx(ctx, mmap_event);
3703         put_cpu_var(perf_cpu_context);
3704         rcu_read_unlock();
3705
3706         kfree(buf);
3707 }
3708
3709 void __perf_event_mmap(struct vm_area_struct *vma)
3710 {
3711         struct perf_mmap_event mmap_event;
3712
3713         if (!atomic_read(&nr_mmap_events))
3714                 return;
3715
3716         mmap_event = (struct perf_mmap_event){
3717                 .vma    = vma,
3718                 /* .file_name */
3719                 /* .file_size */
3720                 .event_id  = {
3721                         .header = {
3722                                 .type = PERF_RECORD_MMAP,
3723                                 .misc = 0,
3724                                 /* .size */
3725                         },
3726                         /* .pid */
3727                         /* .tid */
3728                         .start  = vma->vm_start,
3729                         .len    = vma->vm_end - vma->vm_start,
3730                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3731                 },
3732         };
3733
3734         perf_event_mmap_event(&mmap_event);
3735 }
3736
3737 /*
3738  * IRQ throttle logging
3739  */
3740
3741 static void perf_log_throttle(struct perf_event *event, int enable)
3742 {
3743         struct perf_output_handle handle;
3744         int ret;
3745
3746         struct {
3747                 struct perf_event_header        header;
3748                 u64                             time;
3749                 u64                             id;
3750                 u64                             stream_id;
3751         } throttle_event = {
3752                 .header = {
3753                         .type = PERF_RECORD_THROTTLE,
3754                         .misc = 0,
3755                         .size = sizeof(throttle_event),
3756                 },
3757                 .time           = perf_clock(),
3758                 .id             = primary_event_id(event),
3759                 .stream_id      = event->id,
3760         };
3761
3762         if (enable)
3763                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3764
3765         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3766         if (ret)
3767                 return;
3768
3769         perf_output_put(&handle, throttle_event);
3770         perf_output_end(&handle);
3771 }
3772
3773 /*
3774  * Generic event overflow handling, sampling.
3775  */
3776
3777 static int __perf_event_overflow(struct perf_event *event, int nmi,
3778                                    int throttle, struct perf_sample_data *data,
3779                                    struct pt_regs *regs)
3780 {
3781         int events = atomic_read(&event->event_limit);
3782         struct hw_perf_event *hwc = &event->hw;
3783         int ret = 0;
3784
3785         throttle = (throttle && event->pmu->unthrottle != NULL);
3786
3787         if (!throttle) {
3788                 hwc->interrupts++;
3789         } else {
3790                 if (hwc->interrupts != MAX_INTERRUPTS) {
3791                         hwc->interrupts++;
3792                         if (HZ * hwc->interrupts >
3793                                         (u64)sysctl_perf_event_sample_rate) {
3794                                 hwc->interrupts = MAX_INTERRUPTS;
3795                                 perf_log_throttle(event, 0);
3796                                 ret = 1;
3797                         }
3798                 } else {
3799                         /*
3800                          * Keep re-disabling events even though on the previous
3801                          * pass we disabled it - just in case we raced with a
3802                          * sched-in and the event got enabled again:
3803                          */
3804                         ret = 1;
3805                 }
3806         }
3807
3808         if (event->attr.freq) {
3809                 u64 now = perf_clock();
3810                 s64 delta = now - hwc->freq_time_stamp;
3811
3812                 hwc->freq_time_stamp = now;
3813
3814                 if (delta > 0 && delta < 2*TICK_NSEC)
3815                         perf_adjust_period(event, delta, hwc->last_period);
3816         }
3817
3818         /*
3819          * XXX event_limit might not quite work as expected on inherited
3820          * events
3821          */
3822
3823         event->pending_kill = POLL_IN;
3824         if (events && atomic_dec_and_test(&event->event_limit)) {
3825                 ret = 1;
3826                 event->pending_kill = POLL_HUP;
3827                 if (nmi) {
3828                         event->pending_disable = 1;
3829                         perf_pending_queue(&event->pending,
3830                                            perf_pending_event);
3831                 } else
3832                         perf_event_disable(event);
3833         }
3834
3835         if (event->overflow_handler)
3836                 event->overflow_handler(event, nmi, data, regs);
3837         else
3838                 perf_event_output(event, nmi, data, regs);
3839
3840         return ret;
3841 }
3842
3843 int perf_event_overflow(struct perf_event *event, int nmi,
3844                           struct perf_sample_data *data,
3845                           struct pt_regs *regs)
3846 {
3847         return __perf_event_overflow(event, nmi, 1, data, regs);
3848 }
3849
3850 /*
3851  * Generic software event infrastructure
3852  */
3853
3854 /*
3855  * We directly increment event->count and keep a second value in
3856  * event->hw.period_left to count intervals. This period event
3857  * is kept in the range [-sample_period, 0] so that we can use the
3858  * sign as trigger.
3859  */
3860
3861 static u64 perf_swevent_set_period(struct perf_event *event)
3862 {
3863         struct hw_perf_event *hwc = &event->hw;
3864         u64 period = hwc->last_period;
3865         u64 nr, offset;
3866         s64 old, val;
3867
3868         hwc->last_period = hwc->sample_period;
3869
3870 again:
3871         old = val = atomic64_read(&hwc->period_left);
3872         if (val < 0)
3873                 return 0;
3874
3875         nr = div64_u64(period + val, period);
3876         offset = nr * period;
3877         val -= offset;
3878         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3879                 goto again;
3880
3881         return nr;
3882 }
3883
3884 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3885                                     int nmi, struct perf_sample_data *data,
3886                                     struct pt_regs *regs)
3887 {
3888         struct hw_perf_event *hwc = &event->hw;
3889         int throttle = 0;
3890
3891         data->period = event->hw.last_period;
3892         if (!overflow)
3893                 overflow = perf_swevent_set_period(event);
3894
3895         if (hwc->interrupts == MAX_INTERRUPTS)
3896                 return;
3897
3898         for (; overflow; overflow--) {
3899                 if (__perf_event_overflow(event, nmi, throttle,
3900                                             data, regs)) {
3901                         /*
3902                          * We inhibit the overflow from happening when
3903                          * hwc->interrupts == MAX_INTERRUPTS.
3904                          */
3905                         break;
3906                 }
3907                 throttle = 1;
3908         }
3909 }
3910
3911 static void perf_swevent_unthrottle(struct perf_event *event)
3912 {
3913         /*
3914          * Nothing to do, we already reset hwc->interrupts.
