028619dd6d0ea4615f0363bda96986302cd1e5af
[safe/jmp/linux-2.6] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37  * Each CPU has a list of per CPU events:
38  */
39 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51  * perf event paranoia level:
52  *  -1 - not paranoid at all
53  *   0 - disallow raw tracepoint access for unpriv
54  *   1 - disallow cpu events for unpriv
55  *   2 - disallow kernel profiling for unpriv
56  */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 static inline bool perf_paranoid_tracepoint_raw(void)
60 {
61         return sysctl_perf_event_paranoid > -1;
62 }
63
64 static inline bool perf_paranoid_cpu(void)
65 {
66         return sysctl_perf_event_paranoid > 0;
67 }
68
69 static inline bool perf_paranoid_kernel(void)
70 {
71         return sysctl_perf_event_paranoid > 1;
72 }
73
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76 /*
77  * max perf event sample rate
78  */
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81 static atomic64_t perf_event_id;
82
83 /*
84  * Lock for (sysadmin-configurable) event reservations:
85  */
86 static DEFINE_SPINLOCK(perf_resource_lock);
87
88 /*
89  * Architecture provided APIs - weak aliases:
90  */
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92 {
93         return NULL;
94 }
95
96 void __weak hw_perf_disable(void)               { barrier(); }
97 void __weak hw_perf_enable(void)                { barrier(); }
98
99 void __weak hw_perf_event_setup(int cpu)        { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104                struct perf_cpu_context *cpuctx,
105                struct perf_event_context *ctx, int cpu)
106 {
107         return 0;
108 }
109
110 void __weak perf_event_print_debug(void)        { }
111
112 static DEFINE_PER_CPU(int, perf_disable_count);
113
114 void __perf_disable(void)
115 {
116         __get_cpu_var(perf_disable_count)++;
117 }
118
119 bool __perf_enable(void)
120 {
121         return !--__get_cpu_var(perf_disable_count);
122 }
123
124 void perf_disable(void)
125 {
126         __perf_disable();
127         hw_perf_disable();
128 }
129
130 void perf_enable(void)
131 {
132         if (__perf_enable())
133                 hw_perf_enable();
134 }
135
136 static void get_ctx(struct perf_event_context *ctx)
137 {
138         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 }
140
141 static void free_ctx(struct rcu_head *head)
142 {
143         struct perf_event_context *ctx;
144
145         ctx = container_of(head, struct perf_event_context, rcu_head);
146         kfree(ctx);
147 }
148
149 static void put_ctx(struct perf_event_context *ctx)
150 {
151         if (atomic_dec_and_test(&ctx->refcount)) {
152                 if (ctx->parent_ctx)
153                         put_ctx(ctx->parent_ctx);
154                 if (ctx->task)
155                         put_task_struct(ctx->task);
156                 call_rcu(&ctx->rcu_head, free_ctx);
157         }
158 }
159
160 static void unclone_ctx(struct perf_event_context *ctx)
161 {
162         if (ctx->parent_ctx) {
163                 put_ctx(ctx->parent_ctx);
164                 ctx->parent_ctx = NULL;
165         }
166 }
167
168 /*
169  * If we inherit events we want to return the parent event id
170  * to userspace.
171  */
172 static u64 primary_event_id(struct perf_event *event)
173 {
174         u64 id = event->id;
175
176         if (event->parent)
177                 id = event->parent->id;
178
179         return id;
180 }
181
182 /*
183  * Get the perf_event_context for a task and lock it.
184  * This has to cope with with the fact that until it is locked,
185  * the context could get moved to another task.
186  */
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189 {
190         struct perf_event_context *ctx;
191
192         rcu_read_lock();
193  retry:
194         ctx = rcu_dereference(task->perf_event_ctxp);
195         if (ctx) {
196                 /*
197                  * If this context is a clone of another, it might
198                  * get swapped for another underneath us by
199                  * perf_event_task_sched_out, though the
200                  * rcu_read_lock() protects us from any context
201                  * getting freed.  Lock the context and check if it
202                  * got swapped before we could get the lock, and retry
203                  * if so.  If we locked the right context, then it
204                  * can't get swapped on us any more.
205                  */
206                 spin_lock_irqsave(&ctx->lock, *flags);
207                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208                         spin_unlock_irqrestore(&ctx->lock, *flags);
209                         goto retry;
210                 }
211
212                 if (!atomic_inc_not_zero(&ctx->refcount)) {
213                         spin_unlock_irqrestore(&ctx->lock, *flags);
214                         ctx = NULL;
215                 }
216         }
217         rcu_read_unlock();
218         return ctx;
219 }
220
221 /*
222  * Get the context for a task and increment its pin_count so it
223  * can't get swapped to another task.  This also increments its
224  * reference count so that the context can't get freed.
225  */
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227 {
228         struct perf_event_context *ctx;
229         unsigned long flags;
230
231         ctx = perf_lock_task_context(task, &flags);
232         if (ctx) {
233                 ++ctx->pin_count;
234                 spin_unlock_irqrestore(&ctx->lock, flags);
235         }
236         return ctx;
237 }
238
239 static void perf_unpin_context(struct perf_event_context *ctx)
240 {
241         unsigned long flags;
242
243         spin_lock_irqsave(&ctx->lock, flags);
244         --ctx->pin_count;
245         spin_unlock_irqrestore(&ctx->lock, flags);
246         put_ctx(ctx);
247 }
248
249 /*
250  * Add a event from the lists for its context.
251  * Must be called with ctx->mutex and ctx->lock held.
252  */
253 static void
254 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255 {
256         struct perf_event *group_leader = event->group_leader;
257
258         /*
259          * Depending on whether it is a standalone or sibling event,
260          * add it straight to the context's event list, or to the group
261          * leader's sibling list:
262          */
263         if (group_leader == event)
264                 list_add_tail(&event->group_entry, &ctx->group_list);
265         else {
266                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267                 group_leader->nr_siblings++;
268         }
269
270         list_add_rcu(&event->event_entry, &ctx->event_list);
271         ctx->nr_events++;
272         if (event->attr.inherit_stat)
273                 ctx->nr_stat++;
274 }
275
276 /*
277  * Remove a event from the lists for its context.
278  * Must be called with ctx->mutex and ctx->lock held.
279  */
280 static void
281 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282 {
283         struct perf_event *sibling, *tmp;
284
285         if (list_empty(&event->group_entry))
286                 return;
287         ctx->nr_events--;
288         if (event->attr.inherit_stat)
289                 ctx->nr_stat--;
290
291         list_del_init(&event->group_entry);
292         list_del_rcu(&event->event_entry);
293
294         if (event->group_leader != event)
295                 event->group_leader->nr_siblings--;
296
297         /*
298          * If this was a group event with sibling events then
299          * upgrade the siblings to singleton events by adding them
300          * to the context list directly:
301          */
302         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303
304                 list_move_tail(&sibling->group_entry, &ctx->group_list);
305                 sibling->group_leader = sibling;
306         }
307 }
308
309 static void
310 event_sched_out(struct perf_event *event,
311                   struct perf_cpu_context *cpuctx,
312                   struct perf_event_context *ctx)
313 {
314         if (event->state != PERF_EVENT_STATE_ACTIVE)
315                 return;
316
317         event->state = PERF_EVENT_STATE_INACTIVE;
318         if (event->pending_disable) {
319                 event->pending_disable = 0;
320                 event->state = PERF_EVENT_STATE_OFF;
321         }
322         event->tstamp_stopped = ctx->time;
323         event->pmu->disable(event);
324         event->oncpu = -1;
325
326         if (!is_software_event(event))
327                 cpuctx->active_oncpu--;
328         ctx->nr_active--;
329         if (event->attr.exclusive || !cpuctx->active_oncpu)
330                 cpuctx->exclusive = 0;
331 }
332
333 static void
334 group_sched_out(struct perf_event *group_event,
335                 struct perf_cpu_context *cpuctx,
336                 struct perf_event_context *ctx)
337 {
338         struct perf_event *event;
339
340         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341                 return;
342
343         event_sched_out(group_event, cpuctx, ctx);
344
345         /*
346          * Schedule out siblings (if any):
347          */
348         list_for_each_entry(event, &group_event->sibling_list, group_entry)
349                 event_sched_out(event, cpuctx, ctx);
350
351         if (group_event->attr.exclusive)
352                 cpuctx->exclusive = 0;
353 }
354
355 /*
356  * Cross CPU call to remove a performance event
357  *
358  * We disable the event on the hardware level first. After that we
359  * remove it from the context list.
