9dbe8cdaf145f2d86143f6254a14572f37a65684
[safe/jmp/linux-2.6] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 int __weak
87 hw_perf_group_sched_in(struct perf_event *group_leader,
88                struct perf_cpu_context *cpuctx,
89                struct perf_event_context *ctx)
90 {
91         return 0;
92 }
93
94 void __weak perf_event_print_debug(void)        { }
95
96 static DEFINE_PER_CPU(int, perf_disable_count);
97
98 void perf_disable(void)
99 {
100         if (!__get_cpu_var(perf_disable_count)++)
101                 hw_perf_disable();
102 }
103
104 void perf_enable(void)
105 {
106         if (!--__get_cpu_var(perf_disable_count))
107                 hw_perf_enable();
108 }
109
110 static void get_ctx(struct perf_event_context *ctx)
111 {
112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 }
114
115 static void free_ctx(struct rcu_head *head)
116 {
117         struct perf_event_context *ctx;
118
119         ctx = container_of(head, struct perf_event_context, rcu_head);
120         kfree(ctx);
121 }
122
123 static void put_ctx(struct perf_event_context *ctx)
124 {
125         if (atomic_dec_and_test(&ctx->refcount)) {
126                 if (ctx->parent_ctx)
127                         put_ctx(ctx->parent_ctx);
128                 if (ctx->task)
129                         put_task_struct(ctx->task);
130                 call_rcu(&ctx->rcu_head, free_ctx);
131         }
132 }
133
134 static void unclone_ctx(struct perf_event_context *ctx)
135 {
136         if (ctx->parent_ctx) {
137                 put_ctx(ctx->parent_ctx);
138                 ctx->parent_ctx = NULL;
139         }
140 }
141
142 /*
143  * If we inherit events we want to return the parent event id
144  * to userspace.
145  */
146 static u64 primary_event_id(struct perf_event *event)
147 {
148         u64 id = event->id;
149
150         if (event->parent)
151                 id = event->parent->id;
152
153         return id;
154 }
155
156 /*
157  * Get the perf_event_context for a task and lock it.
158  * This has to cope with with the fact that until it is locked,
159  * the context could get moved to another task.
160  */
161 static struct perf_event_context *
162 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163 {
164         struct perf_event_context *ctx;
165
166         rcu_read_lock();
167  retry:
168         ctx = rcu_dereference(task->perf_event_ctxp);
169         if (ctx) {
170                 /*
171                  * If this context is a clone of another, it might
172                  * get swapped for another underneath us by
173                  * perf_event_task_sched_out, though the
174                  * rcu_read_lock() protects us from any context
175                  * getting freed.  Lock the context and check if it
176                  * got swapped before we could get the lock, and retry
177                  * if so.  If we locked the right context, then it
178                  * can't get swapped on us any more.
179                  */
180                 raw_spin_lock_irqsave(&ctx->lock, *flags);
181                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
182                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
183                         goto retry;
184                 }
185
186                 if (!atomic_inc_not_zero(&ctx->refcount)) {
187                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
188                         ctx = NULL;
189                 }
190         }
191         rcu_read_unlock();
192         return ctx;
193 }
194
195 /*
196  * Get the context for a task and increment its pin_count so it
197  * can't get swapped to another task.  This also increments its
198  * reference count so that the context can't get freed.
199  */
200 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201 {
202         struct perf_event_context *ctx;
203         unsigned long flags;
204
205         ctx = perf_lock_task_context(task, &flags);
206         if (ctx) {
207                 ++ctx->pin_count;
208                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
209         }
210         return ctx;
211 }
212
213 static void perf_unpin_context(struct perf_event_context *ctx)
214 {
215         unsigned long flags;
216
217         raw_spin_lock_irqsave(&ctx->lock, flags);
218         --ctx->pin_count;
219         raw_spin_unlock_irqrestore(&ctx->lock, flags);
220         put_ctx(ctx);
221 }
222
223 static inline u64 perf_clock(void)
224 {
225         return cpu_clock(raw_smp_processor_id());
226 }
227
228 /*
229  * Update the record of the current time in a context.
230  */
231 static void update_context_time(struct perf_event_context *ctx)
232 {
233         u64 now = perf_clock();
234
235         ctx->time += now - ctx->timestamp;
236         ctx->timestamp = now;
237 }
238
239 /*
240  * Update the total_time_enabled and total_time_running fields for a event.
241  */
242 static void update_event_times(struct perf_event *event)
243 {
244         struct perf_event_context *ctx = event->ctx;
245         u64 run_end;
246
247         if (event->state < PERF_EVENT_STATE_INACTIVE ||
248             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
249                 return;
250
251         if (ctx->is_active)
252                 run_end = ctx->time;
253         else
254                 run_end = event->tstamp_stopped;
255
256         event->total_time_enabled = run_end - event->tstamp_enabled;
257
258         if (event->state == PERF_EVENT_STATE_INACTIVE)
259                 run_end = event->tstamp_stopped;
260         else
261                 run_end = ctx->time;
262
263         event->total_time_running = run_end - event->tstamp_running;
264 }
265
266 static struct list_head *
267 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
268 {
269         if (event->attr.pinned)
270                 return &ctx->pinned_groups;
271         else
272                 return &ctx->flexible_groups;
273 }
274
275 /*
276  * Add a event from the lists for its context.
277  * Must be called with ctx->mutex and ctx->lock held.
278  */
279 static void
280 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281 {
282         struct perf_event *group_leader = event->group_leader;
283
284         /*
285          * Depending on whether it is a standalone or sibling event,
286          * add it straight to the context's event list, or to the group
287          * leader's sibling list:
288          */
289         if (group_leader == event) {
290                 struct list_head *list;
291
292                 if (is_software_event(event))
293                         event->group_flags |= PERF_GROUP_SOFTWARE;
294
295                 list = ctx_group_list(event, ctx);
296                 list_add_tail(&event->group_entry, list);
297         } else {
298                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
299                     !is_software_event(event))
300                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
301
302                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
303                 group_leader->nr_siblings++;
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         ctx->nr_events++;
308         if (event->attr.inherit_stat)
309                 ctx->nr_stat++;
310 }
311
312 /*
313  * Remove a event from the lists for its context.
314  * Must be called with ctx->mutex and ctx->lock held.
315  */
316 static void
317 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318 {
319         struct perf_event *sibling, *tmp;
320
321         if (list_empty(&event->group_entry))
322                 return;
323         ctx->nr_events--;
324         if (event->attr.inherit_stat)
325                 ctx->nr_stat--;
326
327         list_del_init(&event->group_entry);
328         list_del_rcu(&event->event_entry);
329
330         if (event->group_leader != event)
331                 event->group_leader->nr_siblings--;
332
333         update_event_times(event);
334
335         /*
336          * If event was in error state, then keep it
337          * that way, otherwise bogus counts will be
338          * returned on read(). The only way to get out
339          * of error state is by explicit re-enabling
340          * of the event
341          */
342         if (event->state > PERF_EVENT_STATE_OFF)
343                 event->state = PERF_EVENT_STATE_OFF;
344
345         /*
346          * If this was a group event with sibling events then
347          * upgrade the siblings to singleton events by adding them
348          * to the context list directly:
349          */
350         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
351                 struct list_head *list;
352
353                 list = ctx_group_list(event, ctx);
354                 list_move_tail(&sibling->group_entry, list);
355                 sibling->group_leader = sibling;
356
357                 /* Inherit group flags from the previous leader */
358                 sibling->group_flags = event->group_flags;
359         }
360 }
361
362 static void
363 event_sched_out(struct perf_event *event,
364                   struct perf_cpu_context *cpuctx,
365                   struct perf_event_context *ctx)
366 {
367         if (event->state != PERF_EVENT_STATE_ACTIVE)
368                 return;
369
370         event->state = PERF_EVENT_STATE_INACTIVE;
371         if (event->pending_disable) {
372                 event->pending_disable = 0;
373                 event->state = PERF_EVENT_STATE_OFF;
374         }
375         event->tstamp_stopped = ctx->time;
376         event->pmu->disable(event);
377         event->oncpu = -1;
378
379         if (!is_software_event(event))
380                 cpuctx->active_oncpu--;
381         ctx->nr_active--;
382         if (event->attr.exclusive || !cpuctx->active_oncpu)
383                 cpuctx->exclusive = 0;
384 }
385
386 static void
387 group_sched_out(struct perf_event *group_event,
388                 struct perf_cpu_context *cpuctx,
389                 struct perf_event_context *ctx)
390 {
391         struct perf_event *event;
392
393         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
394                 return;
395
396         event_sched_out(group_event, cpuctx, ctx);
397
398         /*
399          * Schedule out siblings (if any):
400          */
401         list_for_each_entry(event, &group_event->sibling_list, group_entry)
402                 event_sched_out(event, cpuctx, ctx);
403
404         if (group_event->attr.exclusive)
405                 cpuctx->exclusive = 0;
406 }
407
408 /*
409  * Cross CPU call to remove a performance event
410  *
411  * We disable the event on the hardware level first. After that we
412  * remove it from the context list.
413  */
414 static void __perf_event_remove_from_context(void *info)
415 {
416         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
417         struct perf_event *event = info;
418         struct perf_event_context *ctx = event->ctx;
419
420         /*
421          * If this is a task context, we need to check whether it is
422          * the current task context of this cpu. If not it has been
423          * scheduled out before the smp call arrived.
424          */
425         if (ctx->task && cpuctx->task_ctx != ctx)
426                 return;
427
428         raw_spin_lock(&ctx->lock);
429         /*
430          * Protect the list operation against NMI by disabling the
431          * events on a global level.
432          */
433         perf_disable();
434
435         event_sched_out(event, cpuctx, ctx);
436
437         list_del_event(event, ctx);
438
439         if (!ctx->task) {
440                 /*
441                  * Allow more per task events with respect to the
442                  * reservation:
443                  */
444                 cpuctx->max_pertask =
445                         min(perf_max_events - ctx->nr_events,
446                             perf_max_events - perf_reserved_percpu);
447         }
448
449         perf_enable();
450         raw_spin_unlock(&ctx->lock);
451 }
452
453
454 /*
455  * Remove the event from a task's (or a CPU's) list of events.
456  *
457  * Must be called with ctx->mutex held.
458  *
459  * CPU events are removed with a smp call. For task events we only
460  * call when the task is on a CPU.
461  *
462  * If event->ctx is a cloned context, callers must make sure that
463  * every task struct that event->ctx->task could possibly point to
464  * remains valid.  This is OK when called from perf_release since
465  * that only calls us on the top-level context, which can't be a clone.
466  * When called from perf_event_exit_task, it's OK because the
467  * context has been detached from its task.
468  */
469 static void perf_event_remove_from_context(struct perf_event *event)
470 {
471         struct perf_event_context *ctx = event->ctx;
472         struct task_struct *task = ctx->task;
473
474         if (!task) {
475                 /*
476                  * Per cpu events are removed via an smp call and
477                  * the removal is always successful.
478                  */
479                 smp_call_function_single(event->cpu,
480                                          __perf_event_remove_from_context,
481                                          event, 1);
482                 return;
483         }
484
485 retry:
486         task_oncpu_function_call(task, __perf_event_remove_from_context,
487                                  event);
488
489         raw_spin_lock_irq(&ctx->lock);
490         /*
491          * If the context is active we need to retry the smp call.
492          */
493         if (ctx->nr_active && !list_empty(&event->group_entry)) {
494                 raw_spin_unlock_irq(&ctx->lock);
495                 goto retry;
496         }
497
498         /*
499          * The lock prevents that this context is scheduled in so we
500          * can remove the event safely, if the call above did not
501          * succeed.
502          */
503         if (!list_empty(&event->group_entry))
504                 list_del_event(event, ctx);
505         raw_spin_unlock_irq(&ctx->lock);
506 }
507
508 /*
509  * Update total_time_enabled and total_time_running for all events in a group.
510  */
511 static void update_group_times(struct perf_event *leader)
512 {
513         struct perf_event *event;
514
515         update_event_times(leader);
516         list_for_each_entry(event, &leader->sibling_list, group_entry)
517                 update_event_times(event);
518 }
519
520 /*
521  * Cross CPU call to disable a performance event
522  */
523 static void __perf_event_disable(void *info)
524 {
525         struct perf_event *event = info;
526         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
527         struct perf_event_context *ctx = event->ctx;
528
529         /*
530          * If this is a per-task event, need to check whether this
531          * event's task is the current task on this cpu.
532          */
533         if (ctx->task && cpuctx->task_ctx != ctx)
534                 return;
535
536         raw_spin_lock(&ctx->lock);
537
538         /*
539          * If the event is on, turn it off.
540          * If it is in error state, leave it in error state.
541          */
542         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
543                 update_context_time(ctx);
544                 update_group_times(event);
545                 if (event == event->group_leader)
546                         group_sched_out(event, cpuctx, ctx);
547                 else
548                         event_sched_out(event, cpuctx, ctx);
549                 event->state = PERF_EVENT_STATE_OFF;
550         }
551
552         raw_spin_unlock(&ctx->lock);
553 }
554
555 /*
556  * Disable a event.
557  *
558  * If event->ctx is a cloned context, callers must make sure that
559  * every task struct that event->ctx->task could possibly point to
560  * remains valid.  This condition is satisifed when called through
561  * perf_event_for_each_child or perf_event_for_each because they
562  * hold the top-level event's child_mutex, so any descendant that
563  * goes to exit will block in sync_child_event.
564  * When called from perf_pending_event it's OK because event->ctx
565  * is the current context on this CPU and preemption is disabled,
566  * hence we can't get into perf_event_task_sched_out for this context.
567  */
568 void perf_event_disable(struct perf_event *event)
569 {
570         struct perf_event_context *ctx = event->ctx;
571         struct task_struct *task = ctx->task;
572
573         if (!task) {
574                 /*
575                  * Disable the event on the cpu that it's on
576                  */
577                 smp_call_function_single(event->cpu, __perf_event_disable,
578                                          event, 1);
579                 return;
580         }
581
582  retry:
583         task_oncpu_function_call(task, __perf_event_disable, event);
584
585         raw_spin_lock_irq(&ctx->lock);
586         /*
587          * If the event is still active, we need to retry the cross-call.
588          */
589         if (event->state == PERF_EVENT_STATE_ACTIVE) {
590                 raw_spin_unlock_irq(&ctx->lock);
591                 goto retry;
592         }
593
594         /*
595          * Since we have the lock this context can't be scheduled
596          * in, so we can change the state safely.
597          */
598         if (event->state == PERF_EVENT_STATE_INACTIVE) {
599                 update_group_times(event);
600                 event->state = PERF_EVENT_STATE_OFF;
601         }
602
603         raw_spin_unlock_irq(&ctx->lock);
604 }
605
606 static int
607 event_sched_in(struct perf_event *event,
608                  struct perf_cpu_context *cpuctx,
609                  struct perf_event_context *ctx)
610 {
611         if (event->state <= PERF_EVENT_STATE_OFF)
612                 return 0;
613
614         event->state = PERF_EVENT_STATE_ACTIVE;
615         event->oncpu = smp_processor_id();
616         /*
617          * The new state must be visible before we turn it on in the hardware:
618          */
619         smp_wmb();
620
621         if (event->pmu->enable(event)) {
622                 event->state = PERF_EVENT_STATE_INACTIVE;
623                 event->oncpu = -1;
624                 return -EAGAIN;
625         }
626
627         event->tstamp_running += ctx->time - event->tstamp_stopped;
628
629         if (!is_software_event(event))
630                 cpuctx->active_oncpu++;
631         ctx->nr_active++;
632
633         if (event->attr.exclusive)
634                 cpuctx->exclusive = 1;
635
636         return 0;
637 }
638
639 static int
640 group_sched_in(struct perf_event *group_event,
641                struct perf_cpu_context *cpuctx,
642                struct perf_event_context *ctx)
643 {
644         struct perf_event *event, *partial_group;
645         int ret;
646
647         if (group_event->state == PERF_EVENT_STATE_OFF)
648                 return 0;
649
650         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
651         if (ret)
652                 return ret < 0 ? ret : 0;
653
654         if (event_sched_in(group_event, cpuctx, ctx))
655                 return -EAGAIN;
656
657         /*
658          * Schedule in siblings as one group (if any):
659          */
660         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661                 if (event_sched_in(event, cpuctx, ctx)) {
662                         partial_group = event;
663                         goto group_error;
664                 }
665         }
666
667         return 0;
668
669 group_error:
670         /*
671          * Groups can be scheduled in as one unit only, so undo any
672          * partial group before returning:
673          */
674         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
675                 if (event == partial_group)
676                         break;
677                 event_sched_out(event, cpuctx, ctx);
678         }
679         event_sched_out(group_event, cpuctx, ctx);
680
681         return -EAGAIN;
682 }
683
684 /*
685  * Work out whether we can put this event group on the CPU now.
686  */
687 static int group_can_go_on(struct perf_event *event,
688                            struct perf_cpu_context *cpuctx,
689                            int can_add_hw)
690 {
691         /*
692          * Groups consisting entirely of software events can always go on.
693          */
694         if (event->group_flags & PERF_GROUP_SOFTWARE)
695                 return 1;
696         /*
697          * If an exclusive group is already on, no other hardware
698          * events can go on.
699          */
700         if (cpuctx->exclusive)
701                 return 0;
702         /*
703          * If this group is exclusive and there are already
704          * events on the CPU, it can't go on.
705          */
706         if (event->attr.exclusive && cpuctx->active_oncpu)
707                 return 0;
708         /*
709          * Otherwise, try to add it if all previous groups were able
710          * to go on.
711          */
712         return can_add_hw;
713 }
714
715 static void add_event_to_ctx(struct perf_event *event,
716                                struct perf_event_context *ctx)
717 {
718         list_add_event(event, ctx);
719         event->tstamp_enabled = ctx->time;
720         event->tstamp_running = ctx->time;
721         event->tstamp_stopped = ctx->time;
722 }
723
724 /*
725  * Cross CPU call to install and enable a performance event
726  *
727  * Must be called with ctx->mutex held
728  */
729 static void __perf_install_in_context(void *info)
730 {
731         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732         struct perf_event *event = info;
733         struct perf_event_context *ctx = event->ctx;
734         struct perf_event *leader = event->group_leader;
735         int err;
736
737         /*
738          * If this is a task context, we need to check whether it is
739          * the current task context of this cpu. If not it has been
740          * scheduled out before the smp call arrived.
741          * Or possibly this is the right context but it isn't
742          * on this cpu because it had no events.
743          */
744         if (ctx->task && cpuctx->task_ctx != ctx) {
745                 if (cpuctx->task_ctx || ctx->task != current)
746                         return;
747                 cpuctx->task_ctx = ctx;
748         }
749
750         raw_spin_lock(&ctx->lock);
751         ctx->is_active = 1;
752         update_context_time(ctx);
753
754         /*
755          * Protect the list operation against NMI by disabling the
756          * events on a global level. NOP for non NMI based events.
757          */
758         perf_disable();
759
760         add_event_to_ctx(event, ctx);
761
762         if (event->cpu != -1 && event->cpu != smp_processor_id())
763                 goto unlock;
764
765         /*
766          * Don't put the event on if it is disabled or if
767          * it is in a group and the group isn't on.
768          */
769         if (event->state != PERF_EVENT_STATE_INACTIVE ||
770             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
771                 goto unlock;
772
773         /*
774          * An exclusive event can't go on if there are already active
775          * hardware events, and no hardware event can go on if there
776          * is already an exclusive event on.
777          */
778         if (!group_can_go_on(event, cpuctx, 1))
779                 err = -EEXIST;
780         else
781                 err = event_sched_in(event, cpuctx, ctx);
782
783         if (err) {
784                 /*
785                  * This event couldn't go on.  If it is in a group
786                  * then we have to pull the whole group off.
787                  * If the event group is pinned then put it in error state.
788                  */
789                 if (leader != event)
790                         group_sched_out(leader, cpuctx, ctx);
791                 if (leader->attr.pinned) {
792                         update_group_times(leader);
793                         leader->state = PERF_EVENT_STATE_ERROR;
794                 }
795         }
796
797         if (!err && !ctx->task && cpuctx->max_pertask)
798                 cpuctx->max_pertask--;
799
800  unlock:
801         perf_enable();
802
803         raw_spin_unlock(&ctx->lock);
804 }
805
806 /*
807  * Attach a performance event to a context
808  *
809  * First we add the event to the list with the hardware enable bit
810  * in event->hw_config cleared.