3915          */
3916 }
3917
3918 static void perf_swevent_add(struct perf_event *event, u64 nr,
3919                                int nmi, struct perf_sample_data *data,
3920                                struct pt_regs *regs)
3921 {
3922         struct hw_perf_event *hwc = &event->hw;
3923
3924         atomic64_add(nr, &event->count);
3925
3926         if (!regs)
3927                 return;
3928
3929         if (!hwc->sample_period)
3930                 return;
3931
3932         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3933                 return perf_swevent_overflow(event, 1, nmi, data, regs);
3934
3935         if (atomic64_add_negative(nr, &hwc->period_left))
3936                 return;
3937
3938         perf_swevent_overflow(event, 0, nmi, data, regs);
3939 }
3940
3941 static int perf_swevent_is_counting(struct perf_event *event)
3942 {
3943         /*
3944          * The event is active, we're good!
3945          */
3946         if (event->state == PERF_EVENT_STATE_ACTIVE)
3947                 return 1;
3948
3949         /*
3950          * The event is off/error, not counting.
3951          */
3952         if (event->state != PERF_EVENT_STATE_INACTIVE)
3953                 return 0;
3954
3955         /*
3956          * The event is inactive, if the context is active
3957          * we're part of a group that didn't make it on the 'pmu',
3958          * not counting.
3959          */
3960         if (event->ctx->is_active)
3961                 return 0;
3962
3963         /*
3964          * We're inactive and the context is too, this means the
3965          * task is scheduled out, we're counting events that happen
3966          * to us, like migration events.
3967          */
3968         return 1;
3969 }
3970
3971 static int perf_tp_event_match(struct perf_event *event,
3972                                 struct perf_sample_data *data);
3973
3974 static int perf_exclude_event(struct perf_event *event,
3975                               struct pt_regs *regs)
3976 {
3977         if (regs) {
3978                 if (event->attr.exclude_user && user_mode(regs))
3979                         return 1;
3980
3981                 if (event->attr.exclude_kernel && !user_mode(regs))
3982                         return 1;
3983         }
3984
3985         return 0;
3986 }
3987
3988 static int perf_swevent_match(struct perf_event *event,
3989                                 enum perf_type_id type,
3990                                 u32 event_id,
3991                                 struct perf_sample_data *data,
3992                                 struct pt_regs *regs)
3993 {
3994         if (event->cpu != -1 && event->cpu != smp_processor_id())
3995                 return 0;
3996
3997         if (!perf_swevent_is_counting(event))
3998                 return 0;
3999
4000         if (event->attr.type != type)
4001                 return 0;
4002
4003         if (event->attr.config != event_id)
4004                 return 0;
4005
4006         if (perf_exclude_event(event, regs))
4007                 return 0;
4008
4009         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4010             !perf_tp_event_match(event, data))
4011                 return 0;
4012
4013         return 1;
4014 }
4015
4016 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4017                                      enum perf_type_id type,
4018                                      u32 event_id, u64 nr, int nmi,
4019                                      struct perf_sample_data *data,
4020                                      struct pt_regs *regs)
4021 {
4022         struct perf_event *event;
4023
4024         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4025                 if (perf_swevent_match(event, type, event_id, data, regs))
4026                         perf_swevent_add(event, nr, nmi, data, regs);
4027         }
4028 }
4029
4030 int perf_swevent_get_recursion_context(void)
4031 {
4032         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4033         int rctx;
4034
4035         if (in_nmi())
4036                 rctx = 3;
4037         else if (in_irq())
4038                 rctx = 2;
4039         else if (in_softirq())
4040                 rctx = 1;
4041         else
4042                 rctx = 0;
4043
4044         if (cpuctx->recursion[rctx]) {
4045                 put_cpu_var(perf_cpu_context);
4046                 return -1;
4047         }
4048
4049         cpuctx->recursion[rctx]++;
4050         barrier();
4051
4052         return rctx;
4053 }
4054 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4055
4056 void perf_swevent_put_recursion_context(int rctx)
4057 {
4058         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4059         barrier();
4060         cpuctx->recursion[rctx]--;
4061         put_cpu_var(perf_cpu_context);
4062 }
4063 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4064
4065 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4066                                     u64 nr, int nmi,
4067                                     struct perf_sample_data *data,
4068                                     struct pt_regs *regs)
4069 {
4070         struct perf_cpu_context *cpuctx;
4071         struct perf_event_context *ctx;
4072
4073         cpuctx = &__get_cpu_var(perf_cpu_context);
4074         rcu_read_lock();
4075         perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4076                                  nr, nmi, data, regs);
4077         /*
4078          * doesn't really matter which of the child contexts the
4079          * events ends up in.
4080          */
4081         ctx = rcu_dereference(current->perf_event_ctxp);
4082         if (ctx)
4083                 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4084         rcu_read_unlock();
4085 }
4086
4087 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4088                             struct pt_regs *regs, u64 addr)
4089 {
4090         struct perf_sample_data data;
4091         int rctx;
4092
4093         rctx = perf_swevent_get_recursion_context();
4094         if (rctx < 0)
4095                 return;
4096
4097         perf_sample_data_init(&data, addr);
4098
4099         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4100
4101         perf_swevent_put_recursion_context(rctx);
4102 }
4103
4104 static void perf_swevent_read(struct perf_event *event)
4105 {
4106 }
4107
4108 static int perf_swevent_enable(struct perf_event *event)
4109 {
4110         struct hw_perf_event *hwc = &event->hw;
4111
4112         if (hwc->sample_period) {
4113                 hwc->last_period = hwc->sample_period;
4114                 perf_swevent_set_period(event);
4115         }
4116         return 0;
4117 }
4118
4119 static void perf_swevent_disable(struct perf_event *event)
4120 {
4121 }
4122
4123 static const struct pmu perf_ops_generic = {
4124         .enable         = perf_swevent_enable,
4125         .disable        = perf_swevent_disable,
4126         .read           = perf_swevent_read,
4127         .unthrottle     = perf_swevent_unthrottle,
4128 };
4129
4130 /*
4131  * hrtimer based swevent callback
4132  */
4133
4134 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4135 {
4136         enum hrtimer_restart ret = HRTIMER_RESTART;
4137         struct perf_sample_data data;
4138         struct pt_regs *regs;
4139         struct perf_event *event;
4140         u64 period;
4141
4142         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4143         event->pmu->read(event);
4144
4145         perf_sample_data_init(&data, 0);
4146         data.period = event->hw.last_period;
4147         regs = get_irq_regs();
4148         /*
4149          * In case we exclude kernel IPs or are somehow not in interrupt
4150          * context, provide the next best thing, the user IP.
