074ba2e036c84c692ac4c0d975f18e5382f3a189
[safe/jmp/linux-2.6] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37  * Each CPU has a list of per CPU events:
38  */
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51  * perf event paranoia level:
52  *  -1 - not paranoid at all
53  *   0 - disallow raw tracepoint access for unpriv
54  *   1 - disallow cpu events for unpriv
55  *   2 - disallow kernel profiling for unpriv
56  */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61 /*
62  * max perf event sample rate
63  */
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66 static atomic64_t perf_event_id;
67
68 /*
69  * Lock for (sysadmin-configurable) event reservations:
70  */
71 static DEFINE_SPINLOCK(perf_resource_lock);
72
73 /*
74  * Architecture provided APIs - weak aliases:
75  */
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77 {
78         return NULL;
79 }
80
81 void __weak hw_perf_disable(void)               { barrier(); }
82 void __weak hw_perf_enable(void)                { barrier(); }
83
84 int __weak
85 hw_perf_group_sched_in(struct perf_event *group_leader,
86                struct perf_cpu_context *cpuctx,
87                struct perf_event_context *ctx)
88 {
89         return 0;
90 }
91
92 void __weak perf_event_print_debug(void)        { }
93
94 static DEFINE_PER_CPU(int, perf_disable_count);
95
96 void perf_disable(void)
97 {
98         if (!__get_cpu_var(perf_disable_count)++)
99                 hw_perf_disable();
100 }
101
102 void perf_enable(void)
103 {
104         if (!--__get_cpu_var(perf_disable_count))
105                 hw_perf_enable();
106 }
107
108 static void get_ctx(struct perf_event_context *ctx)
109 {
110         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111 }
112
113 static void free_ctx(struct rcu_head *head)
114 {
115         struct perf_event_context *ctx;
116
117         ctx = container_of(head, struct perf_event_context, rcu_head);
118         kfree(ctx);
119 }
120
121 static void put_ctx(struct perf_event_context *ctx)
122 {
123         if (atomic_dec_and_test(&ctx->refcount)) {
124                 if (ctx->parent_ctx)
125                         put_ctx(ctx->parent_ctx);
126                 if (ctx->task)
127                         put_task_struct(ctx->task);
128                 call_rcu(&ctx->rcu_head, free_ctx);
129         }
130 }
131
132 static void unclone_ctx(struct perf_event_context *ctx)
133 {
134         if (ctx->parent_ctx) {
135                 put_ctx(ctx->parent_ctx);
136                 ctx->parent_ctx = NULL;
137         }
138 }
139
140 /*
141  * If we inherit events we want to return the parent event id
142  * to userspace.
143  */
144 static u64 primary_event_id(struct perf_event *event)
145 {
146         u64 id = event->id;
147
148         if (event->parent)
149                 id = event->parent->id;
150
151         return id;
152 }
153
154 /*
155  * Get the perf_event_context for a task and lock it.
156  * This has to cope with with the fact that until it is locked,
157  * the context could get moved to another task.
158  */
159 static struct perf_event_context *
160 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161 {
162         struct perf_event_context *ctx;
163
164         rcu_read_lock();
165  retry:
166         ctx = rcu_dereference(task->perf_event_ctxp);
167         if (ctx) {
168                 /*
169                  * If this context is a clone of another, it might
170                  * get swapped for another underneath us by
171                  * perf_event_task_sched_out, though the
172                  * rcu_read_lock() protects us from any context
173                  * getting freed.  Lock the context and check if it
174                  * got swapped before we could get the lock, and retry
175                  * if so.  If we locked the right context, then it
176                  * can't get swapped on us any more.
177                  */
178                 raw_spin_lock_irqsave(&ctx->lock, *flags);
179                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         goto retry;
182                 }
183
184                 if (!atomic_inc_not_zero(&ctx->refcount)) {
185                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186                         ctx = NULL;
187                 }
188         }
189         rcu_read_unlock();
190         return ctx;
191 }
192
193 /*
194  * Get the context for a task and increment its pin_count so it
195  * can't get swapped to another task.  This also increments its
196  * reference count so that the context can't get freed.
197  */
198 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199 {
200         struct perf_event_context *ctx;
201         unsigned long flags;
202
203         ctx = perf_lock_task_context(task, &flags);
204         if (ctx) {
205                 ++ctx->pin_count;
206                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
207         }
208         return ctx;
209 }
210
211 static void perf_unpin_context(struct perf_event_context *ctx)
212 {
213         unsigned long flags;
214
215         raw_spin_lock_irqsave(&ctx->lock, flags);
216         --ctx->pin_count;
217         raw_spin_unlock_irqrestore(&ctx->lock, flags);
218         put_ctx(ctx);
219 }
220
221 static inline u64 perf_clock(void)
222 {
223         return cpu_clock(raw_smp_processor_id());
224 }
225
226 /*
227  * Update the record of the current time in a context.
228  */
229 static void update_context_time(struct perf_event_context *ctx)
230 {
231         u64 now = perf_clock();
232
233         ctx->time += now - ctx->timestamp;
234         ctx->timestamp = now;
235 }
236
237 /*
238  * Update the total_time_enabled and total_time_running fields for a event.
239  */
240 static void update_event_times(struct perf_event *event)
241 {
242         struct perf_event_context *ctx = event->ctx;
243         u64 run_end;
244
245         if (event->state < PERF_EVENT_STATE_INACTIVE ||
246             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247                 return;
248
249         if (ctx->is_active)
250                 run_end = ctx->time;
251         else
252                 run_end = event->tstamp_stopped;
253
254         event->total_time_enabled = run_end - event->tstamp_enabled;
255
256         if (event->state == PERF_EVENT_STATE_INACTIVE)
257                 run_end = event->tstamp_stopped;
258         else
259                 run_end = ctx->time;
260
261         event->total_time_running = run_end - event->tstamp_running;
262 }
263
264 static struct list_head *
265 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
266 {
267         if (event->attr.pinned)
268                 return &ctx->pinned_groups;
269         else
270                 return &ctx->flexible_groups;
271 }
272
273 /*
274  * Add a event from the lists for its context.
275  * Must be called with ctx->mutex and ctx->lock held.
276  */
277 static void
278 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279 {
280         struct perf_event *group_leader = event->group_leader;
281
282         /*
283          * Depending on whether it is a standalone or sibling event,
284          * add it straight to the context's event list, or to the group
285          * leader's sibling list:
286          */
287         if (group_leader == event) {
288                 struct list_head *list;
289
290                 if (is_software_event(event))
291                         event->group_flags |= PERF_GROUP_SOFTWARE;
292
293                 list = ctx_group_list(event, ctx);
294                 list_add_tail(&event->group_entry, list);
295         } else {
296                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297                     !is_software_event(event))
298                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
299
300                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301                 group_leader->nr_siblings++;
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 /*
311  * Remove a event from the lists for its context.
312  * Must be called with ctx->mutex and ctx->lock held.
313  */
314 static void
315 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316 {
317         struct perf_event *sibling, *tmp;
318
319         if (list_empty(&event->group_entry))
320                 return;
321         ctx->nr_events--;
322         if (event->attr.inherit_stat)
323                 ctx->nr_stat--;
324
325         list_del_init(&event->group_entry);
326         list_del_rcu(&event->event_entry);
327
328         if (event->group_leader != event)
329                 event->group_leader->nr_siblings--;
330
331         update_event_times(event);
332
333         /*
334          * If event was in error state, then keep it
335          * that way, otherwise bogus counts will be
336          * returned on read(). The only way to get out
337          * of error state is by explicit re-enabling
338          * of the event
339          */
340         if (event->state > PERF_EVENT_STATE_OFF)
341                 event->state = PERF_EVENT_STATE_OFF;
342
343         /*
344          * If this was a group event with sibling events then
345          * upgrade the siblings to singleton events by adding them
346          * to the context list directly:
347          */
348         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349                 struct list_head *list;
350
351                 list = ctx_group_list(event, ctx);
352                 list_move_tail(&sibling->group_entry, list);
353                 sibling->group_leader = sibling;
354
355                 /* Inherit group flags from the previous leader */
356                 sibling->group_flags = event->group_flags;
357         }
358 }
359
360 static void
361 event_sched_out(struct perf_event *event,
362                   struct perf_cpu_context *cpuctx,
363                   struct perf_event_context *ctx)
364 {
365         if (event->state != PERF_EVENT_STATE_ACTIVE)
366                 return;
367
368         event->state = PERF_EVENT_STATE_INACTIVE;
369         if (event->pending_disable) {
370                 event->pending_disable = 0;
371                 event->state = PERF_EVENT_STATE_OFF;
372         }
373         event->tstamp_stopped = ctx->time;
374         event->pmu->disable(event);
375         event->oncpu = -1;
376
377         if (!is_software_event(event))
378                 cpuctx->active_oncpu--;
379         ctx->nr_active--;
380         if (event->attr.exclusive || !cpuctx->active_oncpu)
381                 cpuctx->exclusive = 0;
382 }
383
384 static void
385 group_sched_out(struct perf_event *group_event,
386                 struct perf_cpu_context *cpuctx,
387                 struct perf_event_context *ctx)
388 {
389         struct perf_event *event;
390
391         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392                 return;
393
394         event_sched_out(group_event, cpuctx, ctx);
395
396         /*
397          * Schedule out siblings (if any):
398          */
399         list_for_each_entry(event, &group_event->sibling_list, group_entry)
400                 event_sched_out(event, cpuctx, ctx);
401
402         if (group_event->attr.exclusive)
403                 cpuctx->exclusive = 0;
404 }
405
406 /*
407  * Cross CPU call to remove a performance event
408  *
409  * We disable the event on the hardware level first. After that we
410  * remove it from the context list.
411  */
412 static void __perf_event_remove_from_context(void *info)
413 {
414         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415         struct perf_event *event = info;
416         struct perf_event_context *ctx = event->ctx;
417
418         /*
419          * If this is a task context, we need to check whether it is
420          * the current task context of this cpu. If not it has been
421          * scheduled out before the smp call arrived.
422          */
423         if (ctx->task && cpuctx->task_ctx != ctx)
424                 return;
425
426         raw_spin_lock(&ctx->lock);
427         /*
428          * Protect the list operation against NMI by disabling the
429          * events on a global level.
430          */
431         perf_disable();
432
433         event_sched_out(event, cpuctx, ctx);
434
435         list_del_event(event, ctx);
436
437         if (!ctx->task) {
438                 /*
439                  * Allow more per task events with respect to the
440                  * reservation:
441                  */
442                 cpuctx->max_pertask =
443                         min(perf_max_events - ctx->nr_events,
444                             perf_max_events - perf_reserved_percpu);
445         }
446
447         perf_enable();
448         raw_spin_unlock(&ctx->lock);
449 }
450
451
452 /*
453  * Remove the event from a task's (or a CPU's) list of events.
454  *
455  * Must be called with ctx->mutex held.
456  *
457  * CPU events are removed with a smp call. For task events we only
458  * call when the task is on a CPU.
459  *
460  * If event->ctx is a cloned context, callers must make sure that
461  * every task struct that event->ctx->task could possibly point to
462  * remains valid.  This is OK when called from perf_release since
463  * that only calls us on the top-level context, which can't be a clone.
464  * When called from perf_event_exit_task, it's OK because the
465  * context has been detached from its task.
466  */
467 static void perf_event_remove_from_context(struct perf_event *event)
468 {
469         struct perf_event_context *ctx = event->ctx;
470         struct task_struct *task = ctx->task;
471
472         if (!task) {
473                 /*
474                  * Per cpu events are removed via an smp call and
475                  * the removal is always successful.
476                  */
477                 smp_call_function_single(event->cpu,
478                                          __perf_event_remove_from_context,
479                                          event, 1);
480                 return;
481         }
482
483 retry:
484         task_oncpu_function_call(task, __perf_event_remove_from_context,
485                                  event);
486
487         raw_spin_lock_irq(&ctx->lock);
488         /*
489          * If the context is active we need to retry the smp call.
490          */
491         if (ctx->nr_active && !list_empty(&event->group_entry)) {
492                 raw_spin_unlock_irq(&ctx->lock);
493                 goto retry;
494         }
495
496         /*
497          * The lock prevents that this context is scheduled in so we
498          * can remove the event safely, if the call above did not
499          * succeed.
500          */
501         if (!list_empty(&event->group_entry))
502                 list_del_event(event, ctx);
503         raw_spin_unlock_irq(&ctx->lock);
504 }
505
506 /*
507  * Update total_time_enabled and total_time_running for all events in a group.
508  */
509 static void update_group_times(struct perf_event *leader)
510 {
511         struct perf_event *event;
512
513         update_event_times(leader);
514         list_for_each_entry(event, &leader->sibling_list, group_entry)
515                 update_event_times(event);
516 }
517
518 /*
519  * Cross CPU call to disable a performance event
520  */
521 static void __perf_event_disable(void *info)
522 {
523         struct perf_event *event = info;
524         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525         struct perf_event_context *ctx = event->ctx;
526
527         /*
528          * If this is a per-task event, need to check whether this
529          * event's task is the current task on this cpu.
530          */
531         if (ctx->task && cpuctx->task_ctx != ctx)
532                 return;
533
534         raw_spin_lock(&ctx->lock);
535
536         /*
537          * If the event is on, turn it off.
538          * If it is in error state, leave it in error state.
539          */
540         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541                 update_context_time(ctx);
542                 update_group_times(event);
543                 if (event == event->group_leader)
544                         group_sched_out(event, cpuctx, ctx);
545                 else
546                         event_sched_out(event, cpuctx, ctx);
547                 event->state = PERF_EVENT_STATE_OFF;
548         }
549
550         raw_spin_unlock(&ctx->lock);
551 }
552
553 /*
554  * Disable a event.
555  *
556  * If event->ctx is a cloned context, callers must make sure that
557  * every task struct that event->ctx->task could possibly point to
558  * remains valid.  This condition is satisifed when called through
559  * perf_event_for_each_child or perf_event_for_each because they
560  * hold the top-level event's child_mutex, so any descendant that
561  * goes to exit will block in sync_child_event.
562  * When called from perf_pending_event it's OK because event->ctx
563  * is the current context on this CPU and preemption is disabled,
564  * hence we can't get into perf_event_task_sched_out for this context.
565  */
566 void perf_event_disable(struct perf_event *event)
567 {
568         struct perf_event_context *ctx = event->ctx;
569         struct task_struct *task = ctx->task;
570
571         if (!task) {
572                 /*
573                  * Disable the event on the cpu that it's on
574                  */
575                 smp_call_function_single(event->cpu, __perf_event_disable,
576                                          event, 1);
577                 return;
578         }
579
580  retry:
581         task_oncpu_function_call(task, __perf_event_disable, event);
582
583         raw_spin_lock_irq(&ctx->lock);
584         /*
585          * If the event is still active, we need to retry the cross-call.
586          */
587         if (event->state == PERF_EVENT_STATE_ACTIVE) {
588                 raw_spin_unlock_irq(&ctx->lock);
589                 goto retry;
590         }
591
592         /*
593          * Since we have the lock this context can't be scheduled
594          * in, so we can change the state safely.
595          */
596         if (event->state == PERF_EVENT_STATE_INACTIVE) {
597                 update_group_times(event);
598                 event->state = PERF_EVENT_STATE_OFF;
599         }
600
601         raw_spin_unlock_irq(&ctx->lock);
602 }
603
604 static int
605 event_sched_in(struct perf_event *event,
606                  struct perf_cpu_context *cpuctx,
607                  struct perf_event_context *ctx)
608 {
609         if (event->state <= PERF_EVENT_STATE_OFF)
610                 return 0;
611
612         event->state = PERF_EVENT_STATE_ACTIVE;
613         event->oncpu = smp_processor_id();
614         /*
615          * The new state must be visible before we turn it on in the hardware:
616          */
617         smp_wmb();
618
619         if (event->pmu->enable(event)) {
620                 event->state = PERF_EVENT_STATE_INACTIVE;
621                 event->oncpu = -1;
622                 return -EAGAIN;
623         }
624
625         event->tstamp_running += ctx->time - event->tstamp_stopped;
626
627         if (!is_software_event(event))
628                 cpuctx->active_oncpu++;
629         ctx->nr_active++;
630
631         if (event->attr.exclusive)
632                 cpuctx->exclusive = 1;
633
634         return 0;
635 }
636
637 static int
638 group_sched_in(struct perf_event *group_event,
639                struct perf_cpu_context *cpuctx,
640                struct perf_event_context *ctx)
641 {
642         struct perf_event *event, *partial_group;
643         int ret;
644
645         if (group_event->state == PERF_EVENT_STATE_OFF)
646                 return 0;
647
648         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649         if (ret)
650                 return ret < 0 ? ret : 0;
651
652         if (event_sched_in(group_event, cpuctx, ctx))
653                 return -EAGAIN;
654
655         /*
656          * Schedule in siblings as one group (if any):
657          */
658         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659                 if (event_sched_in(event, cpuctx, ctx)) {
660                         partial_group = event;
661                         goto group_error;
662                 }
663         }
664
665         return 0;
666
667 group_error:
668         /*
669          * Groups can be scheduled in as one unit only, so undo any
670          * partial group before returning:
671          */
672         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673                 if (event == partial_group)
674                         break;
675                 event_sched_out(event, cpuctx, ctx);
676         }
677         event_sched_out(group_event, cpuctx, ctx);
678
679         return -EAGAIN;
680 }
681
682 /*
683  * Work out whether we can put this event group on the CPU now.
684  */
685 static int group_can_go_on(struct perf_event *event,
686                            struct perf_cpu_context *cpuctx,
687                            int can_add_hw)
688 {
689         /*
690          * Groups consisting entirely of software events can always go on.
691          */
692         if (event->group_flags & PERF_GROUP_SOFTWARE)
693                 return 1;
694         /*
695          * If an exclusive group is already on, no other hardware
696          * events can go on.
697          */
698         if (cpuctx->exclusive)
699                 return 0;
700         /*
701          * If this group is exclusive and there are already
702          * events on the CPU, it can't go on.
703          */
704         if (event->attr.exclusive && cpuctx->active_oncpu)
705                 return 0;
706         /*
707          * Otherwise, try to add it if all previous groups were able
708          * to go on.
709          */
710         return can_add_hw;
711 }
712
713 static void add_event_to_ctx(struct perf_event *event,
714                                struct perf_event_context *ctx)
715 {
716         list_add_event(event, ctx);
717         event->tstamp_enabled = ctx->time;
718         event->tstamp_running = ctx->time;
719         event->tstamp_stopped = ctx->time;
720 }
721
722 /*
723  * Cross CPU call to install and enable a performance event
724  *
725  * Must be called with ctx->mutex held
726  */
727 static void __perf_install_in_context(void *info)
728 {
729         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730         struct perf_event *event = info;
731         struct perf_event_context *ctx = event->ctx;
732         struct perf_event *leader = event->group_leader;
733         int err;
734
735         /*
736          * If this is a task context, we need to check whether it is
737          * the current task context of this cpu. If not it has been
738          * scheduled out before the smp call arrived.
739          * Or possibly this is the right context but it isn't
740          * on this cpu because it had no events.
741          */
742         if (ctx->task && cpuctx->task_ctx != ctx) {
743                 if (cpuctx->task_ctx || ctx->task != current)
744                         return;
745                 cpuctx->task_ctx = ctx;
746         }
747
748         raw_spin_lock(&ctx->lock);
749         ctx->is_active = 1;
750         update_context_time(ctx);
751
752         /*
753          * Protect the list operation against NMI by disabling the
754          * events on a global level. NOP for non NMI based events.
755          */
756         perf_disable();
757
758         add_event_to_ctx(event, ctx);
759
760         if (event->cpu != -1 && event->cpu != smp_processor_id())
761                 goto unlock;
762
763         /*
764          * Don't put the event on if it is disabled or if
765          * it is in a group and the group isn't on.