360  */
361 static void __perf_event_remove_from_context(void *info)
362 {
363         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364         struct perf_event *event = info;
365         struct perf_event_context *ctx = event->ctx;
366
367         /*
368          * If this is a task context, we need to check whether it is
369          * the current task context of this cpu. If not it has been
370          * scheduled out before the smp call arrived.
371          */
372         if (ctx->task && cpuctx->task_ctx != ctx)
373                 return;
374
375         spin_lock(&ctx->lock);
376         /*
377          * Protect the list operation against NMI by disabling the
378          * events on a global level.
379          */
380         perf_disable();
381
382         event_sched_out(event, cpuctx, ctx);
383
384         list_del_event(event, ctx);
385
386         if (!ctx->task) {
387                 /*
388                  * Allow more per task events with respect to the
389                  * reservation:
390                  */
391                 cpuctx->max_pertask =
392                         min(perf_max_events - ctx->nr_events,
393                             perf_max_events - perf_reserved_percpu);
394         }
395
396         perf_enable();
397         spin_unlock(&ctx->lock);
398 }
399
400
401 /*
402  * Remove the event from a task's (or a CPU's) list of events.
403  *
404  * Must be called with ctx->mutex held.
405  *
406  * CPU events are removed with a smp call. For task events we only
407  * call when the task is on a CPU.
408  *
409  * If event->ctx is a cloned context, callers must make sure that
410  * every task struct that event->ctx->task could possibly point to
411  * remains valid.  This is OK when called from perf_release since
412  * that only calls us on the top-level context, which can't be a clone.
413  * When called from perf_event_exit_task, it's OK because the
414  * context has been detached from its task.
415  */
416 static void perf_event_remove_from_context(struct perf_event *event)
417 {
418         struct perf_event_context *ctx = event->ctx;
419         struct task_struct *task = ctx->task;
420
421         if (!task) {
422                 /*
423                  * Per cpu events are removed via an smp call and
424                  * the removal is always sucessful.
425                  */
426                 smp_call_function_single(event->cpu,
427                                          __perf_event_remove_from_context,
428                                          event, 1);
429                 return;
430         }
431
432 retry:
433         task_oncpu_function_call(task, __perf_event_remove_from_context,
434                                  event);
435
436         spin_lock_irq(&ctx->lock);
437         /*
438          * If the context is active we need to retry the smp call.
439          */
440         if (ctx->nr_active && !list_empty(&event->group_entry)) {
441                 spin_unlock_irq(&ctx->lock);
442                 goto retry;
443         }
444
445         /*
446          * The lock prevents that this context is scheduled in so we
447          * can remove the event safely, if the call above did not
448          * succeed.
449          */
450         if (!list_empty(&event->group_entry)) {
451                 list_del_event(event, ctx);
452         }
453         spin_unlock_irq(&ctx->lock);
454 }
455
456 static inline u64 perf_clock(void)
457 {
458         return cpu_clock(smp_processor_id());
459 }
460
461 /*
462  * Update the record of the current time in a context.
463  */
464 static void update_context_time(struct perf_event_context *ctx)
465 {
466         u64 now = perf_clock();
467
468         ctx->time += now - ctx->timestamp;
469         ctx->timestamp = now;
470 }
471
472 /*
473  * Update the total_time_enabled and total_time_running fields for a event.
474  */
475 static void update_event_times(struct perf_event *event)
476 {
477         struct perf_event_context *ctx = event->ctx;
478         u64 run_end;
479
480         if (event->state < PERF_EVENT_STATE_INACTIVE ||
481             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482                 return;
483
484         event->total_time_enabled = ctx->time - event->tstamp_enabled;
485
486         if (event->state == PERF_EVENT_STATE_INACTIVE)
487                 run_end = event->tstamp_stopped;
488         else
489                 run_end = ctx->time;
490
491         event->total_time_running = run_end - event->tstamp_running;
492 }
493
494 /*
495  * Update total_time_enabled and total_time_running for all events in a group.
496  */
497 static void update_group_times(struct perf_event *leader)
498 {
499         struct perf_event *event;
500
501         update_event_times(leader);
502         list_for_each_entry(event, &leader->sibling_list, group_entry)
503                 update_event_times(event);
504 }
505
506 /*
507  * Cross CPU call to disable a performance event
508  */
509 static void __perf_event_disable(void *info)
510 {
511         struct perf_event *event = info;
512         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513         struct perf_event_context *ctx = event->ctx;
514
515         /*
516          * If this is a per-task event, need to check whether this
517          * event's task is the current task on this cpu.
518          */
519         if (ctx->task && cpuctx->task_ctx != ctx)
520                 return;
521
522         spin_lock(&ctx->lock);
523
524         /*
525          * If the event is on, turn it off.
526          * If it is in error state, leave it in error state.
527          */
528         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529                 update_context_time(ctx);
530                 update_group_times(event);
531                 if (event == event->group_leader)
532                         group_sched_out(event, cpuctx, ctx);
533                 else
534                         event_sched_out(event, cpuctx, ctx);
535                 event->state = PERF_EVENT_STATE_OFF;
536         }
537
538         spin_unlock(&ctx->lock);
539 }
540
541 /*
542  * Disable a event.
543  *
544  * If event->ctx is a cloned context, callers must make sure that
545  * every task struct that event->ctx->task could possibly point to
546  * remains valid.  This condition is satisifed when called through
547  * perf_event_for_each_child or perf_event_for_each because they
548  * hold the top-level event's child_mutex, so any descendant that
549  * goes to exit will block in sync_child_event.
550  * When called from perf_pending_event it's OK because event->ctx
551  * is the current context on this CPU and preemption is disabled,
552  * hence we can't get into perf_event_task_sched_out for this context.
553  */
554 static void perf_event_disable(struct perf_event *event)
555 {
556         struct perf_event_context *ctx = event->ctx;
557         struct task_struct *task = ctx->task;
558
559         if (!task) {
560                 /*
561                  * Disable the event on the cpu that it's on
562                  */
563                 smp_call_function_single(event->cpu, __perf_event_disable,
564                                          event, 1);
565                 return;
566         }
567
568  retry:
569         task_oncpu_function_call(task, __perf_event_disable, event);
570
571         spin_lock_irq(&ctx->lock);
572         /*
573          * If the event is still active, we need to retry the cross-call.
574          */
575         if (event->state == PERF_EVENT_STATE_ACTIVE) {
576                 spin_unlock_irq(&ctx->lock);
577                 goto retry;
578         }
579
580         /*
581          * Since we have the lock this context can't be scheduled
582          * in, so we can change the state safely.
583          */
584         if (event->state == PERF_EVENT_STATE_INACTIVE) {
585                 update_group_times(event);
586                 event->state = PERF_EVENT_STATE_OFF;
587         }
588
589         spin_unlock_irq(&ctx->lock);
590 }
591
592 static int
593 event_sched_in(struct perf_event *event,
594                  struct perf_cpu_context *cpuctx,
595                  struct perf_event_context *ctx,
596                  int cpu)
597 {
598         if (event->state <= PERF_EVENT_STATE_OFF)
599                 return 0;
600
601         event->state = PERF_EVENT_STATE_ACTIVE;
602         event->oncpu = cpu;     /* TODO: put 'cpu' into cpuctx->cpu */
603         /*
604          * The new state must be visible before we turn it on in the hardware:
605          */
606         smp_wmb();
607
608         if (event->pmu->enable(event)) {
609                 event->state = PERF_EVENT_STATE_INACTIVE;
610                 event->oncpu = -1;
611                 return -EAGAIN;
612         }
613
614         event->tstamp_running += ctx->time - event->tstamp_stopped;
615
616         if (!is_software_event(event))
617                 cpuctx->active_oncpu++;
618         ctx->nr_active++;
619
620         if (event->attr.exclusive)
621                 cpuctx->exclusive = 1;
622
623         return 0;
624 }
625
626 static int
627 group_sched_in(struct perf_event *group_event,
628                struct perf_cpu_context *cpuctx,
629                struct perf_event_context *ctx,
630                int cpu)
631 {
632         struct perf_event *event, *partial_group;
633         int ret;
634
635         if (group_event->state == PERF_EVENT_STATE_OFF)
636                 return 0;
637
638         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639         if (ret)
640                 return ret < 0 ? ret : 0;
641
642         if (event_sched_in(group_event, cpuctx, ctx, cpu))
643                 return -EAGAIN;
644
645         /*
646          * Schedule in siblings as one group (if any):
647          */
648         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649                 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650                         partial_group = event;
651                         goto group_error;
652                 }
653         }
654
655         return 0;
656
657 group_error:
658         /*
659          * Groups can be scheduled in as one unit only, so undo any
660          * partial group before returning:
661          */
662         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663                 if (event == partial_group)
664                         break;
665                 event_sched_out(event, cpuctx, ctx);
666         }
667         event_sched_out(group_event, cpuctx, ctx);
668
669         return -EAGAIN;
670 }
671
672 /*
673  * Return 1 for a group consisting entirely of software events,
674  * 0 if the group contains any hardware events.