4151          */
4152         if ((event->attr.exclude_kernel || !regs) &&
4153                         !event->attr.exclude_user)
4154                 regs = task_pt_regs(current);
4155
4156         if (regs) {
4157                 if (!(event->attr.exclude_idle && current->pid == 0))
4158                         if (perf_event_overflow(event, 0, &data, regs))
4159                                 ret = HRTIMER_NORESTART;
4160         }
4161
4162         period = max_t(u64, 10000, event->hw.sample_period);
4163         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4164
4165         return ret;
4166 }
4167
4168 static void perf_swevent_start_hrtimer(struct perf_event *event)
4169 {
4170         struct hw_perf_event *hwc = &event->hw;
4171
4172         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4173         hwc->hrtimer.function = perf_swevent_hrtimer;
4174         if (hwc->sample_period) {
4175                 u64 period;
4176
4177                 if (hwc->remaining) {
4178                         if (hwc->remaining < 0)
4179                                 period = 10000;
4180                         else
4181                                 period = hwc->remaining;
4182                         hwc->remaining = 0;
4183                 } else {
4184                         period = max_t(u64, 10000, hwc->sample_period);
4185                 }
4186                 __hrtimer_start_range_ns(&hwc->hrtimer,
4187                                 ns_to_ktime(period), 0,
4188                                 HRTIMER_MODE_REL, 0);
4189         }
4190 }
4191
4192 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4193 {
4194         struct hw_perf_event *hwc = &event->hw;
4195
4196         if (hwc->sample_period) {
4197                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4198                 hwc->remaining = ktime_to_ns(remaining);
4199
4200                 hrtimer_cancel(&hwc->hrtimer);
4201         }
4202 }
4203
4204 /*
4205  * Software event: cpu wall time clock
4206  */
4207
4208 static void cpu_clock_perf_event_update(struct perf_event *event)
4209 {
4210         int cpu = raw_smp_processor_id();
4211         s64 prev;
4212         u64 now;
4213
4214         now = cpu_clock(cpu);
4215         prev = atomic64_xchg(&event->hw.prev_count, now);
4216         atomic64_add(now - prev, &event->count);
4217 }
4218
4219 static int cpu_clock_perf_event_enable(struct perf_event *event)
4220 {
4221         struct hw_perf_event *hwc = &event->hw;
4222         int cpu = raw_smp_processor_id();
4223
4224         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4225         perf_swevent_start_hrtimer(event);
4226
4227         return 0;
4228 }
4229
4230 static void cpu_clock_perf_event_disable(struct perf_event *event)
4231 {
4232         perf_swevent_cancel_hrtimer(event);
4233         cpu_clock_perf_event_update(event);
4234 }
4235
4236 static void cpu_clock_perf_event_read(struct perf_event *event)
4237 {
4238         cpu_clock_perf_event_update(event);
4239 }
4240
4241 static const struct pmu perf_ops_cpu_clock = {
4242         .enable         = cpu_clock_perf_event_enable,
4243         .disable        = cpu_clock_perf_event_disable,
4244         .read           = cpu_clock_perf_event_read,
4245 };
4246
4247 /*
4248  * Software event: task time clock
4249  */
4250
4251 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4252 {
4253         u64 prev;
4254         s64 delta;
4255
4256         prev = atomic64_xchg(&event->hw.prev_count, now);
4257         delta = now - prev;
4258         atomic64_add(delta, &event->count);
4259 }
4260
4261 static int task_clock_perf_event_enable(struct perf_event *event)
4262 {
4263         struct hw_perf_event *hwc = &event->hw;
4264         u64 now;
4265
4266         now = event->ctx->time;
4267
4268         atomic64_set(&hwc->prev_count, now);
4269
4270         perf_swevent_start_hrtimer(event);
4271
4272         return 0;
4273 }
4274
4275 static void task_clock_perf_event_disable(struct perf_event *event)
4276 {
4277         perf_swevent_cancel_hrtimer(event);
4278         task_clock_perf_event_update(event, event->ctx->time);
4279
4280 }
4281
4282 static void task_clock_perf_event_read(struct perf_event *event)
4283 {
4284         u64 time;
4285
4286         if (!in_nmi()) {
4287                 update_context_time(event->ctx);
4288                 time = event->ctx->time;
4289         } else {
4290                 u64 now = perf_clock();
4291                 u64 delta = now - event->ctx->timestamp;
4292                 time = event->ctx->time + delta;
4293         }
4294
4295         task_clock_perf_event_update(event, time);
4296 }
4297
4298 static const struct pmu perf_ops_task_clock = {
4299         .enable         = task_clock_perf_event_enable,
4300         .disable        = task_clock_perf_event_disable,
4301         .read           = task_clock_perf_event_read,
4302 };
4303
4304 #ifdef CONFIG_EVENT_TRACING
4305
4306 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4307                           int entry_size)
4308 {
4309         struct pt_regs *regs = get_irq_regs();
4310         struct perf_sample_data data;
4311         struct perf_raw_record raw = {
4312                 .size = entry_size,
4313                 .data = record,
4314         };
4315
4316         perf_sample_data_init(&data, addr);
4317         data.raw = &raw;
4318
4319         if (!regs)
4320                 regs = task_pt_regs(current);
4321
4322         /* Trace events already protected against recursion */
4323         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4324                                 &data, regs);
4325 }
4326 EXPORT_SYMBOL_GPL(perf_tp_event);
4327
4328 static int perf_tp_event_match(struct perf_event *event,
4329                                 struct perf_sample_data *data)
4330 {
4331         void *record = data->raw->data;
4332
4333         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4334                 return 1;
4335         return 0;
4336 }
4337
4338 static void tp_perf_event_destroy(struct perf_event *event)
4339 {
4340         ftrace_profile_disable(event->attr.config);
4341 }
4342
4343 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4344 {
4345         /*
4346          * Raw tracepoint data is a severe data leak, only allow root to
4347          * have these.
4348          */
4349         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4350                         perf_paranoid_tracepoint_raw() &&
4351                         !capable(CAP_SYS_ADMIN))
4352                 return ERR_PTR(-EPERM);
4353
4354         if (ftrace_profile_enable(event->attr.config))
4355                 return NULL;
4356
4357         event->destroy = tp_perf_event_destroy;
4358
4359         return &perf_ops_generic;
4360 }
4361
4362 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4363 {
4364         char *filter_str;
4365         int ret;
4366
4367         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4368                 return -EINVAL;
4369
4370         filter_str = strndup_user(arg, PAGE_SIZE);
4371         if (IS_ERR(filter_str))
4372                 return PTR_ERR(filter_str);
4373
4374         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4375
4376         kfree(filter_str);
4377         return ret;
4378 }
4379
4380 static void perf_event_free_filter(struct perf_event *event)
4381 {
4382         ftrace_profile_free_filter(event);
4383 }
4384
4385 #else
4386
4387 static int perf_tp_event_match(struct perf_event *event,
4388                                 struct perf_sample_data *data)
4389 {
4390         return 1;
4391 }
4392
4393 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4394 {
4395         return NULL;
4396 }
4397
4398 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4399 {
4400         return -ENOENT;
4401 }
4402
4403 static void perf_event_free_filter(struct perf_event *event)
4404 {
4405 }
4406
4407 #endif /* CONFIG_EVENT_TRACING */
4408
4409 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4410 static void bp_perf_event_destroy(struct perf_event *event)
4411 {
4412         release_bp_slot(event);
4413 }
4414
4415 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4416 {
4417         int err;
4418
4419         err = register_perf_hw_breakpoint(bp);
4420         if (err)
4421                 return ERR_PTR(err);
4422
4423         bp->destroy = bp_perf_event_destroy;
4424
4425         return &perf_ops_bp;
4426 }
4427
4428 void perf_bp_event(struct perf_event *bp, void *data)
4429 {
4430         struct perf_sample_data sample;
4431         struct pt_regs *regs = data;
4432
4433         perf_sample_data_init(&sample, bp->attr.bp_addr);
4434
4435         if (!perf_exclude_event(bp, regs))
4436                 perf_swevent_add(bp, 1, 1, &sample, regs);
4437 }
4438 #else
4439 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4440 {
4441         return NULL;
4442 }
4443
4444 void perf_bp_event(struct perf_event *bp, void *regs)
4445 {
4446 }
4447 #endif
4448
4449 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4450
4451 static void sw_perf_event_destroy(struct perf_event *event)
4452 {
4453         u64 event_id = event->attr.config;
4454
4455         WARN_ON(event->parent);
4456
4457         atomic_dec(&perf_swevent_enabled[event_id]);
4458 }
4459
4460 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4461 {
4462         const struct pmu *pmu = NULL;
4463         u64 event_id = event->attr.config;
4464
4465         /*
4466          * Software events (currently) can't in general distinguish
4467          * between user, kernel and hypervisor events.