811  *
812  * If the event is attached to a task which is on a CPU we use a smp
813  * call to enable it in the task context. The task might have been
814  * scheduled away, but we check this in the smp call again.
815  *
816  * Must be called with ctx->mutex held.
817  */
818 static void
819 perf_install_in_context(struct perf_event_context *ctx,
820                         struct perf_event *event,
821                         int cpu)
822 {
823         struct task_struct *task = ctx->task;
824
825         if (!task) {
826                 /*
827                  * Per cpu events are installed via an smp call and
828                  * the install is always successful.
829                  */
830                 smp_call_function_single(cpu, __perf_install_in_context,
831                                          event, 1);
832                 return;
833         }
834
835 retry:
836         task_oncpu_function_call(task, __perf_install_in_context,
837                                  event);
838
839         raw_spin_lock_irq(&ctx->lock);
840         /*
841          * we need to retry the smp call.
842          */
843         if (ctx->is_active && list_empty(&event->group_entry)) {
844                 raw_spin_unlock_irq(&ctx->lock);
845                 goto retry;
846         }
847
848         /*
849          * The lock prevents that this context is scheduled in so we
850          * can add the event safely, if it the call above did not
851          * succeed.
852          */
853         if (list_empty(&event->group_entry))
854                 add_event_to_ctx(event, ctx);
855         raw_spin_unlock_irq(&ctx->lock);
856 }
857
858 /*
859  * Put a event into inactive state and update time fields.
860  * Enabling the leader of a group effectively enables all
861  * the group members that aren't explicitly disabled, so we
862  * have to update their ->tstamp_enabled also.
863  * Note: this works for group members as well as group leaders
864  * since the non-leader members' sibling_lists will be empty.
865  */
866 static void __perf_event_mark_enabled(struct perf_event *event,
867                                         struct perf_event_context *ctx)
868 {
869         struct perf_event *sub;
870
871         event->state = PERF_EVENT_STATE_INACTIVE;
872         event->tstamp_enabled = ctx->time - event->total_time_enabled;
873         list_for_each_entry(sub, &event->sibling_list, group_entry)
874                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
875                         sub->tstamp_enabled =
876                                 ctx->time - sub->total_time_enabled;
877 }
878
879 /*
880  * Cross CPU call to enable a performance event
881  */
882 static void __perf_event_enable(void *info)
883 {
884         struct perf_event *event = info;
885         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
886         struct perf_event_context *ctx = event->ctx;
887         struct perf_event *leader = event->group_leader;
888         int err;
889
890         /*
891          * If this is a per-task event, need to check whether this
892          * event's task is the current task on this cpu.
893          */
894         if (ctx->task && cpuctx->task_ctx != ctx) {
895                 if (cpuctx->task_ctx || ctx->task != current)
896                         return;
897                 cpuctx->task_ctx = ctx;
898         }
899
900         raw_spin_lock(&ctx->lock);
901         ctx->is_active = 1;
902         update_context_time(ctx);
903
904         if (event->state >= PERF_EVENT_STATE_INACTIVE)
905                 goto unlock;
906         __perf_event_mark_enabled(event, ctx);
907
908         if (event->cpu != -1 && event->cpu != smp_processor_id())
909                 goto unlock;
910
911         /*
912          * If the event is in a group and isn't the group leader,
913          * then don't put it on unless the group is on.
914          */
915         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
916                 goto unlock;
917
918         if (!group_can_go_on(event, cpuctx, 1)) {
919                 err = -EEXIST;
920         } else {
921                 perf_disable();
922                 if (event == leader)
923                         err = group_sched_in(event, cpuctx, ctx);
924                 else
925                         err = event_sched_in(event, cpuctx, ctx);
926                 perf_enable();
927         }
928
929         if (err) {
930                 /*
931                  * If this event can't go on and it's part of a
932                  * group, then the whole group has to come off.
933                  */
934                 if (leader != event)
935                         group_sched_out(leader, cpuctx, ctx);
936                 if (leader->attr.pinned) {
937                         update_group_times(leader);
938                         leader->state = PERF_EVENT_STATE_ERROR;
939                 }
940         }
941
942  unlock:
943         raw_spin_unlock(&ctx->lock);
944 }
945
946 /*
947  * Enable a event.
948  *
949  * If event->ctx is a cloned context, callers must make sure that
950  * every task struct that event->ctx->task could possibly point to
951  * remains valid.  This condition is satisfied when called through
952  * perf_event_for_each_child or perf_event_for_each as described
953  * for perf_event_disable.
954  */
955 void perf_event_enable(struct perf_event *event)
956 {
957         struct perf_event_context *ctx = event->ctx;
958         struct task_struct *task = ctx->task;
959
960         if (!task) {
961                 /*
962                  * Enable the event on the cpu that it's on
963                  */
964                 smp_call_function_single(event->cpu, __perf_event_enable,
965                                          event, 1);
966                 return;
967         }
968
969         raw_spin_lock_irq(&ctx->lock);
970         if (event->state >= PERF_EVENT_STATE_INACTIVE)
971                 goto out;
972
973         /*
974          * If the event is in error state, clear that first.
975          * That way, if we see the event in error state below, we
976          * know that it has gone back into error state, as distinct
977          * from the task having been scheduled away before the
978          * cross-call arrived.
979          */
980         if (event->state == PERF_EVENT_STATE_ERROR)
981                 event->state = PERF_EVENT_STATE_OFF;
982
983  retry:
984         raw_spin_unlock_irq(&ctx->lock);
985         task_oncpu_function_call(task, __perf_event_enable, event);
986
987         raw_spin_lock_irq(&ctx->lock);
988
989         /*
990          * If the context is active and the event is still off,
991          * we need to retry the cross-call.
992          */
993         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
994                 goto retry;
995
996         /*
997          * Since we have the lock this context can't be scheduled
998          * in, so we can change the state safely.
999          */
1000         if (event->state == PERF_EVENT_STATE_OFF)
1001                 __perf_event_mark_enabled(event, ctx);
1002
1003  out:
1004         raw_spin_unlock_irq(&ctx->lock);
1005 }
1006
1007 static int perf_event_refresh(struct perf_event *event, int refresh)
1008 {
1009         /*
1010          * not supported on inherited events
1011          */
1012         if (event->attr.inherit)
1013                 return -EINVAL;
1014
1015         atomic_add(refresh, &event->event_limit);
1016         perf_event_enable(event);
1017
1018         return 0;
1019 }
1020
1021 enum event_type_t {
1022         EVENT_FLEXIBLE = 0x1,
1023         EVENT_PINNED = 0x2,
1024         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1025 };
1026
1027 static void ctx_sched_out(struct perf_event_context *ctx,
1028                           struct perf_cpu_context *cpuctx,
1029                           enum event_type_t event_type)
1030 {
1031         struct perf_event *event;
1032
1033         raw_spin_lock(&ctx->lock);
1034         ctx->is_active = 0;
1035         if (likely(!ctx->nr_events))
1036                 goto out;
1037         update_context_time(ctx);
1038
1039         perf_disable();
1040         if (!ctx->nr_active)
1041                 goto out_enable;
1042
1043         if (event_type & EVENT_PINNED)
1044                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1045                         group_sched_out(event, cpuctx, ctx);
1046
1047         if (event_type & EVENT_FLEXIBLE)
1048                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1049                         group_sched_out(event, cpuctx, ctx);
1050
1051  out_enable:
1052         perf_enable();
1053  out:
1054         raw_spin_unlock(&ctx->lock);
1055 }
1056
1057 /*
1058  * Test whether two contexts are equivalent, i.e. whether they
1059  * have both been cloned from the same version of the same context
1060  * and they both have the same number of enabled events.
1061  * If the number of enabled events is the same, then the set
1062  * of enabled events should be the same, because these are both
1063  * inherited contexts, therefore we can't access individual events
1064  * in them directly with an fd; we can only enable/disable all
1065  * events via prctl, or enable/disable all events in a family
1066  * via ioctl, which will have the same effect on both contexts.
1067  */
1068 static int context_equiv(struct perf_event_context *ctx1,
1069                          struct perf_event_context *ctx2)
1070 {
1071         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1072                 && ctx1->parent_gen == ctx2->parent_gen
1073                 && !ctx1->pin_count && !ctx2->pin_count;
1074 }
1075
1076 static void __perf_event_sync_stat(struct perf_event *event,
1077                                      struct perf_event *next_event)
1078 {
1079         u64 value;
1080
1081         if (!event->attr.inherit_stat)
1082                 return;
1083
1084         /*
1085          * Update the event value, we cannot use perf_event_read()
1086          * because we're in the middle of a context switch and have IRQs
1087          * disabled, which upsets smp_call_function_single(), however
1088          * we know the event must be on the current CPU, therefore we
1089          * don't need to use it.
1090          */
1091         switch (event->state) {
1092         case PERF_EVENT_STATE_ACTIVE:
1093                 event->pmu->read(event);
1094                 /* fall-through */
1095
1096         case PERF_EVENT_STATE_INACTIVE:
1097                 update_event_times(event);
1098                 break;
1099
1100         default:
1101                 break;
1102         }
1103
1104         /*
1105          * In order to keep per-task stats reliable we need to flip the event
1106          * values when we flip the contexts.
1107          */
1108         value = atomic64_read(&next_event->count);
1109         value = atomic64_xchg(&event->count, value);
1110         atomic64_set(&next_event->count, value);
1111
1112         swap(event->total_time_enabled, next_event->total_time_enabled);
1113         swap(event->total_time_running, next_event->total_time_running);
1114
1115         /*
1116          * Since we swizzled the values, update the user visible data too.
1117          */
1118         perf_event_update_userpage(event);
1119         perf_event_update_userpage(next_event);
1120 }
1121
1122 #define list_next_entry(pos, member) \
1123         list_entry(pos->member.next, typeof(*pos), member)
1124
1125 static void perf_event_sync_stat(struct perf_event_context *ctx,
1126                                    struct perf_event_context *next_ctx)
1127 {
1128         struct perf_event *event, *next_event;
1129
1130         if (!ctx->nr_stat)
1131                 return;
1132
1133         update_context_time(ctx);
1134
1135         event = list_first_entry(&ctx->event_list,
1136                                    struct perf_event, event_entry);
1137
1138         next_event = list_first_entry(&next_ctx->event_list,
1139                                         struct perf_event, event_entry);
1140
1141         while (&event->event_entry != &ctx->event_list &&
1142                &next_event->event_entry != &next_ctx->event_list) {
1143
1144                 __perf_event_sync_stat(event, next_event);
1145
1146                 event = list_next_entry(event, event_entry);
1147                 next_event = list_next_entry(next_event, event_entry);
1148         }
1149 }
1150
1151 /*
1152  * Called from scheduler to remove the events of the current task,
1153  * with interrupts disabled.
1154  *
1155  * We stop each event and update the event value in event->count.
1156  *
1157  * This does not protect us against NMI, but disable()
1158  * sets the disabled bit in the control field of event _before_
1159  * accessing the event control register. If a NMI hits, then it will
1160  * not restart the event.
1161  */
1162 void perf_event_task_sched_out(struct task_struct *task,
1163                                  struct task_struct *next)
1164 {
1165         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1166         struct perf_event_context *ctx = task->perf_event_ctxp;
1167         struct perf_event_context *next_ctx;
1168         struct perf_event_context *parent;
1169         int do_switch = 1;
1170
1171         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1172
1173         if (likely(!ctx || !cpuctx->task_ctx))
1174                 return;
1175
1176         rcu_read_lock();
1177         parent = rcu_dereference(ctx->parent_ctx);
1178         next_ctx = next->perf_event_ctxp;
1179         if (parent && next_ctx &&
1180             rcu_dereference(next_ctx->parent_ctx) == parent) {
1181                 /*
1182                  * Looks like the two contexts are clones, so we might be
1183                  * able to optimize the context switch.  We lock both
1184                  * contexts and check that they are clones under the
1185                  * lock (including re-checking that neither has been
1186                  * uncloned in the meantime).  It doesn't matter which
1187                  * order we take the locks because no other cpu could
1188                  * be trying to lock both of these tasks.
1189                  */
1190                 raw_spin_lock(&ctx->lock);
1191                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1192                 if (context_equiv(ctx, next_ctx)) {
1193                         /*
1194                          * XXX do we need a memory barrier of sorts
1195                          * wrt to rcu_dereference() of perf_event_ctxp
1196                          */
1197                         task->perf_event_ctxp = next_ctx;
1198                         next->perf_event_ctxp = ctx;
1199                         ctx->task = next;
1200                         next_ctx->task = task;
1201                         do_switch = 0;
1202
1203                         perf_event_sync_stat(ctx, next_ctx);
1204                 }
1205                 raw_spin_unlock(&next_ctx->lock);
1206                 raw_spin_unlock(&ctx->lock);
1207         }
1208         rcu_read_unlock();
1209
1210         if (do_switch) {
1211                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1212                 cpuctx->task_ctx = NULL;
1213         }
1214 }
1215
1216 static void task_ctx_sched_out(struct perf_event_context *ctx,
1217                                enum event_type_t event_type)
1218 {
1219         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1220
1221         if (!cpuctx->task_ctx)
1222                 return;
1223
1224         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1225                 return;
1226
1227         ctx_sched_out(ctx, cpuctx, event_type);
1228         cpuctx->task_ctx = NULL;
1229 }
1230
1231 /*
1232  * Called with IRQs disabled
1233  */
1234 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1235 {
1236         task_ctx_sched_out(ctx, EVENT_ALL);
1237 }
1238
1239 /*
1240  * Called with IRQs disabled
1241  */
1242 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1243                               enum event_type_t event_type)
1244 {
1245         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1246 }
1247
1248 static void
1249 ctx_pinned_sched_in(struct perf_event_context *ctx,
1250                     struct perf_cpu_context *cpuctx)
1251 {
1252         struct perf_event *event;
1253
1254         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1255                 if (event->state <= PERF_EVENT_STATE_OFF)
1256                         continue;
1257                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1258                         continue;
1259
1260                 if (group_can_go_on(event, cpuctx, 1))
1261                         group_sched_in(event, cpuctx, ctx);
1262
1263                 /*
1264                  * If this pinned group hasn't been scheduled,
1265                  * put it in error state.
1266                  */
1267                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268                         update_group_times(event);
1269                         event->state = PERF_EVENT_STATE_ERROR;
1270                 }
1271         }
1272 }
1273
1274 static void
1275 ctx_flexible_sched_in(struct perf_event_context *ctx,
1276                       struct perf_cpu_context *cpuctx)
1277 {
1278         struct perf_event *event;
1279         int can_add_hw = 1;
1280
1281         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1282                 /* Ignore events in OFF or ERROR state */
1283                 if (event->state <= PERF_EVENT_STATE_OFF)
1284                         continue;
1285                 /*
1286                  * Listen to the 'cpu' scheduling filter constraint
1287                  * of events:
1288                  */
1289                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1290                         continue;
1291
1292                 if (group_can_go_on(event, cpuctx, can_add_hw))
1293                         if (group_sched_in(event, cpuctx, ctx))
1294                                 can_add_hw = 0;
1295         }
1296 }
1297
1298 static void
1299 ctx_sched_in(struct perf_event_context *ctx,
1300              struct perf_cpu_context *cpuctx,
1301              enum event_type_t event_type)
1302 {
1303         raw_spin_lock(&ctx->lock);
1304         ctx->is_active = 1;
1305         if (likely(!ctx->nr_events))
1306                 goto out;
1307
1308         ctx->timestamp = perf_clock();
1309
1310         perf_disable();
1311
1312         /*
1313          * First go through the list and put on any pinned groups
1314          * in order to give them the best chance of going on.
1315          */
1316         if (event_type & EVENT_PINNED)
1317                 ctx_pinned_sched_in(ctx, cpuctx);
1318
1319         /* Then walk through the lower prio flexible groups */
1320         if (event_type & EVENT_FLEXIBLE)
1321                 ctx_flexible_sched_in(ctx, cpuctx);
1322
1323         perf_enable();
1324  out:
1325         raw_spin_unlock(&ctx->lock);
1326 }
1327
1328 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1329                              enum event_type_t event_type)
1330 {
1331         struct perf_event_context *ctx = &cpuctx->ctx;
1332
1333         ctx_sched_in(ctx, cpuctx, event_type);
1334 }
1335
1336 static void task_ctx_sched_in(struct task_struct *task,
1337                               enum event_type_t event_type)
1338 {
1339         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1340         struct perf_event_context *ctx = task->perf_event_ctxp;
1341
1342         if (likely(!ctx))
1343                 return;
1344         if (cpuctx->task_ctx == ctx)
1345                 return;
1346         ctx_sched_in(ctx, cpuctx, event_type);
1347         cpuctx->task_ctx = ctx;
1348 }
1349 /*
1350  * Called from scheduler to add the events of the current task
1351  * with interrupts disabled.
1352  *
1353  * We restore the event value and then enable it.
1354  *
1355  * This does not protect us against NMI, but enable()
1356  * sets the enabled bit in the control field of event _before_
1357  * accessing the event control register. If a NMI hits, then it will
1358  * keep the event running.
1359  */
1360 void perf_event_task_sched_in(struct task_struct *task)
1361 {
1362         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1363         struct perf_event_context *ctx = task->perf_event_ctxp;
1364
1365         if (likely(!ctx))
1366                 return;
1367
1368         if (cpuctx->task_ctx == ctx)
1369                 return;
1370
1371         perf_disable();
1372
1373         /*
1374          * We want to keep the following priority order:
1375          * cpu pinned (that don't need to move), task pinned,
1376          * cpu flexible, task flexible.
1377          */
1378         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1379
1380         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1381         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1382         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1383
1384         cpuctx->task_ctx = ctx;
1385
1386         perf_enable();
1387 }
1388
1389 #define MAX_INTERRUPTS (~0ULL)
1390
1391 static void perf_log_throttle(struct perf_event *event, int enable);
1392
1393 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1394 {
1395         u64 frequency = event->attr.sample_freq;
1396         u64 sec = NSEC_PER_SEC;
1397         u64 divisor, dividend;
1398
1399         int count_fls, nsec_fls, frequency_fls, sec_fls;
1400
1401         count_fls = fls64(count);
1402         nsec_fls = fls64(nsec);
1403         frequency_fls = fls64(frequency);
1404         sec_fls = 30;
1405
1406         /*
1407          * We got @count in @nsec, with a target of sample_freq HZ
1408          * the target period becomes:
1409          *
1410          *             @count * 10^9
1411          * period = -------------------
1412          *          @nsec * sample_freq
1413          *
1414          */
1415
1416         /*
1417          * Reduce accuracy by one bit such that @a and @b converge
1418          * to a similar magnitude.
1419          */
1420 #define REDUCE_FLS(a, b)                \
1421 do {                                    \
1422         if (a##_fls > b##_fls) {        \
1423                 a >>= 1;                \
1424                 a##_fls--;              \
1425         } else {                        \
1426                 b >>= 1;                \
1427                 b##_fls--;              \
1428         }                               \
1429 } while (0)
1430
1431         /*
1432          * Reduce accuracy until either term fits in a u64, then proceed with
1433          * the other, so that finally we can do a u64/u64 division.