766          */
767         if (event->state != PERF_EVENT_STATE_INACTIVE ||
768             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769                 goto unlock;
770
771         /*
772          * An exclusive event can't go on if there are already active
773          * hardware events, and no hardware event can go on if there
774          * is already an exclusive event on.
775          */
776         if (!group_can_go_on(event, cpuctx, 1))
777                 err = -EEXIST;
778         else
779                 err = event_sched_in(event, cpuctx, ctx);
780
781         if (err) {
782                 /*
783                  * This event couldn't go on.  If it is in a group
784                  * then we have to pull the whole group off.
785                  * If the event group is pinned then put it in error state.
786                  */
787                 if (leader != event)
788                         group_sched_out(leader, cpuctx, ctx);
789                 if (leader->attr.pinned) {
790                         update_group_times(leader);
791                         leader->state = PERF_EVENT_STATE_ERROR;
792                 }
793         }
794
795         if (!err && !ctx->task && cpuctx->max_pertask)
796                 cpuctx->max_pertask--;
797
798  unlock:
799         perf_enable();
800
801         raw_spin_unlock(&ctx->lock);
802 }
803
804 /*
805  * Attach a performance event to a context
806  *
807  * First we add the event to the list with the hardware enable bit
808  * in event->hw_config cleared.
809  *
810  * If the event is attached to a task which is on a CPU we use a smp
811  * call to enable it in the task context. The task might have been
812  * scheduled away, but we check this in the smp call again.
813  *
814  * Must be called with ctx->mutex held.
815  */
816 static void
817 perf_install_in_context(struct perf_event_context *ctx,
818                         struct perf_event *event,
819                         int cpu)
820 {
821         struct task_struct *task = ctx->task;
822
823         if (!task) {
824                 /*
825                  * Per cpu events are installed via an smp call and
826                  * the install is always successful.
827                  */
828                 smp_call_function_single(cpu, __perf_install_in_context,
829                                          event, 1);
830                 return;
831         }
832
833 retry:
834         task_oncpu_function_call(task, __perf_install_in_context,
835                                  event);
836
837         raw_spin_lock_irq(&ctx->lock);
838         /*
839          * we need to retry the smp call.
840          */
841         if (ctx->is_active && list_empty(&event->group_entry)) {
842                 raw_spin_unlock_irq(&ctx->lock);
843                 goto retry;
844         }
845
846         /*
847          * The lock prevents that this context is scheduled in so we
848          * can add the event safely, if it the call above did not
849          * succeed.
850          */
851         if (list_empty(&event->group_entry))
852                 add_event_to_ctx(event, ctx);
853         raw_spin_unlock_irq(&ctx->lock);
854 }
855
856 /*
857  * Put a event into inactive state and update time fields.
858  * Enabling the leader of a group effectively enables all
859  * the group members that aren't explicitly disabled, so we
860  * have to update their ->tstamp_enabled also.
861  * Note: this works for group members as well as group leaders
862  * since the non-leader members' sibling_lists will be empty.
863  */
864 static void __perf_event_mark_enabled(struct perf_event *event,
865                                         struct perf_event_context *ctx)
866 {
867         struct perf_event *sub;
868
869         event->state = PERF_EVENT_STATE_INACTIVE;
870         event->tstamp_enabled = ctx->time - event->total_time_enabled;
871         list_for_each_entry(sub, &event->sibling_list, group_entry)
872                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873                         sub->tstamp_enabled =
874                                 ctx->time - sub->total_time_enabled;
875 }
876
877 /*
878  * Cross CPU call to enable a performance event
879  */
880 static void __perf_event_enable(void *info)
881 {
882         struct perf_event *event = info;
883         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884         struct perf_event_context *ctx = event->ctx;
885         struct perf_event *leader = event->group_leader;
886         int err;
887
888         /*
889          * If this is a per-task event, need to check whether this
890          * event's task is the current task on this cpu.
891          */
892         if (ctx->task && cpuctx->task_ctx != ctx) {
893                 if (cpuctx->task_ctx || ctx->task != current)
894                         return;
895                 cpuctx->task_ctx = ctx;
896         }
897
898         raw_spin_lock(&ctx->lock);
899         ctx->is_active = 1;
900         update_context_time(ctx);
901
902         if (event->state >= PERF_EVENT_STATE_INACTIVE)
903                 goto unlock;
904         __perf_event_mark_enabled(event, ctx);
905
906         if (event->cpu != -1 && event->cpu != smp_processor_id())
907                 goto unlock;
908
909         /*
910          * If the event is in a group and isn't the group leader,
911          * then don't put it on unless the group is on.
912          */
913         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914                 goto unlock;
915
916         if (!group_can_go_on(event, cpuctx, 1)) {
917                 err = -EEXIST;
918         } else {
919                 perf_disable();
920                 if (event == leader)
921                         err = group_sched_in(event, cpuctx, ctx);
922                 else
923                         err = event_sched_in(event, cpuctx, ctx);
924                 perf_enable();
925         }
926
927         if (err) {
928                 /*
929                  * If this event can't go on and it's part of a
930                  * group, then the whole group has to come off.
931                  */
932                 if (leader != event)
933                         group_sched_out(leader, cpuctx, ctx);
934                 if (leader->attr.pinned) {
935                         update_group_times(leader);
936                         leader->state = PERF_EVENT_STATE_ERROR;
937                 }
938         }
939
940  unlock:
941         raw_spin_unlock(&ctx->lock);
942 }
943
944 /*
945  * Enable a event.
946  *
947  * If event->ctx is a cloned context, callers must make sure that
948  * every task struct that event->ctx->task could possibly point to
949  * remains valid.  This condition is satisfied when called through
950  * perf_event_for_each_child or perf_event_for_each as described
951  * for perf_event_disable.
952  */
953 void perf_event_enable(struct perf_event *event)
954 {
955         struct perf_event_context *ctx = event->ctx;
956         struct task_struct *task = ctx->task;
957
958         if (!task) {
959                 /*
960                  * Enable the event on the cpu that it's on
961                  */
962                 smp_call_function_single(event->cpu, __perf_event_enable,
963                                          event, 1);
964                 return;
965         }
966
967         raw_spin_lock_irq(&ctx->lock);
968         if (event->state >= PERF_EVENT_STATE_INACTIVE)
969                 goto out;
970
971         /*
972          * If the event is in error state, clear that first.
973          * That way, if we see the event in error state below, we
974          * know that it has gone back into error state, as distinct
975          * from the task having been scheduled away before the
976          * cross-call arrived.
977          */
978         if (event->state == PERF_EVENT_STATE_ERROR)
979                 event->state = PERF_EVENT_STATE_OFF;
980
981  retry:
982         raw_spin_unlock_irq(&ctx->lock);
983         task_oncpu_function_call(task, __perf_event_enable, event);
984
985         raw_spin_lock_irq(&ctx->lock);
986
987         /*
988          * If the context is active and the event is still off,
989          * we need to retry the cross-call.
990          */
991         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992                 goto retry;
993
994         /*
995          * Since we have the lock this context can't be scheduled
996          * in, so we can change the state safely.
997          */
998         if (event->state == PERF_EVENT_STATE_OFF)
999                 __perf_event_mark_enabled(event, ctx);
1000
1001  out:
1002         raw_spin_unlock_irq(&ctx->lock);
1003 }
1004
1005 static int perf_event_refresh(struct perf_event *event, int refresh)
1006 {
1007         /*
1008          * not supported on inherited events
1009          */
1010         if (event->attr.inherit)
1011                 return -EINVAL;
1012
1013         atomic_add(refresh, &event->event_limit);
1014         perf_event_enable(event);
1015
1016         return 0;
1017 }
1018
1019 enum event_type_t {
1020         EVENT_FLEXIBLE = 0x1,
1021         EVENT_PINNED = 0x2,
1022         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1023 };
1024
1025 static void ctx_sched_out(struct perf_event_context *ctx,
1026                           struct perf_cpu_context *cpuctx,
1027                           enum event_type_t event_type)
1028 {
1029         struct perf_event *event;
1030
1031         raw_spin_lock(&ctx->lock);
1032         ctx->is_active = 0;
1033         if (likely(!ctx->nr_events))
1034                 goto out;
1035         update_context_time(ctx);
1036
1037         perf_disable();
1038         if (!ctx->nr_active)
1039                 goto out_enable;
1040
1041         if (event_type & EVENT_PINNED)
1042                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043                         group_sched_out(event, cpuctx, ctx);
1044
1045         if (event_type & EVENT_FLEXIBLE)
1046                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047                         group_sched_out(event, cpuctx, ctx);
1048
1049  out_enable:
1050         perf_enable();
1051  out:
1052         raw_spin_unlock(&ctx->lock);
1053 }
1054
1055 /*
1056  * Test whether two contexts are equivalent, i.e. whether they
1057  * have both been cloned from the same version of the same context
1058  * and they both have the same number of enabled events.
1059  * If the number of enabled events is the same, then the set
1060  * of enabled events should be the same, because these are both
1061  * inherited contexts, therefore we can't access individual events
1062  * in them directly with an fd; we can only enable/disable all
1063  * events via prctl, or enable/disable all events in a family
1064  * via ioctl, which will have the same effect on both contexts.
1065  */
1066 static int context_equiv(struct perf_event_context *ctx1,
1067                          struct perf_event_context *ctx2)
1068 {
1069         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070                 && ctx1->parent_gen == ctx2->parent_gen
1071                 && !ctx1->pin_count && !ctx2->pin_count;
1072 }
1073
1074 static void __perf_event_sync_stat(struct perf_event *event,
1075                                      struct perf_event *next_event)
1076 {
1077         u64 value;
1078
1079         if (!event->attr.inherit_stat)
1080                 return;
1081
1082         /*
1083          * Update the event value, we cannot use perf_event_read()
1084          * because we're in the middle of a context switch and have IRQs
1085          * disabled, which upsets smp_call_function_single(), however
1086          * we know the event must be on the current CPU, therefore we
1087          * don't need to use it.
1088          */
1089         switch (event->state) {
1090         case PERF_EVENT_STATE_ACTIVE:
1091                 event->pmu->read(event);
1092                 /* fall-through */
1093
1094         case PERF_EVENT_STATE_INACTIVE:
1095                 update_event_times(event);
1096                 break;
1097
1098         default:
1099                 break;
1100         }
1101
1102         /*
1103          * In order to keep per-task stats reliable we need to flip the event
1104          * values when we flip the contexts.
1105          */
1106         value = atomic64_read(&next_event->count);
1107         value = atomic64_xchg(&event->count, value);
1108         atomic64_set(&next_event->count, value);
1109
1110         swap(event->total_time_enabled, next_event->total_time_enabled);
1111         swap(event->total_time_running, next_event->total_time_running);
1112
1113         /*
1114          * Since we swizzled the values, update the user visible data too.
1115          */
1116         perf_event_update_userpage(event);
1117         perf_event_update_userpage(next_event);
1118 }
1119
1120 #define list_next_entry(pos, member) \
1121         list_entry(pos->member.next, typeof(*pos), member)
1122
1123 static void perf_event_sync_stat(struct perf_event_context *ctx,
1124                                    struct perf_event_context *next_ctx)
1125 {
1126         struct perf_event *event, *next_event;
1127
1128         if (!ctx->nr_stat)
1129                 return;
1130
1131         update_context_time(ctx);
1132
1133         event = list_first_entry(&ctx->event_list,
1134                                    struct perf_event, event_entry);
1135
1136         next_event = list_first_entry(&next_ctx->event_list,
1137                                         struct perf_event, event_entry);
1138
1139         while (&event->event_entry != &ctx->event_list &&
1140                &next_event->event_entry != &next_ctx->event_list) {
1141
1142                 __perf_event_sync_stat(event, next_event);
1143
1144                 event = list_next_entry(event, event_entry);
1145                 next_event = list_next_entry(next_event, event_entry);
1146         }
1147 }
1148
1149 /*
1150  * Called from scheduler to remove the events of the current task,
1151  * with interrupts disabled.
1152  *
1153  * We stop each event and update the event value in event->count.
1154  *
1155  * This does not protect us against NMI, but disable()
1156  * sets the disabled bit in the control field of event _before_
1157  * accessing the event control register. If a NMI hits, then it will
1158  * not restart the event.
1159  */
1160 void perf_event_task_sched_out(struct task_struct *task,
1161                                  struct task_struct *next)
1162 {
1163         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164         struct perf_event_context *ctx = task->perf_event_ctxp;
1165         struct perf_event_context *next_ctx;
1166         struct perf_event_context *parent;
1167         int do_switch = 1;
1168
1169         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1170
1171         if (likely(!ctx || !cpuctx->task_ctx))
1172                 return;
1173
1174         rcu_read_lock();
1175         parent = rcu_dereference(ctx->parent_ctx);
1176         next_ctx = next->perf_event_ctxp;
1177         if (parent && next_ctx &&
1178             rcu_dereference(next_ctx->parent_ctx) == parent) {
1179                 /*
1180                  * Looks like the two contexts are clones, so we might be
1181                  * able to optimize the context switch.  We lock both
1182                  * contexts and check that they are clones under the
1183                  * lock (including re-checking that neither has been
1184                  * uncloned in the meantime).  It doesn't matter which
1185                  * order we take the locks because no other cpu could
1186                  * be trying to lock both of these tasks.
1187                  */
1188                 raw_spin_lock(&ctx->lock);
1189                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1190                 if (context_equiv(ctx, next_ctx)) {
1191                         /*
1192                          * XXX do we need a memory barrier of sorts
1193                          * wrt to rcu_dereference() of perf_event_ctxp
1194                          */
1195                         task->perf_event_ctxp = next_ctx;
1196                         next->perf_event_ctxp = ctx;
1197                         ctx->task = next;
1198                         next_ctx->task = task;
1199                         do_switch = 0;
1200
1201                         perf_event_sync_stat(ctx, next_ctx);
1202                 }
1203                 raw_spin_unlock(&next_ctx->lock);
1204                 raw_spin_unlock(&ctx->lock);
1205         }
1206         rcu_read_unlock();
1207
1208         if (do_switch) {
1209                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1210                 cpuctx->task_ctx = NULL;
1211         }
1212 }
1213
1214 static void task_ctx_sched_out(struct perf_event_context *ctx,
1215                                enum event_type_t event_type)
1216 {
1217         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1218
1219         if (!cpuctx->task_ctx)
1220                 return;
1221
1222         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1223                 return;
1224
1225         ctx_sched_out(ctx, cpuctx, event_type);
1226         cpuctx->task_ctx = NULL;
1227 }
1228
1229 /*
1230  * Called with IRQs disabled
1231  */
1232 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1233 {
1234         task_ctx_sched_out(ctx, EVENT_ALL);
1235 }
1236
1237 /*
1238  * Called with IRQs disabled
1239  */
1240 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1241                               enum event_type_t event_type)
1242 {
1243         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1244 }
1245
1246 static void
1247 ctx_pinned_sched_in(struct perf_event_context *ctx,
1248                     struct perf_cpu_context *cpuctx)
1249 {
1250         struct perf_event *event;
1251
1252         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1253                 if (event->state <= PERF_EVENT_STATE_OFF)
1254                         continue;
1255                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1256                         continue;
1257
1258                 if (group_can_go_on(event, cpuctx, 1))
1259                         group_sched_in(event, cpuctx, ctx);
1260
1261                 /*
1262                  * If this pinned group hasn't been scheduled,
1263                  * put it in error state.
1264                  */
1265                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266                         update_group_times(event);
1267                         event->state = PERF_EVENT_STATE_ERROR;
1268                 }
1269         }
1270 }
1271
1272 static void
1273 ctx_flexible_sched_in(struct perf_event_context *ctx,
1274                       struct perf_cpu_context *cpuctx)
1275 {
1276         struct perf_event *event;
1277         int can_add_hw = 1;
1278
1279         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1280                 /* Ignore events in OFF or ERROR state */
1281                 if (event->state <= PERF_EVENT_STATE_OFF)
1282                         continue;
1283                 /*
1284                  * Listen to the 'cpu' scheduling filter constraint
1285                  * of events:
1286                  */
1287                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1288                         continue;
1289
1290                 if (group_can_go_on(event, cpuctx, can_add_hw))
1291                         if (group_sched_in(event, cpuctx, ctx))
1292                                 can_add_hw = 0;
1293         }
1294 }
1295
1296 static void
1297 ctx_sched_in(struct perf_event_context *ctx,
1298              struct perf_cpu_context *cpuctx,
1299              enum event_type_t event_type)
1300 {
1301         raw_spin_lock(&ctx->lock);
1302         ctx->is_active = 1;
1303         if (likely(!ctx->nr_events))
1304                 goto out;
1305
1306         ctx->timestamp = perf_clock();
1307
1308         perf_disable();
1309
1310         /*
1311          * First go through the list and put on any pinned groups
1312          * in order to give them the best chance of going on.
1313          */
1314         if (event_type & EVENT_PINNED)
1315                 ctx_pinned_sched_in(ctx, cpuctx);
1316
1317         /* Then walk through the lower prio flexible groups */
1318         if (event_type & EVENT_FLEXIBLE)
1319                 ctx_flexible_sched_in(ctx, cpuctx);
1320
1321         perf_enable();
1322  out:
1323         raw_spin_unlock(&ctx->lock);
1324 }
1325
1326 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1327                              enum event_type_t event_type)
1328 {
1329         struct perf_event_context *ctx = &cpuctx->ctx;
1330
1331         ctx_sched_in(ctx, cpuctx, event_type);
1332 }
1333
1334 static void task_ctx_sched_in(struct task_struct *task,
1335                               enum event_type_t event_type)
1336 {
1337         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1338         struct perf_event_context *ctx = task->perf_event_ctxp;
1339
1340         if (likely(!ctx))
1341                 return;
1342         if (cpuctx->task_ctx == ctx)
1343                 return;
1344         ctx_sched_in(ctx, cpuctx, event_type);
1345         cpuctx->task_ctx = ctx;
1346 }
1347 /*
1348  * Called from scheduler to add the events of the current task
1349  * with interrupts disabled.
1350  *
1351  * We restore the event value and then enable it.
1352  *
1353  * This does not protect us against NMI, but enable()
1354  * sets the enabled bit in the control field of event _before_
1355  * accessing the event control register. If a NMI hits, then it will
1356  * keep the event running.
1357  */
1358 void perf_event_task_sched_in(struct task_struct *task)
1359 {
1360         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1361         struct perf_event_context *ctx = task->perf_event_ctxp;
1362
1363         if (likely(!ctx))
1364                 return;
1365
1366         if (cpuctx->task_ctx == ctx)
1367                 return;
1368
1369         perf_disable();
1370
1371         /*
1372          * We want to keep the following priority order:
1373          * cpu pinned (that don't need to move), task pinned,
1374          * cpu flexible, task flexible.
1375          */
1376         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1377
1378         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1379         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1380         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1381
1382         cpuctx->task_ctx = ctx;
1383
1384         perf_enable();
1385 }
1386
1387 #define MAX_INTERRUPTS (~0ULL)
1388
1389 static void perf_log_throttle(struct perf_event *event, int enable);
1390
1391 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1392 {
1393         u64 frequency = event->attr.sample_freq;
1394         u64 sec = NSEC_PER_SEC;
1395         u64 divisor, dividend;
1396
1397         int count_fls, nsec_fls, frequency_fls, sec_fls;
1398
1399         count_fls = fls64(count);
1400         nsec_fls = fls64(nsec);
1401         frequency_fls = fls64(frequency);
1402         sec_fls = 30;
1403
1404         /*
1405          * We got @count in @nsec, with a target of sample_freq HZ
1406          * the target period becomes:
1407          *
1408          *             @count * 10^9
1409          * period = -------------------
1410          *          @nsec * sample_freq
1411          *
1412          */
1413
1414         /*
1415          * Reduce accuracy by one bit such that @a and @b converge
1416          * to a similar magnitude.