4468          * However, context switches and cpu migrations are considered
4469          * to be kernel events, and page faults are never hypervisor
4470          * events.
4471          */
4472         switch (event_id) {
4473         case PERF_COUNT_SW_CPU_CLOCK:
4474                 pmu = &perf_ops_cpu_clock;
4475
4476                 break;
4477         case PERF_COUNT_SW_TASK_CLOCK:
4478                 /*
4479                  * If the user instantiates this as a per-cpu event,
4480                  * use the cpu_clock event instead.
4481                  */
4482                 if (event->ctx->task)
4483                         pmu = &perf_ops_task_clock;
4484                 else
4485                         pmu = &perf_ops_cpu_clock;
4486
4487                 break;
4488         case PERF_COUNT_SW_PAGE_FAULTS:
4489         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4490         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4491         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4492         case PERF_COUNT_SW_CPU_MIGRATIONS:
4493         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4494         case PERF_COUNT_SW_EMULATION_FAULTS:
4495                 if (!event->parent) {
4496                         atomic_inc(&perf_swevent_enabled[event_id]);
4497                         event->destroy = sw_perf_event_destroy;
4498                 }
4499                 pmu = &perf_ops_generic;
4500                 break;
4501         }
4502
4503         return pmu;
4504 }
4505
4506 /*
4507  * Allocate and initialize a event structure
4508  */
4509 static struct perf_event *
4510 perf_event_alloc(struct perf_event_attr *attr,
4511                    int cpu,
4512                    struct perf_event_context *ctx,
4513                    struct perf_event *group_leader,
4514                    struct perf_event *parent_event,
4515                    perf_overflow_handler_t overflow_handler,
4516                    gfp_t gfpflags)
4517 {
4518         const struct pmu *pmu;
4519         struct perf_event *event;
4520         struct hw_perf_event *hwc;
4521         long err;
4522
4523         event = kzalloc(sizeof(*event), gfpflags);
4524         if (!event)
4525                 return ERR_PTR(-ENOMEM);
4526
4527         /*
4528          * Single events are their own group leaders, with an
4529          * empty sibling list:
4530          */
4531         if (!group_leader)
4532                 group_leader = event;
4533
4534         mutex_init(&event->child_mutex);
4535         INIT_LIST_HEAD(&event->child_list);
4536
4537         INIT_LIST_HEAD(&event->group_entry);
4538         INIT_LIST_HEAD(&event->event_entry);
4539         INIT_LIST_HEAD(&event->sibling_list);
4540         init_waitqueue_head(&event->waitq);
4541
4542         mutex_init(&event->mmap_mutex);
4543
4544         event->cpu              = cpu;
4545         event->attr             = *attr;
4546         event->group_leader     = group_leader;
4547         event->pmu              = NULL;
4548         event->ctx              = ctx;
4549         event->oncpu            = -1;
4550
4551         event->parent           = parent_event;
4552
4553         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4554         event->id               = atomic64_inc_return(&perf_event_id);
4555
4556         event->state            = PERF_EVENT_STATE_INACTIVE;
4557
4558         if (!overflow_handler && parent_event)
4559                 overflow_handler = parent_event->overflow_handler;
4560         
4561         event->overflow_handler = overflow_handler;
4562
4563         if (attr->disabled)
4564                 event->state = PERF_EVENT_STATE_OFF;
4565
4566         pmu = NULL;
4567
4568         hwc = &event->hw;
4569         hwc->sample_period = attr->sample_period;
4570         if (attr->freq && attr->sample_freq)
4571                 hwc->sample_period = 1;
4572         hwc->last_period = hwc->sample_period;
4573
4574         atomic64_set(&hwc->period_left, hwc->sample_period);
4575
4576         /*
4577          * we currently do not support PERF_FORMAT_GROUP on inherited events
4578          */
4579         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4580                 goto done;
4581
4582         switch (attr->type) {
4583         case PERF_TYPE_RAW:
4584         case PERF_TYPE_HARDWARE:
4585         case PERF_TYPE_HW_CACHE:
4586                 pmu = hw_perf_event_init(event);
4587                 break;
4588
4589         case PERF_TYPE_SOFTWARE:
4590                 pmu = sw_perf_event_init(event);
4591                 break;
4592
4593         case PERF_TYPE_TRACEPOINT:
4594                 pmu = tp_perf_event_init(event);
4595                 break;
4596
4597         case PERF_TYPE_BREAKPOINT:
4598                 pmu = bp_perf_event_init(event);
4599                 break;
4600
4601
4602         default:
4603                 break;
4604         }
4605 done:
4606         err = 0;
4607         if (!pmu)
4608                 err = -EINVAL;
4609         else if (IS_ERR(pmu))
4610                 err = PTR_ERR(pmu);
4611
4612         if (err) {
4613                 if (event->ns)
4614                         put_pid_ns(event->ns);
4615                 kfree(event);
4616                 return ERR_PTR(err);
4617         }
4618
4619         event->pmu = pmu;
4620
4621         if (!event->parent) {
4622                 atomic_inc(&nr_events);
4623                 if (event->attr.mmap)
4624                         atomic_inc(&nr_mmap_events);
4625                 if (event->attr.comm)
4626                         atomic_inc(&nr_comm_events);
4627                 if (event->attr.task)
4628                         atomic_inc(&nr_task_events);
4629         }
4630
4631         return event;
4632 }
4633
4634 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4635                           struct perf_event_attr *attr)
4636 {
4637         u32 size;
4638         int ret;
4639
4640         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4641                 return -EFAULT;
4642
4643         /*
4644          * zero the full structure, so that a short copy will be nice.