1434          */
1435         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1436                 REDUCE_FLS(nsec, frequency);
1437                 REDUCE_FLS(sec, count);
1438         }
1439
1440         if (count_fls + sec_fls > 64) {
1441                 divisor = nsec * frequency;
1442
1443                 while (count_fls + sec_fls > 64) {
1444                         REDUCE_FLS(count, sec);
1445                         divisor >>= 1;
1446                 }
1447
1448                 dividend = count * sec;
1449         } else {
1450                 dividend = count * sec;
1451
1452                 while (nsec_fls + frequency_fls > 64) {
1453                         REDUCE_FLS(nsec, frequency);
1454                         dividend >>= 1;
1455                 }
1456
1457                 divisor = nsec * frequency;
1458         }
1459
1460         return div64_u64(dividend, divisor);
1461 }
1462
1463 static void perf_event_stop(struct perf_event *event)
1464 {
1465         if (!event->pmu->stop)
1466                 return event->pmu->disable(event);
1467
1468         return event->pmu->stop(event);
1469 }
1470
1471 static int perf_event_start(struct perf_event *event)
1472 {
1473         if (!event->pmu->start)
1474                 return event->pmu->enable(event);
1475
1476         return event->pmu->start(event);
1477 }
1478
1479 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1480 {
1481         struct hw_perf_event *hwc = &event->hw;
1482         u64 period, sample_period;
1483         s64 delta;
1484
1485         period = perf_calculate_period(event, nsec, count);
1486
1487         delta = (s64)(period - hwc->sample_period);
1488         delta = (delta + 7) / 8; /* low pass filter */
1489
1490         sample_period = hwc->sample_period + delta;
1491
1492         if (!sample_period)
1493                 sample_period = 1;
1494
1495         hwc->sample_period = sample_period;
1496
1497         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1498                 perf_disable();
1499                 perf_event_stop(event);
1500                 atomic64_set(&hwc->period_left, 0);
1501                 perf_event_start(event);
1502                 perf_enable();
1503         }
1504 }
1505
1506 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1507 {
1508         struct perf_event *event;
1509         struct hw_perf_event *hwc;
1510         u64 interrupts, now;
1511         s64 delta;
1512
1513         raw_spin_lock(&ctx->lock);
1514         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1515                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1516                         continue;
1517
1518                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1519                         continue;
1520
1521                 hwc = &event->hw;
1522
1523                 interrupts = hwc->interrupts;
1524                 hwc->interrupts = 0;
1525
1526                 /*
1527                  * unthrottle events on the tick
1528                  */
1529                 if (interrupts == MAX_INTERRUPTS) {
1530                         perf_log_throttle(event, 1);
1531                         perf_disable();
1532                         event->pmu->unthrottle(event);
1533                         perf_enable();
1534                 }
1535
1536                 if (!event->attr.freq || !event->attr.sample_freq)
1537                         continue;
1538
1539                 perf_disable();
1540                 event->pmu->read(event);
1541                 now = atomic64_read(&event->count);
1542                 delta = now - hwc->freq_count_stamp;
1543                 hwc->freq_count_stamp = now;
1544
1545                 if (delta > 0)
1546                         perf_adjust_period(event, TICK_NSEC, delta);
1547                 perf_enable();
1548         }
1549         raw_spin_unlock(&ctx->lock);
1550 }
1551
1552 /*
1553  * Round-robin a context's events:
1554  */
1555 static void rotate_ctx(struct perf_event_context *ctx)
1556 {
1557         raw_spin_lock(&ctx->lock);
1558
1559         /* Rotate the first entry last of non-pinned groups */
1560         list_rotate_left(&ctx->flexible_groups);
1561
1562         raw_spin_unlock(&ctx->lock);
1563 }
1564
1565 void perf_event_task_tick(struct task_struct *curr)
1566 {
1567         struct perf_cpu_context *cpuctx;
1568         struct perf_event_context *ctx;
1569         int rotate = 0;
1570
1571         if (!atomic_read(&nr_events))
1572                 return;
1573
1574         cpuctx = &__get_cpu_var(perf_cpu_context);
1575         if (cpuctx->ctx.nr_events &&
1576             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1577                 rotate = 1;
1578
1579         ctx = curr->perf_event_ctxp;
1580         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1581                 rotate = 1;
1582
1583         perf_ctx_adjust_freq(&cpuctx->ctx);
1584         if (ctx)
1585                 perf_ctx_adjust_freq(ctx);
1586
1587         if (!rotate)
1588                 return;
1589
1590         perf_disable();
1591         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1592         if (ctx)
1593                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1594
1595         rotate_ctx(&cpuctx->ctx);
1596         if (ctx)
1597                 rotate_ctx(ctx);
1598
1599         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1600         if (ctx)
1601                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1602         perf_enable();
1603 }
1604
1605 static int event_enable_on_exec(struct perf_event *event,
1606                                 struct perf_event_context *ctx)
1607 {
1608         if (!event->attr.enable_on_exec)
1609                 return 0;
1610
1611         event->attr.enable_on_exec = 0;
1612         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1613                 return 0;
1614
1615         __perf_event_mark_enabled(event, ctx);
1616
1617         return 1;
1618 }
1619
1620 /*
1621  * Enable all of a task's events that have been marked enable-on-exec.
1622  * This expects task == current.
1623  */
1624 static void perf_event_enable_on_exec(struct task_struct *task)
1625 {
1626         struct perf_event_context *ctx;
1627         struct perf_event *event;
1628         unsigned long flags;
1629         int enabled = 0;
1630         int ret;
1631
1632         local_irq_save(flags);
1633         ctx = task->perf_event_ctxp;
1634         if (!ctx || !ctx->nr_events)
1635                 goto out;
1636
1637         __perf_event_task_sched_out(ctx);
1638
1639         raw_spin_lock(&ctx->lock);
1640
1641         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1642                 ret = event_enable_on_exec(event, ctx);
1643                 if (ret)
1644                         enabled = 1;
1645         }
1646
1647         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1648                 ret = event_enable_on_exec(event, ctx);
1649                 if (ret)
1650                         enabled = 1;
1651         }
1652
1653         /*
1654          * Unclone this context if we enabled any event.
1655          */
1656         if (enabled)
1657                 unclone_ctx(ctx);
1658
1659         raw_spin_unlock(&ctx->lock);
1660
1661         perf_event_task_sched_in(task);
1662  out:
1663         local_irq_restore(flags);
1664 }
1665
1666 /*
1667  * Cross CPU call to read the hardware event
1668  */
1669 static void __perf_event_read(void *info)
1670 {
1671         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1672         struct perf_event *event = info;
1673         struct perf_event_context *ctx = event->ctx;
1674
1675         /*
1676          * If this is a task context, we need to check whether it is
1677          * the current task context of this cpu.  If not it has been
1678          * scheduled out before the smp call arrived.  In that case
1679          * event->count would have been updated to a recent sample
1680          * when the event was scheduled out.
1681          */
1682         if (ctx->task && cpuctx->task_ctx != ctx)
1683                 return;
1684
1685         raw_spin_lock(&ctx->lock);
1686         update_context_time(ctx);
1687         update_event_times(event);
1688         raw_spin_unlock(&ctx->lock);
1689
1690         event->pmu->read(event);
1691 }
1692
1693 static u64 perf_event_read(struct perf_event *event)
1694 {
1695         /*
1696          * If event is enabled and currently active on a CPU, update the
1697          * value in the event structure:
1698          */
1699         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1700                 smp_call_function_single(event->oncpu,
1701                                          __perf_event_read, event, 1);
1702         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1703                 struct perf_event_context *ctx = event->ctx;
1704                 unsigned long flags;
1705
1706                 raw_spin_lock_irqsave(&ctx->lock, flags);
1707                 update_context_time(ctx);
1708                 update_event_times(event);
1709                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1710         }
1711
1712         return atomic64_read(&event->count);
1713 }
1714
1715 /*
1716  * Initialize the perf_event context in a task_struct:
1717  */
1718 static void
1719 __perf_event_init_context(struct perf_event_context *ctx,
1720                             struct task_struct *task)
1721 {
1722         raw_spin_lock_init(&ctx->lock);
1723         mutex_init(&ctx->mutex);
1724         INIT_LIST_HEAD(&ctx->pinned_groups);
1725         INIT_LIST_HEAD(&ctx->flexible_groups);
1726         INIT_LIST_HEAD(&ctx->event_list);
1727         atomic_set(&ctx->refcount, 1);
1728         ctx->task = task;
1729 }
1730
1731 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1732 {
1733         struct perf_event_context *ctx;
1734         struct perf_cpu_context *cpuctx;
1735         struct task_struct *task;
1736         unsigned long flags;
1737         int err;
1738
1739         if (pid == -1 && cpu != -1) {
1740                 /* Must be root to operate on a CPU event: */
1741                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1742                         return ERR_PTR(-EACCES);
1743
1744                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1745                         return ERR_PTR(-EINVAL);
1746
1747                 /*
1748                  * We could be clever and allow to attach a event to an
1749                  * offline CPU and activate it when the CPU comes up, but
1750                  * that's for later.
1751                  */
1752                 if (!cpu_online(cpu))
1753                         return ERR_PTR(-ENODEV);
1754
1755                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1756                 ctx = &cpuctx->ctx;
1757                 get_ctx(ctx);
1758
1759                 return ctx;
1760         }
1761
1762         rcu_read_lock();
1763         if (!pid)
1764                 task = current;
1765         else
1766                 task = find_task_by_vpid(pid);
1767         if (task)
1768                 get_task_struct(task);
1769         rcu_read_unlock();
1770
1771         if (!task)
1772                 return ERR_PTR(-ESRCH);
1773
1774         /*
1775          * Can't attach events to a dying task.
1776          */
1777         err = -ESRCH;
1778         if (task->flags & PF_EXITING)
1779                 goto errout;
1780
1781         /* Reuse ptrace permission checks for now. */
1782         err = -EACCES;
1783         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1784                 goto errout;
1785
1786  retry:
1787         ctx = perf_lock_task_context(task, &flags);
1788         if (ctx) {
1789                 unclone_ctx(ctx);
1790                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1791         }
1792
1793         if (!ctx) {
1794                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1795                 err = -ENOMEM;
1796                 if (!ctx)
1797                         goto errout;
1798                 __perf_event_init_context(ctx, task);
1799                 get_ctx(ctx);
1800                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1801                         /*
1802                          * We raced with some other task; use
1803                          * the context they set.
1804                          */
1805                         kfree(ctx);
1806                         goto retry;
1807                 }
1808                 get_task_struct(task);
1809         }
1810
1811         put_task_struct(task);
1812         return ctx;
1813
1814  errout:
1815         put_task_struct(task);
1816         return ERR_PTR(err);
1817 }
1818
1819 static void perf_event_free_filter(struct perf_event *event);
1820
1821 static void free_event_rcu(struct rcu_head *head)
1822 {
1823         struct perf_event *event;
1824
1825         event = container_of(head, struct perf_event, rcu_head);
1826         if (event->ns)
1827                 put_pid_ns(event->ns);
1828         perf_event_free_filter(event);
1829         kfree(event);
1830 }
1831
1832 static void perf_pending_sync(struct perf_event *event);
1833
1834 static void free_event(struct perf_event *event)
1835 {
1836         perf_pending_sync(event);
1837
1838         if (!event->parent) {
1839                 atomic_dec(&nr_events);
1840                 if (event->attr.mmap)
1841                         atomic_dec(&nr_mmap_events);
1842                 if (event->attr.comm)
1843                         atomic_dec(&nr_comm_events);
1844                 if (event->attr.task)
1845                         atomic_dec(&nr_task_events);
1846         }
1847
1848         if (event->output) {
1849                 fput(event->output->filp);
1850                 event->output = NULL;
1851         }
1852
1853         if (event->destroy)
1854                 event->destroy(event);
1855
1856         put_ctx(event->ctx);
1857         call_rcu(&event->rcu_head, free_event_rcu);
1858 }
1859
1860 int perf_event_release_kernel(struct perf_event *event)
1861 {
1862         struct perf_event_context *ctx = event->ctx;
1863
1864         WARN_ON_ONCE(ctx->parent_ctx);
1865         mutex_lock(&ctx->mutex);
1866         perf_event_remove_from_context(event);
1867         mutex_unlock(&ctx->mutex);
1868
1869         mutex_lock(&event->owner->perf_event_mutex);
1870         list_del_init(&event->owner_entry);
1871         mutex_unlock(&event->owner->perf_event_mutex);
1872         put_task_struct(event->owner);
1873
1874         free_event(event);
1875
1876         return 0;
1877 }
1878 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1879
1880 /*
1881  * Called when the last reference to the file is gone.
1882  */
1883 static int perf_release(struct inode *inode, struct file *file)
1884 {
1885         struct perf_event *event = file->private_data;
1886
1887         file->private_data = NULL;
1888
1889         return perf_event_release_kernel(event);
1890 }
1891
1892 static int perf_event_read_size(struct perf_event *event)
1893 {
1894         int entry = sizeof(u64); /* value */
1895         int size = 0;
1896         int nr = 1;
1897
1898         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1899                 size += sizeof(u64);
1900
1901         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1902                 size += sizeof(u64);
1903
1904         if (event->attr.read_format & PERF_FORMAT_ID)
1905                 entry += sizeof(u64);
1906
1907         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1908                 nr += event->group_leader->nr_siblings;
1909                 size += sizeof(u64);
1910         }
1911
1912         size += entry * nr;
1913
1914         return size;
1915 }
1916
1917 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1918 {
1919         struct perf_event *child;
1920         u64 total = 0;
1921
1922         *enabled = 0;
1923         *running = 0;
1924
1925         mutex_lock(&event->child_mutex);
1926         total += perf_event_read(event);
1927         *enabled += event->total_time_enabled +
1928                         atomic64_read(&event->child_total_time_enabled);
1929         *running += event->total_time_running +
1930                         atomic64_read(&event->child_total_time_running);
1931
1932         list_for_each_entry(child, &event->child_list, child_list) {
1933                 total += perf_event_read(child);
1934                 *enabled += child->total_time_enabled;
1935                 *running += child->total_time_running;
1936         }
1937         mutex_unlock(&event->child_mutex);
1938
1939         return total;
1940 }
1941 EXPORT_SYMBOL_GPL(perf_event_read_value);
1942
1943 static int perf_event_read_group(struct perf_event *event,
1944                                    u64 read_format, char __user *buf)
1945 {
1946         struct perf_event *leader = event->group_leader, *sub;
1947         int n = 0, size = 0, ret = -EFAULT;
1948         struct perf_event_context *ctx = leader->ctx;
1949         u64 values[5];
1950         u64 count, enabled, running;
1951
1952         mutex_lock(&ctx->mutex);
1953         count = perf_event_read_value(leader, &enabled, &running);
1954
1955         values[n++] = 1 + leader->nr_siblings;
1956         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1957                 values[n++] = enabled;
1958         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1959                 values[n++] = running;
1960         values[n++] = count;
1961         if (read_format & PERF_FORMAT_ID)
1962                 values[n++] = primary_event_id(leader);
1963
1964         size = n * sizeof(u64);
1965
1966         if (copy_to_user(buf, values, size))
1967                 goto unlock;
1968
1969         ret = size;
1970
1971         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1972                 n = 0;
1973
1974                 values[n++] = perf_event_read_value(sub, &enabled, &running);
1975                 if (read_format & PERF_FORMAT_ID)
1976                         values[n++] = primary_event_id(sub);
1977
1978                 size = n * sizeof(u64);
1979
1980                 if (copy_to_user(buf + ret, values, size)) {
1981                         ret = -EFAULT;
1982                         goto unlock;
1983                 }
1984
1985                 ret += size;
1986         }
1987 unlock:
1988         mutex_unlock(&ctx->mutex);
1989
1990         return ret;
1991 }
1992
1993 static int perf_event_read_one(struct perf_event *event,
1994                                  u64 read_format, char __user *buf)
1995 {
1996         u64 enabled, running;
1997         u64 values[4];
1998         int n = 0;
1999
2000         values[n++] = perf_event_read_value(event, &enabled, &running);
2001         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2002                 values[n++] = enabled;
2003         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2004                 values[n++] = running;
2005         if (read_format & PERF_FORMAT_ID)
2006                 values[n++] = primary_event_id(event);
2007
2008         if (copy_to_user(buf, values, n * sizeof(u64)))
2009                 return -EFAULT;
2010
2011         return n * sizeof(u64);
2012 }
2013
2014 /*
2015  * Read the performance event - simple non blocking version for now
2016  */
2017 static ssize_t
2018 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2019 {
2020         u64 read_format = event->attr.read_format;
2021         int ret;
2022
2023         /*
2024          * Return end-of-file for a read on a event that is in
2025          * error state (i.e. because it was pinned but it couldn't be
2026          * scheduled on to the CPU at some point).
2027          */
2028         if (event->state == PERF_EVENT_STATE_ERROR)
2029                 return 0;
2030
2031         if (count < perf_event_read_size(event))
2032                 return -ENOSPC;
2033
2034         WARN_ON_ONCE(event->ctx->parent_ctx);
2035         if (read_format & PERF_FORMAT_GROUP)
2036                 ret = perf_event_read_group(event, read_format, buf);
2037         else
2038                 ret = perf_event_read_one(event, read_format, buf);
2039
2040         return ret;
2041 }
2042
2043 static ssize_t
2044 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2045 {
2046         struct perf_event *event = file->private_data;
2047
2048         return perf_read_hw(event, buf, count);
2049 }
2050
2051 static unsigned int perf_poll(struct file *file, poll_table *wait)
2052 {
2053         struct perf_event *event = file->private_data;
2054         struct perf_mmap_data *data;
2055         unsigned int events = POLL_HUP;
2056
2057         rcu_read_lock();
2058         data = rcu_dereference(event->data);
2059         if (data)
2060                 events = atomic_xchg(&data->poll, 0);
2061         rcu_read_unlock();
2062
2063         poll_wait(file, &event->waitq, wait);
2064
2065         return events;
2066 }
2067
2068 static void perf_event_reset(struct perf_event *event)
2069 {
2070         (void)perf_event_read(event);
2071         atomic64_set(&event->count, 0);
2072         perf_event_update_userpage(event);
2073 }
2074
2075 /*
2076  * Holding the top-level event's child_mutex means that any
2077  * descendant process that has inherited this event will block
2078  * in sync_child_event if it goes to exit, thus satisfying the
2079  * task existence requirements of perf_event_enable/disable.
2080  */
2081 static void perf_event_for_each_child(struct perf_event *event,
2082                                         void (*func)(struct perf_event *))
2083 {
2084         struct perf_event *child;
2085
2086         WARN_ON_ONCE(event->ctx->parent_ctx);
2087         mutex_lock(&event->child_mutex);
2088         func(event);
2089         list_for_each_entry(child, &event->child_list, child_list)
2090                 func(child);
2091         mutex_unlock(&event->child_mutex);
2092 }
2093
2094 static void perf_event_for_each(struct perf_event *event,
2095                                   void (*func)(struct perf_event *))
2096 {
2097         struct perf_event_context *ctx = event->ctx;
2098         struct perf_event *sibling;
2099
2100         WARN_ON_ONCE(ctx->parent_ctx);
2101         mutex_lock(&ctx->mutex);
2102         event = event->group_leader;
2103
2104         perf_event_for_each_child(event, func);
2105         func(event);
2106         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2107                 perf_event_for_each_child(event, func);
2108         mutex_unlock(&ctx->mutex);
2109 }
2110
2111 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2112 {
2113         struct perf_event_context *ctx = event->ctx;
2114         unsigned long size;
2115         int ret = 0;
2116         u64 value;
2117
2118         if (!event->attr.sample_period)
2119                 return -EINVAL;
2120
2121         size = copy_from_user(&value, arg, sizeof(value));
2122         if (size != sizeof(value))
2123                 return -EFAULT;
2124
2125         if (!value)
2126                 return -EINVAL;
2127
2128         raw_spin_lock_irq(&ctx->lock);
2129         if (event->attr.freq) {
2130                 if (value > sysctl_perf_event_sample_rate) {
2131                         ret = -EINVAL;
2132                         goto unlock;
2133                 }
2134
2135                 event->attr.sample_freq = value;
2136         } else {
2137                 event->attr.sample_period = value;
2138                 event->hw.sample_period = value;
2139         }
2140 unlock:
2141         raw_spin_unlock_irq(&ctx->lock);
2142
2143         return ret;
2144 }
2145
2146 static int perf_event_set_output(struct perf_event *event, int output_fd);
2147 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2148
2149 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2150 {
2151         struct perf_event *event = file->private_data;
2152         void (*func)(struct perf_event *);
2153         u32 flags = arg;
2154
2155         switch (cmd) {
2156         case PERF_EVENT_IOC_ENABLE:
2157                 func = perf_event_enable;
2158                 break;
2159         case PERF_EVENT_IOC_DISABLE:
2160                 func = perf_event_disable;
2161                 break;
2162         case PERF_EVENT_IOC_RESET:
2163                 func = perf_event_reset;
2164                 break;
2165
2166         case PERF_EVENT_IOC_REFRESH:
2167                 return perf_event_refresh(event, arg);
2168
2169         case PERF_EVENT_IOC_PERIOD:
2170                 return perf_event_period(event, (u64 __user *)arg);
2171
2172         case PERF_EVENT_IOC_SET_OUTPUT:
2173                 return perf_event_set_output(event, arg);
2174
2175         case PERF_EVENT_IOC_SET_FILTER:
2176                 return perf_event_set_filter(event, (void __user *)arg);
2177
2178         default:
2179                 return -ENOTTY;
2180         }
2181
2182         if (flags & PERF_IOC_FLAG_GROUP)
2183                 perf_event_for_each(event, func);
2184         else
2185                 perf_event_for_each_child(event, func);
2186
2187         return 0;
2188 }
2189
2190 int perf_event_task_enable(void)
2191 {
2192         struct perf_event *event;
2193
2194         mutex_lock(&current->perf_event_mutex);
2195         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2196                 perf_event_for_each_child(event, perf_event_enable);
2197         mutex_unlock(&current->perf_event_mutex);
2198
2199         return 0;
2200 }
2201
2202 int perf_event_task_disable(void)
2203 {
2204         struct perf_event *event;
2205
2206         mutex_lock(&current->perf_event_mutex);
2207         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2208                 perf_event_for_each_child(event, perf_event_disable);
2209         mutex_unlock(&current->perf_event_mutex);
2210
2211         return 0;
2212 }
2213
2214 #ifndef PERF_EVENT_INDEX_OFFSET
2215 # define PERF_EVENT_INDEX_OFFSET 0
2216 #endif
2217
2218 static int perf_event_index(struct perf_event *event)
2219 {
2220         if (event->state != PERF_EVENT_STATE_ACTIVE)
2221                 return 0;
2222
2223         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2224 }
2225
2226 /*
2227  * Callers need to ensure there can be no nesting of this function, otherwise
2228  * the seqlock logic goes bad. We can not serialize this because the arch
2229  * code calls this from NMI context.