1417          */
1418 #define REDUCE_FLS(a, b)                \
1419 do {                                    \
1420         if (a##_fls > b##_fls) {        \
1421                 a >>= 1;                \
1422                 a##_fls--;              \
1423         } else {                        \
1424                 b >>= 1;                \
1425                 b##_fls--;              \
1426         }                               \
1427 } while (0)
1428
1429         /*
1430          * Reduce accuracy until either term fits in a u64, then proceed with
1431          * the other, so that finally we can do a u64/u64 division.
1432          */
1433         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1434                 REDUCE_FLS(nsec, frequency);
1435                 REDUCE_FLS(sec, count);
1436         }
1437
1438         if (count_fls + sec_fls > 64) {
1439                 divisor = nsec * frequency;
1440
1441                 while (count_fls + sec_fls > 64) {
1442                         REDUCE_FLS(count, sec);
1443                         divisor >>= 1;
1444                 }
1445
1446                 dividend = count * sec;
1447         } else {
1448                 dividend = count * sec;
1449
1450                 while (nsec_fls + frequency_fls > 64) {
1451                         REDUCE_FLS(nsec, frequency);
1452                         dividend >>= 1;
1453                 }
1454
1455                 divisor = nsec * frequency;
1456         }
1457
1458         return div64_u64(dividend, divisor);
1459 }
1460
1461 static void perf_event_stop(struct perf_event *event)
1462 {
1463         if (!event->pmu->stop)
1464                 return event->pmu->disable(event);
1465
1466         return event->pmu->stop(event);
1467 }
1468
1469 static int perf_event_start(struct perf_event *event)
1470 {
1471         if (!event->pmu->start)
1472                 return event->pmu->enable(event);
1473
1474         return event->pmu->start(event);
1475 }
1476
1477 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1478 {
1479         struct hw_perf_event *hwc = &event->hw;
1480         u64 period, sample_period;
1481         s64 delta;
1482
1483         period = perf_calculate_period(event, nsec, count);
1484
1485         delta = (s64)(period - hwc->sample_period);
1486         delta = (delta + 7) / 8; /* low pass filter */
1487
1488         sample_period = hwc->sample_period + delta;
1489
1490         if (!sample_period)
1491                 sample_period = 1;
1492
1493         hwc->sample_period = sample_period;
1494
1495         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1496                 perf_disable();
1497                 perf_event_stop(event);
1498                 atomic64_set(&hwc->period_left, 0);
1499                 perf_event_start(event);
1500                 perf_enable();
1501         }
1502 }
1503
1504 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1505 {
1506         struct perf_event *event;
1507         struct hw_perf_event *hwc;
1508         u64 interrupts, now;
1509         s64 delta;
1510
1511         raw_spin_lock(&ctx->lock);
1512         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1513                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1514                         continue;
1515
1516                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1517                         continue;
1518
1519                 hwc = &event->hw;
1520
1521                 interrupts = hwc->interrupts;
1522                 hwc->interrupts = 0;
1523
1524                 /*
1525                  * unthrottle events on the tick
1526                  */
1527                 if (interrupts == MAX_INTERRUPTS) {
1528                         perf_log_throttle(event, 1);
1529                         perf_disable();
1530                         event->pmu->unthrottle(event);
1531                         perf_enable();
1532                 }
1533
1534                 if (!event->attr.freq || !event->attr.sample_freq)
1535                         continue;
1536
1537                 perf_disable();
1538                 event->pmu->read(event);
1539                 now = atomic64_read(&event->count);
1540                 delta = now - hwc->freq_count_stamp;
1541                 hwc->freq_count_stamp = now;
1542
1543                 if (delta > 0)
1544                         perf_adjust_period(event, TICK_NSEC, delta);
1545                 perf_enable();
1546         }
1547         raw_spin_unlock(&ctx->lock);
1548 }
1549
1550 /*
1551  * Round-robin a context's events:
1552  */
1553 static void rotate_ctx(struct perf_event_context *ctx)
1554 {
1555         raw_spin_lock(&ctx->lock);
1556
1557         /* Rotate the first entry last of non-pinned groups */
1558         list_rotate_left(&ctx->flexible_groups);
1559
1560         raw_spin_unlock(&ctx->lock);
1561 }
1562
1563 void perf_event_task_tick(struct task_struct *curr)
1564 {
1565         struct perf_cpu_context *cpuctx;
1566         struct perf_event_context *ctx;
1567         int rotate = 0;
1568
1569         if (!atomic_read(&nr_events))
1570                 return;
1571
1572         cpuctx = &__get_cpu_var(perf_cpu_context);
1573         if (cpuctx->ctx.nr_events &&
1574             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1575                 rotate = 1;
1576
1577         ctx = curr->perf_event_ctxp;
1578         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1579                 rotate = 1;
1580
1581         perf_ctx_adjust_freq(&cpuctx->ctx);
1582         if (ctx)
1583                 perf_ctx_adjust_freq(ctx);
1584
1585         if (!rotate)
1586                 return;
1587
1588         perf_disable();
1589         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1590         if (ctx)
1591                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1592
1593         rotate_ctx(&cpuctx->ctx);
1594         if (ctx)
1595                 rotate_ctx(ctx);
1596
1597         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1598         if (ctx)
1599                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1600         perf_enable();
1601 }
1602
1603 static int event_enable_on_exec(struct perf_event *event,
1604                                 struct perf_event_context *ctx)
1605 {
1606         if (!event->attr.enable_on_exec)
1607                 return 0;
1608
1609         event->attr.enable_on_exec = 0;
1610         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1611                 return 0;
1612
1613         __perf_event_mark_enabled(event, ctx);
1614
1615         return 1;
1616 }
1617
1618 /*
1619  * Enable all of a task's events that have been marked enable-on-exec.
1620  * This expects task == current.
1621  */
1622 static void perf_event_enable_on_exec(struct task_struct *task)
1623 {
1624         struct perf_event_context *ctx;
1625         struct perf_event *event;
1626         unsigned long flags;
1627         int enabled = 0;
1628         int ret;
1629
1630         local_irq_save(flags);
1631         ctx = task->perf_event_ctxp;
1632         if (!ctx || !ctx->nr_events)
1633                 goto out;
1634
1635         __perf_event_task_sched_out(ctx);
1636
1637         raw_spin_lock(&ctx->lock);
1638
1639         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1640                 ret = event_enable_on_exec(event, ctx);
1641                 if (ret)
1642                         enabled = 1;
1643         }
1644
1645         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1646                 ret = event_enable_on_exec(event, ctx);
1647                 if (ret)
1648                         enabled = 1;
1649         }
1650
1651         /*
1652          * Unclone this context if we enabled any event.
1653          */
1654         if (enabled)
1655                 unclone_ctx(ctx);
1656
1657         raw_spin_unlock(&ctx->lock);
1658
1659         perf_event_task_sched_in(task);
1660  out:
1661         local_irq_restore(flags);
1662 }
1663
1664 /*
1665  * Cross CPU call to read the hardware event
1666  */
1667 static void __perf_event_read(void *info)
1668 {
1669         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1670         struct perf_event *event = info;
1671         struct perf_event_context *ctx = event->ctx;
1672
1673         /*
1674          * If this is a task context, we need to check whether it is
1675          * the current task context of this cpu.  If not it has been
1676          * scheduled out before the smp call arrived.  In that case
1677          * event->count would have been updated to a recent sample
1678          * when the event was scheduled out.
1679          */
1680         if (ctx->task && cpuctx->task_ctx != ctx)
1681                 return;
1682
1683         raw_spin_lock(&ctx->lock);
1684         update_context_time(ctx);
1685         update_event_times(event);
1686         raw_spin_unlock(&ctx->lock);
1687
1688         event->pmu->read(event);
1689 }
1690
1691 static u64 perf_event_read(struct perf_event *event)
1692 {
1693         /*
1694          * If event is enabled and currently active on a CPU, update the
1695          * value in the event structure:
1696          */
1697         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1698                 smp_call_function_single(event->oncpu,
1699                                          __perf_event_read, event, 1);
1700         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1701                 struct perf_event_context *ctx = event->ctx;
1702                 unsigned long flags;
1703
1704                 raw_spin_lock_irqsave(&ctx->lock, flags);
1705                 update_context_time(ctx);
1706                 update_event_times(event);
1707                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1708         }
1709
1710         return atomic64_read(&event->count);
1711 }
1712
1713 /*
1714  * Initialize the perf_event context in a task_struct:
1715  */
1716 static void
1717 __perf_event_init_context(struct perf_event_context *ctx,
1718                             struct task_struct *task)
1719 {
1720         raw_spin_lock_init(&ctx->lock);
1721         mutex_init(&ctx->mutex);
1722         INIT_LIST_HEAD(&ctx->pinned_groups);
1723         INIT_LIST_HEAD(&ctx->flexible_groups);
1724         INIT_LIST_HEAD(&ctx->event_list);
1725         atomic_set(&ctx->refcount, 1);
1726         ctx->task = task;
1727 }
1728
1729 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1730 {
1731         struct perf_event_context *ctx;
1732         struct perf_cpu_context *cpuctx;
1733         struct task_struct *task;
1734         unsigned long flags;
1735         int err;
1736
1737         if (pid == -1 && cpu != -1) {
1738                 /* Must be root to operate on a CPU event: */
1739                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1740                         return ERR_PTR(-EACCES);
1741
1742                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1743                         return ERR_PTR(-EINVAL);
1744
1745                 /*
1746                  * We could be clever and allow to attach a event to an
1747                  * offline CPU and activate it when the CPU comes up, but
1748                  * that's for later.
1749                  */
1750                 if (!cpu_online(cpu))
1751                         return ERR_PTR(-ENODEV);
1752
1753                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1754                 ctx = &cpuctx->ctx;
1755                 get_ctx(ctx);
1756
1757                 return ctx;
1758         }
1759
1760         rcu_read_lock();
1761         if (!pid)
1762                 task = current;
1763         else
1764                 task = find_task_by_vpid(pid);
1765         if (task)
1766                 get_task_struct(task);
1767         rcu_read_unlock();
1768
1769         if (!task)
1770                 return ERR_PTR(-ESRCH);
1771
1772         /*
1773          * Can't attach events to a dying task.
1774          */
1775         err = -ESRCH;
1776         if (task->flags & PF_EXITING)
1777                 goto errout;
1778
1779         /* Reuse ptrace permission checks for now. */
1780         err = -EACCES;
1781         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1782                 goto errout;
1783
1784  retry:
1785         ctx = perf_lock_task_context(task, &flags);
1786         if (ctx) {
1787                 unclone_ctx(ctx);
1788                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1789         }
1790
1791         if (!ctx) {
1792                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1793                 err = -ENOMEM;
1794                 if (!ctx)
1795                         goto errout;
1796                 __perf_event_init_context(ctx, task);
1797                 get_ctx(ctx);
1798                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1799                         /*
1800                          * We raced with some other task; use
1801                          * the context they set.
1802                          */
1803                         kfree(ctx);
1804                         goto retry;
1805                 }
1806                 get_task_struct(task);
1807         }
1808
1809         put_task_struct(task);
1810         return ctx;
1811
1812  errout:
1813         put_task_struct(task);
1814         return ERR_PTR(err);
1815 }
1816
1817 static void perf_event_free_filter(struct perf_event *event);
1818
1819 static void free_event_rcu(struct rcu_head *head)
1820 {
1821         struct perf_event *event;
1822
1823         event = container_of(head, struct perf_event, rcu_head);
1824         if (event->ns)
1825                 put_pid_ns(event->ns);
1826         perf_event_free_filter(event);
1827         kfree(event);
1828 }
1829
1830 static void perf_pending_sync(struct perf_event *event);
1831
1832 static void free_event(struct perf_event *event)
1833 {
1834         perf_pending_sync(event);
1835
1836         if (!event->parent) {
1837                 atomic_dec(&nr_events);
1838                 if (event->attr.mmap)
1839                         atomic_dec(&nr_mmap_events);
1840                 if (event->attr.comm)
1841                         atomic_dec(&nr_comm_events);
1842                 if (event->attr.task)
1843                         atomic_dec(&nr_task_events);
1844         }
1845
1846         if (event->output) {
1847                 fput(event->output->filp);
1848                 event->output = NULL;
1849         }
1850
1851         if (event->destroy)
1852                 event->destroy(event);
1853
1854         put_ctx(event->ctx);
1855         call_rcu(&event->rcu_head, free_event_rcu);
1856 }
1857
1858 int perf_event_release_kernel(struct perf_event *event)
1859 {
1860         struct perf_event_context *ctx = event->ctx;
1861
1862         WARN_ON_ONCE(ctx->parent_ctx);
1863         mutex_lock(&ctx->mutex);
1864         perf_event_remove_from_context(event);
1865         mutex_unlock(&ctx->mutex);
1866
1867         mutex_lock(&event->owner->perf_event_mutex);
1868         list_del_init(&event->owner_entry);
1869         mutex_unlock(&event->owner->perf_event_mutex);
1870         put_task_struct(event->owner);
1871
1872         free_event(event);
1873
1874         return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1877
1878 /*
1879  * Called when the last reference to the file is gone.
1880  */
1881 static int perf_release(struct inode *inode, struct file *file)
1882 {
1883         struct perf_event *event = file->private_data;
1884
1885         file->private_data = NULL;
1886
1887         return perf_event_release_kernel(event);
1888 }
1889
1890 static int perf_event_read_size(struct perf_event *event)
1891 {
1892         int entry = sizeof(u64); /* value */
1893         int size = 0;
1894         int nr = 1;
1895
1896         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1897                 size += sizeof(u64);
1898
1899         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1900                 size += sizeof(u64);
1901
1902         if (event->attr.read_format & PERF_FORMAT_ID)
1903                 entry += sizeof(u64);
1904
1905         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1906                 nr += event->group_leader->nr_siblings;
1907                 size += sizeof(u64);
1908         }
1909
1910         size += entry * nr;
1911
1912         return size;
1913 }
1914
1915 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1916 {
1917         struct perf_event *child;
1918         u64 total = 0;
1919
1920         *enabled = 0;
1921         *running = 0;
1922
1923         mutex_lock(&event->child_mutex);
1924         total += perf_event_read(event);
1925         *enabled += event->total_time_enabled +
1926                         atomic64_read(&event->child_total_time_enabled);
1927         *running += event->total_time_running +
1928                         atomic64_read(&event->child_total_time_running);
1929
1930         list_for_each_entry(child, &event->child_list, child_list) {
1931                 total += perf_event_read(child);
1932                 *enabled += child->total_time_enabled;
1933                 *running += child->total_time_running;
1934         }
1935         mutex_unlock(&event->child_mutex);
1936
1937         return total;
1938 }
1939 EXPORT_SYMBOL_GPL(perf_event_read_value);
1940
1941 static int perf_event_read_group(struct perf_event *event,
1942                                    u64 read_format, char __user *buf)
1943 {
1944         struct perf_event *leader = event->group_leader, *sub;
1945         int n = 0, size = 0, ret = -EFAULT;
1946         struct perf_event_context *ctx = leader->ctx;
1947         u64 values[5];
1948         u64 count, enabled, running;
1949
1950         mutex_lock(&ctx->mutex);
1951         count = perf_event_read_value(leader, &enabled, &running);
1952
1953         values[n++] = 1 + leader->nr_siblings;
1954         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1955                 values[n++] = enabled;
1956         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1957                 values[n++] = running;
1958         values[n++] = count;
1959         if (read_format & PERF_FORMAT_ID)
1960                 values[n++] = primary_event_id(leader);
1961
1962         size = n * sizeof(u64);
1963
1964         if (copy_to_user(buf, values, size))
1965                 goto unlock;
1966
1967         ret = size;
1968
1969         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1970                 n = 0;
1971
1972                 values[n++] = perf_event_read_value(sub, &enabled, &running);
1973                 if (read_format & PERF_FORMAT_ID)
1974                         values[n++] = primary_event_id(sub);
1975
1976                 size = n * sizeof(u64);
1977
1978                 if (copy_to_user(buf + ret, values, size)) {
1979                         ret = -EFAULT;
1980                         goto unlock;
1981                 }
1982
1983                 ret += size;
1984         }
1985 unlock:
1986         mutex_unlock(&ctx->mutex);
1987
1988         return ret;
1989 }
1990
1991 static int perf_event_read_one(struct perf_event *event,
1992                                  u64 read_format, char __user *buf)
1993 {
1994         u64 enabled, running;
1995         u64 values[4];
1996         int n = 0;
1997
1998         values[n++] = perf_event_read_value(event, &enabled, &running);
1999         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2000                 values[n++] = enabled;
2001         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2002                 values[n++] = running;
2003         if (read_format & PERF_FORMAT_ID)
2004                 values[n++] = primary_event_id(event);
2005
2006         if (copy_to_user(buf, values, n * sizeof(u64)))
2007                 return -EFAULT;
2008
2009         return n * sizeof(u64);
2010 }
2011
2012 /*
2013  * Read the performance event - simple non blocking version for now
2014  */
2015 static ssize_t
2016 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2017 {
2018         u64 read_format = event->attr.read_format;
2019         int ret;
2020
2021         /*
2022          * Return end-of-file for a read on a event that is in
2023          * error state (i.e. because it was pinned but it couldn't be
2024          * scheduled on to the CPU at some point).
2025          */
2026         if (event->state == PERF_EVENT_STATE_ERROR)
2027                 return 0;
2028
2029         if (count < perf_event_read_size(event))
2030                 return -ENOSPC;
2031
2032         WARN_ON_ONCE(event->ctx->parent_ctx);
2033         if (read_format & PERF_FORMAT_GROUP)
2034                 ret = perf_event_read_group(event, read_format, buf);
2035         else
2036                 ret = perf_event_read_one(event, read_format, buf);
2037
2038         return ret;
2039 }
2040
2041 static ssize_t
2042 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2043 {
2044         struct perf_event *event = file->private_data;
2045
2046         return perf_read_hw(event, buf, count);
2047 }
2048
2049 static unsigned int perf_poll(struct file *file, poll_table *wait)
2050 {
2051         struct perf_event *event = file->private_data;
2052         struct perf_mmap_data *data;
2053         unsigned int events = POLL_HUP;
2054
2055         rcu_read_lock();
2056         data = rcu_dereference(event->data);
2057         if (data)
2058                 events = atomic_xchg(&data->poll, 0);
2059         rcu_read_unlock();
2060
2061         poll_wait(file, &event->waitq, wait);
2062
2063         return events;
2064 }
2065
2066 static void perf_event_reset(struct perf_event *event)
2067 {
2068         (void)perf_event_read(event);
2069         atomic64_set(&event->count, 0);
2070         perf_event_update_userpage(event);
2071 }
2072
2073 /*
2074  * Holding the top-level event's child_mutex means that any
2075  * descendant process that has inherited this event will block
2076  * in sync_child_event if it goes to exit, thus satisfying the
2077  * task existence requirements of perf_event_enable/disable.