4645          */
4646         memset(attr, 0, sizeof(*attr));
4647
4648         ret = get_user(size, &uattr->size);
4649         if (ret)
4650                 return ret;
4651
4652         if (size > PAGE_SIZE)   /* silly large */
4653                 goto err_size;
4654
4655         if (!size)              /* abi compat */
4656                 size = PERF_ATTR_SIZE_VER0;
4657
4658         if (size < PERF_ATTR_SIZE_VER0)
4659                 goto err_size;
4660
4661         /*
4662          * If we're handed a bigger struct than we know of,
4663          * ensure all the unknown bits are 0 - i.e. new
4664          * user-space does not rely on any kernel feature
4665          * extensions we dont know about yet.
4666          */
4667         if (size > sizeof(*attr)) {
4668                 unsigned char __user *addr;
4669                 unsigned char __user *end;
4670                 unsigned char val;
4671
4672                 addr = (void __user *)uattr + sizeof(*attr);
4673                 end  = (void __user *)uattr + size;
4674
4675                 for (; addr < end; addr++) {
4676                         ret = get_user(val, addr);
4677                         if (ret)
4678                                 return ret;
4679                         if (val)
4680                                 goto err_size;
4681                 }
4682                 size = sizeof(*attr);
4683         }
4684
4685         ret = copy_from_user(attr, uattr, size);
4686         if (ret)
4687                 return -EFAULT;
4688
4689         /*
4690          * If the type exists, the corresponding creation will verify
4691          * the attr->config.
4692          */
4693         if (attr->type >= PERF_TYPE_MAX)
4694                 return -EINVAL;
4695
4696         if (attr->__reserved_1)
4697                 return -EINVAL;
4698
4699         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4700                 return -EINVAL;
4701
4702         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4703                 return -EINVAL;
4704
4705 out:
4706         return ret;
4707
4708 err_size:
4709         put_user(sizeof(*attr), &uattr->size);
4710         ret = -E2BIG;
4711         goto out;
4712 }
4713
4714 static int perf_event_set_output(struct perf_event *event, int output_fd)
4715 {
4716         struct perf_event *output_event = NULL;
4717         struct file *output_file = NULL;
4718         struct perf_event *old_output;
4719         int fput_needed = 0;
4720         int ret = -EINVAL;
4721
4722         if (!output_fd)
4723                 goto set;
4724
4725         output_file = fget_light(output_fd, &fput_needed);
4726         if (!output_file)
4727                 return -EBADF;
4728
4729         if (output_file->f_op != &perf_fops)
4730                 goto out;
4731
4732         output_event = output_file->private_data;
4733
4734         /* Don't chain output fds */
4735         if (output_event->output)
4736                 goto out;
4737
4738         /* Don't set an output fd when we already have an output channel */
4739         if (event->data)
4740                 goto out;
4741
4742         atomic_long_inc(&output_file->f_count);
4743
4744 set:
4745         mutex_lock(&event->mmap_mutex);
4746         old_output = event->output;
4747         rcu_assign_pointer(event->output, output_event);
4748         mutex_unlock(&event->mmap_mutex);
4749
4750         if (old_output) {
4751                 /*
4752                  * we need to make sure no existing perf_output_*()
4753                  * is still referencing this event.
4754                  */
4755                 synchronize_rcu();
4756                 fput(old_output->filp);
4757         }
4758
4759         ret = 0;
4760 out:
4761         fput_light(output_file, fput_needed);
4762         return ret;
4763 }
4764
4765 /**
4766  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4767  *
4768  * @attr_uptr:  event_id type attributes for monitoring/sampling
4769  * @pid:                target pid
4770  * @cpu:                target cpu
4771  * @group_fd:           group leader event fd
4772  */
4773 SYSCALL_DEFINE5(perf_event_open,
4774                 struct perf_event_attr __user *, attr_uptr,
4775                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4776 {
4777         struct perf_event *event, *group_leader;
4778         struct perf_event_attr attr;
4779         struct perf_event_context *ctx;
4780         struct file *event_file = NULL;
4781         struct file *group_file = NULL;
4782         int fput_needed = 0;
4783         int fput_needed2 = 0;
4784         int err;
4785
4786         /* for future expandability... */
4787         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4788                 return -EINVAL;
4789
4790         err = perf_copy_attr(attr_uptr, &attr);
4791         if (err)
4792                 return err;
4793
4794         if (!attr.exclude_kernel) {
4795                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4796                         return -EACCES;
4797         }
4798
4799         if (attr.freq) {
4800                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4801                         return -EINVAL;
4802         }
4803
4804         /*
4805          * Get the target context (task or percpu):
4806          */
4807         ctx = find_get_context(pid, cpu);
4808         if (IS_ERR(ctx))
4809                 return PTR_ERR(ctx);
4810
4811         /*
4812          * Look up the group leader (we will attach this event to it):
4813          */
4814         group_leader = NULL;
4815         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4816                 err = -EINVAL;
4817                 group_file = fget_light(group_fd, &fput_needed);
4818                 if (!group_file)
4819                         goto err_put_context;
4820                 if (group_file->f_op != &perf_fops)
4821                         goto err_put_context;
4822
4823                 group_leader = group_file->private_data;
4824                 /*
4825                  * Do not allow a recursive hierarchy (this new sibling
4826                  * becoming part of another group-sibling):
4827                  */
4828                 if (group_leader->group_leader != group_leader)
4829                         goto err_put_context;
4830                 /*
4831                  * Do not allow to attach to a group in a different
4832                  * task or CPU context:
4833                  */
4834                 if (group_leader->ctx != ctx)
4835                         goto err_put_context;
4836                 /*
4837                  * Only a group leader can be exclusive or pinned
4838                  */
4839                 if (attr.exclusive || attr.pinned)
4840                         goto err_put_context;
4841         }
4842
4843         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4844                                      NULL, NULL, GFP_KERNEL);
4845         err = PTR_ERR(event);
4846         if (IS_ERR(event))
4847                 goto err_put_context;
4848
4849         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4850         if (err < 0)
4851                 goto err_free_put_context;
4852
4853         event_file = fget_light(err, &fput_needed2);
4854         if (!event_file)
4855                 goto err_free_put_context;
4856
4857         if (flags & PERF_FLAG_FD_OUTPUT) {
4858                 err = perf_event_set_output(event, group_fd);
4859                 if (err)
4860                         goto err_fput_free_put_context;
4861         }
4862
4863         event->filp = event_file;
4864         WARN_ON_ONCE(ctx->parent_ctx);
4865         mutex_lock(&ctx->mutex);
4866         perf_install_in_context(ctx, event, cpu);