2230  */
2231 void perf_event_update_userpage(struct perf_event *event)
2232 {
2233         struct perf_event_mmap_page *userpg;
2234         struct perf_mmap_data *data;
2235
2236         rcu_read_lock();
2237         data = rcu_dereference(event->data);
2238         if (!data)
2239                 goto unlock;
2240
2241         userpg = data->user_page;
2242
2243         /*
2244          * Disable preemption so as to not let the corresponding user-space
2245          * spin too long if we get preempted.
2246          */
2247         preempt_disable();
2248         ++userpg->lock;
2249         barrier();
2250         userpg->index = perf_event_index(event);
2251         userpg->offset = atomic64_read(&event->count);
2252         if (event->state == PERF_EVENT_STATE_ACTIVE)
2253                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2254
2255         userpg->time_enabled = event->total_time_enabled +
2256                         atomic64_read(&event->child_total_time_enabled);
2257
2258         userpg->time_running = event->total_time_running +
2259                         atomic64_read(&event->child_total_time_running);
2260
2261         barrier();
2262         ++userpg->lock;
2263         preempt_enable();
2264 unlock:
2265         rcu_read_unlock();
2266 }
2267
2268 static unsigned long perf_data_size(struct perf_mmap_data *data)
2269 {
2270         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2271 }
2272
2273 #ifndef CONFIG_PERF_USE_VMALLOC
2274
2275 /*
2276  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2277  */
2278
2279 static struct page *
2280 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2281 {
2282         if (pgoff > data->nr_pages)
2283                 return NULL;
2284
2285         if (pgoff == 0)
2286                 return virt_to_page(data->user_page);
2287
2288         return virt_to_page(data->data_pages[pgoff - 1]);
2289 }
2290
2291 static struct perf_mmap_data *
2292 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2293 {
2294         struct perf_mmap_data *data;
2295         unsigned long size;
2296         int i;
2297
2298         WARN_ON(atomic_read(&event->mmap_count));
2299
2300         size = sizeof(struct perf_mmap_data);
2301         size += nr_pages * sizeof(void *);
2302
2303         data = kzalloc(size, GFP_KERNEL);
2304         if (!data)
2305                 goto fail;
2306
2307         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2308         if (!data->user_page)
2309                 goto fail_user_page;
2310
2311         for (i = 0; i < nr_pages; i++) {
2312                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2313                 if (!data->data_pages[i])
2314                         goto fail_data_pages;
2315         }
2316
2317         data->data_order = 0;
2318         data->nr_pages = nr_pages;
2319
2320         return data;
2321
2322 fail_data_pages:
2323         for (i--; i >= 0; i--)
2324                 free_page((unsigned long)data->data_pages[i]);
2325
2326         free_page((unsigned long)data->user_page);
2327
2328 fail_user_page:
2329         kfree(data);
2330
2331 fail:
2332         return NULL;
2333 }
2334
2335 static void perf_mmap_free_page(unsigned long addr)
2336 {
2337         struct page *page = virt_to_page((void *)addr);
2338
2339         page->mapping = NULL;
2340         __free_page(page);
2341 }
2342
2343 static void perf_mmap_data_free(struct perf_mmap_data *data)
2344 {
2345         int i;
2346
2347         perf_mmap_free_page((unsigned long)data->user_page);
2348         for (i = 0; i < data->nr_pages; i++)
2349                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2350         kfree(data);
2351 }
2352
2353 #else
2354
2355 /*
2356  * Back perf_mmap() with vmalloc memory.
2357  *
2358  * Required for architectures that have d-cache aliasing issues.
2359  */
2360
2361 static struct page *
2362 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2363 {
2364         if (pgoff > (1UL << data->data_order))
2365                 return NULL;
2366
2367         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2368 }
2369
2370 static void perf_mmap_unmark_page(void *addr)
2371 {
2372         struct page *page = vmalloc_to_page(addr);
2373
2374         page->mapping = NULL;
2375 }
2376
2377 static void perf_mmap_data_free_work(struct work_struct *work)
2378 {
2379         struct perf_mmap_data *data;
2380         void *base;
2381         int i, nr;
2382
2383         data = container_of(work, struct perf_mmap_data, work);
2384         nr = 1 << data->data_order;
2385
2386         base = data->user_page;
2387         for (i = 0; i < nr + 1; i++)
2388                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2389
2390         vfree(base);
2391         kfree(data);
2392 }
2393
2394 static void perf_mmap_data_free(struct perf_mmap_data *data)
2395 {
2396         schedule_work(&data->work);
2397 }
2398
2399 static struct perf_mmap_data *
2400 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2401 {
2402         struct perf_mmap_data *data;
2403         unsigned long size;
2404         void *all_buf;
2405
2406         WARN_ON(atomic_read(&event->mmap_count));
2407
2408         size = sizeof(struct perf_mmap_data);
2409         size += sizeof(void *);
2410
2411         data = kzalloc(size, GFP_KERNEL);
2412         if (!data)
2413                 goto fail;
2414
2415         INIT_WORK(&data->work, perf_mmap_data_free_work);
2416
2417         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2418         if (!all_buf)
2419                 goto fail_all_buf;
2420
2421         data->user_page = all_buf;
2422         data->data_pages[0] = all_buf + PAGE_SIZE;
2423         data->data_order = ilog2(nr_pages);
2424         data->nr_pages = 1;
2425
2426         return data;
2427
2428 fail_all_buf:
2429         kfree(data);
2430
2431 fail:
2432         return NULL;
2433 }
2434
2435 #endif
2436
2437 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2438 {
2439         struct perf_event *event = vma->vm_file->private_data;
2440         struct perf_mmap_data *data;
2441         int ret = VM_FAULT_SIGBUS;
2442
2443         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2444                 if (vmf->pgoff == 0)
2445                         ret = 0;
2446                 return ret;
2447         }
2448
2449         rcu_read_lock();
2450         data = rcu_dereference(event->data);
2451         if (!data)
2452                 goto unlock;
2453
2454         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2455                 goto unlock;
2456
2457         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2458         if (!vmf->page)
2459                 goto unlock;
2460
2461         get_page(vmf->page);
2462         vmf->page->mapping = vma->vm_file->f_mapping;
2463         vmf->page->index   = vmf->pgoff;
2464
2465         ret = 0;
2466 unlock:
2467         rcu_read_unlock();
2468
2469         return ret;
2470 }
2471
2472 static void
2473 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2474 {
2475         long max_size = perf_data_size(data);
2476
2477         atomic_set(&data->lock, -1);
2478
2479         if (event->attr.watermark) {
2480                 data->watermark = min_t(long, max_size,
2481                                         event->attr.wakeup_watermark);
2482         }
2483
2484         if (!data->watermark)
2485                 data->watermark = max_size / 2;
2486
2487
2488         rcu_assign_pointer(event->data, data);
2489 }
2490
2491 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2492 {
2493         struct perf_mmap_data *data;
2494
2495         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2496         perf_mmap_data_free(data);
2497 }
2498
2499 static void perf_mmap_data_release(struct perf_event *event)
2500 {
2501         struct perf_mmap_data *data = event->data;
2502
2503         WARN_ON(atomic_read(&event->mmap_count));
2504
2505         rcu_assign_pointer(event->data, NULL);
2506         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2507 }
2508
2509 static void perf_mmap_open(struct vm_area_struct *vma)
2510 {
2511         struct perf_event *event = vma->vm_file->private_data;
2512
2513         atomic_inc(&event->mmap_count);
2514 }
2515
2516 static void perf_mmap_close(struct vm_area_struct *vma)
2517 {
2518         struct perf_event *event = vma->vm_file->private_data;
2519
2520         WARN_ON_ONCE(event->ctx->parent_ctx);
2521         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2522                 unsigned long size = perf_data_size(event->data);
2523                 struct user_struct *user = current_user();
2524
2525                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2526                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2527                 perf_mmap_data_release(event);
2528                 mutex_unlock(&event->mmap_mutex);
2529         }
2530 }
2531
2532 static const struct vm_operations_struct perf_mmap_vmops = {
2533         .open           = perf_mmap_open,
2534         .close          = perf_mmap_close,
2535         .fault          = perf_mmap_fault,
2536         .page_mkwrite   = perf_mmap_fault,
2537 };
2538
2539 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2540 {
2541         struct perf_event *event = file->private_data;
2542         unsigned long user_locked, user_lock_limit;
2543         struct user_struct *user = current_user();
2544         unsigned long locked, lock_limit;
2545         struct perf_mmap_data *data;
2546         unsigned long vma_size;
2547         unsigned long nr_pages;
2548         long user_extra, extra;
2549         int ret = 0;
2550
2551         if (!(vma->vm_flags & VM_SHARED))
2552                 return -EINVAL;
2553
2554         vma_size = vma->vm_end - vma->vm_start;
2555         nr_pages = (vma_size / PAGE_SIZE) - 1;
2556
2557         /*
2558          * If we have data pages ensure they're a power-of-two number, so we
2559          * can do bitmasks instead of modulo.
2560          */
2561         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2562                 return -EINVAL;
2563
2564         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2565                 return -EINVAL;
2566
2567         if (vma->vm_pgoff != 0)
2568                 return -EINVAL;
2569
2570         WARN_ON_ONCE(event->ctx->parent_ctx);
2571         mutex_lock(&event->mmap_mutex);
2572         if (event->output) {
2573                 ret = -EINVAL;
2574                 goto unlock;
2575         }
2576
2577         if (atomic_inc_not_zero(&event->mmap_count)) {
2578                 if (nr_pages != event->data->nr_pages)
2579                         ret = -EINVAL;
2580                 goto unlock;
2581         }
2582
2583         user_extra = nr_pages + 1;
2584         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2585
2586         /*
2587          * Increase the limit linearly with more CPUs:
2588          */
2589         user_lock_limit *= num_online_cpus();
2590
2591         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2592
2593         extra = 0;
2594         if (user_locked > user_lock_limit)
2595                 extra = user_locked - user_lock_limit;
2596
2597         lock_limit = rlimit(RLIMIT_MEMLOCK);
2598         lock_limit >>= PAGE_SHIFT;
2599         locked = vma->vm_mm->locked_vm + extra;
2600
2601         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2602                 !capable(CAP_IPC_LOCK)) {
2603                 ret = -EPERM;
2604                 goto unlock;
2605         }
2606
2607         WARN_ON(event->data);
2608
2609         data = perf_mmap_data_alloc(event, nr_pages);
2610         ret = -ENOMEM;
2611         if (!data)
2612                 goto unlock;
2613
2614         ret = 0;
2615         perf_mmap_data_init(event, data);
2616
2617         atomic_set(&event->mmap_count, 1);
2618         atomic_long_add(user_extra, &user->locked_vm);
2619         vma->vm_mm->locked_vm += extra;
2620         event->data->nr_locked = extra;
2621         if (vma->vm_flags & VM_WRITE)
2622                 event->data->writable = 1;
2623
2624 unlock:
2625         mutex_unlock(&event->mmap_mutex);
2626
2627         vma->vm_flags |= VM_RESERVED;
2628         vma->vm_ops = &perf_mmap_vmops;
2629
2630         return ret;
2631 }
2632
2633 static int perf_fasync(int fd, struct file *filp, int on)
2634 {
2635         struct inode *inode = filp->f_path.dentry->d_inode;
2636         struct perf_event *event = filp->private_data;
2637         int retval;
2638
2639         mutex_lock(&inode->i_mutex);
2640         retval = fasync_helper(fd, filp, on, &event->fasync);
2641         mutex_unlock(&inode->i_mutex);
2642
2643         if (retval < 0)
2644                 return retval;
2645
2646         return 0;
2647 }
2648
2649 static const struct file_operations perf_fops = {
2650         .llseek                 = no_llseek,
2651         .release                = perf_release,
2652         .read                   = perf_read,
2653         .poll                   = perf_poll,
2654         .unlocked_ioctl         = perf_ioctl,
2655         .compat_ioctl           = perf_ioctl,
2656         .mmap                   = perf_mmap,
2657         .fasync                 = perf_fasync,
2658 };
2659
2660 /*
2661  * Perf event wakeup
2662  *
2663  * If there's data, ensure we set the poll() state and publish everything
2664  * to user-space before waking everybody up.
2665  */
2666
2667 void perf_event_wakeup(struct perf_event *event)
2668 {
2669         wake_up_all(&event->waitq);
2670
2671         if (event->pending_kill) {
2672                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2673                 event->pending_kill = 0;
2674         }
2675 }
2676
2677 /*
2678  * Pending wakeups
2679  *
2680  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2681  *
2682  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2683  * single linked list and use cmpxchg() to add entries lockless.
2684  */
2685
2686 static void perf_pending_event(struct perf_pending_entry *entry)
2687 {
2688         struct perf_event *event = container_of(entry,
2689                         struct perf_event, pending);
2690
2691         if (event->pending_disable) {
2692                 event->pending_disable = 0;
2693                 __perf_event_disable(event);
2694         }
2695
2696         if (event->pending_wakeup) {
2697                 event->pending_wakeup = 0;
2698                 perf_event_wakeup(event);
2699         }
2700 }
2701
2702 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2703
2704 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2705         PENDING_TAIL,
2706 };
2707
2708 static void perf_pending_queue(struct perf_pending_entry *entry,
2709                                void (*func)(struct perf_pending_entry *))
2710 {
2711         struct perf_pending_entry **head;
2712
2713         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2714                 return;
2715
2716         entry->func = func;
2717
2718         head = &get_cpu_var(perf_pending_head);
2719
2720         do {
2721                 entry->next = *head;
2722         } while (cmpxchg(head, entry->next, entry) != entry->next);
2723
2724         set_perf_event_pending();
2725
2726         put_cpu_var(perf_pending_head);
2727 }
2728
2729 static int __perf_pending_run(void)
2730 {
2731         struct perf_pending_entry *list;
2732         int nr = 0;
2733
2734         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2735         while (list != PENDING_TAIL) {
2736                 void (*func)(struct perf_pending_entry *);
2737                 struct perf_pending_entry *entry = list;
2738
2739                 list = list->next;
2740
2741                 func = entry->func;
2742                 entry->next = NULL;
2743                 /*
2744                  * Ensure we observe the unqueue before we issue the wakeup,
2745                  * so that we won't be waiting forever.
2746                  * -- see perf_not_pending().
2747                  */
2748                 smp_wmb();
2749
2750                 func(entry);
2751                 nr++;
2752         }
2753
2754         return nr;
2755 }
2756
2757 static inline int perf_not_pending(struct perf_event *event)
2758 {
2759         /*
2760          * If we flush on whatever cpu we run, there is a chance we don't
2761          * need to wait.
2762          */
2763         get_cpu();
2764         __perf_pending_run();
2765         put_cpu();
2766
2767         /*
2768          * Ensure we see the proper queue state before going to sleep
2769          * so that we do not miss the wakeup. -- see perf_pending_handle()
2770          */
2771         smp_rmb();
2772         return event->pending.next == NULL;
2773 }
2774
2775 static void perf_pending_sync(struct perf_event *event)
2776 {
2777         wait_event(event->waitq, perf_not_pending(event));
2778 }
2779
2780 void perf_event_do_pending(void)
2781 {
2782         __perf_pending_run();
2783 }
2784
2785 /*
2786  * Callchain support -- arch specific
2787  */
2788
2789 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2790 {
2791         return NULL;
2792 }
2793
2794 __weak
2795 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2796 {
2797 }
2798
2799
2800 /*
2801  * We assume there is only KVM supporting the callbacks.
2802  * Later on, we might change it to a list if there is
2803  * another virtualization implementation supporting the callbacks.
2804  */
2805 struct perf_guest_info_callbacks *perf_guest_cbs;
2806
2807 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2808 {
2809         perf_guest_cbs = cbs;
2810         return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2813
2814 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2815 {
2816         perf_guest_cbs = NULL;
2817         return 0;
2818 }
2819 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2820
2821 /*
2822  * Output
2823  */
2824 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2825                               unsigned long offset, unsigned long head)
2826 {
2827         unsigned long mask;
2828
2829         if (!data->writable)
2830                 return true;
2831
2832         mask = perf_data_size(data) - 1;
2833
2834         offset = (offset - tail) & mask;
2835         head   = (head   - tail) & mask;
2836
2837         if ((int)(head - offset) < 0)
2838                 return false;
2839
2840         return true;
2841 }
2842
2843 static void perf_output_wakeup(struct perf_output_handle *handle)
2844 {
2845         atomic_set(&handle->data->poll, POLL_IN);
2846
2847         if (handle->nmi) {
2848                 handle->event->pending_wakeup = 1;
2849                 perf_pending_queue(&handle->event->pending,
2850                                    perf_pending_event);
2851         } else
2852                 perf_event_wakeup(handle->event);
2853 }
2854
2855 /*
2856  * Curious locking construct.
2857  *
2858  * We need to ensure a later event_id doesn't publish a head when a former
2859  * event_id isn't done writing. However since we need to deal with NMIs we
2860  * cannot fully serialize things.
2861  *
2862  * What we do is serialize between CPUs so we only have to deal with NMI
2863  * nesting on a single CPU.
2864  *
2865  * We only publish the head (and generate a wakeup) when the outer-most
2866  * event_id completes.
2867  */
2868 static void perf_output_lock(struct perf_output_handle *handle)
2869 {
2870         struct perf_mmap_data *data = handle->data;
2871         int cur, cpu = get_cpu();
2872
2873         handle->locked = 0;
2874
2875         for (;;) {
2876                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2877                 if (cur == -1) {
2878                         handle->locked = 1;
2879                         break;
2880                 }
2881                 if (cur == cpu)
2882                         break;
2883
2884                 cpu_relax();
2885         }
2886 }
2887
2888 static void perf_output_unlock(struct perf_output_handle *handle)
2889 {
2890         struct perf_mmap_data *data = handle->data;
2891         unsigned long head;
2892         int cpu;
2893
2894         data->done_head = data->head;
2895
2896         if (!handle->locked)
2897                 goto out;
2898
2899 again:
2900         /*
2901          * The xchg implies a full barrier that ensures all writes are done
2902          * before we publish the new head, matched by a rmb() in userspace when
2903          * reading this position.
2904          */
2905         while ((head = atomic_long_xchg(&data->done_head, 0)))
2906                 data->user_page->data_head = head;
2907
2908         /*
2909          * NMI can happen here, which means we can miss a done_head update.
2910          */
2911
2912         cpu = atomic_xchg(&data->lock, -1);
2913         WARN_ON_ONCE(cpu != smp_processor_id());
2914
2915         /*
2916          * Therefore we have to validate we did not indeed do so.