2078  */
2079 static void perf_event_for_each_child(struct perf_event *event,
2080                                         void (*func)(struct perf_event *))
2081 {
2082         struct perf_event *child;
2083
2084         WARN_ON_ONCE(event->ctx->parent_ctx);
2085         mutex_lock(&event->child_mutex);
2086         func(event);
2087         list_for_each_entry(child, &event->child_list, child_list)
2088                 func(child);
2089         mutex_unlock(&event->child_mutex);
2090 }
2091
2092 static void perf_event_for_each(struct perf_event *event,
2093                                   void (*func)(struct perf_event *))
2094 {
2095         struct perf_event_context *ctx = event->ctx;
2096         struct perf_event *sibling;
2097
2098         WARN_ON_ONCE(ctx->parent_ctx);
2099         mutex_lock(&ctx->mutex);
2100         event = event->group_leader;
2101
2102         perf_event_for_each_child(event, func);
2103         func(event);
2104         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2105                 perf_event_for_each_child(event, func);
2106         mutex_unlock(&ctx->mutex);
2107 }
2108
2109 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2110 {
2111         struct perf_event_context *ctx = event->ctx;
2112         unsigned long size;
2113         int ret = 0;
2114         u64 value;
2115
2116         if (!event->attr.sample_period)
2117                 return -EINVAL;
2118
2119         size = copy_from_user(&value, arg, sizeof(value));
2120         if (size != sizeof(value))
2121                 return -EFAULT;
2122
2123         if (!value)
2124                 return -EINVAL;
2125
2126         raw_spin_lock_irq(&ctx->lock);
2127         if (event->attr.freq) {
2128                 if (value > sysctl_perf_event_sample_rate) {
2129                         ret = -EINVAL;
2130                         goto unlock;
2131                 }
2132
2133                 event->attr.sample_freq = value;
2134         } else {
2135                 event->attr.sample_period = value;
2136                 event->hw.sample_period = value;
2137         }
2138 unlock:
2139         raw_spin_unlock_irq(&ctx->lock);
2140
2141         return ret;
2142 }
2143
2144 static int perf_event_set_output(struct perf_event *event, int output_fd);
2145 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2146
2147 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2148 {
2149         struct perf_event *event = file->private_data;
2150         void (*func)(struct perf_event *);
2151         u32 flags = arg;
2152
2153         switch (cmd) {
2154         case PERF_EVENT_IOC_ENABLE:
2155                 func = perf_event_enable;
2156                 break;
2157         case PERF_EVENT_IOC_DISABLE:
2158                 func = perf_event_disable;
2159                 break;
2160         case PERF_EVENT_IOC_RESET:
2161                 func = perf_event_reset;
2162                 break;
2163
2164         case PERF_EVENT_IOC_REFRESH:
2165                 return perf_event_refresh(event, arg);
2166
2167         case PERF_EVENT_IOC_PERIOD:
2168                 return perf_event_period(event, (u64 __user *)arg);
2169
2170         case PERF_EVENT_IOC_SET_OUTPUT:
2171                 return perf_event_set_output(event, arg);
2172
2173         case PERF_EVENT_IOC_SET_FILTER:
2174                 return perf_event_set_filter(event, (void __user *)arg);
2175
2176         default:
2177                 return -ENOTTY;
2178         }
2179
2180         if (flags & PERF_IOC_FLAG_GROUP)
2181                 perf_event_for_each(event, func);
2182         else
2183                 perf_event_for_each_child(event, func);
2184
2185         return 0;
2186 }
2187
2188 int perf_event_task_enable(void)
2189 {
2190         struct perf_event *event;
2191
2192         mutex_lock(&current->perf_event_mutex);
2193         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2194                 perf_event_for_each_child(event, perf_event_enable);
2195         mutex_unlock(&current->perf_event_mutex);
2196
2197         return 0;
2198 }
2199
2200 int perf_event_task_disable(void)
2201 {
2202         struct perf_event *event;
2203
2204         mutex_lock(&current->perf_event_mutex);
2205         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2206                 perf_event_for_each_child(event, perf_event_disable);
2207         mutex_unlock(&current->perf_event_mutex);
2208
2209         return 0;
2210 }
2211
2212 #ifndef PERF_EVENT_INDEX_OFFSET
2213 # define PERF_EVENT_INDEX_OFFSET 0
2214 #endif
2215
2216 static int perf_event_index(struct perf_event *event)
2217 {
2218         if (event->state != PERF_EVENT_STATE_ACTIVE)
2219                 return 0;
2220
2221         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2222 }
2223
2224 /*
2225  * Callers need to ensure there can be no nesting of this function, otherwise
2226  * the seqlock logic goes bad. We can not serialize this because the arch
2227  * code calls this from NMI context.
2228  */
2229 void perf_event_update_userpage(struct perf_event *event)
2230 {
2231         struct perf_event_mmap_page *userpg;
2232         struct perf_mmap_data *data;
2233
2234         rcu_read_lock();
2235         data = rcu_dereference(event->data);
2236         if (!data)
2237                 goto unlock;
2238
2239         userpg = data->user_page;
2240
2241         /*
2242          * Disable preemption so as to not let the corresponding user-space
2243          * spin too long if we get preempted.
2244          */
2245         preempt_disable();
2246         ++userpg->lock;
2247         barrier();
2248         userpg->index = perf_event_index(event);
2249         userpg->offset = atomic64_read(&event->count);
2250         if (event->state == PERF_EVENT_STATE_ACTIVE)
2251                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2252
2253         userpg->time_enabled = event->total_time_enabled +
2254                         atomic64_read(&event->child_total_time_enabled);
2255
2256         userpg->time_running = event->total_time_running +
2257                         atomic64_read(&event->child_total_time_running);
2258
2259         barrier();
2260         ++userpg->lock;
2261         preempt_enable();
2262 unlock:
2263         rcu_read_unlock();
2264 }
2265
2266 static unsigned long perf_data_size(struct perf_mmap_data *data)
2267 {
2268         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2269 }
2270
2271 #ifndef CONFIG_PERF_USE_VMALLOC
2272
2273 /*
2274  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2275  */
2276
2277 static struct page *
2278 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2279 {
2280         if (pgoff > data->nr_pages)
2281                 return NULL;
2282
2283         if (pgoff == 0)
2284                 return virt_to_page(data->user_page);
2285
2286         return virt_to_page(data->data_pages[pgoff - 1]);
2287 }
2288
2289 static struct perf_mmap_data *
2290 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2291 {
2292         struct perf_mmap_data *data;
2293         unsigned long size;
2294         int i;
2295
2296         WARN_ON(atomic_read(&event->mmap_count));
2297
2298         size = sizeof(struct perf_mmap_data);
2299         size += nr_pages * sizeof(void *);
2300
2301         data = kzalloc(size, GFP_KERNEL);
2302         if (!data)
2303                 goto fail;
2304
2305         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2306         if (!data->user_page)
2307                 goto fail_user_page;
2308
2309         for (i = 0; i < nr_pages; i++) {
2310                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2311                 if (!data->data_pages[i])
2312                         goto fail_data_pages;
2313         }
2314
2315         data->data_order = 0;
2316         data->nr_pages = nr_pages;
2317
2318         return data;
2319
2320 fail_data_pages:
2321         for (i--; i >= 0; i--)
2322                 free_page((unsigned long)data->data_pages[i]);
2323
2324         free_page((unsigned long)data->user_page);
2325
2326 fail_user_page:
2327         kfree(data);
2328
2329 fail:
2330         return NULL;
2331 }
2332
2333 static void perf_mmap_free_page(unsigned long addr)
2334 {
2335         struct page *page = virt_to_page((void *)addr);
2336
2337         page->mapping = NULL;
2338         __free_page(page);
2339 }
2340
2341 static void perf_mmap_data_free(struct perf_mmap_data *data)
2342 {
2343         int i;
2344
2345         perf_mmap_free_page((unsigned long)data->user_page);
2346         for (i = 0; i < data->nr_pages; i++)
2347                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2348         kfree(data);
2349 }
2350
2351 #else
2352
2353 /*
2354  * Back perf_mmap() with vmalloc memory.
2355  *
2356  * Required for architectures that have d-cache aliasing issues.
2357  */
2358
2359 static struct page *
2360 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2361 {
2362         if (pgoff > (1UL << data->data_order))
2363                 return NULL;
2364
2365         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2366 }
2367
2368 static void perf_mmap_unmark_page(void *addr)
2369 {
2370         struct page *page = vmalloc_to_page(addr);
2371
2372         page->mapping = NULL;
2373 }
2374
2375 static void perf_mmap_data_free_work(struct work_struct *work)
2376 {
2377         struct perf_mmap_data *data;
2378         void *base;
2379         int i, nr;
2380
2381         data = container_of(work, struct perf_mmap_data, work);
2382         nr = 1 << data->data_order;
2383
2384         base = data->user_page;
2385         for (i = 0; i < nr + 1; i++)
2386                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2387
2388         vfree(base);
2389         kfree(data);
2390 }
2391
2392 static void perf_mmap_data_free(struct perf_mmap_data *data)
2393 {
2394         schedule_work(&data->work);
2395 }
2396
2397 static struct perf_mmap_data *
2398 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2399 {
2400         struct perf_mmap_data *data;
2401         unsigned long size;
2402         void *all_buf;
2403
2404         WARN_ON(atomic_read(&event->mmap_count));
2405
2406         size = sizeof(struct perf_mmap_data);
2407         size += sizeof(void *);
2408
2409         data = kzalloc(size, GFP_KERNEL);
2410         if (!data)
2411                 goto fail;
2412
2413         INIT_WORK(&data->work, perf_mmap_data_free_work);
2414
2415         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2416         if (!all_buf)
2417                 goto fail_all_buf;
2418
2419         data->user_page = all_buf;
2420         data->data_pages[0] = all_buf + PAGE_SIZE;
2421         data->data_order = ilog2(nr_pages);
2422         data->nr_pages = 1;
2423
2424         return data;
2425
2426 fail_all_buf:
2427         kfree(data);
2428
2429 fail:
2430         return NULL;
2431 }
2432
2433 #endif
2434
2435 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2436 {
2437         struct perf_event *event = vma->vm_file->private_data;
2438         struct perf_mmap_data *data;
2439         int ret = VM_FAULT_SIGBUS;
2440
2441         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2442                 if (vmf->pgoff == 0)
2443                         ret = 0;
2444                 return ret;
2445         }
2446
2447         rcu_read_lock();
2448         data = rcu_dereference(event->data);
2449         if (!data)
2450                 goto unlock;
2451
2452         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2453                 goto unlock;
2454
2455         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2456         if (!vmf->page)
2457                 goto unlock;
2458
2459         get_page(vmf->page);
2460         vmf->page->mapping = vma->vm_file->f_mapping;
2461         vmf->page->index   = vmf->pgoff;
2462
2463         ret = 0;
2464 unlock:
2465         rcu_read_unlock();
2466
2467         return ret;
2468 }
2469
2470 static void
2471 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2472 {
2473         long max_size = perf_data_size(data);
2474
2475         atomic_set(&data->lock, -1);
2476
2477         if (event->attr.watermark) {
2478                 data->watermark = min_t(long, max_size,
2479                                         event->attr.wakeup_watermark);
2480         }
2481
2482         if (!data->watermark)
2483                 data->watermark = max_size / 2;
2484
2485
2486         rcu_assign_pointer(event->data, data);
2487 }
2488
2489 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2490 {
2491         struct perf_mmap_data *data;
2492
2493         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2494         perf_mmap_data_free(data);
2495 }
2496
2497 static void perf_mmap_data_release(struct perf_event *event)
2498 {
2499         struct perf_mmap_data *data = event->data;
2500
2501         WARN_ON(atomic_read(&event->mmap_count));
2502
2503         rcu_assign_pointer(event->data, NULL);
2504         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2505 }
2506
2507 static void perf_mmap_open(struct vm_area_struct *vma)
2508 {
2509         struct perf_event *event = vma->vm_file->private_data;
2510
2511         atomic_inc(&event->mmap_count);
2512 }
2513
2514 static void perf_mmap_close(struct vm_area_struct *vma)
2515 {
2516         struct perf_event *event = vma->vm_file->private_data;
2517
2518         WARN_ON_ONCE(event->ctx->parent_ctx);
2519         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2520                 unsigned long size = perf_data_size(event->data);
2521                 struct user_struct *user = current_user();
2522
2523                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2524                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2525                 perf_mmap_data_release(event);
2526                 mutex_unlock(&event->mmap_mutex);
2527         }
2528 }
2529
2530 static const struct vm_operations_struct perf_mmap_vmops = {
2531         .open           = perf_mmap_open,
2532         .close          = perf_mmap_close,
2533         .fault          = perf_mmap_fault,
2534         .page_mkwrite   = perf_mmap_fault,
2535 };
2536
2537 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2538 {
2539         struct perf_event *event = file->private_data;
2540         unsigned long user_locked, user_lock_limit;
2541         struct user_struct *user = current_user();
2542         unsigned long locked, lock_limit;
2543         struct perf_mmap_data *data;
2544         unsigned long vma_size;
2545         unsigned long nr_pages;
2546         long user_extra, extra;
2547         int ret = 0;
2548
2549         if (!(vma->vm_flags & VM_SHARED))
2550                 return -EINVAL;
2551
2552         vma_size = vma->vm_end - vma->vm_start;
2553         nr_pages = (vma_size / PAGE_SIZE) - 1;
2554
2555         /*
2556          * If we have data pages ensure they're a power-of-two number, so we
2557          * can do bitmasks instead of modulo.
2558          */
2559         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2560                 return -EINVAL;
2561
2562         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2563                 return -EINVAL;
2564
2565         if (vma->vm_pgoff != 0)
2566                 return -EINVAL;
2567
2568         WARN_ON_ONCE(event->ctx->parent_ctx);
2569         mutex_lock(&event->mmap_mutex);
2570         if (event->output) {
2571                 ret = -EINVAL;
2572                 goto unlock;
2573         }
2574
2575         if (atomic_inc_not_zero(&event->mmap_count)) {
2576                 if (nr_pages != event->data->nr_pages)
2577                         ret = -EINVAL;
2578                 goto unlock;
2579         }
2580
2581         user_extra = nr_pages + 1;
2582         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2583
2584         /*
2585          * Increase the limit linearly with more CPUs:
2586          */
2587         user_lock_limit *= num_online_cpus();
2588
2589         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2590
2591         extra = 0;
2592         if (user_locked > user_lock_limit)
2593                 extra = user_locked - user_lock_limit;
2594
2595         lock_limit = rlimit(RLIMIT_MEMLOCK);
2596         lock_limit >>= PAGE_SHIFT;
2597         locked = vma->vm_mm->locked_vm + extra;
2598
2599         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2600                 !capable(CAP_IPC_LOCK)) {
2601                 ret = -EPERM;
2602                 goto unlock;
2603         }
2604
2605         WARN_ON(event->data);
2606
2607         data = perf_mmap_data_alloc(event, nr_pages);
2608         ret = -ENOMEM;
2609         if (!data)
2610                 goto unlock;
2611
2612         ret = 0;
2613         perf_mmap_data_init(event, data);
2614
2615         atomic_set(&event->mmap_count, 1);
2616         atomic_long_add(user_extra, &user->locked_vm);
2617         vma->vm_mm->locked_vm += extra;
2618         event->data->nr_locked = extra;
2619         if (vma->vm_flags & VM_WRITE)
2620                 event->data->writable = 1;
2621
2622 unlock:
2623         mutex_unlock(&event->mmap_mutex);
2624
2625         vma->vm_flags |= VM_RESERVED;
2626         vma->vm_ops = &perf_mmap_vmops;
2627
2628         return ret;
2629 }
2630
2631 static int perf_fasync(int fd, struct file *filp, int on)
2632 {
2633         struct inode *inode = filp->f_path.dentry->d_inode;
2634         struct perf_event *event = filp->private_data;
2635         int retval;
2636
2637         mutex_lock(&inode->i_mutex);
2638         retval = fasync_helper(fd, filp, on, &event->fasync);
2639         mutex_unlock(&inode->i_mutex);
2640
2641         if (retval < 0)
2642                 return retval;
2643
2644         return 0;
2645 }
2646
2647 static const struct file_operations perf_fops = {
2648         .release                = perf_release,
2649         .read                   = perf_read,
2650         .poll                   = perf_poll,
2651         .unlocked_ioctl         = perf_ioctl,
2652         .compat_ioctl           = perf_ioctl,
2653         .mmap                   = perf_mmap,
2654         .fasync                 = perf_fasync,
2655 };
2656
2657 /*
2658  * Perf event wakeup
2659  *
2660  * If there's data, ensure we set the poll() state and publish everything
2661  * to user-space before waking everybody up.
2662  */
2663
2664 void perf_event_wakeup(struct perf_event *event)
2665 {
2666         wake_up_all(&event->waitq);
2667
2668         if (event->pending_kill) {
2669                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2670                 event->pending_kill = 0;
2671         }
2672 }
2673
2674 /*
2675  * Pending wakeups
2676  *
2677  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2678  *
2679  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2680  * single linked list and use cmpxchg() to add entries lockless.
2681  */
2682
2683 static void perf_pending_event(struct perf_pending_entry *entry)
2684 {
2685         struct perf_event *event = container_of(entry,
2686                         struct perf_event, pending);
2687
2688         if (event->pending_disable) {
2689                 event->pending_disable = 0;
2690                 __perf_event_disable(event);
2691         }
2692
2693         if (event->pending_wakeup) {
2694                 event->pending_wakeup = 0;
2695                 perf_event_wakeup(event);
2696         }
2697 }
2698
2699 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2700
2701 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2702         PENDING_TAIL,
2703 };
2704
2705 static void perf_pending_queue(struct perf_pending_entry *entry,
2706                                void (*func)(struct perf_pending_entry *))
2707 {
2708         struct perf_pending_entry **head;
2709
2710         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2711                 return;
2712
2713         entry->func = func;
2714
2715         head = &get_cpu_var(perf_pending_head);
2716
2717         do {
2718                 entry->next = *head;
2719         } while (cmpxchg(head, entry->next, entry) != entry->next);
2720
2721         set_perf_event_pending();
2722
2723         put_cpu_var(perf_pending_head);
2724 }
2725
2726 static int __perf_pending_run(void)
2727 {
2728         struct perf_pending_entry *list;
2729         int nr = 0;
2730
2731         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2732         while (list != PENDING_TAIL) {
2733                 void (*func)(struct perf_pending_entry *);
2734                 struct perf_pending_entry *entry = list;
2735
2736                 list = list->next;
2737
2738                 func = entry->func;
2739                 entry->next = NULL;
2740                 /*
2741                  * Ensure we observe the unqueue before we issue the wakeup,
2742                  * so that we won't be waiting forever.
2743                  * -- see perf_not_pending().
2744                  */
2745                 smp_wmb();
2746
2747                 func(entry);
2748                 nr++;
2749         }
2750
2751         return nr;
2752 }
2753
2754 static inline int perf_not_pending(struct perf_event *event)
2755 {
2756         /*
2757          * If we flush on whatever cpu we run, there is a chance we don't
2758          * need to wait.
2759          */
2760         get_cpu();
2761         __perf_pending_run();
2762         put_cpu();
2763
2764         /*
2765          * Ensure we see the proper queue state before going to sleep
2766          * so that we do not miss the wakeup. -- see perf_pending_handle()
2767          */
2768         smp_rmb();
2769         return event->pending.next == NULL;
2770 }
2771
2772 static void perf_pending_sync(struct perf_event *event)
2773 {
2774         wait_event(event->waitq, perf_not_pending(event));
2775 }
2776
2777 void perf_event_do_pending(void)
2778 {
2779         __perf_pending_run();
2780 }
2781
2782 /*
2783  * Callchain support -- arch specific
2784  */
2785
2786 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2787 {
2788         return NULL;
2789 }
2790
2791 #ifdef CONFIG_EVENT_TRACING
2792 __weak
2793 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2794 {
2795 }
2796 #endif
2797
2798 /*
2799  * Output
2800  */
2801 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2802                               unsigned long offset, unsigned long head)
2803 {
2804         unsigned long mask;
2805
2806         if (!data->writable)
2807                 return true;
2808
2809         mask = perf_data_size(data) - 1;
2810
2811         offset = (offset - tail) & mask;
2812         head   = (head   - tail) & mask;
2813
2814         if ((int)(head - offset) < 0)
2815                 return false;
2816
2817         return true;
2818 }
2819
2820 static void perf_output_wakeup(struct perf_output_handle *handle)
2821 {
2822         atomic_set(&handle->data->poll, POLL_IN);
2823
2824         if (handle->nmi) {
2825                 handle->event->pending_wakeup = 1;
2826                 perf_pending_queue(&handle->event->pending,
2827                                    perf_pending_event);
2828         } else
2829                 perf_event_wakeup(handle->event);
2830 }
2831
2832 /*
2833  * Curious locking construct.
2834  *
2835  * We need to ensure a later event_id doesn't publish a head when a former
2836  * event_id isn't done writing. However since we need to deal with NMIs we
2837  * cannot fully serialize things.
2838  *
2839  * What we do is serialize between CPUs so we only have to deal with NMI
2840  * nesting on a single CPU.