675  */
676 static int is_software_only_group(struct perf_event *leader)
677 {
678         struct perf_event *event;
679
680         if (!is_software_event(leader))
681                 return 0;
682
683         list_for_each_entry(event, &leader->sibling_list, group_entry)
684                 if (!is_software_event(event))
685                         return 0;
686
687         return 1;
688 }
689
690 /*
691  * Work out whether we can put this event group on the CPU now.
692  */
693 static int group_can_go_on(struct perf_event *event,
694                            struct perf_cpu_context *cpuctx,
695                            int can_add_hw)
696 {
697         /*
698          * Groups consisting entirely of software events can always go on.
699          */
700         if (is_software_only_group(event))
701                 return 1;
702         /*
703          * If an exclusive group is already on, no other hardware
704          * events can go on.
705          */
706         if (cpuctx->exclusive)
707                 return 0;
708         /*
709          * If this group is exclusive and there are already
710          * events on the CPU, it can't go on.
711          */
712         if (event->attr.exclusive && cpuctx->active_oncpu)
713                 return 0;
714         /*
715          * Otherwise, try to add it if all previous groups were able
716          * to go on.
717          */
718         return can_add_hw;
719 }
720
721 static void add_event_to_ctx(struct perf_event *event,
722                                struct perf_event_context *ctx)
723 {
724         list_add_event(event, ctx);
725         event->tstamp_enabled = ctx->time;
726         event->tstamp_running = ctx->time;
727         event->tstamp_stopped = ctx->time;
728 }
729
730 /*
731  * Cross CPU call to install and enable a performance event
732  *
733  * Must be called with ctx->mutex held
734  */
735 static void __perf_install_in_context(void *info)
736 {
737         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738         struct perf_event *event = info;
739         struct perf_event_context *ctx = event->ctx;
740         struct perf_event *leader = event->group_leader;
741         int cpu = smp_processor_id();
742         int err;
743
744         /*
745          * If this is a task context, we need to check whether it is
746          * the current task context of this cpu. If not it has been
747          * scheduled out before the smp call arrived.
748          * Or possibly this is the right context but it isn't
749          * on this cpu because it had no events.
750          */
751         if (ctx->task && cpuctx->task_ctx != ctx) {
752                 if (cpuctx->task_ctx || ctx->task != current)
753                         return;
754                 cpuctx->task_ctx = ctx;
755         }
756
757         spin_lock(&ctx->lock);
758         ctx->is_active = 1;
759         update_context_time(ctx);
760
761         /*
762          * Protect the list operation against NMI by disabling the
763          * events on a global level. NOP for non NMI based events.
764          */
765         perf_disable();
766
767         add_event_to_ctx(event, ctx);
768
769         /*
770          * Don't put the event on if it is disabled or if
771          * it is in a group and the group isn't on.
772          */
773         if (event->state != PERF_EVENT_STATE_INACTIVE ||
774             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775                 goto unlock;
776
777         /*
778          * An exclusive event can't go on if there are already active
779          * hardware events, and no hardware event can go on if there
780          * is already an exclusive event on.
781          */
782         if (!group_can_go_on(event, cpuctx, 1))
783                 err = -EEXIST;
784         else
785                 err = event_sched_in(event, cpuctx, ctx, cpu);
786
787         if (err) {
788                 /*
789                  * This event couldn't go on.  If it is in a group
790                  * then we have to pull the whole group off.
791                  * If the event group is pinned then put it in error state.
792                  */
793                 if (leader != event)
794                         group_sched_out(leader, cpuctx, ctx);
795                 if (leader->attr.pinned) {
796                         update_group_times(leader);
797                         leader->state = PERF_EVENT_STATE_ERROR;
798                 }
799         }
800
801         if (!err && !ctx->task && cpuctx->max_pertask)
802                 cpuctx->max_pertask--;
803
804  unlock:
805         perf_enable();
806
807         spin_unlock(&ctx->lock);
808 }
809
810 /*
811  * Attach a performance event to a context
812  *
813  * First we add the event to the list with the hardware enable bit
814  * in event->hw_config cleared.
815  *
816  * If the event is attached to a task which is on a CPU we use a smp
817  * call to enable it in the task context. The task might have been
818  * scheduled away, but we check this in the smp call again.
819  *
820  * Must be called with ctx->mutex held.
821  */
822 static void
823 perf_install_in_context(struct perf_event_context *ctx,
824                         struct perf_event *event,
825                         int cpu)
826 {
827         struct task_struct *task = ctx->task;
828
829         if (!task) {
830                 /*
831                  * Per cpu events are installed via an smp call and
832                  * the install is always sucessful.
833                  */
834                 smp_call_function_single(cpu, __perf_install_in_context,
835                                          event, 1);
836                 return;
837         }
838
839 retry:
840         task_oncpu_function_call(task, __perf_install_in_context,
841                                  event);
842
843         spin_lock_irq(&ctx->lock);
844         /*
845          * we need to retry the smp call.
846          */
847         if (ctx->is_active && list_empty(&event->group_entry)) {
848                 spin_unlock_irq(&ctx->lock);
849                 goto retry;
850         }
851
852         /*
853          * The lock prevents that this context is scheduled in so we
854          * can add the event safely, if it the call above did not
855          * succeed.
856          */
857         if (list_empty(&event->group_entry))
858                 add_event_to_ctx(event, ctx);
859         spin_unlock_irq(&ctx->lock);
860 }
861
862 /*
863  * Put a event into inactive state and update time fields.
864  * Enabling the leader of a group effectively enables all
865  * the group members that aren't explicitly disabled, so we
866  * have to update their ->tstamp_enabled also.
867  * Note: this works for group members as well as group leaders
868  * since the non-leader members' sibling_lists will be empty.
869  */
870 static void __perf_event_mark_enabled(struct perf_event *event,
871                                         struct perf_event_context *ctx)
872 {
873         struct perf_event *sub;
874
875         event->state = PERF_EVENT_STATE_INACTIVE;
876         event->tstamp_enabled = ctx->time - event->total_time_enabled;
877         list_for_each_entry(sub, &event->sibling_list, group_entry)
878                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879                         sub->tstamp_enabled =
880                                 ctx->time - sub->total_time_enabled;
881 }
882
883 /*
884  * Cross CPU call to enable a performance event
885  */
886 static void __perf_event_enable(void *info)
887 {
888         struct perf_event *event = info;
889         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890         struct perf_event_context *ctx = event->ctx;
891         struct perf_event *leader = event->group_leader;
892         int err;
893
894         /*
895          * If this is a per-task event, need to check whether this
896          * event's task is the current task on this cpu.
897          */
898         if (ctx->task && cpuctx->task_ctx != ctx) {
899                 if (cpuctx->task_ctx || ctx->task != current)
900                         return;
901                 cpuctx->task_ctx = ctx;
902         }
903
904         spin_lock(&ctx->lock);
905         ctx->is_active = 1;
906         update_context_time(ctx);
907
908         if (event->state >= PERF_EVENT_STATE_INACTIVE)
909                 goto unlock;
910         __perf_event_mark_enabled(event, ctx);
911
912         /*
913          * If the event is in a group and isn't the group leader,
914          * then don't put it on unless the group is on.
915          */
916         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917                 goto unlock;
918
919         if (!group_can_go_on(event, cpuctx, 1)) {
920                 err = -EEXIST;
921         } else {
922                 perf_disable();
923                 if (event == leader)
924                         err = group_sched_in(event, cpuctx, ctx,
925                                              smp_processor_id());
926                 else
927                         err = event_sched_in(event, cpuctx, ctx,
928                                                smp_processor_id());
929                 perf_enable();
930         }
931
932         if (err) {
933                 /*
934                  * If this event can't go on and it's part of a
935                  * group, then the whole group has to come off.
936                  */
937                 if (leader != event)
938                         group_sched_out(leader, cpuctx, ctx);
939                 if (leader->attr.pinned) {
940                         update_group_times(leader);
941                         leader->state = PERF_EVENT_STATE_ERROR;
942                 }
943         }
944
945  unlock:
946         spin_unlock(&ctx->lock);
947 }
948
949 /*
950  * Enable a event.