2917          */
2918         if (unlikely(atomic_long_read(&data->done_head))) {
2919                 /*
2920                  * Since we had it locked, we can lock it again.
2921                  */
2922                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2923                         cpu_relax();
2924
2925                 goto again;
2926         }
2927
2928         if (atomic_xchg(&data->wakeup, 0))
2929                 perf_output_wakeup(handle);
2930 out:
2931         put_cpu();
2932 }
2933
2934 void perf_output_copy(struct perf_output_handle *handle,
2935                       const void *buf, unsigned int len)
2936 {
2937         unsigned int pages_mask;
2938         unsigned long offset;
2939         unsigned int size;
2940         void **pages;
2941
2942         offset          = handle->offset;
2943         pages_mask      = handle->data->nr_pages - 1;
2944         pages           = handle->data->data_pages;
2945
2946         do {
2947                 unsigned long page_offset;
2948                 unsigned long page_size;
2949                 int nr;
2950
2951                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2952                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2953                 page_offset = offset & (page_size - 1);
2954                 size        = min_t(unsigned int, page_size - page_offset, len);
2955
2956                 memcpy(pages[nr] + page_offset, buf, size);
2957
2958                 len         -= size;
2959                 buf         += size;
2960                 offset      += size;
2961         } while (len);
2962
2963         handle->offset = offset;
2964
2965         /*
2966          * Check we didn't copy past our reservation window, taking the
2967          * possible unsigned int wrap into account.
2968          */
2969         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2970 }
2971
2972 int perf_output_begin(struct perf_output_handle *handle,
2973                       struct perf_event *event, unsigned int size,
2974                       int nmi, int sample)
2975 {
2976         struct perf_event *output_event;
2977         struct perf_mmap_data *data;
2978         unsigned long tail, offset, head;
2979         int have_lost;
2980         struct {
2981                 struct perf_event_header header;
2982                 u64                      id;
2983                 u64                      lost;
2984         } lost_event;
2985
2986         rcu_read_lock();
2987         /*
2988          * For inherited events we send all the output towards the parent.
2989          */
2990         if (event->parent)
2991                 event = event->parent;
2992
2993         output_event = rcu_dereference(event->output);
2994         if (output_event)
2995                 event = output_event;
2996
2997         data = rcu_dereference(event->data);
2998         if (!data)
2999                 goto out;
3000
3001         handle->data    = data;
3002         handle->event   = event;
3003         handle->nmi     = nmi;
3004         handle->sample  = sample;
3005
3006         if (!data->nr_pages)
3007                 goto fail;
3008
3009         have_lost = atomic_read(&data->lost);
3010         if (have_lost)
3011                 size += sizeof(lost_event);
3012
3013         perf_output_lock(handle);
3014
3015         do {
3016                 /*
3017                  * Userspace could choose to issue a mb() before updating the
3018                  * tail pointer. So that all reads will be completed before the
3019                  * write is issued.
3020                  */
3021                 tail = ACCESS_ONCE(data->user_page->data_tail);
3022                 smp_rmb();
3023                 offset = head = atomic_long_read(&data->head);
3024                 head += size;
3025                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3026                         goto fail;
3027         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3028
3029         handle->offset  = offset;
3030         handle->head    = head;
3031
3032         if (head - tail > data->watermark)
3033                 atomic_set(&data->wakeup, 1);
3034
3035         if (have_lost) {
3036                 lost_event.header.type = PERF_RECORD_LOST;
3037                 lost_event.header.misc = 0;
3038                 lost_event.header.size = sizeof(lost_event);
3039                 lost_event.id          = event->id;
3040                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3041
3042                 perf_output_put(handle, lost_event);
3043         }
3044
3045         return 0;
3046
3047 fail:
3048         atomic_inc(&data->lost);
3049         perf_output_unlock(handle);
3050 out:
3051         rcu_read_unlock();
3052
3053         return -ENOSPC;
3054 }
3055
3056 void perf_output_end(struct perf_output_handle *handle)
3057 {
3058         struct perf_event *event = handle->event;
3059         struct perf_mmap_data *data = handle->data;
3060
3061         int wakeup_events = event->attr.wakeup_events;
3062
3063         if (handle->sample && wakeup_events) {
3064                 int events = atomic_inc_return(&data->events);
3065                 if (events >= wakeup_events) {
3066                         atomic_sub(wakeup_events, &data->events);
3067                         atomic_set(&data->wakeup, 1);
3068                 }
3069         }
3070
3071         perf_output_unlock(handle);
3072         rcu_read_unlock();
3073 }
3074
3075 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3076 {
3077         /*
3078          * only top level events have the pid namespace they were created in
3079          */
3080         if (event->parent)
3081                 event = event->parent;
3082
3083         return task_tgid_nr_ns(p, event->ns);
3084 }
3085
3086 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3087 {
3088         /*
3089          * only top level events have the pid namespace they were created in
3090          */
3091         if (event->parent)
3092                 event = event->parent;
3093
3094         return task_pid_nr_ns(p, event->ns);
3095 }
3096
3097 static void perf_output_read_one(struct perf_output_handle *handle,
3098                                  struct perf_event *event)
3099 {
3100         u64 read_format = event->attr.read_format;
3101         u64 values[4];
3102         int n = 0;
3103
3104         values[n++] = atomic64_read(&event->count);
3105         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3106                 values[n++] = event->total_time_enabled +
3107                         atomic64_read(&event->child_total_time_enabled);
3108         }
3109         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3110                 values[n++] = event->total_time_running +
3111                         atomic64_read(&event->child_total_time_running);
3112         }
3113         if (read_format & PERF_FORMAT_ID)
3114                 values[n++] = primary_event_id(event);
3115
3116         perf_output_copy(handle, values, n * sizeof(u64));
3117 }
3118
3119 /*
3120  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3121  */
3122 static void perf_output_read_group(struct perf_output_handle *handle,
3123                             struct perf_event *event)
3124 {
3125         struct perf_event *leader = event->group_leader, *sub;
3126         u64 read_format = event->attr.read_format;
3127         u64 values[5];
3128         int n = 0;
3129
3130         values[n++] = 1 + leader->nr_siblings;
3131
3132         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3133                 values[n++] = leader->total_time_enabled;
3134
3135         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3136                 values[n++] = leader->total_time_running;
3137
3138         if (leader != event)
3139                 leader->pmu->read(leader);
3140
3141         values[n++] = atomic64_read(&leader->count);
3142         if (read_format & PERF_FORMAT_ID)
3143                 values[n++] = primary_event_id(leader);
3144
3145         perf_output_copy(handle, values, n * sizeof(u64));
3146
3147         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3148                 n = 0;
3149
3150                 if (sub != event)
3151                         sub->pmu->read(sub);
3152
3153                 values[n++] = atomic64_read(&sub->count);
3154                 if (read_format & PERF_FORMAT_ID)
3155                         values[n++] = primary_event_id(sub);
3156
3157                 perf_output_copy(handle, values, n * sizeof(u64));
3158         }
3159 }
3160
3161 static void perf_output_read(struct perf_output_handle *handle,
3162                              struct perf_event *event)
3163 {
3164         if (event->attr.read_format & PERF_FORMAT_GROUP)
3165                 perf_output_read_group(handle, event);
3166         else
3167                 perf_output_read_one(handle, event);
3168 }
3169
3170 void perf_output_sample(struct perf_output_handle *handle,
3171                         struct perf_event_header *header,
3172                         struct perf_sample_data *data,
3173                         struct perf_event *event)
3174 {
3175         u64 sample_type = data->type;
3176
3177         perf_output_put(handle, *header);
3178
3179         if (sample_type & PERF_SAMPLE_IP)
3180                 perf_output_put(handle, data->ip);
3181
3182         if (sample_type & PERF_SAMPLE_TID)
3183                 perf_output_put(handle, data->tid_entry);
3184
3185         if (sample_type & PERF_SAMPLE_TIME)
3186                 perf_output_put(handle, data->time);
3187
3188         if (sample_type & PERF_SAMPLE_ADDR)
3189                 perf_output_put(handle, data->addr);
3190
3191         if (sample_type & PERF_SAMPLE_ID)
3192                 perf_output_put(handle, data->id);
3193
3194         if (sample_type & PERF_SAMPLE_STREAM_ID)
3195                 perf_output_put(handle, data->stream_id);
3196
3197         if (sample_type & PERF_SAMPLE_CPU)
3198                 perf_output_put(handle, data->cpu_entry);
3199
3200         if (sample_type & PERF_SAMPLE_PERIOD)
3201                 perf_output_put(handle, data->period);
3202
3203         if (sample_type & PERF_SAMPLE_READ)
3204                 perf_output_read(handle, event);
3205
3206         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3207                 if (data->callchain) {
3208                         int size = 1;
3209
3210                         if (data->callchain)
3211                                 size += data->callchain->nr;
3212
3213                         size *= sizeof(u64);
3214
3215                         perf_output_copy(handle, data->callchain, size);
3216                 } else {
3217                         u64 nr = 0;
3218                         perf_output_put(handle, nr);
3219                 }
3220         }
3221
3222         if (sample_type & PERF_SAMPLE_RAW) {
3223                 if (data->raw) {
3224                         perf_output_put(handle, data->raw->size);
3225                         perf_output_copy(handle, data->raw->data,
3226                                          data->raw->size);
3227                 } else {
3228                         struct {
3229                                 u32     size;
3230                                 u32     data;
3231                         } raw = {
3232                                 .size = sizeof(u32),
3233                                 .data = 0,
3234                         };
3235                         perf_output_put(handle, raw);
3236                 }
3237         }
3238 }
3239
3240 void perf_prepare_sample(struct perf_event_header *header,
3241                          struct perf_sample_data *data,
3242                          struct perf_event *event,
3243                          struct pt_regs *regs)
3244 {
3245         u64 sample_type = event->attr.sample_type;
3246
3247         data->type = sample_type;
3248
3249         header->type = PERF_RECORD_SAMPLE;
3250         header->size = sizeof(*header);
3251
3252         header->misc = 0;
3253         header->misc |= perf_misc_flags(regs);
3254
3255         if (sample_type & PERF_SAMPLE_IP) {
3256                 data->ip = perf_instruction_pointer(regs);
3257
3258                 header->size += sizeof(data->ip);
3259         }
3260
3261         if (sample_type & PERF_SAMPLE_TID) {
3262                 /* namespace issues */
3263                 data->tid_entry.pid = perf_event_pid(event, current);
3264                 data->tid_entry.tid = perf_event_tid(event, current);
3265
3266                 header->size += sizeof(data->tid_entry);
3267         }
3268
3269         if (sample_type & PERF_SAMPLE_TIME) {
3270                 data->time = perf_clock();
3271
3272                 header->size += sizeof(data->time);
3273         }
3274
3275         if (sample_type & PERF_SAMPLE_ADDR)
3276                 header->size += sizeof(data->addr);
3277
3278         if (sample_type & PERF_SAMPLE_ID) {
3279                 data->id = primary_event_id(event);
3280
3281                 header->size += sizeof(data->id);
3282         }
3283
3284         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3285                 data->stream_id = event->id;
3286
3287                 header->size += sizeof(data->stream_id);
3288         }
3289
3290         if (sample_type & PERF_SAMPLE_CPU) {
3291                 data->cpu_entry.cpu             = raw_smp_processor_id();
3292                 data->cpu_entry.reserved        = 0;
3293
3294                 header->size += sizeof(data->cpu_entry);
3295         }
3296
3297         if (sample_type & PERF_SAMPLE_PERIOD)
3298                 header->size += sizeof(data->period);
3299
3300         if (sample_type & PERF_SAMPLE_READ)
3301                 header->size += perf_event_read_size(event);
3302
3303         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3304                 int size = 1;
3305
3306                 data->callchain = perf_callchain(regs);
3307
3308                 if (data->callchain)
3309                         size += data->callchain->nr;
3310
3311                 header->size += size * sizeof(u64);
3312         }
3313
3314         if (sample_type & PERF_SAMPLE_RAW) {
3315                 int size = sizeof(u32);
3316
3317                 if (data->raw)
3318                         size += data->raw->size;
3319                 else
3320                         size += sizeof(u32);
3321
3322                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3323                 header->size += size;
3324         }
3325 }
3326
3327 static void perf_event_output(struct perf_event *event, int nmi,
3328                                 struct perf_sample_data *data,
3329                                 struct pt_regs *regs)
3330 {
3331         struct perf_output_handle handle;
3332         struct perf_event_header header;
3333
3334         perf_prepare_sample(&header, data, event, regs);
3335
3336         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3337                 return;
3338
3339         perf_output_sample(&handle, &header, data, event);
3340
3341         perf_output_end(&handle);
3342 }
3343
3344 /*
3345  * read event_id
3346  */
3347
3348 struct perf_read_event {
3349         struct perf_event_header        header;
3350
3351         u32                             pid;
3352         u32                             tid;
3353 };
3354
3355 static void
3356 perf_event_read_event(struct perf_event *event,
3357                         struct task_struct *task)
3358 {
3359         struct perf_output_handle handle;
3360         struct perf_read_event read_event = {
3361                 .header = {
3362                         .type = PERF_RECORD_READ,
3363                         .misc = 0,
3364                         .size = sizeof(read_event) + perf_event_read_size(event),
3365                 },
3366                 .pid = perf_event_pid(event, task),
3367                 .tid = perf_event_tid(event, task),
3368         };
3369         int ret;
3370
3371         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3372         if (ret)
3373                 return;
3374
3375         perf_output_put(&handle, read_event);
3376         perf_output_read(&handle, event);
3377
3378         perf_output_end(&handle);
3379 }
3380
3381 /*
3382  * task tracking -- fork/exit
3383  *
3384  * enabled by: attr.comm | attr.mmap | attr.task
3385  */
3386
3387 struct perf_task_event {
3388         struct task_struct              *task;
3389         struct perf_event_context       *task_ctx;
3390
3391         struct {
3392                 struct perf_event_header        header;
3393
3394                 u32                             pid;
3395                 u32                             ppid;
3396                 u32                             tid;
3397                 u32                             ptid;
3398                 u64                             time;
3399         } event_id;
3400 };
3401
3402 static void perf_event_task_output(struct perf_event *event,
3403                                      struct perf_task_event *task_event)
3404 {
3405         struct perf_output_handle handle;
3406         struct task_struct *task = task_event->task;
3407         unsigned long flags;
3408         int size, ret;
3409
3410         /*
3411          * If this CPU attempts to acquire an rq lock held by a CPU spinning
3412          * in perf_output_lock() from interrupt context, it's game over.
3413          */
3414         local_irq_save(flags);
3415
3416         size  = task_event->event_id.header.size;
3417         ret = perf_output_begin(&handle, event, size, 0, 0);
3418
3419         if (ret) {
3420                 local_irq_restore(flags);
3421                 return;
3422         }
3423
3424         task_event->event_id.pid = perf_event_pid(event, task);
3425         task_event->event_id.ppid = perf_event_pid(event, current);
3426
3427         task_event->event_id.tid = perf_event_tid(event, task);
3428         task_event->event_id.ptid = perf_event_tid(event, current);
3429
3430         perf_output_put(&handle, task_event->event_id);
3431
3432         perf_output_end(&handle);
3433         local_irq_restore(flags);
3434 }
3435
3436 static int perf_event_task_match(struct perf_event *event)
3437 {
3438         if (event->state < PERF_EVENT_STATE_INACTIVE)
3439                 return 0;
3440
3441         if (event->cpu != -1 && event->cpu != smp_processor_id())
3442                 return 0;
3443
3444         if (event->attr.comm || event->attr.mmap || event->attr.task)
3445                 return 1;
3446
3447         return 0;
3448 }
3449
3450 static void perf_event_task_ctx(struct perf_event_context *ctx,
3451                                   struct perf_task_event *task_event)
3452 {
3453         struct perf_event *event;
3454
3455         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3456                 if (perf_event_task_match(event))
3457                         perf_event_task_output(event, task_event);
3458         }
3459 }
3460
3461 static void perf_event_task_event(struct perf_task_event *task_event)
3462 {
3463         struct perf_cpu_context *cpuctx;
3464         struct perf_event_context *ctx = task_event->task_ctx;
3465
3466         rcu_read_lock();
3467         cpuctx = &get_cpu_var(perf_cpu_context);
3468         perf_event_task_ctx(&cpuctx->ctx, task_event);
3469         if (!ctx)
3470                 ctx = rcu_dereference(current->perf_event_ctxp);
3471         if (ctx)
3472                 perf_event_task_ctx(ctx, task_event);
3473         put_cpu_var(perf_cpu_context);
3474         rcu_read_unlock();
3475 }
3476
3477 static void perf_event_task(struct task_struct *task,
3478                               struct perf_event_context *task_ctx,
3479                               int new)
3480 {
3481         struct perf_task_event task_event;
3482
3483         if (!atomic_read(&nr_comm_events) &&
3484             !atomic_read(&nr_mmap_events) &&
3485             !atomic_read(&nr_task_events))
3486                 return;
3487
3488         task_event = (struct perf_task_event){
3489                 .task     = task,
3490                 .task_ctx = task_ctx,
3491                 .event_id    = {
3492                         .header = {
3493                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3494                                 .misc = 0,
3495                                 .size = sizeof(task_event.event_id),
3496                         },
3497                         /* .pid  */
3498                         /* .ppid */
3499                         /* .tid  */
3500                         /* .ptid */
3501                         .time = perf_clock(),
3502                 },
3503         };
3504
3505         perf_event_task_event(&task_event);
3506 }
3507
3508 void perf_event_fork(struct task_struct *task)
3509 {
3510         perf_event_task(task, NULL, 1);
3511 }
3512
3513 /*
3514  * comm tracking
3515  */
3516
3517 struct perf_comm_event {
3518         struct task_struct      *task;
3519         char                    *comm;
3520         int                     comm_size;
3521
3522         struct {
3523                 struct perf_event_header        header;
3524
3525                 u32                             pid;
3526                 u32                             tid;
3527         } event_id;
3528 };
3529
3530 static void perf_event_comm_output(struct perf_event *event,
3531                                      struct perf_comm_event *comm_event)
3532 {
3533         struct perf_output_handle handle;
3534         int size = comm_event->event_id.header.size;
3535         int ret = perf_output_begin(&handle, event, size, 0, 0);
3536
3537         if (ret)
3538                 return;
3539
3540         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3541         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3542
3543         perf_output_put(&handle, comm_event->event_id);
3544         perf_output_copy(&handle, comm_event->comm,
3545                                    comm_event->comm_size);
3546         perf_output_end(&handle);
3547 }
3548
3549 static int perf_event_comm_match(struct perf_event *event)
3550 {
3551         if (event->state < PERF_EVENT_STATE_INACTIVE)
3552                 return 0;
3553
3554         if (event->cpu != -1 && event->cpu != smp_processor_id())
3555                 return 0;
3556
3557         if (event->attr.comm)
3558                 return 1;
3559
3560         return 0;
3561 }
3562
3563 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3564                                   struct perf_comm_event *comm_event)
3565 {
3566         struct perf_event *event;
3567
3568         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3569                 if (perf_event_comm_match(event))
3570                         perf_event_comm_output(event, comm_event);
3571         }
3572 }
3573
3574 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3575 {
3576         struct perf_cpu_context *cpuctx;
3577         struct perf_event_context *ctx;
3578         unsigned int size;
3579         char comm[TASK_COMM_LEN];
3580
3581         memset(comm, 0, sizeof(comm));
3582         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3583         size = ALIGN(strlen(comm)+1, sizeof(u64));
3584
3585         comm_event->comm = comm;
3586         comm_event->comm_size = size;
3587
3588         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3589
3590         rcu_read_lock();
3591         cpuctx = &get_cpu_var(perf_cpu_context);
3592         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3593         ctx = rcu_dereference(current->perf_event_ctxp);
3594         if (ctx)
3595                 perf_event_comm_ctx(ctx, comm_event);
3596         put_cpu_var(perf_cpu_context);
3597         rcu_read_unlock();
3598 }
3599
3600 void perf_event_comm(struct task_struct *task)
3601 {
3602         struct perf_comm_event comm_event;
3603
3604         if (task->perf_event_ctxp)
3605                 perf_event_enable_on_exec(task);
3606
3607         if (!atomic_read(&nr_comm_events))
3608                 return;
3609
3610         comm_event = (struct perf_comm_event){
3611                 .task   = task,
3612                 /* .comm      */
3613                 /* .comm_size */
3614                 .event_id  = {
3615                         .header = {
3616                                 .type = PERF_RECORD_COMM,
3617                                 .misc = 0,
3618                                 /* .size */
3619                         },
3620                         /* .pid */
3621                         /* .tid */
3622                 },
3623         };
3624
3625         perf_event_comm_event(&comm_event);
3626 }
3627
3628 /*
3629  * mmap tracking
3630  */
3631
3632 struct perf_mmap_event {
3633         struct vm_area_struct   *vma;
3634
3635         const char              *file_name;
3636         int                     file_size;
3637
3638         struct {
3639                 struct perf_event_header        header;
3640
3641                 u32                             pid;
3642                 u32                             tid;
3643                 u64                             start;
3644                 u64                             len;
3645                 u64                             pgoff;
3646         } event_id;
3647 };
3648
3649 static void perf_event_mmap_output(struct perf_event *event,
3650                                      struct perf_mmap_event *mmap_event)
3651 {
3652         struct perf_output_handle handle;
3653         int size = mmap_event->event_id.header.size;
3654         int ret = perf_output_begin(&handle, event, size, 0, 0);
3655
3656         if (ret)
3657                 return;
3658
3659         mmap_event->event_id.pid = perf_event_pid(event, current);
3660         mmap_event->event_id.tid = perf_event_tid(event, current);
3661
3662         perf_output_put(&handle, mmap_event->event_id);
3663         perf_output_copy(&handle, mmap_event->file_name,
3664                                    mmap_event->file_size);
3665         perf_output_end(&handle);
3666 }
3667
3668 static int perf_event_mmap_match(struct perf_event *event,
3669                                    struct perf_mmap_event *mmap_event)
3670 {
3671         if (event->state < PERF_EVENT_STATE_INACTIVE)
3672                 return 0;
3673
3674         if (event->cpu != -1 && event->cpu != smp_processor_id())
3675                 return 0;
3676
3677         if (event->attr.mmap)
3678                 return 1;
3679
3680         return 0;
3681 }
3682
3683 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3684                                   struct perf_mmap_event *mmap_event)
3685 {
3686         struct perf_event *event;
3687
3688         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3689                 if (perf_event_mmap_match(event, mmap_event))
3690                         perf_event_mmap_output(event, mmap_event);
3691         }
3692 }
3693
3694 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3695 {
3696         struct perf_cpu_context *cpuctx;
3697         struct perf_event_context *ctx;
3698         struct vm_area_struct *vma = mmap_event->vma;
3699         struct file *file = vma->vm_file;
3700         unsigned int size;
3701         char tmp[16];
3702         char *buf = NULL;
3703         const char *name;
3704
3705         memset(tmp, 0, sizeof(tmp));
3706
3707         if (file) {
3708                 /*
3709                  * d_path works from the end of the buffer backwards, so we
3710                  * need to add enough zero bytes after the string to handle
3711                  * the 64bit alignment we do later.