2841  *
2842  * We only publish the head (and generate a wakeup) when the outer-most
2843  * event_id completes.
2844  */
2845 static void perf_output_lock(struct perf_output_handle *handle)
2846 {
2847         struct perf_mmap_data *data = handle->data;
2848         int cur, cpu = get_cpu();
2849
2850         handle->locked = 0;
2851
2852         for (;;) {
2853                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2854                 if (cur == -1) {
2855                         handle->locked = 1;
2856                         break;
2857                 }
2858                 if (cur == cpu)
2859                         break;
2860
2861                 cpu_relax();
2862         }
2863 }
2864
2865 static void perf_output_unlock(struct perf_output_handle *handle)
2866 {
2867         struct perf_mmap_data *data = handle->data;
2868         unsigned long head;
2869         int cpu;
2870
2871         data->done_head = data->head;
2872
2873         if (!handle->locked)
2874                 goto out;
2875
2876 again:
2877         /*
2878          * The xchg implies a full barrier that ensures all writes are done
2879          * before we publish the new head, matched by a rmb() in userspace when
2880          * reading this position.
2881          */
2882         while ((head = atomic_long_xchg(&data->done_head, 0)))
2883                 data->user_page->data_head = head;
2884
2885         /*
2886          * NMI can happen here, which means we can miss a done_head update.
2887          */
2888
2889         cpu = atomic_xchg(&data->lock, -1);
2890         WARN_ON_ONCE(cpu != smp_processor_id());
2891
2892         /*
2893          * Therefore we have to validate we did not indeed do so.
2894          */
2895         if (unlikely(atomic_long_read(&data->done_head))) {
2896                 /*
2897                  * Since we had it locked, we can lock it again.
2898                  */
2899                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2900                         cpu_relax();
2901
2902                 goto again;
2903         }
2904
2905         if (atomic_xchg(&data->wakeup, 0))
2906                 perf_output_wakeup(handle);
2907 out:
2908         put_cpu();
2909 }
2910
2911 void perf_output_copy(struct perf_output_handle *handle,
2912                       const void *buf, unsigned int len)
2913 {
2914         unsigned int pages_mask;
2915         unsigned long offset;
2916         unsigned int size;
2917         void **pages;
2918
2919         offset          = handle->offset;
2920         pages_mask      = handle->data->nr_pages - 1;
2921         pages           = handle->data->data_pages;
2922
2923         do {
2924                 unsigned long page_offset;
2925                 unsigned long page_size;
2926                 int nr;
2927
2928                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2929                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2930                 page_offset = offset & (page_size - 1);
2931                 size        = min_t(unsigned int, page_size - page_offset, len);
2932
2933                 memcpy(pages[nr] + page_offset, buf, size);
2934
2935                 len         -= size;
2936                 buf         += size;
2937                 offset      += size;
2938         } while (len);
2939
2940         handle->offset = offset;
2941
2942         /*
2943          * Check we didn't copy past our reservation window, taking the
2944          * possible unsigned int wrap into account.
2945          */
2946         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2947 }
2948
2949 int perf_output_begin(struct perf_output_handle *handle,
2950                       struct perf_event *event, unsigned int size,
2951                       int nmi, int sample)
2952 {
2953         struct perf_event *output_event;
2954         struct perf_mmap_data *data;
2955         unsigned long tail, offset, head;
2956         int have_lost;
2957         struct {
2958                 struct perf_event_header header;
2959                 u64                      id;
2960                 u64                      lost;
2961         } lost_event;
2962
2963         rcu_read_lock();
2964         /*
2965          * For inherited events we send all the output towards the parent.
2966          */
2967         if (event->parent)
2968                 event = event->parent;
2969
2970         output_event = rcu_dereference(event->output);
2971         if (output_event)
2972                 event = output_event;
2973
2974         data = rcu_dereference(event->data);
2975         if (!data)
2976                 goto out;
2977
2978         handle->data    = data;
2979         handle->event   = event;
2980         handle->nmi     = nmi;
2981         handle->sample  = sample;
2982
2983         if (!data->nr_pages)
2984                 goto fail;
2985
2986         have_lost = atomic_read(&data->lost);
2987         if (have_lost)
2988                 size += sizeof(lost_event);
2989
2990         perf_output_lock(handle);
2991
2992         do {
2993                 /*
2994                  * Userspace could choose to issue a mb() before updating the
2995                  * tail pointer. So that all reads will be completed before the
2996                  * write is issued.
2997                  */
2998                 tail = ACCESS_ONCE(data->user_page->data_tail);
2999                 smp_rmb();
3000                 offset = head = atomic_long_read(&data->head);
3001                 head += size;
3002                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3003                         goto fail;
3004         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3005
3006         handle->offset  = offset;
3007         handle->head    = head;
3008
3009         if (head - tail > data->watermark)
3010                 atomic_set(&data->wakeup, 1);
3011
3012         if (have_lost) {
3013                 lost_event.header.type = PERF_RECORD_LOST;
3014                 lost_event.header.misc = 0;
3015                 lost_event.header.size = sizeof(lost_event);
3016                 lost_event.id          = event->id;
3017                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3018
3019                 perf_output_put(handle, lost_event);
3020         }
3021
3022         return 0;
3023
3024 fail:
3025         atomic_inc(&data->lost);
3026         perf_output_unlock(handle);
3027 out:
3028         rcu_read_unlock();
3029
3030         return -ENOSPC;
3031 }
3032
3033 void perf_output_end(struct perf_output_handle *handle)
3034 {
3035         struct perf_event *event = handle->event;
3036         struct perf_mmap_data *data = handle->data;
3037
3038         int wakeup_events = event->attr.wakeup_events;
3039
3040         if (handle->sample && wakeup_events) {
3041                 int events = atomic_inc_return(&data->events);
3042                 if (events >= wakeup_events) {
3043                         atomic_sub(wakeup_events, &data->events);
3044                         atomic_set(&data->wakeup, 1);
3045                 }
3046         }
3047
3048         perf_output_unlock(handle);
3049         rcu_read_unlock();
3050 }
3051
3052 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3053 {
3054         /*
3055          * only top level events have the pid namespace they were created in
3056          */
3057         if (event->parent)
3058                 event = event->parent;
3059
3060         return task_tgid_nr_ns(p, event->ns);
3061 }
3062
3063 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3064 {
3065         /*
3066          * only top level events have the pid namespace they were created in
3067          */
3068         if (event->parent)
3069                 event = event->parent;
3070
3071         return task_pid_nr_ns(p, event->ns);
3072 }
3073
3074 static void perf_output_read_one(struct perf_output_handle *handle,
3075                                  struct perf_event *event)
3076 {
3077         u64 read_format = event->attr.read_format;
3078         u64 values[4];
3079         int n = 0;
3080
3081         values[n++] = atomic64_read(&event->count);
3082         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3083                 values[n++] = event->total_time_enabled +
3084                         atomic64_read(&event->child_total_time_enabled);
3085         }
3086         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3087                 values[n++] = event->total_time_running +
3088                         atomic64_read(&event->child_total_time_running);
3089         }
3090         if (read_format & PERF_FORMAT_ID)
3091                 values[n++] = primary_event_id(event);
3092
3093         perf_output_copy(handle, values, n * sizeof(u64));
3094 }
3095
3096 /*
3097  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3098  */
3099 static void perf_output_read_group(struct perf_output_handle *handle,
3100                             struct perf_event *event)
3101 {
3102         struct perf_event *leader = event->group_leader, *sub;
3103         u64 read_format = event->attr.read_format;
3104         u64 values[5];
3105         int n = 0;
3106
3107         values[n++] = 1 + leader->nr_siblings;
3108
3109         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3110                 values[n++] = leader->total_time_enabled;
3111
3112         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3113                 values[n++] = leader->total_time_running;
3114
3115         if (leader != event)
3116                 leader->pmu->read(leader);
3117
3118         values[n++] = atomic64_read(&leader->count);
3119         if (read_format & PERF_FORMAT_ID)
3120                 values[n++] = primary_event_id(leader);
3121
3122         perf_output_copy(handle, values, n * sizeof(u64));
3123
3124         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3125                 n = 0;
3126
3127                 if (sub != event)
3128                         sub->pmu->read(sub);
3129
3130                 values[n++] = atomic64_read(&sub->count);
3131                 if (read_format & PERF_FORMAT_ID)
3132                         values[n++] = primary_event_id(sub);
3133
3134                 perf_output_copy(handle, values, n * sizeof(u64));
3135         }
3136 }
3137
3138 static void perf_output_read(struct perf_output_handle *handle,
3139                              struct perf_event *event)
3140 {
3141         if (event->attr.read_format & PERF_FORMAT_GROUP)
3142                 perf_output_read_group(handle, event);
3143         else
3144                 perf_output_read_one(handle, event);
3145 }
3146
3147 void perf_output_sample(struct perf_output_handle *handle,
3148                         struct perf_event_header *header,
3149                         struct perf_sample_data *data,
3150                         struct perf_event *event)
3151 {
3152         u64 sample_type = data->type;
3153
3154         perf_output_put(handle, *header);
3155
3156         if (sample_type & PERF_SAMPLE_IP)
3157                 perf_output_put(handle, data->ip);
3158
3159         if (sample_type & PERF_SAMPLE_TID)
3160                 perf_output_put(handle, data->tid_entry);
3161
3162         if (sample_type & PERF_SAMPLE_TIME)
3163                 perf_output_put(handle, data->time);
3164
3165         if (sample_type & PERF_SAMPLE_ADDR)
3166                 perf_output_put(handle, data->addr);
3167
3168         if (sample_type & PERF_SAMPLE_ID)
3169                 perf_output_put(handle, data->id);
3170
3171         if (sample_type & PERF_SAMPLE_STREAM_ID)
3172                 perf_output_put(handle, data->stream_id);
3173
3174         if (sample_type & PERF_SAMPLE_CPU)
3175                 perf_output_put(handle, data->cpu_entry);
3176
3177         if (sample_type & PERF_SAMPLE_PERIOD)
3178                 perf_output_put(handle, data->period);
3179
3180         if (sample_type & PERF_SAMPLE_READ)
3181                 perf_output_read(handle, event);
3182
3183         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3184                 if (data->callchain) {
3185                         int size = 1;
3186
3187                         if (data->callchain)
3188                                 size += data->callchain->nr;
3189
3190                         size *= sizeof(u64);
3191
3192                         perf_output_copy(handle, data->callchain, size);
3193                 } else {
3194                         u64 nr = 0;
3195                         perf_output_put(handle, nr);
3196                 }
3197         }
3198
3199         if (sample_type & PERF_SAMPLE_RAW) {
3200                 if (data->raw) {
3201                         perf_output_put(handle, data->raw->size);
3202                         perf_output_copy(handle, data->raw->data,
3203                                          data->raw->size);
3204                 } else {
3205                         struct {
3206                                 u32     size;
3207                                 u32     data;
3208                         } raw = {
3209                                 .size = sizeof(u32),
3210                                 .data = 0,
3211                         };
3212                         perf_output_put(handle, raw);
3213                 }
3214         }
3215 }
3216
3217 void perf_prepare_sample(struct perf_event_header *header,
3218                          struct perf_sample_data *data,
3219                          struct perf_event *event,
3220                          struct pt_regs *regs)
3221 {
3222         u64 sample_type = event->attr.sample_type;
3223
3224         data->type = sample_type;
3225
3226         header->type = PERF_RECORD_SAMPLE;
3227         header->size = sizeof(*header);
3228
3229         header->misc = 0;
3230         header->misc |= perf_misc_flags(regs);
3231
3232         if (sample_type & PERF_SAMPLE_IP) {
3233                 data->ip = perf_instruction_pointer(regs);
3234
3235                 header->size += sizeof(data->ip);
3236         }
3237
3238         if (sample_type & PERF_SAMPLE_TID) {
3239                 /* namespace issues */
3240                 data->tid_entry.pid = perf_event_pid(event, current);
3241                 data->tid_entry.tid = perf_event_tid(event, current);
3242
3243                 header->size += sizeof(data->tid_entry);
3244         }
3245
3246         if (sample_type & PERF_SAMPLE_TIME) {
3247                 data->time = perf_clock();
3248
3249                 header->size += sizeof(data->time);
3250         }
3251
3252         if (sample_type & PERF_SAMPLE_ADDR)
3253                 header->size += sizeof(data->addr);
3254
3255         if (sample_type & PERF_SAMPLE_ID) {
3256                 data->id = primary_event_id(event);
3257
3258                 header->size += sizeof(data->id);
3259         }
3260
3261         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3262                 data->stream_id = event->id;
3263
3264                 header->size += sizeof(data->stream_id);
3265         }
3266
3267         if (sample_type & PERF_SAMPLE_CPU) {
3268                 data->cpu_entry.cpu             = raw_smp_processor_id();
3269                 data->cpu_entry.reserved        = 0;
3270
3271                 header->size += sizeof(data->cpu_entry);
3272         }
3273
3274         if (sample_type & PERF_SAMPLE_PERIOD)
3275                 header->size += sizeof(data->period);
3276
3277         if (sample_type & PERF_SAMPLE_READ)
3278                 header->size += perf_event_read_size(event);
3279
3280         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3281                 int size = 1;
3282
3283                 data->callchain = perf_callchain(regs);
3284
3285                 if (data->callchain)
3286                         size += data->callchain->nr;
3287
3288                 header->size += size * sizeof(u64);
3289         }
3290
3291         if (sample_type & PERF_SAMPLE_RAW) {
3292                 int size = sizeof(u32);
3293
3294                 if (data->raw)
3295                         size += data->raw->size;
3296                 else
3297                         size += sizeof(u32);
3298
3299                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3300                 header->size += size;
3301         }
3302 }
3303
3304 static void perf_event_output(struct perf_event *event, int nmi,
3305                                 struct perf_sample_data *data,
3306                                 struct pt_regs *regs)
3307 {
3308         struct perf_output_handle handle;
3309         struct perf_event_header header;
3310
3311         perf_prepare_sample(&header, data, event, regs);
3312
3313         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3314                 return;
3315
3316         perf_output_sample(&handle, &header, data, event);
3317
3318         perf_output_end(&handle);
3319 }
3320
3321 /*
3322  * read event_id
3323  */
3324
3325 struct perf_read_event {
3326         struct perf_event_header        header;
3327
3328         u32                             pid;
3329         u32                             tid;
3330 };
3331
3332 static void
3333 perf_event_read_event(struct perf_event *event,
3334                         struct task_struct *task)
3335 {
3336         struct perf_output_handle handle;
3337         struct perf_read_event read_event = {
3338                 .header = {
3339                         .type = PERF_RECORD_READ,
3340                         .misc = 0,
3341                         .size = sizeof(read_event) + perf_event_read_size(event),
3342                 },
3343                 .pid = perf_event_pid(event, task),
3344                 .tid = perf_event_tid(event, task),
3345         };
3346         int ret;
3347
3348         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3349         if (ret)
3350                 return;
3351
3352         perf_output_put(&handle, read_event);
3353         perf_output_read(&handle, event);
3354
3355         perf_output_end(&handle);
3356 }
3357
3358 /*
3359  * task tracking -- fork/exit
3360  *
3361  * enabled by: attr.comm | attr.mmap | attr.task
3362  */
3363
3364 struct perf_task_event {
3365         struct task_struct              *task;
3366         struct perf_event_context       *task_ctx;
3367
3368         struct {
3369                 struct perf_event_header        header;
3370
3371                 u32                             pid;
3372                 u32                             ppid;
3373                 u32                             tid;
3374                 u32                             ptid;
3375                 u64                             time;
3376         } event_id;
3377 };
3378
3379 static void perf_event_task_output(struct perf_event *event,
3380                                      struct perf_task_event *task_event)
3381 {
3382         struct perf_output_handle handle;
3383         struct task_struct *task = task_event->task;
3384         unsigned long flags;
3385         int size, ret;
3386
3387         /*
3388          * If this CPU attempts to acquire an rq lock held by a CPU spinning
3389          * in perf_output_lock() from interrupt context, it's game over.