951  *
952  * If event->ctx is a cloned context, callers must make sure that
953  * every task struct that event->ctx->task could possibly point to
954  * remains valid.  This condition is satisfied when called through
955  * perf_event_for_each_child or perf_event_for_each as described
956  * for perf_event_disable.
957  */
958 static void perf_event_enable(struct perf_event *event)
959 {
960         struct perf_event_context *ctx = event->ctx;
961         struct task_struct *task = ctx->task;
962
963         if (!task) {
964                 /*
965                  * Enable the event on the cpu that it's on
966                  */
967                 smp_call_function_single(event->cpu, __perf_event_enable,
968                                          event, 1);
969                 return;
970         }
971
972         spin_lock_irq(&ctx->lock);
973         if (event->state >= PERF_EVENT_STATE_INACTIVE)
974                 goto out;
975
976         /*
977          * If the event is in error state, clear that first.
978          * That way, if we see the event in error state below, we
979          * know that it has gone back into error state, as distinct
980          * from the task having been scheduled away before the
981          * cross-call arrived.
982          */
983         if (event->state == PERF_EVENT_STATE_ERROR)
984                 event->state = PERF_EVENT_STATE_OFF;
985
986  retry:
987         spin_unlock_irq(&ctx->lock);
988         task_oncpu_function_call(task, __perf_event_enable, event);
989
990         spin_lock_irq(&ctx->lock);
991
992         /*
993          * If the context is active and the event is still off,
994          * we need to retry the cross-call.
995          */
996         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997                 goto retry;
998
999         /*
1000          * Since we have the lock this context can't be scheduled
1001          * in, so we can change the state safely.
1002          */
1003         if (event->state == PERF_EVENT_STATE_OFF)
1004                 __perf_event_mark_enabled(event, ctx);
1005
1006  out:
1007         spin_unlock_irq(&ctx->lock);
1008 }
1009
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1011 {
1012         /*
1013          * not supported on inherited events
1014          */
1015         if (event->attr.inherit)
1016                 return -EINVAL;
1017
1018         atomic_add(refresh, &event->event_limit);
1019         perf_event_enable(event);
1020
1021         return 0;
1022 }
1023
1024 void __perf_event_sched_out(struct perf_event_context *ctx,
1025                               struct perf_cpu_context *cpuctx)
1026 {
1027         struct perf_event *event;
1028
1029         spin_lock(&ctx->lock);
1030         ctx->is_active = 0;
1031         if (likely(!ctx->nr_events))
1032                 goto out;
1033         update_context_time(ctx);
1034
1035         perf_disable();
1036         if (ctx->nr_active)
1037                 list_for_each_entry(event, &ctx->group_list, group_entry)
1038                         group_sched_out(event, cpuctx, ctx);
1039
1040         perf_enable();
1041  out:
1042         spin_unlock(&ctx->lock);
1043 }
1044
1045 /*
1046  * Test whether two contexts are equivalent, i.e. whether they
1047  * have both been cloned from the same version of the same context
1048  * and they both have the same number of enabled events.
1049  * If the number of enabled events is the same, then the set
1050  * of enabled events should be the same, because these are both
1051  * inherited contexts, therefore we can't access individual events
1052  * in them directly with an fd; we can only enable/disable all
1053  * events via prctl, or enable/disable all events in a family
1054  * via ioctl, which will have the same effect on both contexts.
1055  */
1056 static int context_equiv(struct perf_event_context *ctx1,
1057                          struct perf_event_context *ctx2)
1058 {
1059         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060                 && ctx1->parent_gen == ctx2->parent_gen
1061                 && !ctx1->pin_count && !ctx2->pin_count;
1062 }
1063
1064 static void __perf_event_sync_stat(struct perf_event *event,
1065                                      struct perf_event *next_event)
1066 {
1067         u64 value;
1068
1069         if (!event->attr.inherit_stat)
1070                 return;
1071
1072         /*
1073          * Update the event value, we cannot use perf_event_read()
1074          * because we're in the middle of a context switch and have IRQs
1075          * disabled, which upsets smp_call_function_single(), however
1076          * we know the event must be on the current CPU, therefore we
1077          * don't need to use it.
1078          */
1079         switch (event->state) {
1080         case PERF_EVENT_STATE_ACTIVE:
1081                 event->pmu->read(event);
1082                 /* fall-through */
1083
1084         case PERF_EVENT_STATE_INACTIVE:
1085                 update_event_times(event);
1086                 break;
1087
1088         default:
1089                 break;
1090         }
1091
1092         /*
1093          * In order to keep per-task stats reliable we need to flip the event
1094          * values when we flip the contexts.
1095          */
1096         value = atomic64_read(&next_event->count);
1097         value = atomic64_xchg(&event->count, value);
1098         atomic64_set(&next_event->count, value);
1099
1100         swap(event->total_time_enabled, next_event->total_time_enabled);
1101         swap(event->total_time_running, next_event->total_time_running);
1102
1103         /*
1104          * Since we swizzled the values, update the user visible data too.
1105          */
1106         perf_event_update_userpage(event);
1107         perf_event_update_userpage(next_event);
1108 }
1109
1110 #define list_next_entry(pos, member) \
1111         list_entry(pos->member.next, typeof(*pos), member)
1112
1113 static void perf_event_sync_stat(struct perf_event_context *ctx,
1114                                    struct perf_event_context *next_ctx)
1115 {
1116         struct perf_event *event, *next_event;
1117
1118         if (!ctx->nr_stat)
1119                 return;
1120
1121         update_context_time(ctx);
1122
1123         event = list_first_entry(&ctx->event_list,
1124                                    struct perf_event, event_entry);
1125
1126         next_event = list_first_entry(&next_ctx->event_list,
1127                                         struct perf_event, event_entry);
1128
1129         while (&event->event_entry != &ctx->event_list &&
1130                &next_event->event_entry != &next_ctx->event_list) {
1131
1132                 __perf_event_sync_stat(event, next_event);
1133
1134                 event = list_next_entry(event, event_entry);
1135                 next_event = list_next_entry(next_event, event_entry);
1136         }
1137 }
1138
1139 /*
1140  * Called from scheduler to remove the events of the current task,
1141  * with interrupts disabled.
1142  *
1143  * We stop each event and update the event value in event->count.
1144  *
1145  * This does not protect us against NMI, but disable()
1146  * sets the disabled bit in the control field of event _before_
1147  * accessing the event control register. If a NMI hits, then it will
1148  * not restart the event.
1149  */
1150 void perf_event_task_sched_out(struct task_struct *task,
1151                                  struct task_struct *next, int cpu)
1152 {
1153         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154         struct perf_event_context *ctx = task->perf_event_ctxp;
1155         struct perf_event_context *next_ctx;
1156         struct perf_event_context *parent;
1157         struct pt_regs *regs;
1158         int do_switch = 1;
1159
1160         regs = task_pt_regs(task);
1161         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162
1163         if (likely(!ctx || !cpuctx->task_ctx))
1164                 return;
1165
1166         rcu_read_lock();
1167         parent = rcu_dereference(ctx->parent_ctx);
1168         next_ctx = next->perf_event_ctxp;
1169         if (parent && next_ctx &&
1170             rcu_dereference(next_ctx->parent_ctx) == parent) {
1171                 /*
1172                  * Looks like the two contexts are clones, so we might be
1173                  * able to optimize the context switch.  We lock both
1174                  * contexts and check that they are clones under the
1175                  * lock (including re-checking that neither has been
1176                  * uncloned in the meantime).  It doesn't matter which
1177                  * order we take the locks because no other cpu could
1178                  * be trying to lock both of these tasks.
1179                  */
1180                 spin_lock(&ctx->lock);
1181                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182                 if (context_equiv(ctx, next_ctx)) {
1183                         /*
1184                          * XXX do we need a memory barrier of sorts
1185                          * wrt to rcu_dereference() of perf_event_ctxp
1186                          */
1187                         task->perf_event_ctxp = next_ctx;
1188                         next->perf_event_ctxp = ctx;
1189                         ctx->task = next;
1190                         next_ctx->task = task;
1191                         do_switch = 0;
1192
1193                         perf_event_sync_stat(ctx, next_ctx);
1194                 }
1195                 spin_unlock(&next_ctx->lock);
1196                 spin_unlock(&ctx->lock);
1197         }
1198         rcu_read_unlock();
1199
1200         if (do_switch) {
1201                 __perf_event_sched_out(ctx, cpuctx);
1202                 cpuctx->task_ctx = NULL;
1203         }
1204 }
1205
1206 /*
1207  * Called with IRQs disabled
1208  */
1209 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 {
1211         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1212
1213         if (!cpuctx->task_ctx)
1214                 return;
1215
1216         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217                 return;
1218
1219         __perf_event_sched_out(ctx, cpuctx);
1220         cpuctx->task_ctx = NULL;
1221 }
1222
1223 /*
1224  * Called with IRQs disabled
1225  */
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227 {
1228         __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 }
1230
1231 static void
1232 __perf_event_sched_in(struct perf_event_context *ctx,
1233                         struct perf_cpu_context *cpuctx, int cpu)
1234 {
1235         struct perf_event *event;
1236         int can_add_hw = 1;
1237
1238         spin_lock(&ctx->lock);
1239         ctx->is_active = 1;
1240         if (likely(!ctx->nr_events))
1241                 goto out;
1242
1243         ctx->timestamp = perf_clock();
1244
1245         perf_disable();
1246
1247         /*
1248          * First go through the list and put on any pinned groups
1249          * in order to give them the best chance of going on.