3712                  */
3713                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3714                 if (!buf) {
3715                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3716                         goto got_name;
3717                 }
3718                 name = d_path(&file->f_path, buf, PATH_MAX);
3719                 if (IS_ERR(name)) {
3720                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3721                         goto got_name;
3722                 }
3723         } else {
3724                 if (arch_vma_name(mmap_event->vma)) {
3725                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3726                                        sizeof(tmp));
3727                         goto got_name;
3728                 }
3729
3730                 if (!vma->vm_mm) {
3731                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3732                         goto got_name;
3733                 }
3734
3735                 name = strncpy(tmp, "//anon", sizeof(tmp));
3736                 goto got_name;
3737         }
3738
3739 got_name:
3740         size = ALIGN(strlen(name)+1, sizeof(u64));
3741
3742         mmap_event->file_name = name;
3743         mmap_event->file_size = size;
3744
3745         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3746
3747         rcu_read_lock();
3748         cpuctx = &get_cpu_var(perf_cpu_context);
3749         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3750         ctx = rcu_dereference(current->perf_event_ctxp);
3751         if (ctx)
3752                 perf_event_mmap_ctx(ctx, mmap_event);
3753         put_cpu_var(perf_cpu_context);
3754         rcu_read_unlock();
3755
3756         kfree(buf);
3757 }
3758
3759 void __perf_event_mmap(struct vm_area_struct *vma)
3760 {
3761         struct perf_mmap_event mmap_event;
3762
3763         if (!atomic_read(&nr_mmap_events))
3764                 return;
3765
3766         mmap_event = (struct perf_mmap_event){
3767                 .vma    = vma,
3768                 /* .file_name */
3769                 /* .file_size */
3770                 .event_id  = {
3771                         .header = {
3772                                 .type = PERF_RECORD_MMAP,
3773                                 .misc = PERF_RECORD_MISC_USER,
3774                                 /* .size */
3775                         },
3776                         /* .pid */
3777                         /* .tid */
3778                         .start  = vma->vm_start,
3779                         .len    = vma->vm_end - vma->vm_start,
3780                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3781                 },
3782         };
3783
3784         perf_event_mmap_event(&mmap_event);
3785 }
3786
3787 /*
3788  * IRQ throttle logging
3789  */
3790
3791 static void perf_log_throttle(struct perf_event *event, int enable)
3792 {
3793         struct perf_output_handle handle;
3794         int ret;
3795
3796         struct {
3797                 struct perf_event_header        header;
3798                 u64                             time;
3799                 u64                             id;
3800                 u64                             stream_id;
3801         } throttle_event = {
3802                 .header = {
3803                         .type = PERF_RECORD_THROTTLE,
3804                         .misc = 0,
3805                         .size = sizeof(throttle_event),
3806                 },
3807                 .time           = perf_clock(),
3808                 .id             = primary_event_id(event),
3809                 .stream_id      = event->id,
3810         };
3811
3812         if (enable)
3813                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3814
3815         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3816         if (ret)
3817                 return;
3818
3819         perf_output_put(&handle, throttle_event);
3820         perf_output_end(&handle);
3821 }
3822
3823 /*
3824  * Generic event overflow handling, sampling.
3825  */
3826
3827 static int __perf_event_overflow(struct perf_event *event, int nmi,
3828                                    int throttle, struct perf_sample_data *data,
3829                                    struct pt_regs *regs)
3830 {
3831         int events = atomic_read(&event->event_limit);
3832         struct hw_perf_event *hwc = &event->hw;
3833         int ret = 0;
3834
3835         throttle = (throttle && event->pmu->unthrottle != NULL);
3836
3837         if (!throttle) {
3838                 hwc->interrupts++;
3839         } else {
3840                 if (hwc->interrupts != MAX_INTERRUPTS) {
3841                         hwc->interrupts++;
3842                         if (HZ * hwc->interrupts >
3843                                         (u64)sysctl_perf_event_sample_rate) {
3844                                 hwc->interrupts = MAX_INTERRUPTS;
3845                                 perf_log_throttle(event, 0);
3846                                 ret = 1;
3847                         }
3848                 } else {
3849                         /*
3850                          * Keep re-disabling events even though on the previous
3851                          * pass we disabled it - just in case we raced with a
3852                          * sched-in and the event got enabled again:
3853                          */
3854                         ret = 1;
3855                 }
3856         }
3857
3858         if (event->attr.freq) {
3859                 u64 now = perf_clock();
3860                 s64 delta = now - hwc->freq_time_stamp;
3861
3862                 hwc->freq_time_stamp = now;
3863
3864                 if (delta > 0 && delta < 2*TICK_NSEC)
3865                         perf_adjust_period(event, delta, hwc->last_period);
3866         }
3867
3868         /*
3869          * XXX event_limit might not quite work as expected on inherited
3870          * events
3871          */
3872
3873         event->pending_kill = POLL_IN;
3874         if (events && atomic_dec_and_test(&event->event_limit)) {
3875                 ret = 1;
3876                 event->pending_kill = POLL_HUP;
3877                 if (nmi) {
3878                         event->pending_disable = 1;
3879                         perf_pending_queue(&event->pending,
3880                                            perf_pending_event);
3881                 } else
3882                         perf_event_disable(event);
3883         }
3884
3885         if (event->overflow_handler)
3886                 event->overflow_handler(event, nmi, data, regs);
3887         else
3888                 perf_event_output(event, nmi, data, regs);
3889
3890         return ret;
3891 }
3892
3893 int perf_event_overflow(struct perf_event *event, int nmi,
3894                           struct perf_sample_data *data,
3895                           struct pt_regs *regs)
3896 {
3897         return __perf_event_overflow(event, nmi, 1, data, regs);
3898 }
3899
3900 /*
3901  * Generic software event infrastructure
3902  */
3903
3904 /*
3905  * We directly increment event->count and keep a second value in
3906  * event->hw.period_left to count intervals. This period event
3907  * is kept in the range [-sample_period, 0] so that we can use the
3908  * sign as trigger.
3909  */
3910
3911 static u64 perf_swevent_set_period(struct perf_event *event)
3912 {
3913         struct hw_perf_event *hwc = &event->hw;
3914         u64 period = hwc->last_period;
3915         u64 nr, offset;
3916         s64 old, val;
3917
3918         hwc->last_period = hwc->sample_period;
3919
3920 again:
3921         old = val = atomic64_read(&hwc->period_left);
3922         if (val < 0)
3923                 return 0;
3924
3925         nr = div64_u64(period + val, period);
3926         offset = nr * period;
3927         val -= offset;
3928         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3929                 goto again;
3930
3931         return nr;
3932 }
3933
3934 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3935                                     int nmi, struct perf_sample_data *data,
3936                                     struct pt_regs *regs)
3937 {
3938         struct hw_perf_event *hwc = &event->hw;
3939         int throttle = 0;
3940
3941         data->period = event->hw.last_period;
3942         if (!overflow)
3943                 overflow = perf_swevent_set_period(event);
3944
3945         if (hwc->interrupts == MAX_INTERRUPTS)
3946                 return;
3947
3948         for (; overflow; overflow--) {
3949                 if (__perf_event_overflow(event, nmi, throttle,
3950                                             data, regs)) {
3951                         /*
3952                          * We inhibit the overflow from happening when
3953                          * hwc->interrupts == MAX_INTERRUPTS.
3954                          */
3955                         break;
3956                 }
3957                 throttle = 1;
3958         }
3959 }
3960
3961 static void perf_swevent_unthrottle(struct perf_event *event)
3962 {
3963         /*
3964          * Nothing to do, we already reset hwc->interrupts.
3965          */
3966 }
3967
3968 static void perf_swevent_add(struct perf_event *event, u64 nr,
3969                                int nmi, struct perf_sample_data *data,
3970                                struct pt_regs *regs)
3971 {
3972         struct hw_perf_event *hwc = &event->hw;
3973
3974         atomic64_add(nr, &event->count);
3975
3976         if (!regs)
3977                 return;
3978
3979         if (!hwc->sample_period)
3980                 return;
3981
3982         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3983                 return perf_swevent_overflow(event, 1, nmi, data, regs);
3984
3985         if (atomic64_add_negative(nr, &hwc->period_left))
3986                 return;
3987
3988         perf_swevent_overflow(event, 0, nmi, data, regs);
3989 }
3990
3991 static int perf_tp_event_match(struct perf_event *event,
3992                                 struct perf_sample_data *data);
3993
3994 static int perf_exclude_event(struct perf_event *event,
3995                               struct pt_regs *regs)
3996 {
3997         if (regs) {
3998                 if (event->attr.exclude_user && user_mode(regs))
3999                         return 1;
4000
4001                 if (event->attr.exclude_kernel && !user_mode(regs))
4002                         return 1;
4003         }
4004
4005         return 0;
4006 }
4007
4008 static int perf_swevent_match(struct perf_event *event,
4009                                 enum perf_type_id type,
4010                                 u32 event_id,
4011                                 struct perf_sample_data *data,
4012                                 struct pt_regs *regs)
4013 {
4014         if (event->attr.type != type)
4015                 return 0;
4016
4017         if (event->attr.config != event_id)
4018                 return 0;
4019
4020         if (perf_exclude_event(event, regs))
4021                 return 0;
4022
4023         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4024             !perf_tp_event_match(event, data))
4025                 return 0;
4026
4027         return 1;
4028 }
4029
4030 static inline u64 swevent_hash(u64 type, u32 event_id)
4031 {
4032         u64 val = event_id | (type << 32);
4033
4034         return hash_64(val, SWEVENT_HLIST_BITS);
4035 }
4036
4037 static struct hlist_head *
4038 find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4039 {
4040         u64 hash;
4041         struct swevent_hlist *hlist;
4042
4043         hash = swevent_hash(type, event_id);
4044
4045         hlist = rcu_dereference(ctx->swevent_hlist);
4046         if (!hlist)
4047                 return NULL;
4048
4049         return &hlist->heads[hash];
4050 }
4051
4052 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4053                                     u64 nr, int nmi,
4054                                     struct perf_sample_data *data,
4055                                     struct pt_regs *regs)
4056 {
4057         struct perf_cpu_context *cpuctx;
4058         struct perf_event *event;
4059         struct hlist_node *node;
4060         struct hlist_head *head;
4061
4062         cpuctx = &__get_cpu_var(perf_cpu_context);
4063
4064         rcu_read_lock();
4065
4066         head = find_swevent_head(cpuctx, type, event_id);
4067
4068         if (!head)
4069                 goto end;
4070
4071         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4072                 if (perf_swevent_match(event, type, event_id, data, regs))
4073                         perf_swevent_add(event, nr, nmi, data, regs);
4074         }
4075 end:
4076         rcu_read_unlock();
4077 }
4078
4079 int perf_swevent_get_recursion_context(void)
4080 {
4081         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4082         int rctx;
4083
4084         if (in_nmi())
4085                 rctx = 3;
4086         else if (in_irq())
4087                 rctx = 2;
4088         else if (in_softirq())
4089                 rctx = 1;
4090         else
4091                 rctx = 0;
4092
4093         if (cpuctx->recursion[rctx]) {
4094                 put_cpu_var(perf_cpu_context);
4095                 return -1;
4096         }
4097
4098         cpuctx->recursion[rctx]++;
4099         barrier();
4100
4101         return rctx;
4102 }
4103 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4104
4105 void perf_swevent_put_recursion_context(int rctx)
4106 {
4107         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4108         barrier();
4109         cpuctx->recursion[rctx]--;
4110         put_cpu_var(perf_cpu_context);
4111 }
4112 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4113
4114
4115 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4116                             struct pt_regs *regs, u64 addr)
4117 {
4118         struct perf_sample_data data;
4119         int rctx;
4120
4121         rctx = perf_swevent_get_recursion_context();
4122         if (rctx < 0)
4123                 return;
4124
4125         perf_sample_data_init(&data, addr);
4126
4127         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4128
4129         perf_swevent_put_recursion_context(rctx);
4130 }
4131
4132 static void perf_swevent_read(struct perf_event *event)
4133 {
4134 }
4135
4136 static int perf_swevent_enable(struct perf_event *event)
4137 {
4138         struct hw_perf_event *hwc = &event->hw;
4139         struct perf_cpu_context *cpuctx;
4140         struct hlist_head *head;
4141
4142         cpuctx = &__get_cpu_var(perf_cpu_context);
4143
4144         if (hwc->sample_period) {
4145                 hwc->last_period = hwc->sample_period;
4146                 perf_swevent_set_period(event);
4147         }
4148
4149         head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4150         if (WARN_ON_ONCE(!head))
4151                 return -EINVAL;
4152
4153         hlist_add_head_rcu(&event->hlist_entry, head);
4154
4155         return 0;
4156 }
4157
4158 static void perf_swevent_disable(struct perf_event *event)
4159 {
4160         hlist_del_rcu(&event->hlist_entry);
4161 }
4162
4163 static const struct pmu perf_ops_generic = {
4164         .enable         = perf_swevent_enable,
4165         .disable        = perf_swevent_disable,
4166         .read           = perf_swevent_read,
4167         .unthrottle     = perf_swevent_unthrottle,
4168 };
4169
4170 /*
4171  * hrtimer based swevent callback
4172  */
4173
4174 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4175 {
4176         enum hrtimer_restart ret = HRTIMER_RESTART;
4177         struct perf_sample_data data;
4178         struct pt_regs *regs;
4179         struct perf_event *event;
4180         u64 period;
4181
4182         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4183         event->pmu->read(event);
4184
4185         perf_sample_data_init(&data, 0);
4186         data.period = event->hw.last_period;
4187         regs = get_irq_regs();
4188
4189         if (regs && !perf_exclude_event(event, regs)) {
4190                 if (!(event->attr.exclude_idle && current->pid == 0))
4191                         if (perf_event_overflow(event, 0, &data, regs))
4192                                 ret = HRTIMER_NORESTART;
4193         }
4194
4195         period = max_t(u64, 10000, event->hw.sample_period);
4196         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4197
4198         return ret;
4199 }
4200
4201 static void perf_swevent_start_hrtimer(struct perf_event *event)
4202 {
4203         struct hw_perf_event *hwc = &event->hw;
4204
4205         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4206         hwc->hrtimer.function = perf_swevent_hrtimer;
4207         if (hwc->sample_period) {
4208                 u64 period;
4209
4210                 if (hwc->remaining) {
4211                         if (hwc->remaining < 0)
4212                                 period = 10000;
4213                         else
4214                                 period = hwc->remaining;
4215                         hwc->remaining = 0;
4216                 } else {
4217                         period = max_t(u64, 10000, hwc->sample_period);
4218                 }
4219                 __hrtimer_start_range_ns(&hwc->hrtimer,
4220                                 ns_to_ktime(period), 0,
4221                                 HRTIMER_MODE_REL, 0);
4222         }
4223 }
4224
4225 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4226 {
4227         struct hw_perf_event *hwc = &event->hw;
4228
4229         if (hwc->sample_period) {
4230                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4231                 hwc->remaining = ktime_to_ns(remaining);
4232
4233                 hrtimer_cancel(&hwc->hrtimer);
4234         }
4235 }
4236
4237 /*
4238  * Software event: cpu wall time clock
4239  */
4240
4241 static void cpu_clock_perf_event_update(struct perf_event *event)
4242 {
4243         int cpu = raw_smp_processor_id();
4244         s64 prev;
4245         u64 now;
4246
4247         now = cpu_clock(cpu);
4248         prev = atomic64_xchg(&event->hw.prev_count, now);
4249         atomic64_add(now - prev, &event->count);
4250 }
4251
4252 static int cpu_clock_perf_event_enable(struct perf_event *event)
4253 {
4254         struct hw_perf_event *hwc = &event->hw;
4255         int cpu = raw_smp_processor_id();
4256
4257         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4258         perf_swevent_start_hrtimer(event);
4259
4260         return 0;
4261 }
4262
4263 static void cpu_clock_perf_event_disable(struct perf_event *event)
4264 {
4265         perf_swevent_cancel_hrtimer(event);
4266         cpu_clock_perf_event_update(event);
4267 }
4268
4269 static void cpu_clock_perf_event_read(struct perf_event *event)
4270 {
4271         cpu_clock_perf_event_update(event);
4272 }
4273
4274 static const struct pmu perf_ops_cpu_clock = {
4275         .enable         = cpu_clock_perf_event_enable,
4276         .disable        = cpu_clock_perf_event_disable,
4277         .read           = cpu_clock_perf_event_read,
4278 };
4279
4280 /*
4281  * Software event: task time clock
4282  */
4283
4284 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4285 {
4286         u64 prev;
4287         s64 delta;
4288
4289         prev = atomic64_xchg(&event->hw.prev_count, now);
4290         delta = now - prev;
4291         atomic64_add(delta, &event->count);
4292 }
4293
4294 static int task_clock_perf_event_enable(struct perf_event *event)
4295 {
4296         struct hw_perf_event *hwc = &event->hw;
4297         u64 now;
4298
4299         now = event->ctx->time;
4300
4301         atomic64_set(&hwc->prev_count, now);
4302
4303         perf_swevent_start_hrtimer(event);
4304
4305         return 0;
4306 }
4307
4308 static void task_clock_perf_event_disable(struct perf_event *event)
4309 {
4310         perf_swevent_cancel_hrtimer(event);
4311         task_clock_perf_event_update(event, event->ctx->time);
4312
4313 }
4314
4315 static void task_clock_perf_event_read(struct perf_event *event)
4316 {
4317         u64 time;
4318
4319         if (!in_nmi()) {
4320                 update_context_time(event->ctx);
4321                 time = event->ctx->time;
4322         } else {
4323                 u64 now = perf_clock();
4324                 u64 delta = now - event->ctx->timestamp;
4325                 time = event->ctx->time + delta;
4326         }
4327
4328         task_clock_perf_event_update(event, time);
4329 }
4330
4331 static const struct pmu perf_ops_task_clock = {
4332         .enable         = task_clock_perf_event_enable,
4333         .disable        = task_clock_perf_event_disable,
4334         .read           = task_clock_perf_event_read,
4335 };
4336
4337 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4338 {
4339         struct swevent_hlist *hlist;
4340
4341         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4342         kfree(hlist);
4343 }
4344
4345 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4346 {
4347         struct swevent_hlist *hlist;
4348
4349         if (!cpuctx->swevent_hlist)
4350                 return;
4351
4352         hlist = cpuctx->swevent_hlist;
4353         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4354         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4355 }
4356
4357 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4358 {
4359         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4360
4361         mutex_lock(&cpuctx->hlist_mutex);
4362
4363         if (!--cpuctx->hlist_refcount)
4364                 swevent_hlist_release(cpuctx);
4365
4366         mutex_unlock(&cpuctx->hlist_mutex);
4367 }
4368
4369 static void swevent_hlist_put(struct perf_event *event)
4370 {
4371         int cpu;
4372
4373         if (event->cpu != -1) {
4374                 swevent_hlist_put_cpu(event, event->cpu);
4375                 return;
4376         }
4377
4378         for_each_possible_cpu(cpu)
4379                 swevent_hlist_put_cpu(event, cpu);
4380 }
4381
4382 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4383 {
4384         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4385         int err = 0;
4386
4387         mutex_lock(&cpuctx->hlist_mutex);
4388
4389         if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4390                 struct swevent_hlist *hlist;
4391
4392                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4393                 if (!hlist) {
4394                         err = -ENOMEM;
4395                         goto exit;
4396                 }
4397                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4398         }
4399         cpuctx->hlist_refcount++;
4400  exit:
4401         mutex_unlock(&cpuctx->hlist_mutex);
4402
4403         return err;
4404 }
4405
4406 static int swevent_hlist_get(struct perf_event *event)
4407 {
4408         int err;
4409         int cpu, failed_cpu;
4410
4411         if (event->cpu != -1)
4412                 return swevent_hlist_get_cpu(event, event->cpu);
4413
4414         get_online_cpus();
4415         for_each_possible_cpu(cpu) {
4416                 err = swevent_hlist_get_cpu(event, cpu);
4417                 if (err) {
4418                         failed_cpu = cpu;
4419                         goto fail;
4420                 }
4421         }
4422         put_online_cpus();
4423
4424         return 0;
4425  fail:
4426         for_each_possible_cpu(cpu) {
4427                 if (cpu == failed_cpu)
4428                         break;
4429                 swevent_hlist_put_cpu(event, cpu);
4430         }
4431
4432         put_online_cpus();
4433         return err;
4434 }
4435
4436 #ifdef CONFIG_EVENT_TRACING
4437
4438 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4439                    int entry_size, struct pt_regs *regs)
4440 {
4441         struct perf_sample_data data;
4442         struct perf_raw_record raw = {
4443                 .size = entry_size,
4444                 .data = record,
4445         };
4446
4447         perf_sample_data_init(&data, addr);
4448         data.raw = &raw;
4449
4450         /* Trace events already protected against recursion */
4451         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4452                          &data, regs);
4453 }
4454 EXPORT_SYMBOL_GPL(perf_tp_event);
4455
4456 static int perf_tp_event_match(struct perf_event *event,
4457                                 struct perf_sample_data *data)
4458 {
4459         void *record = data->raw->data;
4460
4461         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4462                 return 1;
4463         return 0;
4464 }
4465
4466 static void tp_perf_event_destroy(struct perf_event *event)
4467 {
4468         perf_trace_disable(event->attr.config);
4469         swevent_hlist_put(event);
4470 }
4471
4472 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4473 {
4474         int err;
4475
4476         /*
4477          * Raw tracepoint data is a severe data leak, only allow root to
4478          * have these.