3390          */
3391         local_irq_save(flags);
3392
3393         size  = task_event->event_id.header.size;
3394         ret = perf_output_begin(&handle, event, size, 0, 0);
3395
3396         if (ret) {
3397                 local_irq_restore(flags);
3398                 return;
3399         }
3400
3401         task_event->event_id.pid = perf_event_pid(event, task);
3402         task_event->event_id.ppid = perf_event_pid(event, current);
3403
3404         task_event->event_id.tid = perf_event_tid(event, task);
3405         task_event->event_id.ptid = perf_event_tid(event, current);
3406
3407         perf_output_put(&handle, task_event->event_id);
3408
3409         perf_output_end(&handle);
3410         local_irq_restore(flags);
3411 }
3412
3413 static int perf_event_task_match(struct perf_event *event)
3414 {
3415         if (event->state < PERF_EVENT_STATE_INACTIVE)
3416                 return 0;
3417
3418         if (event->cpu != -1 && event->cpu != smp_processor_id())
3419                 return 0;
3420
3421         if (event->attr.comm || event->attr.mmap || event->attr.task)
3422                 return 1;
3423
3424         return 0;
3425 }
3426
3427 static void perf_event_task_ctx(struct perf_event_context *ctx,
3428                                   struct perf_task_event *task_event)
3429 {
3430         struct perf_event *event;
3431
3432         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3433                 if (perf_event_task_match(event))
3434                         perf_event_task_output(event, task_event);
3435         }
3436 }
3437
3438 static void perf_event_task_event(struct perf_task_event *task_event)
3439 {
3440         struct perf_cpu_context *cpuctx;
3441         struct perf_event_context *ctx = task_event->task_ctx;
3442
3443         rcu_read_lock();
3444         cpuctx = &get_cpu_var(perf_cpu_context);
3445         perf_event_task_ctx(&cpuctx->ctx, task_event);
3446         if (!ctx)
3447                 ctx = rcu_dereference(current->perf_event_ctxp);
3448         if (ctx)
3449                 perf_event_task_ctx(ctx, task_event);
3450         put_cpu_var(perf_cpu_context);
3451         rcu_read_unlock();
3452 }
3453
3454 static void perf_event_task(struct task_struct *task,
3455                               struct perf_event_context *task_ctx,
3456                               int new)
3457 {
3458         struct perf_task_event task_event;
3459
3460         if (!atomic_read(&nr_comm_events) &&
3461             !atomic_read(&nr_mmap_events) &&
3462             !atomic_read(&nr_task_events))
3463                 return;
3464
3465         task_event = (struct perf_task_event){
3466                 .task     = task,
3467                 .task_ctx = task_ctx,
3468                 .event_id    = {
3469                         .header = {
3470                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3471                                 .misc = 0,
3472                                 .size = sizeof(task_event.event_id),
3473                         },
3474                         /* .pid  */
3475                         /* .ppid */
3476                         /* .tid  */
3477                         /* .ptid */
3478                         .time = perf_clock(),
3479                 },
3480         };
3481
3482         perf_event_task_event(&task_event);
3483 }
3484
3485 void perf_event_fork(struct task_struct *task)
3486 {
3487         perf_event_task(task, NULL, 1);
3488 }
3489
3490 /*
3491  * comm tracking
3492  */
3493
3494 struct perf_comm_event {
3495         struct task_struct      *task;
3496         char                    *comm;
3497         int                     comm_size;
3498
3499         struct {
3500                 struct perf_event_header        header;
3501
3502                 u32                             pid;
3503                 u32                             tid;
3504         } event_id;
3505 };
3506
3507 static void perf_event_comm_output(struct perf_event *event,
3508                                      struct perf_comm_event *comm_event)
3509 {
3510         struct perf_output_handle handle;
3511         int size = comm_event->event_id.header.size;
3512         int ret = perf_output_begin(&handle, event, size, 0, 0);
3513
3514         if (ret)
3515                 return;
3516
3517         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3518         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3519
3520         perf_output_put(&handle, comm_event->event_id);
3521         perf_output_copy(&handle, comm_event->comm,
3522                                    comm_event->comm_size);
3523         perf_output_end(&handle);
3524 }
3525
3526 static int perf_event_comm_match(struct perf_event *event)
3527 {
3528         if (event->state < PERF_EVENT_STATE_INACTIVE)
3529                 return 0;
3530
3531         if (event->cpu != -1 && event->cpu != smp_processor_id())
3532                 return 0;
3533
3534         if (event->attr.comm)
3535                 return 1;
3536
3537         return 0;
3538 }
3539
3540 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3541                                   struct perf_comm_event *comm_event)
3542 {
3543         struct perf_event *event;
3544
3545         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3546                 if (perf_event_comm_match(event))
3547                         perf_event_comm_output(event, comm_event);
3548         }
3549 }
3550
3551 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3552 {
3553         struct perf_cpu_context *cpuctx;
3554         struct perf_event_context *ctx;
3555         unsigned int size;
3556         char comm[TASK_COMM_LEN];
3557
3558         memset(comm, 0, sizeof(comm));
3559         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3560         size = ALIGN(strlen(comm)+1, sizeof(u64));
3561
3562         comm_event->comm = comm;
3563         comm_event->comm_size = size;
3564
3565         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3566
3567         rcu_read_lock();
3568         cpuctx = &get_cpu_var(perf_cpu_context);
3569         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3570         ctx = rcu_dereference(current->perf_event_ctxp);
3571         if (ctx)
3572                 perf_event_comm_ctx(ctx, comm_event);
3573         put_cpu_var(perf_cpu_context);
3574         rcu_read_unlock();
3575 }
3576
3577 void perf_event_comm(struct task_struct *task)
3578 {
3579         struct perf_comm_event comm_event;
3580
3581         if (task->perf_event_ctxp)
3582                 perf_event_enable_on_exec(task);
3583
3584         if (!atomic_read(&nr_comm_events))
3585                 return;
3586
3587         comm_event = (struct perf_comm_event){
3588                 .task   = task,
3589                 /* .comm      */
3590                 /* .comm_size */
3591                 .event_id  = {
3592                         .header = {
3593                                 .type = PERF_RECORD_COMM,
3594                                 .misc = 0,
3595                                 /* .size */
3596                         },
3597                         /* .pid */
3598                         /* .tid */
3599                 },
3600         };
3601
3602         perf_event_comm_event(&comm_event);
3603 }
3604
3605 /*
3606  * mmap tracking
3607  */
3608
3609 struct perf_mmap_event {
3610         struct vm_area_struct   *vma;
3611
3612         const char              *file_name;
3613         int                     file_size;
3614
3615         struct {
3616                 struct perf_event_header        header;
3617
3618                 u32                             pid;
3619                 u32                             tid;
3620                 u64                             start;
3621                 u64                             len;
3622                 u64                             pgoff;
3623         } event_id;
3624 };
3625
3626 static void perf_event_mmap_output(struct perf_event *event,
3627                                      struct perf_mmap_event *mmap_event)
3628 {
3629         struct perf_output_handle handle;
3630         int size = mmap_event->event_id.header.size;
3631         int ret = perf_output_begin(&handle, event, size, 0, 0);
3632
3633         if (ret)
3634                 return;
3635
3636         mmap_event->event_id.pid = perf_event_pid(event, current);
3637         mmap_event->event_id.tid = perf_event_tid(event, current);
3638
3639         perf_output_put(&handle, mmap_event->event_id);
3640         perf_output_copy(&handle, mmap_event->file_name,
3641                                    mmap_event->file_size);
3642         perf_output_end(&handle);
3643 }
3644
3645 static int perf_event_mmap_match(struct perf_event *event,
3646                                    struct perf_mmap_event *mmap_event)
3647 {
3648         if (event->state < PERF_EVENT_STATE_INACTIVE)
3649                 return 0;
3650
3651         if (event->cpu != -1 && event->cpu != smp_processor_id())
3652                 return 0;
3653
3654         if (event->attr.mmap)
3655                 return 1;
3656
3657         return 0;
3658 }
3659
3660 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3661                                   struct perf_mmap_event *mmap_event)
3662 {
3663         struct perf_event *event;
3664
3665         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3666                 if (perf_event_mmap_match(event, mmap_event))
3667                         perf_event_mmap_output(event, mmap_event);
3668         }
3669 }
3670
3671 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3672 {
3673         struct perf_cpu_context *cpuctx;
3674         struct perf_event_context *ctx;
3675         struct vm_area_struct *vma = mmap_event->vma;
3676         struct file *file = vma->vm_file;
3677         unsigned int size;
3678         char tmp[16];
3679         char *buf = NULL;
3680         const char *name;
3681
3682         memset(tmp, 0, sizeof(tmp));
3683
3684         if (file) {
3685                 /*
3686                  * d_path works from the end of the buffer backwards, so we
3687                  * need to add enough zero bytes after the string to handle
3688                  * the 64bit alignment we do later.
3689                  */
3690                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3691                 if (!buf) {
3692                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3693                         goto got_name;
3694                 }
3695                 name = d_path(&file->f_path, buf, PATH_MAX);
3696                 if (IS_ERR(name)) {
3697                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3698                         goto got_name;
3699                 }
3700         } else {
3701                 if (arch_vma_name(mmap_event->vma)) {
3702                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3703                                        sizeof(tmp));
3704                         goto got_name;
3705                 }
3706
3707                 if (!vma->vm_mm) {
3708                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3709                         goto got_name;
3710                 }
3711
3712                 name = strncpy(tmp, "//anon", sizeof(tmp));
3713                 goto got_name;
3714         }
3715
3716 got_name:
3717         size = ALIGN(strlen(name)+1, sizeof(u64));
3718
3719         mmap_event->file_name = name;
3720         mmap_event->file_size = size;
3721
3722         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3723
3724         rcu_read_lock();
3725         cpuctx = &get_cpu_var(perf_cpu_context);
3726         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3727         ctx = rcu_dereference(current->perf_event_ctxp);
3728         if (ctx)
3729                 perf_event_mmap_ctx(ctx, mmap_event);
3730         put_cpu_var(perf_cpu_context);
3731         rcu_read_unlock();
3732
3733         kfree(buf);
3734 }
3735
3736 void __perf_event_mmap(struct vm_area_struct *vma)
3737 {
3738         struct perf_mmap_event mmap_event;
3739
3740         if (!atomic_read(&nr_mmap_events))
3741                 return;
3742
3743         mmap_event = (struct perf_mmap_event){
3744                 .vma    = vma,
3745                 /* .file_name */
3746                 /* .file_size */
3747                 .event_id  = {
3748                         .header = {
3749                                 .type = PERF_RECORD_MMAP,
3750                                 .misc = 0,
3751                                 /* .size */
3752                         },
3753                         /* .pid */
3754                         /* .tid */
3755                         .start  = vma->vm_start,
3756                         .len    = vma->vm_end - vma->vm_start,
3757                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3758                 },
3759         };
3760
3761         perf_event_mmap_event(&mmap_event);
3762 }
3763
3764 /*
3765  * IRQ throttle logging
3766  */
3767
3768 static void perf_log_throttle(struct perf_event *event, int enable)
3769 {
3770         struct perf_output_handle handle;
3771         int ret;
3772
3773         struct {
3774                 struct perf_event_header        header;
3775                 u64                             time;
3776                 u64                             id;
3777                 u64                             stream_id;
3778         } throttle_event = {
3779                 .header = {
3780                         .type = PERF_RECORD_THROTTLE,
3781                         .misc = 0,
3782                         .size = sizeof(throttle_event),
3783                 },
3784                 .time           = perf_clock(),
3785                 .id             = primary_event_id(event),
3786                 .stream_id      = event->id,
3787         };
3788
3789         if (enable)
3790                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3791
3792         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3793         if (ret)
3794                 return;
3795
3796         perf_output_put(&handle, throttle_event);
3797         perf_output_end(&handle);
3798 }
3799
3800 /*
3801  * Generic event overflow handling, sampling.
3802  */
3803
3804 static int __perf_event_overflow(struct perf_event *event, int nmi,
3805                                    int throttle, struct perf_sample_data *data,
3806                                    struct pt_regs *regs)
3807 {
3808         int events = atomic_read(&event->event_limit);
3809         struct hw_perf_event *hwc = &event->hw;
3810         int ret = 0;
3811
3812         throttle = (throttle && event->pmu->unthrottle != NULL);
3813
3814         if (!throttle) {
3815                 hwc->interrupts++;
3816         } else {
3817                 if (hwc->interrupts != MAX_INTERRUPTS) {
3818                         hwc->interrupts++;
3819                         if (HZ * hwc->interrupts >
3820                                         (u64)sysctl_perf_event_sample_rate) {
3821                                 hwc->interrupts = MAX_INTERRUPTS;
3822                                 perf_log_throttle(event, 0);
3823                                 ret = 1;
3824                         }
3825                 } else {
3826                         /*
3827                          * Keep re-disabling events even though on the previous
3828                          * pass we disabled it - just in case we raced with a
3829                          * sched-in and the event got enabled again:
3830                          */
3831                         ret = 1;
3832                 }
3833         }
3834
3835         if (event->attr.freq) {
3836                 u64 now = perf_clock();
3837                 s64 delta = now - hwc->freq_time_stamp;
3838
3839                 hwc->freq_time_stamp = now;
3840
3841                 if (delta > 0 && delta < 2*TICK_NSEC)
3842                         perf_adjust_period(event, delta, hwc->last_period);
3843         }
3844
3845         /*
3846          * XXX event_limit might not quite work as expected on inherited
3847          * events
3848          */
3849
3850         event->pending_kill = POLL_IN;
3851         if (events && atomic_dec_and_test(&event->event_limit)) {
3852                 ret = 1;
3853                 event->pending_kill = POLL_HUP;
3854                 if (nmi) {
3855                         event->pending_disable = 1;
3856                         perf_pending_queue(&event->pending,
3857                                            perf_pending_event);
3858                 } else
3859                         perf_event_disable(event);
3860         }
3861
3862         if (event->overflow_handler)
3863                 event->overflow_handler(event, nmi, data, regs);
3864         else
3865                 perf_event_output(event, nmi, data, regs);
3866
3867         return ret;
3868 }
3869
3870 int perf_event_overflow(struct perf_event *event, int nmi,
3871                           struct perf_sample_data *data,
3872                           struct pt_regs *regs)
3873 {
3874         return __perf_event_overflow(event, nmi, 1, data, regs);
3875 }
3876
3877 /*
3878  * Generic software event infrastructure
3879  */
3880
3881 /*
3882  * We directly increment event->count and keep a second value in
3883  * event->hw.period_left to count intervals. This period event
3884  * is kept in the range [-sample_period, 0] so that we can use the
3885  * sign as trigger.
3886  */
3887
3888 static u64 perf_swevent_set_period(struct perf_event *event)
3889 {
3890         struct hw_perf_event *hwc = &event->hw;
3891         u64 period = hwc->last_period;
3892         u64 nr, offset;
3893         s64 old, val;
3894
3895         hwc->last_period = hwc->sample_period;
3896
3897 again:
3898         old = val = atomic64_read(&hwc->period_left);
3899         if (val < 0)
3900                 return 0;
3901
3902         nr = div64_u64(period + val, period);
3903         offset = nr * period;
3904         val -= offset;
3905         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3906                 goto again;
3907
3908         return nr;
3909 }
3910
3911 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3912                                     int nmi, struct perf_sample_data *data,
3913                                     struct pt_regs *regs)
3914 {
3915         struct hw_perf_event *hwc = &event->hw;
3916         int throttle = 0;
3917
3918         data->period = event->hw.last_period;
3919         if (!overflow)
3920                 overflow = perf_swevent_set_period(event);
3921
3922         if (hwc->interrupts == MAX_INTERRUPTS)
3923                 return;
3924
3925         for (; overflow; overflow--) {
3926                 if (__perf_event_overflow(event, nmi, throttle,
3927                                             data, regs)) {
3928                         /*
3929                          * We inhibit the overflow from happening when
3930                          * hwc->interrupts == MAX_INTERRUPTS.
3931                          */
3932                         break;
3933                 }
3934                 throttle = 1;
3935         }
3936 }
3937
3938 static void perf_swevent_unthrottle(struct perf_event *event)
3939 {
3940         /*
3941          * Nothing to do, we already reset hwc->interrupts.
3942          */
3943 }
3944
3945 static void perf_swevent_add(struct perf_event *event, u64 nr,
3946                                int nmi, struct perf_sample_data *data,
3947                                struct pt_regs *regs)
3948 {
3949         struct hw_perf_event *hwc = &event->hw;
3950
3951         atomic64_add(nr, &event->count);
3952
3953         if (!regs)
3954                 return;
3955
3956         if (!hwc->sample_period)
3957                 return;
3958
3959         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3960                 return perf_swevent_overflow(event, 1, nmi, data, regs);
3961
3962         if (atomic64_add_negative(nr, &hwc->period_left))
3963                 return;
3964
3965         perf_swevent_overflow(event, 0, nmi, data, regs);
3966 }
3967
3968 static int perf_swevent_is_counting(struct perf_event *event)
3969 {
3970         /*
3971          * The event is active, we're good!
3972          */
3973         if (event->state == PERF_EVENT_STATE_ACTIVE)
3974                 return 1;
3975
3976         /*
3977          * The event is off/error, not counting.
3978          */
3979         if (event->state != PERF_EVENT_STATE_INACTIVE)
3980                 return 0;
3981
3982         /*
3983          * The event is inactive, if the context is active
3984          * we're part of a group that didn't make it on the 'pmu',
3985          * not counting.
3986          */
3987         if (event->ctx->is_active)
3988                 return 0;
3989
3990         /*
3991          * We're inactive and the context is too, this means the
3992          * task is scheduled out, we're counting events that happen
3993          * to us, like migration events.
3994          */
3995         return 1;
3996 }
3997
3998 static int perf_tp_event_match(struct perf_event *event,
3999                                 struct perf_sample_data *data);
4000
4001 static int perf_exclude_event(struct perf_event *event,
4002                               struct pt_regs *regs)
4003 {
4004         if (regs) {
4005                 if (event->attr.exclude_user && user_mode(regs))
4006                         return 1;
4007
4008                 if (event->attr.exclude_kernel && !user_mode(regs))
4009                         return 1;
4010         }
4011
4012         return 0;
4013 }
4014
4015 static int perf_swevent_match(struct perf_event *event,
4016                                 enum perf_type_id type,
4017                                 u32 event_id,
4018                                 struct perf_sample_data *data,
4019                                 struct pt_regs *regs)
4020 {
4021         if (event->cpu != -1 && event->cpu != smp_processor_id())
4022                 return 0;
4023
4024         if (!perf_swevent_is_counting(event))
4025                 return 0;
4026
4027         if (event->attr.type != type)
4028                 return 0;
4029
4030         if (event->attr.config != event_id)
4031                 return 0;
4032
4033         if (perf_exclude_event(event, regs))
4034                 return 0;
4035
4036         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4037             !perf_tp_event_match(event, data))
4038                 return 0;
4039
4040         return 1;
4041 }
4042
4043 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4044                                      enum perf_type_id type,
4045                                      u32 event_id, u64 nr, int nmi,
4046                                      struct perf_sample_data *data,
4047                                      struct pt_regs *regs)
4048 {
4049         struct perf_event *event;
4050
4051         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4052                 if (perf_swevent_match(event, type, event_id, data, regs))
4053                         perf_swevent_add(event, nr, nmi, data, regs);
4054         }
4055 }
4056
4057 int perf_swevent_get_recursion_context(void)
4058 {
4059         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4060         int rctx;
4061
4062         if (in_nmi())
4063                 rctx = 3;
4064         else if (in_irq())
4065                 rctx = 2;
4066         else if (in_softirq())
4067                 rctx = 1;
4068         else
4069                 rctx = 0;
4070
4071         if (cpuctx->recursion[rctx]) {
4072                 put_cpu_var(perf_cpu_context);
4073                 return -1;
4074         }
4075
4076         cpuctx->recursion[rctx]++;
4077         barrier();
4078
4079         return rctx;
4080 }
4081 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4082
4083 void perf_swevent_put_recursion_context(int rctx)
4084 {
4085         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4086         barrier();
4087         cpuctx->recursion[rctx]--;
4088         put_cpu_var(perf_cpu_context);
4089 }
4090 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4091
4092 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4093                                     u64 nr, int nmi,
4094                                     struct perf_sample_data *data,
4095                                     struct pt_regs *regs)
4096 {
4097         struct perf_cpu_context *cpuctx;
4098         struct perf_event_context *ctx;
4099
4100         cpuctx = &__get_cpu_var(perf_cpu_context);
4101         rcu_read_lock();
4102         perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4103                                  nr, nmi, data, regs);
4104         /*
4105          * doesn't really matter which of the child contexts the
4106          * events ends up in.
4107          */
4108         ctx = rcu_dereference(current->perf_event_ctxp);
4109         if (ctx)
4110                 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4111         rcu_read_unlock();
4112 }
4113
4114 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4115                             struct pt_regs *regs, u64 addr)
4116 {
4117         struct perf_sample_data data;
4118         int rctx;
4119
4120         rctx = perf_swevent_get_recursion_context();
4121         if (rctx < 0)
4122                 return;
4123
4124         perf_sample_data_init(&data, addr);
4125
4126         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4127
4128         perf_swevent_put_recursion_context(rctx);
4129 }
4130
4131 static void perf_swevent_read(struct perf_event *event)
4132 {
4133 }
4134
4135 static int perf_swevent_enable(struct perf_event *event)
4136 {
4137         struct hw_perf_event *hwc = &event->hw;
4138
4139         if (hwc->sample_period) {
4140                 hwc->last_period = hwc->sample_period;
4141                 perf_swevent_set_period(event);
4142         }
4143         return 0;
4144 }
4145
4146 static void perf_swevent_disable(struct perf_event *event)
4147 {
4148 }
4149
4150 static const struct pmu perf_ops_generic = {
4151         .enable         = perf_swevent_enable,
4152         .disable        = perf_swevent_disable,
4153         .read           = perf_swevent_read,
4154         .unthrottle     = perf_swevent_unthrottle,
4155 };
4156
4157 /*
4158  * hrtimer based swevent callback
4159  */
4160
4161 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4162 {
4163         enum hrtimer_restart ret = HRTIMER_RESTART;
4164         struct perf_sample_data data;
4165         struct pt_regs *regs;
4166         struct perf_event *event;
4167         u64 period;
4168
4169         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4170         event->pmu->read(event);
4171
4172         perf_sample_data_init(&data, 0);
4173         data.period = event->hw.last_period;
4174         regs = get_irq_regs();
4175         /*
4176          * In case we exclude kernel IPs or are somehow not in interrupt
4177          * context, provide the next best thing, the user IP.