1250          */
1251         list_for_each_entry(event, &ctx->group_list, group_entry) {
1252                 if (event->state <= PERF_EVENT_STATE_OFF ||
1253                     !event->attr.pinned)
1254                         continue;
1255                 if (event->cpu != -1 && event->cpu != cpu)
1256                         continue;
1257
1258                 if (group_can_go_on(event, cpuctx, 1))
1259                         group_sched_in(event, cpuctx, ctx, cpu);
1260
1261                 /*
1262                  * If this pinned group hasn't been scheduled,
1263                  * put it in error state.
1264                  */
1265                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266                         update_group_times(event);
1267                         event->state = PERF_EVENT_STATE_ERROR;
1268                 }
1269         }
1270
1271         list_for_each_entry(event, &ctx->group_list, group_entry) {
1272                 /*
1273                  * Ignore events in OFF or ERROR state, and
1274                  * ignore pinned events since we did them already.
1275                  */
1276                 if (event->state <= PERF_EVENT_STATE_OFF ||
1277                     event->attr.pinned)
1278                         continue;
1279
1280                 /*
1281                  * Listen to the 'cpu' scheduling filter constraint
1282                  * of events:
1283                  */
1284                 if (event->cpu != -1 && event->cpu != cpu)
1285                         continue;
1286
1287                 if (group_can_go_on(event, cpuctx, can_add_hw))
1288                         if (group_sched_in(event, cpuctx, ctx, cpu))
1289                                 can_add_hw = 0;
1290         }
1291         perf_enable();
1292  out:
1293         spin_unlock(&ctx->lock);
1294 }
1295
1296 /*
1297  * Called from scheduler to add the events of the current task
1298  * with interrupts disabled.
1299  *
1300  * We restore the event value and then enable it.
1301  *
1302  * This does not protect us against NMI, but enable()
1303  * sets the enabled bit in the control field of event _before_
1304  * accessing the event control register. If a NMI hits, then it will
1305  * keep the event running.
1306  */
1307 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 {
1309         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310         struct perf_event_context *ctx = task->perf_event_ctxp;
1311
1312         if (likely(!ctx))
1313                 return;
1314         if (cpuctx->task_ctx == ctx)
1315                 return;
1316         __perf_event_sched_in(ctx, cpuctx, cpu);
1317         cpuctx->task_ctx = ctx;
1318 }
1319
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321 {
1322         struct perf_event_context *ctx = &cpuctx->ctx;
1323
1324         __perf_event_sched_in(ctx, cpuctx, cpu);
1325 }
1326
1327 #define MAX_INTERRUPTS (~0ULL)
1328
1329 static void perf_log_throttle(struct perf_event *event, int enable);
1330
1331 static void perf_adjust_period(struct perf_event *event, u64 events)
1332 {
1333         struct hw_perf_event *hwc = &event->hw;
1334         u64 period, sample_period;
1335         s64 delta;
1336
1337         events *= hwc->sample_period;
1338         period = div64_u64(events, event->attr.sample_freq);
1339
1340         delta = (s64)(period - hwc->sample_period);
1341         delta = (delta + 7) / 8; /* low pass filter */
1342
1343         sample_period = hwc->sample_period + delta;
1344
1345         if (!sample_period)
1346                 sample_period = 1;
1347
1348         hwc->sample_period = sample_period;
1349 }
1350
1351 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352 {
1353         struct perf_event *event;
1354         struct hw_perf_event *hwc;
1355         u64 interrupts, freq;
1356
1357         spin_lock(&ctx->lock);
1358         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360                         continue;
1361
1362                 hwc = &event->hw;
1363
1364                 interrupts = hwc->interrupts;
1365                 hwc->interrupts = 0;
1366
1367                 /*
1368                  * unthrottle events on the tick
1369                  */
1370                 if (interrupts == MAX_INTERRUPTS) {
1371                         perf_log_throttle(event, 1);
1372                         event->pmu->unthrottle(event);
1373                         interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374                 }
1375
1376                 if (!event->attr.freq || !event->attr.sample_freq)
1377                         continue;
1378
1379                 /*
1380                  * if the specified freq < HZ then we need to skip ticks
1381                  */
1382                 if (event->attr.sample_freq < HZ) {
1383                         freq = event->attr.sample_freq;
1384
1385                         hwc->freq_count += freq;
1386                         hwc->freq_interrupts += interrupts;
1387
1388                         if (hwc->freq_count < HZ)
1389                                 continue;
1390
1391                         interrupts = hwc->freq_interrupts;
1392                         hwc->freq_interrupts = 0;
1393                         hwc->freq_count -= HZ;
1394                 } else
1395                         freq = HZ;
1396
1397                 perf_adjust_period(event, freq * interrupts);
1398
1399                 /*
1400                  * In order to avoid being stalled by an (accidental) huge
1401                  * sample period, force reset the sample period if we didn't
1402                  * get any events in this freq period.
1403                  */
1404                 if (!interrupts) {
1405                         perf_disable();
1406                         event->pmu->disable(event);
1407                         atomic64_set(&hwc->period_left, 0);
1408                         event->pmu->enable(event);
1409                         perf_enable();
1410                 }
1411         }
1412         spin_unlock(&ctx->lock);
1413 }
1414
1415 /*
1416  * Round-robin a context's events:
1417  */
1418 static void rotate_ctx(struct perf_event_context *ctx)
1419 {
1420         struct perf_event *event;
1421
1422         if (!ctx->nr_events)
1423                 return;
1424
1425         spin_lock(&ctx->lock);
1426         /*
1427          * Rotate the first entry last (works just fine for group events too):
1428          */
1429         perf_disable();
1430         list_for_each_entry(event, &ctx->group_list, group_entry) {
1431                 list_move_tail(&event->group_entry, &ctx->group_list);
1432                 break;
1433         }
1434         perf_enable();
1435
1436         spin_unlock(&ctx->lock);
1437 }
1438
1439 void perf_event_task_tick(struct task_struct *curr, int cpu)
1440 {
1441         struct perf_cpu_context *cpuctx;
1442         struct perf_event_context *ctx;
1443
1444         if (!atomic_read(&nr_events))
1445                 return;
1446
1447         cpuctx = &per_cpu(perf_cpu_context, cpu);
1448         ctx = curr->perf_event_ctxp;
1449
1450         perf_ctx_adjust_freq(&cpuctx->ctx);
1451         if (ctx)
1452                 perf_ctx_adjust_freq(ctx);
1453
1454         perf_event_cpu_sched_out(cpuctx);
1455         if (ctx)
1456                 __perf_event_task_sched_out(ctx);
1457
1458         rotate_ctx(&cpuctx->ctx);
1459         if (ctx)
1460                 rotate_ctx(ctx);
1461
1462         perf_event_cpu_sched_in(cpuctx, cpu);
1463         if (ctx)
1464                 perf_event_task_sched_in(curr, cpu);
1465 }
1466
1467 /*
1468  * Enable all of a task's events that have been marked enable-on-exec.
1469  * This expects task == current.
1470  */
1471 static void perf_event_enable_on_exec(struct task_struct *task)
1472 {
1473         struct perf_event_context *ctx;
1474         struct perf_event *event;
1475         unsigned long flags;
1476         int enabled = 0;
1477
1478         local_irq_save(flags);
1479         ctx = task->perf_event_ctxp;
1480         if (!ctx || !ctx->nr_events)
1481                 goto out;
1482
1483         __perf_event_task_sched_out(ctx);
1484
1485         spin_lock(&ctx->lock);
1486
1487         list_for_each_entry(event, &ctx->group_list, group_entry) {
1488                 if (!event->attr.enable_on_exec)
1489                         continue;
1490                 event->attr.enable_on_exec = 0;
1491                 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492                         continue;
1493                 __perf_event_mark_enabled(event, ctx);
1494                 enabled = 1;
1495         }
1496
1497         /*
1498          * Unclone this context if we enabled any event.