4479          */
4480         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4481                         perf_paranoid_tracepoint_raw() &&
4482                         !capable(CAP_SYS_ADMIN))
4483                 return ERR_PTR(-EPERM);
4484
4485         if (perf_trace_enable(event->attr.config))
4486                 return NULL;
4487
4488         event->destroy = tp_perf_event_destroy;
4489         err = swevent_hlist_get(event);
4490         if (err) {
4491                 perf_trace_disable(event->attr.config);
4492                 return ERR_PTR(err);
4493         }
4494
4495         return &perf_ops_generic;
4496 }
4497
4498 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4499 {
4500         char *filter_str;
4501         int ret;
4502
4503         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4504                 return -EINVAL;
4505
4506         filter_str = strndup_user(arg, PAGE_SIZE);
4507         if (IS_ERR(filter_str))
4508                 return PTR_ERR(filter_str);
4509
4510         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4511
4512         kfree(filter_str);
4513         return ret;
4514 }
4515
4516 static void perf_event_free_filter(struct perf_event *event)
4517 {
4518         ftrace_profile_free_filter(event);
4519 }
4520
4521 #else
4522
4523 static int perf_tp_event_match(struct perf_event *event,
4524                                 struct perf_sample_data *data)
4525 {
4526         return 1;
4527 }
4528
4529 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4530 {
4531         return NULL;
4532 }
4533
4534 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4535 {
4536         return -ENOENT;
4537 }
4538
4539 static void perf_event_free_filter(struct perf_event *event)
4540 {
4541 }
4542
4543 #endif /* CONFIG_EVENT_TRACING */
4544
4545 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4546 static void bp_perf_event_destroy(struct perf_event *event)
4547 {
4548         release_bp_slot(event);
4549 }
4550
4551 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4552 {
4553         int err;
4554
4555         err = register_perf_hw_breakpoint(bp);
4556         if (err)
4557                 return ERR_PTR(err);
4558
4559         bp->destroy = bp_perf_event_destroy;
4560
4561         return &perf_ops_bp;
4562 }
4563
4564 void perf_bp_event(struct perf_event *bp, void *data)
4565 {
4566         struct perf_sample_data sample;
4567         struct pt_regs *regs = data;
4568
4569         perf_sample_data_init(&sample, bp->attr.bp_addr);
4570
4571         if (!perf_exclude_event(bp, regs))
4572                 perf_swevent_add(bp, 1, 1, &sample, regs);
4573 }
4574 #else
4575 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4576 {
4577         return NULL;
4578 }
4579
4580 void perf_bp_event(struct perf_event *bp, void *regs)
4581 {
4582 }
4583 #endif
4584
4585 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4586
4587 static void sw_perf_event_destroy(struct perf_event *event)
4588 {
4589         u64 event_id = event->attr.config;
4590
4591         WARN_ON(event->parent);
4592
4593         atomic_dec(&perf_swevent_enabled[event_id]);
4594         swevent_hlist_put(event);
4595 }
4596
4597 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4598 {
4599         const struct pmu *pmu = NULL;
4600         u64 event_id = event->attr.config;
4601
4602         /*
4603          * Software events (currently) can't in general distinguish
4604          * between user, kernel and hypervisor events.
4605          * However, context switches and cpu migrations are considered
4606          * to be kernel events, and page faults are never hypervisor
4607          * events.
4608          */
4609         switch (event_id) {
4610         case PERF_COUNT_SW_CPU_CLOCK:
4611                 pmu = &perf_ops_cpu_clock;
4612
4613                 break;
4614         case PERF_COUNT_SW_TASK_CLOCK:
4615                 /*
4616                  * If the user instantiates this as a per-cpu event,
4617                  * use the cpu_clock event instead.
4618                  */
4619                 if (event->ctx->task)
4620                         pmu = &perf_ops_task_clock;
4621                 else
4622                         pmu = &perf_ops_cpu_clock;
4623
4624                 break;
4625         case PERF_COUNT_SW_PAGE_FAULTS:
4626         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4627         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4628         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4629         case PERF_COUNT_SW_CPU_MIGRATIONS:
4630         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4631         case PERF_COUNT_SW_EMULATION_FAULTS:
4632                 if (!event->parent) {
4633                         int err;
4634
4635                         err = swevent_hlist_get(event);
4636                         if (err)
4637                                 return ERR_PTR(err);
4638
4639                         atomic_inc(&perf_swevent_enabled[event_id]);
4640                         event->destroy = sw_perf_event_destroy;
4641                 }
4642                 pmu = &perf_ops_generic;
4643                 break;
4644         }
4645
4646         return pmu;
4647 }
4648
4649 /*
4650  * Allocate and initialize a event structure
4651  */
4652 static struct perf_event *
4653 perf_event_alloc(struct perf_event_attr *attr,
4654                    int cpu,
4655                    struct perf_event_context *ctx,
4656                    struct perf_event *group_leader,
4657                    struct perf_event *parent_event,
4658                    perf_overflow_handler_t overflow_handler,
4659                    gfp_t gfpflags)
4660 {
4661         const struct pmu *pmu;
4662         struct perf_event *event;
4663         struct hw_perf_event *hwc;
4664         long err;
4665
4666         event = kzalloc(sizeof(*event), gfpflags);
4667         if (!event)
4668                 return ERR_PTR(-ENOMEM);
4669
4670         /*
4671          * Single events are their own group leaders, with an
4672          * empty sibling list:
4673          */
4674         if (!group_leader)
4675                 group_leader = event;
4676
4677         mutex_init(&event->child_mutex);
4678         INIT_LIST_HEAD(&event->child_list);
4679
4680         INIT_LIST_HEAD(&event->group_entry);
4681         INIT_LIST_HEAD(&event->event_entry);
4682         INIT_LIST_HEAD(&event->sibling_list);
4683         init_waitqueue_head(&event->waitq);
4684
4685         mutex_init(&event->mmap_mutex);
4686
4687         event->cpu              = cpu;
4688         event->attr             = *attr;
4689         event->group_leader     = group_leader;
4690         event->pmu              = NULL;
4691         event->ctx              = ctx;
4692         event->oncpu            = -1;
4693
4694         event->parent           = parent_event;
4695
4696         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4697         event->id               = atomic64_inc_return(&perf_event_id);
4698
4699         event->state            = PERF_EVENT_STATE_INACTIVE;
4700
4701         if (!overflow_handler && parent_event)
4702                 overflow_handler = parent_event->overflow_handler;
4703         
4704         event->overflow_handler = overflow_handler;
4705
4706         if (attr->disabled)
4707                 event->state = PERF_EVENT_STATE_OFF;
4708
4709         pmu = NULL;
4710
4711         hwc = &event->hw;
4712         hwc->sample_period = attr->sample_period;
4713         if (attr->freq && attr->sample_freq)
4714                 hwc->sample_period = 1;
4715         hwc->last_period = hwc->sample_period;
4716
4717         atomic64_set(&hwc->period_left, hwc->sample_period);
4718
4719         /*
4720          * we currently do not support PERF_FORMAT_GROUP on inherited events
4721          */
4722         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4723                 goto done;
4724
4725         switch (attr->type) {
4726         case PERF_TYPE_RAW:
4727         case PERF_TYPE_HARDWARE:
4728         case PERF_TYPE_HW_CACHE:
4729                 pmu = hw_perf_event_init(event);
4730                 break;
4731
4732         case PERF_TYPE_SOFTWARE:
4733                 pmu = sw_perf_event_init(event);
4734                 break;
4735
4736         case PERF_TYPE_TRACEPOINT:
4737                 pmu = tp_perf_event_init(event);
4738                 break;
4739
4740         case PERF_TYPE_BREAKPOINT:
4741                 pmu = bp_perf_event_init(event);
4742                 break;
4743
4744
4745         default:
4746                 break;
4747         }
4748 done:
4749         err = 0;
4750         if (!pmu)
4751                 err = -EINVAL;
4752         else if (IS_ERR(pmu))
4753                 err = PTR_ERR(pmu);
4754
4755         if (err) {
4756                 if (event->ns)
4757                         put_pid_ns(event->ns);
4758                 kfree(event);
4759                 return ERR_PTR(err);
4760         }
4761
4762         event->pmu = pmu;
4763
4764         if (!event->parent) {
4765                 atomic_inc(&nr_events);
4766                 if (event->attr.mmap)
4767                         atomic_inc(&nr_mmap_events);
4768                 if (event->attr.comm)
4769                         atomic_inc(&nr_comm_events);
4770                 if (event->attr.task)
4771                         atomic_inc(&nr_task_events);
4772         }
4773
4774         return event;
4775 }
4776
4777 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4778                           struct perf_event_attr *attr)
4779 {
4780         u32 size;
4781         int ret;
4782
4783         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4784                 return -EFAULT;
4785
4786         /*
4787          * zero the full structure, so that a short copy will be nice.
4788          */
4789         memset(attr, 0, sizeof(*attr));
4790
4791         ret = get_user(size, &uattr->size);
4792         if (ret)
4793                 return ret;
4794
4795         if (size > PAGE_SIZE)   /* silly large */
4796                 goto err_size;
4797
4798         if (!size)              /* abi compat */
4799                 size = PERF_ATTR_SIZE_VER0;
4800
4801         if (size < PERF_ATTR_SIZE_VER0)
4802                 goto err_size;
4803
4804         /*
4805          * If we're handed a bigger struct than we know of,
4806          * ensure all the unknown bits are 0 - i.e. new
4807          * user-space does not rely on any kernel feature
4808          * extensions we dont know about yet.
4809          */
4810         if (size > sizeof(*attr)) {
4811                 unsigned char __user *addr;
4812                 unsigned char __user *end;
4813                 unsigned char val;
4814
4815                 addr = (void __user *)uattr + sizeof(*attr);
4816                 end  = (void __user *)uattr + size;
4817
4818                 for (; addr < end; addr++) {
4819                         ret = get_user(val, addr);
4820                         if (ret)
4821                                 return ret;
4822                         if (val)
4823                                 goto err_size;
4824                 }
4825                 size = sizeof(*attr);
4826         }
4827
4828         ret = copy_from_user(attr, uattr, size);
4829         if (ret)
4830                 return -EFAULT;
4831
4832         /*
4833          * If the type exists, the corresponding creation will verify
4834          * the attr->config.
4835          */
4836         if (attr->type >= PERF_TYPE_MAX)
4837                 return -EINVAL;
4838
4839         if (attr->__reserved_1)
4840                 return -EINVAL;
4841
4842         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4843                 return -EINVAL;
4844
4845         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4846                 return -EINVAL;
4847
4848 out:
4849         return ret;
4850
4851 err_size:
4852         put_user(sizeof(*attr), &uattr->size);
4853         ret = -E2BIG;
4854         goto out;
4855 }
4856
4857 static int perf_event_set_output(struct perf_event *event, int output_fd)
4858 {
4859         struct perf_event *output_event = NULL;
4860         struct file *output_file = NULL;
4861         struct perf_event *old_output;
4862         int fput_needed = 0;
4863         int ret = -EINVAL;
4864
4865         if (!output_fd)
4866                 goto set;
4867
4868         output_file = fget_light(output_fd, &fput_needed);
4869         if (!output_file)
4870                 return -EBADF;
4871
4872         if (output_file->f_op != &perf_fops)
4873                 goto out;
4874
4875         output_event = output_file->private_data;
4876
4877         /* Don't chain output fds */
4878         if (output_event->output)
4879                 goto out;
4880
4881         /* Don't set an output fd when we already have an output channel */
4882         if (event->data)
4883                 goto out;
4884
4885         atomic_long_inc(&output_file->f_count);
4886
4887 set:
4888         mutex_lock(&event->mmap_mutex);
4889         old_output = event->output;
4890         rcu_assign_pointer(event->output, output_event);
4891         mutex_unlock(&event->mmap_mutex);
4892
4893         if (old_output) {
4894                 /*
4895                  * we need to make sure no existing perf_output_*()
4896                  * is still referencing this event.
4897                  */
4898                 synchronize_rcu();
4899                 fput(old_output->filp);
4900         }
4901
4902         ret = 0;
4903 out:
4904         fput_light(output_file, fput_needed);
4905         return ret;
4906 }
4907
4908 /**
4909  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4910  *
4911  * @attr_uptr:  event_id type attributes for monitoring/sampling
4912  * @pid:                target pid
4913  * @cpu:                target cpu
4914  * @group_fd:           group leader event fd
4915  */
4916 SYSCALL_DEFINE5(perf_event_open,
4917                 struct perf_event_attr __user *, attr_uptr,
4918                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4919 {
4920         struct perf_event *event, *group_leader;
4921         struct perf_event_attr attr;
4922         struct perf_event_context *ctx;
4923         struct file *event_file = NULL;
4924         struct file *group_file = NULL;
4925         int fput_needed = 0;
4926         int fput_needed2 = 0;
4927         int err;
4928
4929         /* for future expandability... */
4930         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4931                 return -EINVAL;
4932
4933         err = perf_copy_attr(attr_uptr, &attr);
4934         if (err)
4935                 return err;
4936
4937         if (!attr.exclude_kernel) {
4938                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4939                         return -EACCES;
4940         }
4941
4942         if (attr.freq) {
4943                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4944                         return -EINVAL;
4945         }
4946
4947         /*
4948          * Get the target context (task or percpu):
4949          */
4950         ctx = find_get_context(pid, cpu);
4951         if (IS_ERR(ctx))
4952                 return PTR_ERR(ctx);
4953
4954         /*
4955          * Look up the group leader (we will attach this event to it):
4956          */
4957         group_leader = NULL;
4958         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4959                 err = -EINVAL;
4960                 group_file = fget_light(group_fd, &fput_needed);
4961                 if (!group_file)
4962                         goto err_put_context;
4963                 if (group_file->f_op != &perf_fops)
4964                         goto err_put_context;
4965
4966                 group_leader = group_file->private_data;
4967                 /*
4968                  * Do not allow a recursive hierarchy (this new sibling
4969                  * becoming part of another group-sibling):
4970                  */
4971                 if (group_leader->group_leader != group_leader)
4972                         goto err_put_context;
4973                 /*
4974                  * Do not allow to attach to a group in a different
4975                  * task or CPU context:
4976                  */
4977                 if (group_leader->ctx != ctx)
4978                         goto err_put_context;
4979                 /*
4980                  * Only a group leader can be exclusive or pinned
4981                  */
4982                 if (attr.exclusive || attr.pinned)
4983                         goto err_put_context;
4984         }
4985
4986         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4987                                      NULL, NULL, GFP_KERNEL);
4988         err = PTR_ERR(event);
4989         if (IS_ERR(event))
4990                 goto err_put_context;
4991
4992         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4993         if (err < 0)
4994                 goto err_free_put_context;
4995
4996         event_file = fget_light(err, &fput_needed2);
4997         if (!event_file)
4998                 goto err_free_put_context;
4999
5000         if (flags & PERF_FLAG_FD_OUTPUT) {
5001                 err = perf_event_set_output(event, group_fd);
5002                 if (err)
5003                         goto err_fput_free_put_context;
5004         }
5005
5006         event->filp = event_file;
5007         WARN_ON_ONCE(ctx->parent_ctx);
5008         mutex_lock(&ctx->mutex);
5009         perf_install_in_context(ctx, event, cpu);
5010         ++ctx->generation;
5011         mutex_unlock(&ctx->mutex);
5012
5013         event->owner = current;
5014         get_task_struct(current);
5015         mutex_lock(&current->perf_event_mutex);
5016         list_add_tail(&event->owner_entry, &current->perf_event_list);
5017         mutex_unlock(&current->perf_event_mutex);
5018
5019 err_fput_free_put_context:
5020         fput_light(event_file, fput_needed2);
5021
5022 err_free_put_context:
5023         if (err < 0)
5024                 kfree(event);
5025
5026 err_put_context:
5027         if (err < 0)
5028                 put_ctx(ctx);
5029
5030         fput_light(group_file, fput_needed);
5031
5032         return err;
5033 }
5034
5035 /**
5036  * perf_event_create_kernel_counter
5037  *
5038  * @attr: attributes of the counter to create
5039  * @cpu: cpu in which the counter is bound
5040  * @pid: task to profile
5041  */
5042 struct perf_event *
5043 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5044                                  pid_t pid,
5045                                  perf_overflow_handler_t overflow_handler)
5046 {
5047         struct perf_event *event;
5048         struct perf_event_context *ctx;
5049         int err;
5050
5051         /*
5052          * Get the target context (task or percpu):
5053          */
5054
5055         ctx = find_get_context(pid, cpu);
5056         if (IS_ERR(ctx)) {
5057                 err = PTR_ERR(ctx);
5058                 goto err_exit;
5059         }
5060
5061         event = perf_event_alloc(attr, cpu, ctx, NULL,
5062                                  NULL, overflow_handler, GFP_KERNEL);
5063         if (IS_ERR(event)) {
5064                 err = PTR_ERR(event);
5065                 goto err_put_context;
5066         }
5067
5068         event->filp = NULL;
5069         WARN_ON_ONCE(ctx->parent_ctx);
5070         mutex_lock(&ctx->mutex);
5071         perf_install_in_context(ctx, event, cpu);
5072         ++ctx->generation;
5073         mutex_unlock(&ctx->mutex);
5074
5075         event->owner = current;
5076         get_task_struct(current);
5077         mutex_lock(&current->perf_event_mutex);
5078         list_add_tail(&event->owner_entry, &current->perf_event_list);
5079         mutex_unlock(&current->perf_event_mutex);
5080
5081         return event;
5082
5083  err_put_context:
5084         put_ctx(ctx);
5085  err_exit:
5086         return ERR_PTR(err);
5087 }
5088 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5089
5090 /*
5091  * inherit a event from parent task to child task:
5092  */
5093 static struct perf_event *
5094 inherit_event(struct perf_event *parent_event,
5095               struct task_struct *parent,
5096               struct perf_event_context *parent_ctx,
5097               struct task_struct *child,
5098               struct perf_event *group_leader,
5099               struct perf_event_context *child_ctx)
5100 {
5101         struct perf_event *child_event;
5102
5103         /*
5104          * Instead of creating recursive hierarchies of events,
5105          * we link inherited events back to the original parent,
5106          * which has a filp for sure, which we use as the reference
5107          * count:
5108          */
5109         if (parent_event->parent)
5110                 parent_event = parent_event->parent;
5111
5112         child_event = perf_event_alloc(&parent_event->attr,
5113                                            parent_event->cpu, child_ctx,
5114                                            group_leader, parent_event,
5115                                            NULL, GFP_KERNEL);
5116         if (IS_ERR(child_event))
5117                 return child_event;
5118         get_ctx(child_ctx);
5119
5120         /*
5121          * Make the child state follow the state of the parent event,
5122          * not its attr.disabled bit.  We hold the parent's mutex,
5123          * so we won't race with perf_event_{en, dis}able_family.