4178          */
4179         if ((event->attr.exclude_kernel || !regs) &&
4180                         !event->attr.exclude_user)
4181                 regs = task_pt_regs(current);
4182
4183         if (regs) {
4184                 if (!(event->attr.exclude_idle && current->pid == 0))
4185                         if (perf_event_overflow(event, 0, &data, regs))
4186                                 ret = HRTIMER_NORESTART;
4187         }
4188
4189         period = max_t(u64, 10000, event->hw.sample_period);
4190         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4191
4192         return ret;
4193 }
4194
4195 static void perf_swevent_start_hrtimer(struct perf_event *event)
4196 {
4197         struct hw_perf_event *hwc = &event->hw;
4198
4199         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4200         hwc->hrtimer.function = perf_swevent_hrtimer;
4201         if (hwc->sample_period) {
4202                 u64 period;
4203
4204                 if (hwc->remaining) {
4205                         if (hwc->remaining < 0)
4206                                 period = 10000;
4207                         else
4208                                 period = hwc->remaining;
4209                         hwc->remaining = 0;
4210                 } else {
4211                         period = max_t(u64, 10000, hwc->sample_period);
4212                 }
4213                 __hrtimer_start_range_ns(&hwc->hrtimer,
4214                                 ns_to_ktime(period), 0,
4215                                 HRTIMER_MODE_REL, 0);
4216         }
4217 }
4218
4219 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4220 {
4221         struct hw_perf_event *hwc = &event->hw;
4222
4223         if (hwc->sample_period) {
4224                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4225                 hwc->remaining = ktime_to_ns(remaining);
4226
4227                 hrtimer_cancel(&hwc->hrtimer);
4228         }
4229 }
4230
4231 /*
4232  * Software event: cpu wall time clock
4233  */
4234
4235 static void cpu_clock_perf_event_update(struct perf_event *event)
4236 {
4237         int cpu = raw_smp_processor_id();
4238         s64 prev;
4239         u64 now;
4240
4241         now = cpu_clock(cpu);
4242         prev = atomic64_xchg(&event->hw.prev_count, now);
4243         atomic64_add(now - prev, &event->count);
4244 }
4245
4246 static int cpu_clock_perf_event_enable(struct perf_event *event)
4247 {
4248         struct hw_perf_event *hwc = &event->hw;
4249         int cpu = raw_smp_processor_id();
4250
4251         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4252         perf_swevent_start_hrtimer(event);
4253
4254         return 0;
4255 }
4256
4257 static void cpu_clock_perf_event_disable(struct perf_event *event)
4258 {
4259         perf_swevent_cancel_hrtimer(event);
4260         cpu_clock_perf_event_update(event);
4261 }
4262
4263 static void cpu_clock_perf_event_read(struct perf_event *event)
4264 {
4265         cpu_clock_perf_event_update(event);
4266 }
4267
4268 static const struct pmu perf_ops_cpu_clock = {
4269         .enable         = cpu_clock_perf_event_enable,
4270         .disable        = cpu_clock_perf_event_disable,
4271         .read           = cpu_clock_perf_event_read,
4272 };
4273
4274 /*
4275  * Software event: task time clock
4276  */
4277
4278 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4279 {
4280         u64 prev;
4281         s64 delta;
4282
4283         prev = atomic64_xchg(&event->hw.prev_count, now);
4284         delta = now - prev;
4285         atomic64_add(delta, &event->count);
4286 }
4287
4288 static int task_clock_perf_event_enable(struct perf_event *event)
4289 {
4290         struct hw_perf_event *hwc = &event->hw;
4291         u64 now;
4292
4293         now = event->ctx->time;
4294
4295         atomic64_set(&hwc->prev_count, now);
4296
4297         perf_swevent_start_hrtimer(event);
4298
4299         return 0;
4300 }
4301
4302 static void task_clock_perf_event_disable(struct perf_event *event)
4303 {
4304         perf_swevent_cancel_hrtimer(event);
4305         task_clock_perf_event_update(event, event->ctx->time);
4306
4307 }
4308
4309 static void task_clock_perf_event_read(struct perf_event *event)
4310 {
4311         u64 time;
4312
4313         if (!in_nmi()) {
4314                 update_context_time(event->ctx);
4315                 time = event->ctx->time;
4316         } else {
4317                 u64 now = perf_clock();
4318                 u64 delta = now - event->ctx->timestamp;
4319                 time = event->ctx->time + delta;
4320         }
4321
4322         task_clock_perf_event_update(event, time);
4323 }
4324
4325 static const struct pmu perf_ops_task_clock = {
4326         .enable         = task_clock_perf_event_enable,
4327         .disable        = task_clock_perf_event_disable,
4328         .read           = task_clock_perf_event_read,
4329 };
4330
4331 #ifdef CONFIG_EVENT_TRACING
4332
4333 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4334                    int entry_size, struct pt_regs *regs)
4335 {
4336         struct perf_sample_data data;
4337         struct perf_raw_record raw = {
4338                 .size = entry_size,
4339                 .data = record,
4340         };
4341
4342         perf_sample_data_init(&data, addr);
4343         data.raw = &raw;
4344
4345         /* Trace events already protected against recursion */
4346         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4347                          &data, regs);
4348 }
4349 EXPORT_SYMBOL_GPL(perf_tp_event);
4350
4351 static int perf_tp_event_match(struct perf_event *event,
4352                                 struct perf_sample_data *data)
4353 {
4354         void *record = data->raw->data;
4355
4356         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4357                 return 1;
4358         return 0;
4359 }
4360
4361 static void tp_perf_event_destroy(struct perf_event *event)
4362 {
4363         perf_trace_disable(event->attr.config);
4364 }
4365
4366 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4367 {
4368         /*
4369          * Raw tracepoint data is a severe data leak, only allow root to
4370          * have these.
4371          */
4372         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4373                         perf_paranoid_tracepoint_raw() &&
4374                         !capable(CAP_SYS_ADMIN))
4375                 return ERR_PTR(-EPERM);
4376
4377         if (perf_trace_enable(event->attr.config))
4378                 return NULL;
4379
4380         event->destroy = tp_perf_event_destroy;
4381
4382         return &perf_ops_generic;
4383 }
4384
4385 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4386 {
4387         char *filter_str;
4388         int ret;
4389
4390         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4391                 return -EINVAL;
4392
4393         filter_str = strndup_user(arg, PAGE_SIZE);
4394         if (IS_ERR(filter_str))
4395                 return PTR_ERR(filter_str);
4396
4397         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4398
4399         kfree(filter_str);
4400         return ret;
4401 }
4402
4403 static void perf_event_free_filter(struct perf_event *event)
4404 {
4405         ftrace_profile_free_filter(event);
4406 }
4407
4408 #else
4409
4410 static int perf_tp_event_match(struct perf_event *event,
4411                                 struct perf_sample_data *data)
4412 {
4413         return 1;
4414 }
4415
4416 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4417 {
4418         return NULL;
4419 }
4420
4421 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4422 {
4423         return -ENOENT;
4424 }
4425
4426 static void perf_event_free_filter(struct perf_event *event)
4427 {
4428 }
4429
4430 #endif /* CONFIG_EVENT_TRACING */
4431
4432 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4433 static void bp_perf_event_destroy(struct perf_event *event)
4434 {
4435         release_bp_slot(event);
4436 }
4437
4438 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4439 {
4440         int err;
4441
4442         err = register_perf_hw_breakpoint(bp);
4443         if (err)
4444                 return ERR_PTR(err);
4445
4446         bp->destroy = bp_perf_event_destroy;
4447
4448         return &perf_ops_bp;
4449 }
4450
4451 void perf_bp_event(struct perf_event *bp, void *data)
4452 {
4453         struct perf_sample_data sample;
4454         struct pt_regs *regs = data;
4455
4456         perf_sample_data_init(&sample, bp->attr.bp_addr);
4457
4458         if (!perf_exclude_event(bp, regs))
4459                 perf_swevent_add(bp, 1, 1, &sample, regs);
4460 }
4461 #else
4462 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4463 {
4464         return NULL;
4465 }
4466
4467 void perf_bp_event(struct perf_event *bp, void *regs)
4468 {
4469 }
4470 #endif
4471
4472 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4473
4474 static void sw_perf_event_destroy(struct perf_event *event)
4475 {
4476         u64 event_id = event->attr.config;
4477
4478         WARN_ON(event->parent);
4479
4480         atomic_dec(&perf_swevent_enabled[event_id]);
4481 }
4482
4483 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4484 {
4485         const struct pmu *pmu = NULL;
4486         u64 event_id = event->attr.config;
4487
4488         /*
4489          * Software events (currently) can't in general distinguish
4490          * between user, kernel and hypervisor events.
4491          * However, context switches and cpu migrations are considered
4492          * to be kernel events, and page faults are never hypervisor
4493          * events.
4494          */
4495         switch (event_id) {
4496         case PERF_COUNT_SW_CPU_CLOCK:
4497                 pmu = &perf_ops_cpu_clock;
4498
4499                 break;
4500         case PERF_COUNT_SW_TASK_CLOCK:
4501                 /*
4502                  * If the user instantiates this as a per-cpu event,
4503                  * use the cpu_clock event instead.
4504                  */
4505                 if (event->ctx->task)
4506                         pmu = &perf_ops_task_clock;
4507                 else
4508                         pmu = &perf_ops_cpu_clock;
4509
4510                 break;
4511         case PERF_COUNT_SW_PAGE_FAULTS:
4512         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4513         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4514         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4515         case PERF_COUNT_SW_CPU_MIGRATIONS:
4516         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4517         case PERF_COUNT_SW_EMULATION_FAULTS:
4518                 if (!event->parent) {
4519                         atomic_inc(&perf_swevent_enabled[event_id]);
4520                         event->destroy = sw_perf_event_destroy;
4521                 }
4522                 pmu = &perf_ops_generic;
4523                 break;
4524         }
4525
4526         return pmu;
4527 }
4528
4529 /*
4530  * Allocate and initialize a event structure
4531  */
4532 static struct perf_event *
4533 perf_event_alloc(struct perf_event_attr *attr,
4534                    int cpu,
4535                    struct perf_event_context *ctx,
4536                    struct perf_event *group_leader,
4537                    struct perf_event *parent_event,
4538                    perf_overflow_handler_t overflow_handler,
4539                    gfp_t gfpflags)
4540 {
4541         const struct pmu *pmu;
4542         struct perf_event *event;
4543         struct hw_perf_event *hwc;
4544         long err;
4545
4546         event = kzalloc(sizeof(*event), gfpflags);
4547         if (!event)
4548                 return ERR_PTR(-ENOMEM);
4549
4550         /*
4551          * Single events are their own group leaders, with an
4552          * empty sibling list:
4553          */
4554         if (!group_leader)
4555                 group_leader = event;
4556
4557         mutex_init(&event->child_mutex);
4558         INIT_LIST_HEAD(&event->child_list);
4559
4560         INIT_LIST_HEAD(&event->group_entry);
4561         INIT_LIST_HEAD(&event->event_entry);
4562         INIT_LIST_HEAD(&event->sibling_list);
4563         init_waitqueue_head(&event->waitq);
4564
4565         mutex_init(&event->mmap_mutex);
4566
4567         event->cpu              = cpu;
4568         event->attr             = *attr;
4569         event->group_leader     = group_leader;
4570         event->pmu              = NULL;
4571         event->ctx              = ctx;
4572         event->oncpu            = -1;
4573
4574         event->parent           = parent_event;
4575
4576         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4577         event->id               = atomic64_inc_return(&perf_event_id);
4578
4579         event->state            = PERF_EVENT_STATE_INACTIVE;
4580
4581         if (!overflow_handler && parent_event)
4582                 overflow_handler = parent_event->overflow_handler;
4583         
4584         event->overflow_handler = overflow_handler;
4585
4586         if (attr->disabled)
4587                 event->state = PERF_EVENT_STATE_OFF;
4588
4589         pmu = NULL;
4590
4591         hwc = &event->hw;
4592         hwc->sample_period = attr->sample_period;
4593         if (attr->freq && attr->sample_freq)
4594                 hwc->sample_period = 1;
4595         hwc->last_period = hwc->sample_period;
4596
4597         atomic64_set(&hwc->period_left, hwc->sample_period);
4598
4599         /*
4600          * we currently do not support PERF_FORMAT_GROUP on inherited events
4601          */
4602         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4603                 goto done;
4604
4605         switch (attr->type) {
4606         case PERF_TYPE_RAW:
4607         case PERF_TYPE_HARDWARE:
4608         case PERF_TYPE_HW_CACHE:
4609                 pmu = hw_perf_event_init(event);
4610                 break;
4611
4612         case PERF_TYPE_SOFTWARE:
4613                 pmu = sw_perf_event_init(event);
4614                 break;
4615
4616         case PERF_TYPE_TRACEPOINT:
4617                 pmu = tp_perf_event_init(event);
4618                 break;
4619
4620         case PERF_TYPE_BREAKPOINT:
4621                 pmu = bp_perf_event_init(event);
4622                 break;
4623
4624
4625         default:
4626                 break;
4627         }
4628 done:
4629         err = 0;
4630         if (!pmu)
4631                 err = -EINVAL;
4632         else if (IS_ERR(pmu))
4633                 err = PTR_ERR(pmu);
4634
4635         if (err) {
4636                 if (event->ns)
4637                         put_pid_ns(event->ns);
4638                 kfree(event);
4639                 return ERR_PTR(err);
4640         }
4641
4642         event->pmu = pmu;
4643
4644         if (!event->parent) {
4645                 atomic_inc(&nr_events);
4646                 if (event->attr.mmap)
4647                         atomic_inc(&nr_mmap_events);
4648                 if (event->attr.comm)
4649                         atomic_inc(&nr_comm_events);
4650                 if (event->attr.task)
4651                         atomic_inc(&nr_task_events);
4652         }
4653
4654         return event;
4655 }
4656
4657 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4658                           struct perf_event_attr *attr)
4659 {
4660         u32 size;
4661         int ret;
4662
4663         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4664                 return -EFAULT;
4665
4666         /*
4667          * zero the full structure, so that a short copy will be nice.
4668          */
4669         memset(attr, 0, sizeof(*attr));
4670
4671         ret = get_user(size, &uattr->size);
4672         if (ret)
4673                 return ret;
4674
4675         if (size > PAGE_SIZE)   /* silly large */
4676                 goto err_size;
4677
4678         if (!size)              /* abi compat */
4679                 size = PERF_ATTR_SIZE_VER0;
4680
4681         if (size < PERF_ATTR_SIZE_VER0)
4682                 goto err_size;
4683
4684         /*
4685          * If we're handed a bigger struct than we know of,
4686          * ensure all the unknown bits are 0 - i.e. new
4687          * user-space does not rely on any kernel feature
4688          * extensions we dont know about yet.
4689          */
4690         if (size > sizeof(*attr)) {
4691                 unsigned char __user *addr;
4692                 unsigned char __user *end;
4693                 unsigned char val;
4694
4695                 addr = (void __user *)uattr + sizeof(*attr);
4696                 end  = (void __user *)uattr + size;
4697
4698                 for (; addr < end; addr++) {
4699                         ret = get_user(val, addr);
4700                         if (ret)
4701                                 return ret;
4702                         if (val)
4703                                 goto err_size;
4704                 }
4705                 size = sizeof(*attr);
4706         }
4707
4708         ret = copy_from_user(attr, uattr, size);
4709         if (ret)
4710                 return -EFAULT;
4711
4712         /*
4713          * If the type exists, the corresponding creation will verify
4714          * the attr->config.
4715          */
4716         if (attr->type >= PERF_TYPE_MAX)
4717                 return -EINVAL;
4718
4719         if (attr->__reserved_1)
4720                 return -EINVAL;
4721
4722         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4723                 return -EINVAL;
4724
4725         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4726                 return -EINVAL;
4727
4728 out:
4729         return ret;
4730
4731 err_size:
4732         put_user(sizeof(*attr), &uattr->size);
4733         ret = -E2BIG;
4734         goto out;
4735 }
4736
4737 static int perf_event_set_output(struct perf_event *event, int output_fd)
4738 {
4739         struct perf_event *output_event = NULL;
4740         struct file *output_file = NULL;
4741         struct perf_event *old_output;
4742         int fput_needed = 0;
4743         int ret = -EINVAL;
4744
4745         if (!output_fd)
4746                 goto set;
4747
4748         output_file = fget_light(output_fd, &fput_needed);
4749         if (!output_file)
4750                 return -EBADF;
4751
4752         if (output_file->f_op != &perf_fops)
4753                 goto out;
4754
4755         output_event = output_file->private_data;
4756
4757         /* Don't chain output fds */
4758         if (output_event->output)
4759                 goto out;
4760
4761         /* Don't set an output fd when we already have an output channel */
4762         if (event->data)
4763                 goto out;
4764
4765         atomic_long_inc(&output_file->f_count);
4766
4767 set:
4768         mutex_lock(&event->mmap_mutex);
4769         old_output = event->output;
4770         rcu_assign_pointer(event->output, output_event);
4771         mutex_unlock(&event->mmap_mutex);
4772
4773         if (old_output) {
4774                 /*
4775                  * we need to make sure no existing perf_output_*()
4776                  * is still referencing this event.
4777                  */
4778                 synchronize_rcu();
4779                 fput(old_output->filp);
4780         }
4781
4782         ret = 0;
4783 out:
4784         fput_light(output_file, fput_needed);
4785         return ret;
4786 }
4787
4788 /**
4789  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4790  *
4791  * @attr_uptr:  event_id type attributes for monitoring/sampling
4792  * @pid:                target pid
4793  * @cpu:                target cpu
4794  * @group_fd:           group leader event fd
4795  */
4796 SYSCALL_DEFINE5(perf_event_open,
4797                 struct perf_event_attr __user *, attr_uptr,
4798                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4799 {
4800         struct perf_event *event, *group_leader;
4801         struct perf_event_attr attr;
4802         struct perf_event_context *ctx;
4803         struct file *event_file = NULL;
4804         struct file *group_file = NULL;
4805         int fput_needed = 0;
4806         int fput_needed2 = 0;
4807         int err;
4808
4809         /* for future expandability... */
4810         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4811                 return -EINVAL;
4812
4813         err = perf_copy_attr(attr_uptr, &attr);
4814         if (err)
4815                 return err;
4816
4817         if (!attr.exclude_kernel) {
4818                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4819                         return -EACCES;
4820         }
4821
4822         if (attr.freq) {
4823                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4824                         return -EINVAL;
4825         }
4826
4827         /*
4828          * Get the target context (task or percpu):
4829          */
4830         ctx = find_get_context(pid, cpu);
4831         if (IS_ERR(ctx))
4832                 return PTR_ERR(ctx);
4833
4834         /*
4835          * Look up the group leader (we will attach this event to it):
4836          */
4837         group_leader = NULL;
4838         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4839                 err = -EINVAL;
4840                 group_file = fget_light(group_fd, &fput_needed);
4841                 if (!group_file)
4842                         goto err_put_context;
4843                 if (group_file->f_op != &perf_fops)
4844                         goto err_put_context;
4845
4846                 group_leader = group_file->private_data;
4847                 /*
4848                  * Do not allow a recursive hierarchy (this new sibling
4849                  * becoming part of another group-sibling):
4850                  */
4851                 if (group_leader->group_leader != group_leader)
4852                         goto err_put_context;
4853                 /*
4854                  * Do not allow to attach to a group in a different
4855                  * task or CPU context:
4856                  */
4857                 if (group_leader->ctx != ctx)
4858                         goto err_put_context;
4859                 /*
4860                  * Only a group leader can be exclusive or pinned
4861                  */
4862                 if (attr.exclusive || attr.pinned)
4863                         goto err_put_context;
4864         }
4865
4866         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4867                                      NULL, NULL, GFP_KERNEL);
4868         err = PTR_ERR(event);
4869         if (IS_ERR(event))
4870                 goto err_put_context;
4871
4872         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4873         if (err < 0)
4874                 goto err_free_put_context;
4875
4876         event_file = fget_light(err, &fput_needed2);
4877         if (!event_file)
4878                 goto err_free_put_context;
4879
4880         if (flags & PERF_FLAG_FD_OUTPUT) {
4881                 err = perf_event_set_output(event, group_fd);
4882                 if (err)
4883                         goto err_fput_free_put_context;
4884         }
4885
4886         event->filp = event_file;
4887         WARN_ON_ONCE(ctx->parent_ctx);
4888         mutex_lock(&ctx->mutex);
4889         perf_install_in_context(ctx, event, cpu);
4890         ++ctx->generation;
4891         mutex_unlock(&ctx->mutex);
4892
4893         event->owner = current;
4894         get_task_struct(current);
4895         mutex_lock(&current->perf_event_mutex);
4896         list_add_tail(&event->owner_entry, &current->perf_event_list);
4897         mutex_unlock(&current->perf_event_mutex);
4898
4899 err_fput_free_put_context:
4900         fput_light(event_file, fput_needed2);
4901
4902 err_free_put_context:
4903         if (err < 0)
4904                 kfree(event);
4905
4906 err_put_context:
4907         if (err < 0)
4908                 put_ctx(ctx);
4909
4910         fput_light(group_file, fput_needed);
4911
4912         return err;
4913 }
4914
4915 /**
4916  * perf_event_create_kernel_counter
4917  *
4918  * @attr: attributes of the counter to create
4919  * @cpu: cpu in which the counter is bound
4920  * @pid: task to profile
4921  */
4922 struct perf_event *
4923 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4924                                  pid_t pid,
4925                                  perf_overflow_handler_t overflow_handler)
4926 {
4927         struct perf_event *event;
4928         struct perf_event_context *ctx;
4929         int err;
4930
4931         /*
4932          * Get the target context (task or percpu):
4933          */
4934
4935         ctx = find_get_context(pid, cpu);
4936         if (IS_ERR(ctx)) {
4937                 err = PTR_ERR(ctx);
4938                 goto err_exit;
4939         }
4940
4941         event = perf_event_alloc(attr, cpu, ctx, NULL,
4942                                  NULL, overflow_handler, GFP_KERNEL);
4943         if (IS_ERR(event)) {
4944                 err = PTR_ERR(event);
4945                 goto err_put_context;
4946         }
4947
4948         event->filp = NULL;
4949         WARN_ON_ONCE(ctx->parent_ctx);
4950         mutex_lock(&ctx->mutex);
4951         perf_install_in_context(ctx, event, cpu);
4952         ++ctx->generation;
4953         mutex_unlock(&ctx->mutex);
4954
4955         event->owner = current;
4956         get_task_struct(current);
4957         mutex_lock(&current->perf_event_mutex);
4958         list_add_tail(&event->owner_entry, &current->perf_event_list);
4959         mutex_unlock(&current->perf_event_mutex);
4960
4961         return event;
4962
4963  err_put_context:
4964         put_ctx(ctx);
4965  err_exit:
4966         return ERR_PTR(err);
4967 }
4968 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4969
4970 /*
4971  * inherit a event from parent task to child task:
4972  */
4973 static struct perf_event *
4974 inherit_event(struct perf_event *parent_event,
4975               struct task_struct *parent,
4976               struct perf_event_context *parent_ctx,
4977               struct task_struct *child,
4978               struct perf_event *group_leader,
4979               struct perf_event_context *child_ctx)
4980 {
4981         struct perf_event *child_event;
4982
4983         /*
4984          * Instead of creating recursive hierarchies of events,
4985          * we link inherited events back to the original parent,
4986          * which has a filp for sure, which we use as the reference
4987          * count:
4988          */
4989         if (parent_event->parent)
4990                 parent_event = parent_event->parent;
4991
4992         child_event = perf_event_alloc(&parent_event->attr,
4993                                            parent_event->cpu, child_ctx,
4994                                            group_leader, parent_event,
4995                                            NULL, GFP_KERNEL);
4996         if (IS_ERR(child_event))
4997                 return child_event;
4998         get_ctx(child_ctx);
4999
5000         /*
5001          * Make the child state follow the state of the parent event,
5002          * not its attr.disabled bit.  We hold the parent's mutex,
5003          * so we won't race with perf_event_{en, dis}able_family.