4867         ++ctx->generation;
4868         mutex_unlock(&ctx->mutex);
4869
4870         event->owner = current;
4871         get_task_struct(current);
4872         mutex_lock(&current->perf_event_mutex);
4873         list_add_tail(&event->owner_entry, &current->perf_event_list);
4874         mutex_unlock(&current->perf_event_mutex);
4875
4876 err_fput_free_put_context:
4877         fput_light(event_file, fput_needed2);
4878
4879 err_free_put_context:
4880         if (err < 0)
4881                 kfree(event);
4882
4883 err_put_context:
4884         if (err < 0)
4885                 put_ctx(ctx);
4886
4887         fput_light(group_file, fput_needed);
4888
4889         return err;
4890 }
4891
4892 /**
4893  * perf_event_create_kernel_counter
4894  *
4895  * @attr: attributes of the counter to create
4896  * @cpu: cpu in which the counter is bound
4897  * @pid: task to profile
4898  */
4899 struct perf_event *
4900 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4901                                  pid_t pid,
4902                                  perf_overflow_handler_t overflow_handler)
4903 {
4904         struct perf_event *event;
4905         struct perf_event_context *ctx;
4906         int err;
4907
4908         /*
4909          * Get the target context (task or percpu):
4910          */
4911
4912         ctx = find_get_context(pid, cpu);
4913         if (IS_ERR(ctx)) {
4914                 err = PTR_ERR(ctx);
4915                 goto err_exit;
4916         }
4917
4918         event = perf_event_alloc(attr, cpu, ctx, NULL,
4919                                  NULL, overflow_handler, GFP_KERNEL);
4920         if (IS_ERR(event)) {
4921                 err = PTR_ERR(event);
4922                 goto err_put_context;
4923         }
4924
4925         event->filp = NULL;
4926         WARN_ON_ONCE(ctx->parent_ctx);
4927         mutex_lock(&ctx->mutex);
4928         perf_install_in_context(ctx, event, cpu);
4929         ++ctx->generation;
4930         mutex_unlock(&ctx->mutex);
4931
4932         event->owner = current;
4933         get_task_struct(current);
4934         mutex_lock(&current->perf_event_mutex);
4935         list_add_tail(&event->owner_entry, &current->perf_event_list);
4936         mutex_unlock(&current->perf_event_mutex);
4937
4938         return event;
4939
4940  err_put_context:
4941         put_ctx(ctx);
4942  err_exit:
4943         return ERR_PTR(err);
4944 }
4945 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4946
4947 /*
4948  * inherit a event from parent task to child task:
4949  */
4950 static struct perf_event *
4951 inherit_event(struct perf_event *parent_event,
4952               struct task_struct *parent,
4953               struct perf_event_context *parent_ctx,
4954               struct task_struct *child,
4955               struct perf_event *group_leader,
4956               struct perf_event_context *child_ctx)
4957 {
4958         struct perf_event *child_event;
4959
4960         /*
4961          * Instead of creating recursive hierarchies of events,
4962          * we link inherited events back to the original parent,
4963          * which has a filp for sure, which we use as the reference
4964          * count:
4965          */
4966         if (parent_event->parent)
4967                 parent_event = parent_event->parent;
4968
4969         child_event = perf_event_alloc(&parent_event->attr,
4970                                            parent_event->cpu, child_ctx,
4971                                            group_leader, parent_event,
4972                                            NULL, GFP_KERNEL);
4973         if (IS_ERR(child_event))
4974                 return child_event;
4975         get_ctx(child_ctx);
4976
4977         /*
4978          * Make the child state follow the state of the parent event,
4979          * not its attr.disabled bit.  We hold the parent's mutex,
4980          * so we won't race with perf_event_{en, dis}able_family.
4981          */
4982         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4983                 child_event->state = PERF_EVENT_STATE_INACTIVE;
4984         else
4985                 child_event->state = PERF_EVENT_STATE_OFF;
4986
4987         if (parent_event->attr.freq) {
4988                 u64 sample_period = parent_event->hw.sample_period;
4989                 struct hw_perf_event *hwc = &child_event->hw;
4990
4991                 hwc->sample_period = sample_period;
4992                 hwc->last_period   = sample_period;
4993
4994                 atomic64_set(&hwc->period_left, sample_period);
4995         }
4996
4997         child_event->overflow_handler = parent_event->overflow_handler;
4998
4999         /*
5000          * Link it up in the child's context:
5001          */
5002         add_event_to_ctx(child_event, child_ctx);
5003
5004         /*
5005          * Get a reference to the parent filp - we will fput it
5006          * when the child event exits. This is safe to do because
5007          * we are in the parent and we know that the filp still
5008          * exists and has a nonzero count:
5009          */
5010         atomic_long_inc(&parent_event->filp->f_count);
5011
5012         /*
5013          * Link this into the parent event's child list
5014          */
5015         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5016         mutex_lock(&parent_event->child_mutex);
5017         list_add_tail(&child_event->child_list, &parent_event->child_list);
5018         mutex_unlock(&parent_event->child_mutex);
5019
5020         return child_event;
5021 }
5022
5023 static int inherit_group(struct perf_event *parent_event,
5024               struct task_struct *parent,
5025               struct perf_event_context *parent_ctx,
5026               struct task_struct *child,
5027               struct perf_event_context *child_ctx)
5028 {
5029         struct perf_event *leader;
5030         struct perf_event *sub;
5031         struct perf_event *child_ctr;
5032
5033         leader = inherit_event(parent_event, parent, parent_ctx,
5034                                  child, NULL, child_ctx);
5035         if (IS_ERR(leader))
5036                 return PTR_ERR(leader);
5037         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5038                 child_ctr = inherit_event(sub, parent, parent_ctx,
5039                                             child, leader, child_ctx);
5040                 if (IS_ERR(child_ctr))
5041                         return PTR_ERR(child_ctr);
5042         }
5043         return 0;
5044 }
5045
5046 static void sync_child_event(struct perf_event *child_event,
5047                                struct task_struct *child)
5048 {
5049         struct perf_event *parent_event = child_event->parent;
5050         u64 child_val;
5051
5052         if (child_event->attr.inherit_stat)
5053                 perf_event_read_event(child_event, child);
5054
5055         child_val = atomic64_read(&child_event->count);
5056
5057         /*
5058          * Add back the child's count to the parent's count:
5059          */
5060         atomic64_add(child_val, &parent_event->count);
5061         atomic64_add(child_event->total_time_enabled,
5062                      &parent_event->child_total_time_enabled);
5063         atomic64_add(child_event->total_time_running,
5064                      &parent_event->child_total_time_running);
5065
5066         /*
5067          * Remove this event from the parent's list
5068          */
5069         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5070         mutex_lock(&parent_event->child_mutex);
5071         list_del_init(&child_event->child_list);
5072         mutex_unlock(&parent_event->child_mutex);
5073
5074         /*
5075          * Release the parent event, if this was the last
5076          * reference to it.