1499          */
1500         if (enabled)
1501                 unclone_ctx(ctx);
1502
1503         spin_unlock(&ctx->lock);
1504
1505         perf_event_task_sched_in(task, smp_processor_id());
1506  out:
1507         local_irq_restore(flags);
1508 }
1509
1510 /*
1511  * Cross CPU call to read the hardware event
1512  */
1513 static void __perf_event_read(void *info)
1514 {
1515         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516         struct perf_event *event = info;
1517         struct perf_event_context *ctx = event->ctx;
1518
1519         /*
1520          * If this is a task context, we need to check whether it is
1521          * the current task context of this cpu.  If not it has been
1522          * scheduled out before the smp call arrived.  In that case
1523          * event->count would have been updated to a recent sample
1524          * when the event was scheduled out.
1525          */
1526         if (ctx->task && cpuctx->task_ctx != ctx)
1527                 return;
1528
1529         update_context_time(ctx);
1530         update_event_times(event);
1531         event->pmu->read(event);
1532 }
1533
1534 static u64 perf_event_read(struct perf_event *event)
1535 {
1536         /*
1537          * If event is enabled and currently active on a CPU, update the
1538          * value in the event structure:
1539          */
1540         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1541                 smp_call_function_single(event->oncpu,
1542                                          __perf_event_read, event, 1);
1543         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1544                 update_event_times(event);
1545         }
1546
1547         return atomic64_read(&event->count);
1548 }
1549
1550 /*
1551  * Initialize the perf_event context in a task_struct:
1552  */
1553 static void
1554 __perf_event_init_context(struct perf_event_context *ctx,
1555                             struct task_struct *task)
1556 {
1557         memset(ctx, 0, sizeof(*ctx));
1558         spin_lock_init(&ctx->lock);
1559         mutex_init(&ctx->mutex);
1560         INIT_LIST_HEAD(&ctx->group_list);
1561         INIT_LIST_HEAD(&ctx->event_list);
1562         atomic_set(&ctx->refcount, 1);
1563         ctx->task = task;
1564 }
1565
1566 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1567 {
1568         struct perf_event_context *ctx;
1569         struct perf_cpu_context *cpuctx;
1570         struct task_struct *task;
1571         unsigned long flags;
1572         int err;
1573
1574         /*
1575          * If cpu is not a wildcard then this is a percpu event:
1576          */
1577         if (cpu != -1) {
1578                 /* Must be root to operate on a CPU event: */
1579                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1580                         return ERR_PTR(-EACCES);
1581
1582                 if (cpu < 0 || cpu > num_possible_cpus())
1583                         return ERR_PTR(-EINVAL);
1584
1585                 /*
1586                  * We could be clever and allow to attach a event to an
1587                  * offline CPU and activate it when the CPU comes up, but
1588                  * that's for later.
1589                  */
1590                 if (!cpu_isset(cpu, cpu_online_map))
1591                         return ERR_PTR(-ENODEV);
1592
1593                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1594                 ctx = &cpuctx->ctx;
1595                 get_ctx(ctx);
1596
1597                 return ctx;
1598         }
1599
1600         rcu_read_lock();
1601         if (!pid)
1602                 task = current;
1603         else
1604                 task = find_task_by_vpid(pid);
1605         if (task)
1606                 get_task_struct(task);
1607         rcu_read_unlock();
1608
1609         if (!task)
1610                 return ERR_PTR(-ESRCH);
1611
1612         /*
1613          * Can't attach events to a dying task.
1614          */
1615         err = -ESRCH;
1616         if (task->flags & PF_EXITING)
1617                 goto errout;
1618
1619         /* Reuse ptrace permission checks for now. */
1620         err = -EACCES;
1621         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1622                 goto errout;
1623
1624  retry:
1625         ctx = perf_lock_task_context(task, &flags);
1626         if (ctx) {
1627                 unclone_ctx(ctx);
1628                 spin_unlock_irqrestore(&ctx->lock, flags);
1629         }
1630
1631         if (!ctx) {
1632                 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1633                 err = -ENOMEM;
1634                 if (!ctx)
1635                         goto errout;
1636                 __perf_event_init_context(ctx, task);
1637                 get_ctx(ctx);
1638                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1639                         /*
1640                          * We raced with some other task; use
1641                          * the context they set.
1642                          */
1643                         kfree(ctx);
1644                         goto retry;
1645                 }
1646                 get_task_struct(task);
1647         }
1648
1649         put_task_struct(task);
1650         return ctx;
1651
1652  errout:
1653         put_task_struct(task);
1654         return ERR_PTR(err);
1655 }
1656
1657 static void perf_event_free_filter(struct perf_event *event);
1658
1659 static void free_event_rcu(struct rcu_head *head)
1660 {
1661         struct perf_event *event;
1662
1663         event = container_of(head, struct perf_event, rcu_head);
1664         if (event->ns)
1665                 put_pid_ns(event->ns);
1666         perf_event_free_filter(event);
1667         kfree(event);
1668 }
1669
1670 static void perf_pending_sync(struct perf_event *event);
1671
1672 static void free_event(struct perf_event *event)
1673 {
1674         perf_pending_sync(event);
1675
1676         if (!event->parent) {
1677                 atomic_dec(&nr_events);
1678                 if (event->attr.mmap)
1679                         atomic_dec(&nr_mmap_events);
1680                 if (event->attr.comm)
1681                         atomic_dec(&nr_comm_events);
1682                 if (event->attr.task)
1683                         atomic_dec(&nr_task_events);
1684         }
1685
1686         if (event->output) {
1687                 fput(event->output->filp);
1688                 event->output = NULL;
1689         }
1690
1691         if (event->destroy)
1692                 event->destroy(event);
1693
1694         put_ctx(event->ctx);
1695         call_rcu(&event->rcu_head, free_event_rcu);
1696 }
1697
1698 /*
1699  * Called when the last reference to the file is gone.