5004          */
5005         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5006                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5007         else
5008                 child_event->state = PERF_EVENT_STATE_OFF;
5009
5010         if (parent_event->attr.freq) {
5011                 u64 sample_period = parent_event->hw.sample_period;
5012                 struct hw_perf_event *hwc = &child_event->hw;
5013
5014                 hwc->sample_period = sample_period;
5015                 hwc->last_period   = sample_period;
5016
5017                 atomic64_set(&hwc->period_left, sample_period);
5018         }
5019
5020         child_event->overflow_handler = parent_event->overflow_handler;
5021
5022         /*
5023          * Link it up in the child's context:
5024          */
5025         add_event_to_ctx(child_event, child_ctx);
5026
5027         /*
5028          * Get a reference to the parent filp - we will fput it
5029          * when the child event exits. This is safe to do because
5030          * we are in the parent and we know that the filp still
5031          * exists and has a nonzero count:
5032          */
5033         atomic_long_inc(&parent_event->filp->f_count);
5034
5035         /*
5036          * Link this into the parent event's child list
5037          */
5038         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5039         mutex_lock(&parent_event->child_mutex);
5040         list_add_tail(&child_event->child_list, &parent_event->child_list);
5041         mutex_unlock(&parent_event->child_mutex);
5042
5043         return child_event;
5044 }
5045
5046 static int inherit_group(struct perf_event *parent_event,
5047               struct task_struct *parent,
5048               struct perf_event_context *parent_ctx,
5049               struct task_struct *child,
5050               struct perf_event_context *child_ctx)
5051 {
5052         struct perf_event *leader;
5053         struct perf_event *sub;
5054         struct perf_event *child_ctr;
5055
5056         leader = inherit_event(parent_event, parent, parent_ctx,
5057                                  child, NULL, child_ctx);
5058         if (IS_ERR(leader))
5059                 return PTR_ERR(leader);
5060         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5061                 child_ctr = inherit_event(sub, parent, parent_ctx,
5062                                             child, leader, child_ctx);
5063                 if (IS_ERR(child_ctr))
5064                         return PTR_ERR(child_ctr);
5065         }
5066         return 0;
5067 }
5068
5069 static void sync_child_event(struct perf_event *child_event,
5070                                struct task_struct *child)
5071 {
5072         struct perf_event *parent_event = child_event->parent;
5073         u64 child_val;
5074
5075         if (child_event->attr.inherit_stat)
5076                 perf_event_read_event(child_event, child);
5077
5078         child_val = atomic64_read(&child_event->count);
5079
5080         /*
5081          * Add back the child's count to the parent's count:
5082          */
5083         atomic64_add(child_val, &parent_event->count);
5084         atomic64_add(child_event->total_time_enabled,
5085                      &parent_event->child_total_time_enabled);
5086         atomic64_add(child_event->total_time_running,
5087                      &parent_event->child_total_time_running);
5088
5089         /*
5090          * Remove this event from the parent's list
5091          */
5092         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5093         mutex_lock(&parent_event->child_mutex);
5094         list_del_init(&child_event->child_list);
5095         mutex_unlock(&parent_event->child_mutex);
5096
5097         /*
5098          * Release the parent event, if this was the last
5099          * reference to it.
5100          */
5101         fput(parent_event->filp);
5102 }
5103
5104 static void
5105 __perf_event_exit_task(struct perf_event *child_event,
5106                          struct perf_event_context *child_ctx,
5107                          struct task_struct *child)
5108 {
5109         struct perf_event *parent_event;
5110
5111         perf_event_remove_from_context(child_event);
5112
5113         parent_event = child_event->parent;
5114         /*
5115          * It can happen that parent exits first, and has events
5116          * that are still around due to the child reference. These
5117          * events need to be zapped - but otherwise linger.
5118          */
5119         if (parent_event) {
5120                 sync_child_event(child_event, child);
5121                 free_event(child_event);
5122         }
5123 }
5124
5125 /*
5126  * When a child task exits, feed back event values to parent events.
5127  */
5128 void perf_event_exit_task(struct task_struct *child)
5129 {
5130         struct perf_event *child_event, *tmp;
5131         struct perf_event_context *child_ctx;
5132         unsigned long flags;
5133
5134         if (likely(!child->perf_event_ctxp)) {
5135                 perf_event_task(child, NULL, 0);
5136                 return;
5137         }
5138
5139         local_irq_save(flags);
5140         /*
5141          * We can't reschedule here because interrupts are disabled,
5142          * and either child is current or it is a task that can't be
5143          * scheduled, so we are now safe from rescheduling changing
5144          * our context.
5145          */
5146         child_ctx = child->perf_event_ctxp;
5147         __perf_event_task_sched_out(child_ctx);
5148
5149         /*
5150          * Take the context lock here so that if find_get_context is
5151          * reading child->perf_event_ctxp, we wait until it has
5152          * incremented the context's refcount before we do put_ctx below.
5153          */
5154         raw_spin_lock(&child_ctx->lock);
5155         child->perf_event_ctxp = NULL;
5156         /*
5157          * If this context is a clone; unclone it so it can't get
5158          * swapped to another process while we're removing all
5159          * the events from it.
5160          */
5161         unclone_ctx(child_ctx);
5162         update_context_time(child_ctx);
5163         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5164
5165         /*
5166          * Report the task dead after unscheduling the events so that we
5167          * won't get any samples after PERF_RECORD_EXIT. We can however still
5168          * get a few PERF_RECORD_READ events.
5169          */
5170         perf_event_task(child, child_ctx, 0);
5171
5172         /*
5173          * We can recurse on the same lock type through:
5174          *
5175          *   __perf_event_exit_task()
5176          *     sync_child_event()
5177          *       fput(parent_event->filp)
5178          *         perf_release()
5179          *           mutex_lock(&ctx->mutex)
5180          *
5181          * But since its the parent context it won't be the same instance.
5182          */
5183         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5184
5185 again:
5186         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5187                                  group_entry)
5188                 __perf_event_exit_task(child_event, child_ctx, child);
5189
5190         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5191                                  group_entry)
5192                 __perf_event_exit_task(child_event, child_ctx, child);
5193
5194         /*
5195          * If the last event was a group event, it will have appended all
5196          * its siblings to the list, but we obtained 'tmp' before that which
5197          * will still point to the list head terminating the iteration.
5198          */
5199         if (!list_empty(&child_ctx->pinned_groups) ||
5200             !list_empty(&child_ctx->flexible_groups))
5201                 goto again;
5202
5203         mutex_unlock(&child_ctx->mutex);
5204
5205         put_ctx(child_ctx);
5206 }
5207
5208 static void perf_free_event(struct perf_event *event,
5209                             struct perf_event_context *ctx)
5210 {
5211         struct perf_event *parent = event->parent;
5212
5213         if (WARN_ON_ONCE(!parent))
5214                 return;
5215
5216         mutex_lock(&parent->child_mutex);
5217         list_del_init(&event->child_list);
5218         mutex_unlock(&parent->child_mutex);
5219
5220         fput(parent->filp);
5221
5222         list_del_event(event, ctx);
5223         free_event(event);
5224 }
5225
5226 /*
5227  * free an unexposed, unused context as created by inheritance by
5228  * init_task below, used by fork() in case of fail.
5229  */
5230 void perf_event_free_task(struct task_struct *task)
5231 {
5232         struct perf_event_context *ctx = task->perf_event_ctxp;
5233         struct perf_event *event, *tmp;
5234
5235         if (!ctx)
5236                 return;
5237
5238         mutex_lock(&ctx->mutex);
5239 again:
5240         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5241                 perf_free_event(event, ctx);
5242
5243         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5244                                  group_entry)
5245                 perf_free_event(event, ctx);
5246
5247         if (!list_empty(&ctx->pinned_groups) ||
5248             !list_empty(&ctx->flexible_groups))
5249                 goto again;
5250
5251         mutex_unlock(&ctx->mutex);
5252
5253         put_ctx(ctx);
5254 }
5255
5256 static int
5257 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5258                    struct perf_event_context *parent_ctx,
5259                    struct task_struct *child,
5260                    int *inherited_all)
5261 {
5262         int ret;
5263         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5264
5265         if (!event->attr.inherit) {
5266                 *inherited_all = 0;
5267                 return 0;
5268         }
5269
5270         if (!child_ctx) {
5271                 /*
5272                  * This is executed from the parent task context, so
5273                  * inherit events that have been marked for cloning.
5274                  * First allocate and initialize a context for the
5275                  * child.
5276                  */
5277
5278                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5279                                     GFP_KERNEL);
5280                 if (!child_ctx)
5281                         return -ENOMEM;
5282
5283                 __perf_event_init_context(child_ctx, child);
5284                 child->perf_event_ctxp = child_ctx;
5285                 get_task_struct(child);
5286         }
5287
5288         ret = inherit_group(event, parent, parent_ctx,
5289                             child, child_ctx);
5290
5291         if (ret)
5292                 *inherited_all = 0;
5293
5294         return ret;
5295 }
5296
5297
5298 /*
5299  * Initialize the perf_event context in task_struct
5300  */
5301 int perf_event_init_task(struct task_struct *child)
5302 {
5303         struct perf_event_context *child_ctx, *parent_ctx;
5304         struct perf_event_context *cloned_ctx;
5305         struct perf_event *event;
5306         struct task_struct *parent = current;
5307         int inherited_all = 1;
5308         int ret = 0;
5309
5310         child->perf_event_ctxp = NULL;
5311
5312         mutex_init(&child->perf_event_mutex);
5313         INIT_LIST_HEAD(&child->perf_event_list);
5314
5315         if (likely(!parent->perf_event_ctxp))
5316                 return 0;
5317
5318         /*
5319          * If the parent's context is a clone, pin it so it won't get
5320          * swapped under us.
5321          */
5322         parent_ctx = perf_pin_task_context(parent);
5323
5324         /*
5325          * No need to check if parent_ctx != NULL here; since we saw
5326          * it non-NULL earlier, the only reason for it to become NULL
5327          * is if we exit, and since we're currently in the middle of
5328          * a fork we can't be exiting at the same time.
5329          */
5330
5331         /*
5332          * Lock the parent list. No need to lock the child - not PID
5333          * hashed yet and not running, so nobody can access it.
5334          */
5335         mutex_lock(&parent_ctx->mutex);
5336
5337         /*
5338          * We dont have to disable NMIs - we are only looking at
5339          * the list, not manipulating it:
5340          */
5341         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5342                 ret = inherit_task_group(event, parent, parent_ctx, child,
5343                                          &inherited_all);
5344                 if (ret)
5345                         break;
5346         }
5347
5348         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5349                 ret = inherit_task_group(event, parent, parent_ctx, child,
5350                                          &inherited_all);
5351                 if (ret)
5352                         break;
5353         }
5354
5355         child_ctx = child->perf_event_ctxp;
5356
5357         if (child_ctx && inherited_all) {
5358                 /*
5359                  * Mark the child context as a clone of the parent
5360                  * context, or of whatever the parent is a clone of.
5361                  * Note that if the parent is a clone, it could get
5362                  * uncloned at any point, but that doesn't matter
5363                  * because the list of events and the generation
5364                  * count can't have changed since we took the mutex.
5365                  */
5366                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5367                 if (cloned_ctx) {
5368                         child_ctx->parent_ctx = cloned_ctx;
5369                         child_ctx->parent_gen = parent_ctx->parent_gen;
5370                 } else {
5371                         child_ctx->parent_ctx = parent_ctx;
5372                         child_ctx->parent_gen = parent_ctx->generation;
5373                 }
5374                 get_ctx(child_ctx->parent_ctx);
5375         }
5376
5377         mutex_unlock(&parent_ctx->mutex);
5378
5379         perf_unpin_context(parent_ctx);
5380
5381         return ret;
5382 }
5383
5384 static void __init perf_event_init_all_cpus(void)
5385 {
5386         int cpu;
5387         struct perf_cpu_context *cpuctx;
5388
5389         for_each_possible_cpu(cpu) {
5390                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5391                 __perf_event_init_context(&cpuctx->ctx, NULL);
5392         }
5393 }
5394
5395 static void __cpuinit perf_event_init_cpu(int cpu)
5396 {
5397         struct perf_cpu_context *cpuctx;
5398
5399         cpuctx = &per_cpu(perf_cpu_context, cpu);
5400
5401         spin_lock(&perf_resource_lock);
5402         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5403         spin_unlock(&perf_resource_lock);
5404 }
5405
5406 #ifdef CONFIG_HOTPLUG_CPU
5407 static void __perf_event_exit_cpu(void *info)
5408 {
5409         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5410         struct perf_event_context *ctx = &cpuctx->ctx;
5411         struct perf_event *event, *tmp;
5412
5413         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5414                 __perf_event_remove_from_context(event);
5415         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5416                 __perf_event_remove_from_context(event);
5417 }
5418 static void perf_event_exit_cpu(int cpu)
5419 {
5420         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5421         struct perf_event_context *ctx = &cpuctx->ctx;
5422
5423         mutex_lock(&ctx->mutex);
5424         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5425         mutex_unlock(&ctx->mutex);
5426 }
5427 #else
5428 static inline void perf_event_exit_cpu(int cpu) { }
5429 #endif
5430
5431 static int __cpuinit
5432 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5433 {
5434         unsigned int cpu = (long)hcpu;
5435
5436         switch (action) {
5437
5438         case CPU_UP_PREPARE:
5439         case CPU_UP_PREPARE_FROZEN:
5440                 perf_event_init_cpu(cpu);
5441                 break;
5442
5443         case CPU_DOWN_PREPARE:
5444         case CPU_DOWN_PREPARE_FROZEN:
5445                 perf_event_exit_cpu(cpu);
5446                 break;
5447
5448         default:
5449                 break;
5450         }
5451
5452         return NOTIFY_OK;
5453 }
5454
5455 /*
5456  * This has to have a higher priority than migration_notifier in sched.c.
5457  */
5458 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5459         .notifier_call          = perf_cpu_notify,
5460         .priority               = 20,
5461 };
5462
5463 void __init perf_event_init(void)
5464 {
5465         perf_event_init_all_cpus();
5466         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5467                         (void *)(long)smp_processor_id());
5468         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5469                         (void *)(long)smp_processor_id());
5470         register_cpu_notifier(&perf_cpu_nb);
5471 }
5472
5473 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5474                                         struct sysdev_class_attribute *attr,
5475                                         char *buf)
5476 {
5477         return sprintf(buf, "%d\n", perf_reserved_percpu);
5478 }
5479
5480 static ssize_t
5481 perf_set_reserve_percpu(struct sysdev_class *class,
5482                         struct sysdev_class_attribute *attr,
5483                         const char *buf,
5484                         size_t count)
5485 {
5486         struct perf_cpu_context *cpuctx;
5487         unsigned long val;
5488         int err, cpu, mpt;
5489
5490         err = strict_strtoul(buf, 10, &val);
5491         if (err)
5492                 return err;
5493         if (val > perf_max_events)
5494                 return -EINVAL;
5495
5496         spin_lock(&perf_resource_lock);
5497         perf_reserved_percpu = val;
5498         for_each_online_cpu(cpu) {
5499                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5500                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5501                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5502                           perf_max_events - perf_reserved_percpu);
5503                 cpuctx->max_pertask = mpt;
5504                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5505         }
5506         spin_unlock(&perf_resource_lock);
5507
5508         return count;
5509 }
5510
5511 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5512                                     struct sysdev_class_attribute *attr,
5513                                     char *buf)
5514 {
5515         return sprintf(buf, "%d\n", perf_overcommit);
5516 }
5517
5518 static ssize_t
5519 perf_set_overcommit(struct sysdev_class *class,
5520                     struct sysdev_class_attribute *attr,
5521                     const char *buf, size_t count)
5522 {
5523         unsigned long val;
5524         int err;
5525
5526         err = strict_strtoul(buf, 10, &val);
5527         if (err)
5528                 return err;
5529         if (val > 1)
5530                 return -EINVAL;
5531
5532         spin_lock(&perf_resource_lock);
5533         perf_overcommit = val;
5534         spin_unlock(&perf_resource_lock);
5535
5536         return count;
5537 }
5538
5539 static SYSDEV_CLASS_ATTR(
5540                                 reserve_percpu,
5541                                 0644,
5542                                 perf_show_reserve_percpu,
5543                                 perf_set_reserve_percpu
5544                         );
5545
5546 static SYSDEV_CLASS_ATTR(
5547                                 overcommit,
5548                                 0644,
5549                                 perf_show_overcommit,
5550                                 perf_set_overcommit
5551                         );
5552
5553 static struct attribute *perfclass_attrs[] = {
5554         &attr_reserve_percpu.attr,
5555         &attr_overcommit.attr,
5556         NULL
5557 };
5558
5559 static struct attribute_group perfclass_attr_group = {
5560         .attrs                  = perfclass_attrs,
5561         .name                   = "perf_events",
5562 };
5563
5564 static int __init perf_event_sysfs_init(void)
5565 {
5566         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5567                                   &perfclass_attr_group);
5568 }
5569 device_initcall(perf_event_sysfs_init);