5077          */
5078         fput(parent_event->filp);
5079 }
5080
5081 static void
5082 __perf_event_exit_task(struct perf_event *child_event,
5083                          struct perf_event_context *child_ctx,
5084                          struct task_struct *child)
5085 {
5086         struct perf_event *parent_event;
5087
5088         perf_event_remove_from_context(child_event);
5089
5090         parent_event = child_event->parent;
5091         /*
5092          * It can happen that parent exits first, and has events
5093          * that are still around due to the child reference. These
5094          * events need to be zapped - but otherwise linger.
5095          */
5096         if (parent_event) {
5097                 sync_child_event(child_event, child);
5098                 free_event(child_event);
5099         }
5100 }
5101
5102 /*
5103  * When a child task exits, feed back event values to parent events.
5104  */
5105 void perf_event_exit_task(struct task_struct *child)
5106 {
5107         struct perf_event *child_event, *tmp;
5108         struct perf_event_context *child_ctx;
5109         unsigned long flags;
5110
5111         if (likely(!child->perf_event_ctxp)) {
5112                 perf_event_task(child, NULL, 0);
5113                 return;
5114         }
5115
5116         local_irq_save(flags);
5117         /*
5118          * We can't reschedule here because interrupts are disabled,
5119          * and either child is current or it is a task that can't be
5120          * scheduled, so we are now safe from rescheduling changing
5121          * our context.
5122          */
5123         child_ctx = child->perf_event_ctxp;
5124         __perf_event_task_sched_out(child_ctx);
5125
5126         /*
5127          * Take the context lock here so that if find_get_context is
5128          * reading child->perf_event_ctxp, we wait until it has
5129          * incremented the context's refcount before we do put_ctx below.
5130          */
5131         raw_spin_lock(&child_ctx->lock);
5132         child->perf_event_ctxp = NULL;
5133         /*
5134          * If this context is a clone; unclone it so it can't get
5135          * swapped to another process while we're removing all
5136          * the events from it.
5137          */
5138         unclone_ctx(child_ctx);
5139         update_context_time(child_ctx);
5140         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5141
5142         /*
5143          * Report the task dead after unscheduling the events so that we
5144          * won't get any samples after PERF_RECORD_EXIT. We can however still
5145          * get a few PERF_RECORD_READ events.
5146          */
5147         perf_event_task(child, child_ctx, 0);
5148
5149         /*
5150          * We can recurse on the same lock type through:
5151          *
5152          *   __perf_event_exit_task()
5153          *     sync_child_event()
5154          *       fput(parent_event->filp)
5155          *         perf_release()
5156          *           mutex_lock(&ctx->mutex)
5157          *
5158          * But since its the parent context it won't be the same instance.
5159          */
5160         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5161
5162 again:
5163         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5164                                  group_entry)
5165                 __perf_event_exit_task(child_event, child_ctx, child);
5166
5167         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5168                                  group_entry)
5169                 __perf_event_exit_task(child_event, child_ctx, child);
5170
5171         /*
5172          * If the last event was a group event, it will have appended all
5173          * its siblings to the list, but we obtained 'tmp' before that which
5174          * will still point to the list head terminating the iteration.
5175          */
5176         if (!list_empty(&child_ctx->pinned_groups) ||
5177             !list_empty(&child_ctx->flexible_groups))
5178                 goto again;
5179
5180         mutex_unlock(&child_ctx->mutex);
5181
5182         put_ctx(child_ctx);
5183 }
5184
5185 static void perf_free_event(struct perf_event *event,
5186                             struct perf_event_context *ctx)
5187 {
5188         struct perf_event *parent = event->parent;
5189
5190         if (WARN_ON_ONCE(!parent))
5191                 return;
5192
5193         mutex_lock(&parent->child_mutex);
5194         list_del_init(&event->child_list);
5195         mutex_unlock(&parent->child_mutex);
5196
5197         fput(parent->filp);
5198
5199         list_del_event(event, ctx);
5200         free_event(event);
5201 }
5202
5203 /*
5204  * free an unexposed, unused context as created by inheritance by
5205  * init_task below, used by fork() in case of fail.
5206  */
5207 void perf_event_free_task(struct task_struct *task)
5208 {
5209         struct perf_event_context *ctx = task->perf_event_ctxp;
5210         struct perf_event *event, *tmp;
5211
5212         if (!ctx)
5213                 return;
5214
5215         mutex_lock(&ctx->mutex);
5216 again:
5217         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5218                 perf_free_event(event, ctx);
5219
5220         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5221                                  group_entry)
5222                 perf_free_event(event, ctx);
5223
5224         if (!list_empty(&ctx->pinned_groups) ||
5225             !list_empty(&ctx->flexible_groups))
5226                 goto again;
5227
5228         mutex_unlock(&ctx->mutex);
5229
5230         put_ctx(ctx);
5231 }
5232
5233 static int
5234 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5235                    struct perf_event_context *parent_ctx,
5236                    struct task_struct *child,
5237                    int *inherited_all)
5238 {
5239         int ret;
5240         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5241
5242         if (!event->attr.inherit) {
5243                 *inherited_all = 0;
5244                 return 0;
5245         }
5246
5247         if (!child_ctx) {
5248                 /*
5249                  * This is executed from the parent task context, so
5250                  * inherit events that have been marked for cloning.
5251                  * First allocate and initialize a context for the
5252                  * child.
5253                  */
5254
5255                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5256                                     GFP_KERNEL);
5257                 if (!child_ctx)
5258                         return -ENOMEM;
5259
5260                 __perf_event_init_context(child_ctx, child);
5261                 child->perf_event_ctxp = child_ctx;
5262                 get_task_struct(child);
5263         }
5264
5265         ret = inherit_group(event, parent, parent_ctx,
5266                             child, child_ctx);
5267
5268         if (ret)
5269                 *inherited_all = 0;
5270
5271         return ret;
5272 }
5273
5274
5275 /*
5276  * Initialize the perf_event context in task_struct
5277  */
5278 int perf_event_init_task(struct task_struct *child)
5279 {
5280         struct perf_event_context *child_ctx, *parent_ctx;
5281         struct perf_event_context *cloned_ctx;
5282         struct perf_event *event;
5283         struct task_struct *parent = current;
5284         int inherited_all = 1;
5285         int ret = 0;
5286
5287         child->perf_event_ctxp = NULL;
5288
5289         mutex_init(&child->perf_event_mutex);
5290         INIT_LIST_HEAD(&child->perf_event_list);
5291
5292         if (likely(!parent->perf_event_ctxp))
5293                 return 0;
5294
5295         /*
5296          * If the parent's context is a clone, pin it so it won't get
5297          * swapped under us.
5298          */
5299         parent_ctx = perf_pin_task_context(parent);
5300
5301         /*
5302          * No need to check if parent_ctx != NULL here; since we saw
5303          * it non-NULL earlier, the only reason for it to become NULL
5304          * is if we exit, and since we're currently in the middle of
5305          * a fork we can't be exiting at the same time.