1700  */
1701 static int perf_release(struct inode *inode, struct file *file)
1702 {
1703         struct perf_event *event = file->private_data;
1704         struct perf_event_context *ctx = event->ctx;
1705
1706         file->private_data = NULL;
1707
1708         WARN_ON_ONCE(ctx->parent_ctx);
1709         mutex_lock(&ctx->mutex);
1710         perf_event_remove_from_context(event);
1711         mutex_unlock(&ctx->mutex);
1712
1713         mutex_lock(&event->owner->perf_event_mutex);
1714         list_del_init(&event->owner_entry);
1715         mutex_unlock(&event->owner->perf_event_mutex);
1716         put_task_struct(event->owner);
1717
1718         free_event(event);
1719
1720         return 0;
1721 }
1722
1723 int perf_event_release_kernel(struct perf_event *event)
1724 {
1725         struct perf_event_context *ctx = event->ctx;
1726
1727         WARN_ON_ONCE(ctx->parent_ctx);
1728         mutex_lock(&ctx->mutex);
1729         perf_event_remove_from_context(event);
1730         mutex_unlock(&ctx->mutex);
1731
1732         mutex_lock(&event->owner->perf_event_mutex);
1733         list_del_init(&event->owner_entry);
1734         mutex_unlock(&event->owner->perf_event_mutex);
1735         put_task_struct(event->owner);
1736
1737         free_event(event);
1738
1739         return 0;
1740 }
1741 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1742
1743 static int perf_event_read_size(struct perf_event *event)
1744 {
1745         int entry = sizeof(u64); /* value */
1746         int size = 0;
1747         int nr = 1;
1748
1749         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1750                 size += sizeof(u64);
1751
1752         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1753                 size += sizeof(u64);
1754
1755         if (event->attr.read_format & PERF_FORMAT_ID)
1756                 entry += sizeof(u64);
1757
1758         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1759                 nr += event->group_leader->nr_siblings;
1760                 size += sizeof(u64);
1761         }
1762
1763         size += entry * nr;
1764
1765         return size;
1766 }
1767
1768 u64 perf_event_read_value(struct perf_event *event)
1769 {
1770         struct perf_event *child;
1771         u64 total = 0;
1772
1773         total += perf_event_read(event);
1774         list_for_each_entry(child, &event->child_list, child_list)
1775                 total += perf_event_read(child);
1776
1777         return total;
1778 }
1779 EXPORT_SYMBOL_GPL(perf_event_read_value);
1780
1781 static int perf_event_read_group(struct perf_event *event,
1782                                    u64 read_format, char __user *buf)
1783 {
1784         struct perf_event *leader = event->group_leader, *sub;
1785         int n = 0, size = 0, ret = 0;
1786         u64 values[5];
1787         u64 count;
1788
1789         count = perf_event_read_value(leader);
1790
1791         values[n++] = 1 + leader->nr_siblings;
1792         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1793                 values[n++] = leader->total_time_enabled +
1794                         atomic64_read(&leader->child_total_time_enabled);
1795         }
1796         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1797                 values[n++] = leader->total_time_running +
1798                         atomic64_read(&leader->child_total_time_running);
1799         }
1800         values[n++] = count;
1801         if (read_format & PERF_FORMAT_ID)
1802                 values[n++] = primary_event_id(leader);
1803
1804         size = n * sizeof(u64);
1805
1806         if (copy_to_user(buf, values, size))
1807                 return -EFAULT;
1808
1809         ret += size;
1810
1811         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1812                 n = 0;
1813
1814                 values[n++] = perf_event_read_value(sub);
1815                 if (read_format & PERF_FORMAT_ID)
1816                         values[n++] = primary_event_id(sub);
1817
1818                 size = n * sizeof(u64);
1819
1820                 if (copy_to_user(buf + size, values, size))
1821                         return -EFAULT;
1822
1823                 ret += size;
1824         }
1825
1826         return ret;
1827 }
1828
1829 static int perf_event_read_one(struct perf_event *event,
1830                                  u64 read_format, char __user *buf)
1831 {
1832         u64 values[4];
1833         int n = 0;
1834
1835         values[n++] = perf_event_read_value(event);
1836         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1837                 values[n++] = event->total_time_enabled +
1838                         atomic64_read(&event->child_total_time_enabled);
1839         }
1840         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1841                 values[n++] = event->total_time_running +
1842                         atomic64_read(&event->child_total_time_running);
1843         }
1844         if (read_format & PERF_FORMAT_ID)
1845                 values[n++] = primary_event_id(event);
1846
1847         if (copy_to_user(buf, values, n * sizeof(u64)))
1848                 return -EFAULT;
1849
1850         return n * sizeof(u64);
1851 }
1852
1853 /*
1854  * Read the performance event - simple non blocking version for now
1855  */
1856 static ssize_t
1857 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1858 {
1859         u64 read_format = event->attr.read_format;
1860         int ret;
1861
1862         /*
1863          * Return end-of-file for a read on a event that is in
1864          * error state (i.e. because it was pinned but it couldn't be
1865          * scheduled on to the CPU at some point).
1866          */
1867         if (event->state == PERF_EVENT_STATE_ERROR)
1868                 return 0;
1869
1870         if (count < perf_event_read_size(event))
1871                 return -ENOSPC;
1872
1873         WARN_ON_ONCE(event->ctx->parent_ctx);
1874         mutex_lock(&event->child_mutex);
1875         if (read_format & PERF_FORMAT_GROUP)
1876                 ret = perf_event_read_group(event, read_format, buf);
1877         else
1878                 ret = perf_event_read_one(event, read_format, buf);
1879         mutex_unlock(&event->child_mutex);
1880
1881         return ret;
1882 }
1883
1884 static ssize_t
1885 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1886 {
1887         struct perf_event *event = file->private_data;
1888
1889         return perf_read_hw(event, buf, count);
1890 }
1891
1892 static unsigned int perf_poll(struct file *file, poll_table *wait)
1893 {
1894         struct perf_event *event = file->private_data;
1895         struct perf_mmap_data *data;
1896         unsigned int events = POLL_HUP;
1897
1898         rcu_read_lock();
1899         data = rcu_dereference(event->data);
1900         if (data)
1901                 events = atomic_xchg(&data->poll, 0);
1902         rcu_read_unlock();
1903
1904         poll_wait(file, &event->waitq, wait);
1905
1906         return events;
1907 }
1908
1909 static void perf_event_reset(struct perf_event *event)
1910 {
1911         (void)perf_event_read(event);
1912         atomic64_set(&event->count, 0);
1913         perf_event_update_userpage(event);
1914 }
1915
1916 /*
1917  * Holding the top-level event's child_mutex means that any
1918  * descendant process that has inherited this event will block
1919  * in sync_child_event if it goes to exit, thus satisfying the
1920  * task existence requirements of perf_event_enable/disable.
1921  */
1922 static void perf_event_for_each_child(struct perf_event *event,
1923                                         void (*func)(struct perf_event *))
1924 {
1925         struct perf_event *child;
1926
1927         WARN_ON_ONCE(event->ctx->parent_ctx);
1928         mutex_lock(&event->child_mutex);
1929         func(event);
1930         list_for_each_entry(child, &event->child_list, child_list)
1931                 func(child);
1932         mutex_unlock(&event->child_mutex);
1933 }
1934
1935 static void perf_event_for_each(struct perf_event *event,
1936                                   void (*func)(struct perf_event *))
1937 {
1938         struct perf_event_context *ctx = event->ctx;
1939         struct perf_event *sibling;
1940
1941         WARN_ON_ONCE(ctx->parent_ctx);
1942         mutex_lock(&ctx->mutex);
1943         event = event->group_leader;
1944
1945         perf_event_for_each_child(event, func);
1946         func(event);
1947         list_for_each_entry(sibling, &event->sibling_list, group_entry)
1948                 perf_event_for_each_child(event, func);
1949         mutex_unlock(&ctx->mutex);
1950 }
1951
1952 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1953 {
1954         struct perf_event_context *ctx = event->ctx;
1955         unsigned long size;
1956         int ret = 0;
1957         u64 value;
1958
1959         if (!event->attr.sample_period)
1960                 return -EINVAL;
1961
1962         size = copy_from_user(&value, arg, sizeof(value));
1963         if (size != sizeof(value))
1964                 return -EFAULT;
1965
1966         if (!value)
1967                 return -EINVAL;
1968
1969         spin_lock_irq(&ctx->lock);
1970         if (event->attr.freq) {
1971                 if (value > sysctl_perf_event_sample_rate) {
1972                         ret = -EINVAL;
1973                         goto unlock;
1974                 }
1975
1976                 event->attr.sample_freq = value;
1977         } else {
1978                 event->attr.sample_period = value;
1979                 event->hw.sample_period = value;
1980         }
1981 unlock:
1982         spin_unlock_irq(&ctx->lock);
1983
1984         return ret;
1985 }
1986
1987 static int perf_event_set_output(struct perf_event *event, int output_fd);
1988 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
1989
1990 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1991 {
1992         struct perf_event *event = file->private_data;
1993         void (*func)(struct perf_event *);
1994         u32 flags = arg;
1995
1996         switch (cmd) {
1997         case PERF_EVENT_IOC_ENABLE:
1998                 func = perf_event_enable;
1999                 break;
2000         case PERF_EVENT_IOC_DISABLE:
2001                 func = perf_event_disable;
2002                 break;
2003         case PERF_EVENT_IOC_RESET:
2004                 func = perf_event_reset;
2005                 break;
2006
2007         case PERF_EVENT_IOC_REFRESH:
2008                 return perf_event_refresh(event, arg);
2009
2010         case PERF_EVENT_IOC_PERIOD:
2011                 return perf_event_period(event, (u64 __user *)arg);
2012
2013         case PERF_EVENT_IOC_SET_OUTPUT:
2014                 return perf_event_set_output(event, arg);
2015
2016         case PERF_EVENT_IOC_SET_FILTER:
2017                 return perf_event_set_filter(event, (void __user *)arg);
2018
2019         default:
2020                 return -ENOTTY;
2021         }
2022
2023         if (flags & PERF_IOC_FLAG_GROUP)
2024                 perf_event_for_each(event, func);
2025         else
2026                 perf_event_for_each_child(event, func);
2027
2028         return 0;
2029 }
2030
2031 int perf_event_task_enable(void)
2032 {
2033         struct perf_event *event;
2034
2035         mutex_lock(&current->perf_event_mutex);
2036         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2037                 perf_event_for_each_child(event, perf_event_enable);
2038         mutex_unlock(&current->perf_event_mutex);
2039
2040         return 0;
2041 }
2042
2043 int perf_event_task_disable(void)
2044 {
2045         struct perf_event *event;
2046
2047         mutex_lock(&current->perf_event_mutex);
2048         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2049                 perf_event_for_each_child(event, perf_event_disable);
2050         mutex_unlock(&current->perf_event_mutex);
2051
2052         return 0;
2053 }
2054
2055 #ifndef PERF_EVENT_INDEX_OFFSET
2056 # define PERF_EVENT_INDEX_OFFSET 0
2057 #endif
2058
2059 static int perf_event_index(struct perf_event *event)
2060 {
2061         if (event->state != PERF_EVENT_STATE_ACTIVE)
2062                 return 0;
2063
2064         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2065 }
2066
2067 /*
2068  * Callers need to ensure there can be no nesting of this function, otherwise
2069  * the seqlock logic goes bad. We can not serialize this because the arch
2070  * code calls this from NMI context.