5124          */
5125         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5126                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5127         else
5128                 child_event->state = PERF_EVENT_STATE_OFF;
5129
5130         if (parent_event->attr.freq) {
5131                 u64 sample_period = parent_event->hw.sample_period;
5132                 struct hw_perf_event *hwc = &child_event->hw;
5133
5134                 hwc->sample_period = sample_period;
5135                 hwc->last_period   = sample_period;
5136
5137                 atomic64_set(&hwc->period_left, sample_period);
5138         }
5139
5140         child_event->overflow_handler = parent_event->overflow_handler;
5141
5142         /*
5143          * Link it up in the child's context:
5144          */
5145         add_event_to_ctx(child_event, child_ctx);
5146
5147         /*
5148          * Get a reference to the parent filp - we will fput it
5149          * when the child event exits. This is safe to do because
5150          * we are in the parent and we know that the filp still
5151          * exists and has a nonzero count:
5152          */
5153         atomic_long_inc(&parent_event->filp->f_count);
5154
5155         /*
5156          * Link this into the parent event's child list
5157          */
5158         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5159         mutex_lock(&parent_event->child_mutex);
5160         list_add_tail(&child_event->child_list, &parent_event->child_list);
5161         mutex_unlock(&parent_event->child_mutex);
5162
5163         return child_event;
5164 }
5165
5166 static int inherit_group(struct perf_event *parent_event,
5167               struct task_struct *parent,
5168               struct perf_event_context *parent_ctx,
5169               struct task_struct *child,
5170               struct perf_event_context *child_ctx)
5171 {
5172         struct perf_event *leader;
5173         struct perf_event *sub;
5174         struct perf_event *child_ctr;
5175
5176         leader = inherit_event(parent_event, parent, parent_ctx,
5177                                  child, NULL, child_ctx);
5178         if (IS_ERR(leader))
5179                 return PTR_ERR(leader);
5180         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5181                 child_ctr = inherit_event(sub, parent, parent_ctx,
5182                                             child, leader, child_ctx);
5183                 if (IS_ERR(child_ctr))
5184                         return PTR_ERR(child_ctr);
5185         }
5186         return 0;
5187 }
5188
5189 static void sync_child_event(struct perf_event *child_event,
5190                                struct task_struct *child)
5191 {
5192         struct perf_event *parent_event = child_event->parent;
5193         u64 child_val;
5194
5195         if (child_event->attr.inherit_stat)
5196                 perf_event_read_event(child_event, child);
5197
5198         child_val = atomic64_read(&child_event->count);
5199
5200         /*
5201          * Add back the child's count to the parent's count:
5202          */
5203         atomic64_add(child_val, &parent_event->count);
5204         atomic64_add(child_event->total_time_enabled,
5205                      &parent_event->child_total_time_enabled);
5206         atomic64_add(child_event->total_time_running,
5207                      &parent_event->child_total_time_running);
5208
5209         /*
5210          * Remove this event from the parent's list
5211          */
5212         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5213         mutex_lock(&parent_event->child_mutex);
5214         list_del_init(&child_event->child_list);
5215         mutex_unlock(&parent_event->child_mutex);
5216
5217         /*
5218          * Release the parent event, if this was the last
5219          * reference to it.
5220          */
5221         fput(parent_event->filp);
5222 }
5223
5224 static void
5225 __perf_event_exit_task(struct perf_event *child_event,
5226                          struct perf_event_context *child_ctx,
5227                          struct task_struct *child)
5228 {
5229         struct perf_event *parent_event;
5230
5231         perf_event_remove_from_context(child_event);
5232
5233         parent_event = child_event->parent;
5234         /*
5235          * It can happen that parent exits first, and has events
5236          * that are still around due to the child reference. These
5237          * events need to be zapped - but otherwise linger.
5238          */
5239         if (parent_event) {
5240                 sync_child_event(child_event, child);
5241                 free_event(child_event);
5242         }
5243 }
5244
5245 /*
5246  * When a child task exits, feed back event values to parent events.
5247  */
5248 void perf_event_exit_task(struct task_struct *child)
5249 {
5250         struct perf_event *child_event, *tmp;
5251         struct perf_event_context *child_ctx;
5252         unsigned long flags;
5253
5254         if (likely(!child->perf_event_ctxp)) {
5255                 perf_event_task(child, NULL, 0);
5256                 return;
5257         }
5258
5259         local_irq_save(flags);
5260         /*
5261          * We can't reschedule here because interrupts are disabled,
5262          * and either child is current or it is a task that can't be
5263          * scheduled, so we are now safe from rescheduling changing
5264          * our context.
5265          */
5266         child_ctx = child->perf_event_ctxp;
5267         __perf_event_task_sched_out(child_ctx);
5268
5269         /*
5270          * Take the context lock here so that if find_get_context is
5271          * reading child->perf_event_ctxp, we wait until it has
5272          * incremented the context's refcount before we do put_ctx below.
5273          */
5274         raw_spin_lock(&child_ctx->lock);
5275         child->perf_event_ctxp = NULL;
5276         /*
5277          * If this context is a clone; unclone it so it can't get
5278          * swapped to another process while we're removing all
5279          * the events from it.
5280          */
5281         unclone_ctx(child_ctx);
5282         update_context_time(child_ctx);
5283         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5284
5285         /*
5286          * Report the task dead after unscheduling the events so that we
5287          * won't get any samples after PERF_RECORD_EXIT. We can however still
5288          * get a few PERF_RECORD_READ events.
5289          */
5290         perf_event_task(child, child_ctx, 0);
5291
5292         /*
5293          * We can recurse on the same lock type through:
5294          *
5295          *   __perf_event_exit_task()
5296          *     sync_child_event()
5297          *       fput(parent_event->filp)
5298          *         perf_release()
5299          *           mutex_lock(&ctx->mutex)
5300          *
5301          * But since its the parent context it won't be the same instance.
5302          */
5303         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5304
5305 again:
5306         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5307                                  group_entry)
5308                 __perf_event_exit_task(child_event, child_ctx, child);
5309
5310         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5311                                  group_entry)
5312                 __perf_event_exit_task(child_event, child_ctx, child);
5313
5314         /*
5315          * If the last event was a group event, it will have appended all
5316          * its siblings to the list, but we obtained 'tmp' before that which
5317          * will still point to the list head terminating the iteration.
5318          */
5319         if (!list_empty(&child_ctx->pinned_groups) ||
5320             !list_empty(&child_ctx->flexible_groups))
5321                 goto again;
5322
5323         mutex_unlock(&child_ctx->mutex);
5324
5325         put_ctx(child_ctx);
5326 }
5327
5328 static void perf_free_event(struct perf_event *event,
5329                             struct perf_event_context *ctx)
5330 {
5331         struct perf_event *parent = event->parent;
5332
5333         if (WARN_ON_ONCE(!parent))
5334                 return;
5335
5336         mutex_lock(&parent->child_mutex);
5337         list_del_init(&event->child_list);
5338         mutex_unlock(&parent->child_mutex);
5339
5340         fput(parent->filp);
5341
5342         list_del_event(event, ctx);
5343         free_event(event);
5344 }
5345
5346 /*
5347  * free an unexposed, unused context as created by inheritance by
5348  * init_task below, used by fork() in case of fail.
5349  */
5350 void perf_event_free_task(struct task_struct *task)
5351 {
5352         struct perf_event_context *ctx = task->perf_event_ctxp;
5353         struct perf_event *event, *tmp;
5354
5355         if (!ctx)
5356                 return;
5357
5358         mutex_lock(&ctx->mutex);
5359 again:
5360         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5361                 perf_free_event(event, ctx);
5362
5363         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5364                                  group_entry)
5365                 perf_free_event(event, ctx);
5366
5367         if (!list_empty(&ctx->pinned_groups) ||
5368             !list_empty(&ctx->flexible_groups))
5369                 goto again;
5370
5371         mutex_unlock(&ctx->mutex);
5372
5373         put_ctx(ctx);
5374 }
5375
5376 static int
5377 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5378                    struct perf_event_context *parent_ctx,
5379                    struct task_struct *child,
5380                    int *inherited_all)
5381 {
5382         int ret;
5383         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5384
5385         if (!event->attr.inherit) {
5386                 *inherited_all = 0;
5387                 return 0;
5388         }
5389
5390         if (!child_ctx) {
5391                 /*
5392                  * This is executed from the parent task context, so
5393                  * inherit events that have been marked for cloning.
5394                  * First allocate and initialize a context for the
5395                  * child.
5396                  */
5397
5398                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5399                                     GFP_KERNEL);
5400                 if (!child_ctx)
5401                         return -ENOMEM;
5402
5403                 __perf_event_init_context(child_ctx, child);
5404                 child->perf_event_ctxp = child_ctx;
5405                 get_task_struct(child);
5406         }
5407
5408         ret = inherit_group(event, parent, parent_ctx,
5409                             child, child_ctx);
5410
5411         if (ret)
5412                 *inherited_all = 0;
5413
5414         return ret;
5415 }
5416
5417
5418 /*
5419  * Initialize the perf_event context in task_struct
5420  */
5421 int perf_event_init_task(struct task_struct *child)
5422 {
5423         struct perf_event_context *child_ctx, *parent_ctx;
5424         struct perf_event_context *cloned_ctx;
5425         struct perf_event *event;
5426         struct task_struct *parent = current;
5427         int inherited_all = 1;
5428         int ret = 0;
5429
5430         child->perf_event_ctxp = NULL;
5431
5432         mutex_init(&child->perf_event_mutex);
5433         INIT_LIST_HEAD(&child->perf_event_list);
5434
5435         if (likely(!parent->perf_event_ctxp))
5436                 return 0;
5437
5438         /*
5439          * If the parent's context is a clone, pin it so it won't get
5440          * swapped under us.
5441          */
5442         parent_ctx = perf_pin_task_context(parent);
5443
5444         /*
5445          * No need to check if parent_ctx != NULL here; since we saw
5446          * it non-NULL earlier, the only reason for it to become NULL
5447          * is if we exit, and since we're currently in the middle of
5448          * a fork we can't be exiting at the same time.
5449          */
5450
5451         /*
5452          * Lock the parent list. No need to lock the child - not PID
5453          * hashed yet and not running, so nobody can access it.
5454          */
5455         mutex_lock(&parent_ctx->mutex);
5456
5457         /*
5458          * We dont have to disable NMIs - we are only looking at
5459          * the list, not manipulating it:
5460          */
5461         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5462                 ret = inherit_task_group(event, parent, parent_ctx, child,
5463                                          &inherited_all);
5464                 if (ret)
5465                         break;
5466         }
5467
5468         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5469                 ret = inherit_task_group(event, parent, parent_ctx, child,
5470                                          &inherited_all);
5471                 if (ret)
5472                         break;
5473         }
5474
5475         child_ctx = child->perf_event_ctxp;
5476
5477         if (child_ctx && inherited_all) {
5478                 /*
5479                  * Mark the child context as a clone of the parent
5480                  * context, or of whatever the parent is a clone of.
5481                  * Note that if the parent is a clone, it could get
5482                  * uncloned at any point, but that doesn't matter
5483                  * because the list of events and the generation
5484                  * count can't have changed since we took the mutex.
5485                  */
5486                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5487                 if (cloned_ctx) {
5488                         child_ctx->parent_ctx = cloned_ctx;
5489                         child_ctx->parent_gen = parent_ctx->parent_gen;
5490                 } else {
5491                         child_ctx->parent_ctx = parent_ctx;
5492                         child_ctx->parent_gen = parent_ctx->generation;
5493                 }
5494                 get_ctx(child_ctx->parent_ctx);
5495         }
5496
5497         mutex_unlock(&parent_ctx->mutex);
5498
5499         perf_unpin_context(parent_ctx);
5500
5501         return ret;
5502 }
5503
5504 static void __init perf_event_init_all_cpus(void)
5505 {
5506         int cpu;
5507         struct perf_cpu_context *cpuctx;
5508
5509         for_each_possible_cpu(cpu) {
5510                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5511                 mutex_init(&cpuctx->hlist_mutex);
5512                 __perf_event_init_context(&cpuctx->ctx, NULL);
5513         }
5514 }
5515
5516 static void __cpuinit perf_event_init_cpu(int cpu)
5517 {
5518         struct perf_cpu_context *cpuctx;
5519
5520         cpuctx = &per_cpu(perf_cpu_context, cpu);
5521
5522         spin_lock(&perf_resource_lock);
5523         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5524         spin_unlock(&perf_resource_lock);
5525
5526         mutex_lock(&cpuctx->hlist_mutex);
5527         if (cpuctx->hlist_refcount > 0) {
5528                 struct swevent_hlist *hlist;
5529
5530                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5531                 WARN_ON_ONCE(!hlist);
5532                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5533         }
5534         mutex_unlock(&cpuctx->hlist_mutex);
5535 }
5536
5537 #ifdef CONFIG_HOTPLUG_CPU
5538 static void __perf_event_exit_cpu(void *info)
5539 {
5540         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5541         struct perf_event_context *ctx = &cpuctx->ctx;
5542         struct perf_event *event, *tmp;
5543
5544         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5545                 __perf_event_remove_from_context(event);
5546         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5547                 __perf_event_remove_from_context(event);
5548 }
5549 static void perf_event_exit_cpu(int cpu)
5550 {
5551         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5552         struct perf_event_context *ctx = &cpuctx->ctx;
5553
5554         mutex_lock(&cpuctx->hlist_mutex);
5555         swevent_hlist_release(cpuctx);
5556         mutex_unlock(&cpuctx->hlist_mutex);
5557
5558         mutex_lock(&ctx->mutex);
5559         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5560         mutex_unlock(&ctx->mutex);
5561 }
5562 #else
5563 static inline void perf_event_exit_cpu(int cpu) { }
5564 #endif
5565
5566 static int __cpuinit
5567 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5568 {
5569         unsigned int cpu = (long)hcpu;
5570
5571         switch (action) {
5572
5573         case CPU_UP_PREPARE:
5574         case CPU_UP_PREPARE_FROZEN:
5575                 perf_event_init_cpu(cpu);
5576                 break;
5577
5578         case CPU_DOWN_PREPARE:
5579         case CPU_DOWN_PREPARE_FROZEN:
5580                 perf_event_exit_cpu(cpu);
5581                 break;
5582
5583         default:
5584                 break;
5585         }
5586
5587         return NOTIFY_OK;
5588 }
5589
5590 /*
5591  * This has to have a higher priority than migration_notifier in sched.c.
5592  */
5593 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5594         .notifier_call          = perf_cpu_notify,
5595         .priority               = 20,
5596 };
5597
5598 void __init perf_event_init(void)
5599 {
5600         perf_event_init_all_cpus();
5601         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5602                         (void *)(long)smp_processor_id());
5603         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5604                         (void *)(long)smp_processor_id());
5605         register_cpu_notifier(&perf_cpu_nb);
5606 }
5607
5608 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5609                                         struct sysdev_class_attribute *attr,
5610                                         char *buf)
5611 {
5612         return sprintf(buf, "%d\n", perf_reserved_percpu);
5613 }
5614
5615 static ssize_t
5616 perf_set_reserve_percpu(struct sysdev_class *class,
5617                         struct sysdev_class_attribute *attr,
5618                         const char *buf,
5619                         size_t count)
5620 {
5621         struct perf_cpu_context *cpuctx;
5622         unsigned long val;
5623         int err, cpu, mpt;
5624
5625         err = strict_strtoul(buf, 10, &val);
5626         if (err)
5627                 return err;
5628         if (val > perf_max_events)
5629                 return -EINVAL;
5630
5631         spin_lock(&perf_resource_lock);
5632         perf_reserved_percpu = val;
5633         for_each_online_cpu(cpu) {
5634                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5635                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5636                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5637                           perf_max_events - perf_reserved_percpu);
5638                 cpuctx->max_pertask = mpt;
5639                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5640         }
5641         spin_unlock(&perf_resource_lock);
5642
5643         return count;
5644 }
5645
5646 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5647                                     struct sysdev_class_attribute *attr,
5648                                     char *buf)
5649 {
5650         return sprintf(buf, "%d\n", perf_overcommit);
5651 }
5652
5653 static ssize_t
5654 perf_set_overcommit(struct sysdev_class *class,
5655                     struct sysdev_class_attribute *attr,
5656                     const char *buf, size_t count)
5657 {
5658         unsigned long val;
5659         int err;
5660
5661         err = strict_strtoul(buf, 10, &val);
5662         if (err)
5663                 return err;
5664         if (val > 1)
5665                 return -EINVAL;
5666
5667         spin_lock(&perf_resource_lock);
5668         perf_overcommit = val;
5669         spin_unlock(&perf_resource_lock);
5670
5671         return count;
5672 }
5673
5674 static SYSDEV_CLASS_ATTR(
5675                                 reserve_percpu,
5676                                 0644,
5677                                 perf_show_reserve_percpu,
5678                                 perf_set_reserve_percpu
5679                         );
5680
5681 static SYSDEV_CLASS_ATTR(
5682                                 overcommit,
5683                                 0644,
5684                                 perf_show_overcommit,
5685                                 perf_set_overcommit
5686                         );
5687
5688 static struct attribute *perfclass_attrs[] = {
5689         &attr_reserve_percpu.attr,
5690         &attr_overcommit.attr,
5691         NULL
5692 };
5693
5694 static struct attribute_group perfclass_attr_group = {
5695         .attrs                  = perfclass_attrs,
5696         .name                   = "perf_events",
5697 };
5698
5699 static int __init perf_event_sysfs_init(void)
5700 {
5701         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5702                                   &perfclass_attr_group);
5703 }
5704 device_initcall(perf_event_sysfs_init);