5306          */
5307
5308         /*
5309          * Lock the parent list. No need to lock the child - not PID
5310          * hashed yet and not running, so nobody can access it.
5311          */
5312         mutex_lock(&parent_ctx->mutex);
5313
5314         /*
5315          * We dont have to disable NMIs - we are only looking at
5316          * the list, not manipulating it:
5317          */
5318         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5319                 ret = inherit_task_group(event, parent, parent_ctx, child,
5320                                          &inherited_all);
5321                 if (ret)
5322                         break;
5323         }
5324
5325         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5326                 ret = inherit_task_group(event, parent, parent_ctx, child,
5327                                          &inherited_all);
5328                 if (ret)
5329                         break;
5330         }
5331
5332         child_ctx = child->perf_event_ctxp;
5333
5334         if (child_ctx && inherited_all) {
5335                 /*
5336                  * Mark the child context as a clone of the parent
5337                  * context, or of whatever the parent is a clone of.
5338                  * Note that if the parent is a clone, it could get
5339                  * uncloned at any point, but that doesn't matter
5340                  * because the list of events and the generation
5341                  * count can't have changed since we took the mutex.
5342                  */
5343                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5344                 if (cloned_ctx) {
5345                         child_ctx->parent_ctx = cloned_ctx;
5346                         child_ctx->parent_gen = parent_ctx->parent_gen;
5347                 } else {
5348                         child_ctx->parent_ctx = parent_ctx;
5349                         child_ctx->parent_gen = parent_ctx->generation;
5350                 }
5351                 get_ctx(child_ctx->parent_ctx);
5352         }
5353
5354         mutex_unlock(&parent_ctx->mutex);
5355
5356         perf_unpin_context(parent_ctx);
5357
5358         return ret;
5359 }
5360
5361 static void __cpuinit perf_event_init_cpu(int cpu)
5362 {
5363         struct perf_cpu_context *cpuctx;
5364
5365         cpuctx = &per_cpu(perf_cpu_context, cpu);
5366         __perf_event_init_context(&cpuctx->ctx, NULL);
5367
5368         spin_lock(&perf_resource_lock);
5369         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5370         spin_unlock(&perf_resource_lock);
5371 }
5372
5373 #ifdef CONFIG_HOTPLUG_CPU
5374 static void __perf_event_exit_cpu(void *info)
5375 {
5376         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5377         struct perf_event_context *ctx = &cpuctx->ctx;
5378         struct perf_event *event, *tmp;
5379
5380         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5381                 __perf_event_remove_from_context(event);
5382         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5383                 __perf_event_remove_from_context(event);
5384 }
5385 static void perf_event_exit_cpu(int cpu)
5386 {
5387         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5388         struct perf_event_context *ctx = &cpuctx->ctx;
5389
5390         mutex_lock(&ctx->mutex);
5391         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5392         mutex_unlock(&ctx->mutex);
5393 }
5394 #else
5395 static inline void perf_event_exit_cpu(int cpu) { }
5396 #endif
5397
5398 static int __cpuinit
5399 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5400 {
5401         unsigned int cpu = (long)hcpu;
5402
5403         switch (action) {
5404
5405         case CPU_UP_PREPARE:
5406         case CPU_UP_PREPARE_FROZEN:
5407                 perf_event_init_cpu(cpu);
5408                 break;
5409
5410         case CPU_DOWN_PREPARE:
5411         case CPU_DOWN_PREPARE_FROZEN:
5412                 perf_event_exit_cpu(cpu);
5413                 break;
5414
5415         default:
5416                 break;
5417         }
5418
5419         return NOTIFY_OK;
5420 }
5421
5422 /*
5423  * This has to have a higher priority than migration_notifier in sched.c.
5424  */
5425 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5426         .notifier_call          = perf_cpu_notify,
5427         .priority               = 20,
5428 };
5429
5430 void __init perf_event_init(void)
5431 {
5432         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5433                         (void *)(long)smp_processor_id());
5434         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5435                         (void *)(long)smp_processor_id());
5436         register_cpu_notifier(&perf_cpu_nb);
5437 }
5438
5439 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5440                                         struct sysdev_class_attribute *attr,
5441                                         char *buf)
5442 {
5443         return sprintf(buf, "%d\n", perf_reserved_percpu);
5444 }
5445
5446 static ssize_t
5447 perf_set_reserve_percpu(struct sysdev_class *class,
5448                         struct sysdev_class_attribute *attr,
5449                         const char *buf,
5450                         size_t count)
5451 {
5452         struct perf_cpu_context *cpuctx;
5453         unsigned long val;
5454         int err, cpu, mpt;
5455
5456         err = strict_strtoul(buf, 10, &val);
5457         if (err)
5458                 return err;
5459         if (val > perf_max_events)
5460                 return -EINVAL;
5461
5462         spin_lock(&perf_resource_lock);
5463         perf_reserved_percpu = val;
5464         for_each_online_cpu(cpu) {
5465                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5466                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5467                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5468                           perf_max_events - perf_reserved_percpu);
5469                 cpuctx->max_pertask = mpt;
5470                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5471         }
5472         spin_unlock(&perf_resource_lock);
5473
5474         return count;
5475 }
5476
5477 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5478                                     struct sysdev_class_attribute *attr,
5479                                     char *buf)
5480 {
5481         return sprintf(buf, "%d\n", perf_overcommit);
5482 }
5483
5484 static ssize_t
5485 perf_set_overcommit(struct sysdev_class *class,
5486                     struct sysdev_class_attribute *attr,
5487                     const char *buf, size_t count)
5488 {
5489         unsigned long val;
5490         int err;
5491
5492         err = strict_strtoul(buf, 10, &val);
5493         if (err)
5494                 return err;
5495         if (val > 1)
5496                 return -EINVAL;
5497
5498         spin_lock(&perf_resource_lock);
5499         perf_overcommit = val;
5500         spin_unlock(&perf_resource_lock);
5501
5502         return count;
5503 }
5504
5505 static SYSDEV_CLASS_ATTR(
5506                                 reserve_percpu,
5507                                 0644,
5508                                 perf_show_reserve_percpu,
5509                                 perf_set_reserve_percpu
5510                         );
5511
5512 static SYSDEV_CLASS_ATTR(
5513                                 overcommit,
5514                                 0644,
5515                                 perf_show_overcommit,
5516                                 perf_set_overcommit
5517                         );
5518
5519 static struct attribute *perfclass_attrs[] = {
5520         &attr_reserve_percpu.attr,
5521         &attr_overcommit.attr,
5522         NULL
5523 };
5524
5525 static struct attribute_group perfclass_attr_group = {
5526         .attrs                  = perfclass_attrs,
5527         .name                   = "perf_events",
5528 };
5529
5530 static int __init perf_event_sysfs_init(void)
5531 {
5532         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5533                                   &perfclass_attr_group);
5534 }
5535 device_initcall(perf_event_sysfs_init);