2071  */
2072 void perf_event_update_userpage(struct perf_event *event)
2073 {
2074         struct perf_event_mmap_page *userpg;
2075         struct perf_mmap_data *data;
2076
2077         rcu_read_lock();
2078         data = rcu_dereference(event->data);
2079         if (!data)
2080                 goto unlock;
2081
2082         userpg = data->user_page;
2083
2084         /*
2085          * Disable preemption so as to not let the corresponding user-space
2086          * spin too long if we get preempted.
2087          */
2088         preempt_disable();
2089         ++userpg->lock;
2090         barrier();
2091         userpg->index = perf_event_index(event);
2092         userpg->offset = atomic64_read(&event->count);
2093         if (event->state == PERF_EVENT_STATE_ACTIVE)
2094                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2095
2096         userpg->time_enabled = event->total_time_enabled +
2097                         atomic64_read(&event->child_total_time_enabled);
2098
2099         userpg->time_running = event->total_time_running +
2100                         atomic64_read(&event->child_total_time_running);
2101
2102         barrier();
2103         ++userpg->lock;
2104         preempt_enable();
2105 unlock:
2106         rcu_read_unlock();
2107 }
2108
2109 static unsigned long perf_data_size(struct perf_mmap_data *data)
2110 {
2111         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2112 }
2113
2114 #ifndef CONFIG_PERF_USE_VMALLOC
2115
2116 /*
2117  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2118  */
2119
2120 static struct page *
2121 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2122 {
2123         if (pgoff > data->nr_pages)
2124                 return NULL;
2125
2126         if (pgoff == 0)
2127                 return virt_to_page(data->user_page);
2128
2129         return virt_to_page(data->data_pages[pgoff - 1]);
2130 }
2131
2132 static struct perf_mmap_data *
2133 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2134 {
2135         struct perf_mmap_data *data;
2136         unsigned long size;
2137         int i;
2138
2139         WARN_ON(atomic_read(&event->mmap_count));
2140
2141         size = sizeof(struct perf_mmap_data);
2142         size += nr_pages * sizeof(void *);
2143
2144         data = kzalloc(size, GFP_KERNEL);
2145         if (!data)
2146                 goto fail;
2147
2148         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2149         if (!data->user_page)
2150                 goto fail_user_page;
2151
2152         for (i = 0; i < nr_pages; i++) {
2153                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2154                 if (!data->data_pages[i])
2155                         goto fail_data_pages;
2156         }
2157
2158         data->data_order = 0;
2159         data->nr_pages = nr_pages;
2160
2161         return data;
2162
2163 fail_data_pages:
2164         for (i--; i >= 0; i--)
2165                 free_page((unsigned long)data->data_pages[i]);
2166
2167         free_page((unsigned long)data->user_page);
2168
2169 fail_user_page:
2170         kfree(data);
2171
2172 fail:
2173         return NULL;
2174 }
2175
2176 static void perf_mmap_free_page(unsigned long addr)
2177 {
2178         struct page *page = virt_to_page((void *)addr);
2179
2180         page->mapping = NULL;
2181         __free_page(page);
2182 }
2183
2184 static void perf_mmap_data_free(struct perf_mmap_data *data)
2185 {
2186         int i;
2187
2188         perf_mmap_free_page((unsigned long)data->user_page);
2189         for (i = 0; i < data->nr_pages; i++)
2190                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2191 }
2192
2193 #else
2194
2195 /*
2196  * Back perf_mmap() with vmalloc memory.
2197  *
2198  * Required for architectures that have d-cache aliasing issues.
2199  */
2200
2201 static struct page *
2202 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2203 {
2204         if (pgoff > (1UL << data->data_order))
2205                 return NULL;
2206
2207         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2208 }
2209
2210 static void perf_mmap_unmark_page(void *addr)
2211 {
2212         struct page *page = vmalloc_to_page(addr);
2213
2214         page->mapping = NULL;
2215 }
2216
2217 static void perf_mmap_data_free_work(struct work_struct *work)
2218 {
2219         struct perf_mmap_data *data;
2220         void *base;
2221         int i, nr;
2222
2223         data = container_of(work, struct perf_mmap_data, work);
2224         nr = 1 << data->data_order;
2225
2226         base = data->user_page;
2227         for (i = 0; i < nr + 1; i++)
2228                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2229
2230         vfree(base);
2231 }
2232
2233 static void perf_mmap_data_free(struct perf_mmap_data *data)
2234 {
2235         schedule_work(&data->work);
2236 }
2237
2238 static struct perf_mmap_data *
2239 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2240 {
2241         struct perf_mmap_data *data;
2242         unsigned long size;
2243         void *all_buf;
2244
2245         WARN_ON(atomic_read(&event->mmap_count));
2246
2247         size = sizeof(struct perf_mmap_data);
2248         size += sizeof(void *);
2249
2250         data = kzalloc(size, GFP_KERNEL);
2251         if (!data)
2252                 goto fail;
2253
2254         INIT_WORK(&data->work, perf_mmap_data_free_work);
2255
2256         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2257         if (!all_buf)
2258                 goto fail_all_buf;
2259
2260         data->user_page = all_buf;
2261         data->data_pages[0] = all_buf + PAGE_SIZE;
2262         data->data_order = ilog2(nr_pages);
2263         data->nr_pages = 1;
2264
2265         return data;
2266
2267 fail_all_buf:
2268         kfree(data);
2269
2270 fail:
2271         return NULL;
2272 }
2273
2274 #endif
2275
2276 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2277 {
2278         struct perf_event *event = vma->vm_file->private_data;
2279         struct perf_mmap_data *data;
2280         int ret = VM_FAULT_SIGBUS;
2281
2282         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2283                 if (vmf->pgoff == 0)
2284                         ret = 0;
2285                 return ret;
2286         }
2287
2288         rcu_read_lock();
2289         data = rcu_dereference(event->data);
2290         if (!data)
2291                 goto unlock;
2292
2293         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2294                 goto unlock;
2295
2296         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2297         if (!vmf->page)
2298                 goto unlock;
2299
2300         get_page(vmf->page);
2301         vmf->page->mapping = vma->vm_file->f_mapping;
2302         vmf->page->index   = vmf->pgoff;
2303
2304         ret = 0;
2305 unlock:
2306         rcu_read_unlock();
2307
2308         return ret;
2309 }
2310
2311 static void
2312 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2313 {
2314         long max_size = perf_data_size(data);
2315
2316         atomic_set(&data->lock, -1);
2317
2318         if (event->attr.watermark) {
2319                 data->watermark = min_t(long, max_size,
2320                                         event->attr.wakeup_watermark);
2321         }
2322
2323         if (!data->watermark)
2324                 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2325
2326
2327         rcu_assign_pointer(event->data, data);
2328 }
2329
2330 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2331 {
2332         struct perf_mmap_data *data;
2333
2334         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2335         perf_mmap_data_free(data);
2336         kfree(data);
2337 }
2338
2339 static void perf_mmap_data_release(struct perf_event *event)
2340 {
2341         struct perf_mmap_data *data = event->data;
2342
2343         WARN_ON(atomic_read(&event->mmap_count));
2344
2345         rcu_assign_pointer(event->data, NULL);
2346         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2347 }
2348
2349 static void perf_mmap_open(struct vm_area_struct *vma)
2350 {
2351         struct perf_event *event = vma->vm_file->private_data;
2352
2353         atomic_inc(&event->mmap_count);
2354 }
2355
2356 static void perf_mmap_close(struct vm_area_struct *vma)
2357 {
2358         struct perf_event *event = vma->vm_file->private_data;
2359
2360         WARN_ON_ONCE(event->ctx->parent_ctx);
2361         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2362                 unsigned long size = perf_data_size(event->data);
2363                 struct user_struct *user = current_user();
2364
2365                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2366                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2367                 perf_mmap_data_release(event);
2368                 mutex_unlock(&event->mmap_mutex);
2369         }
2370 }
2371
2372 static const struct vm_operations_struct perf_mmap_vmops = {
2373         .open           = perf_mmap_open,
2374         .close          = perf_mmap_close,
2375         .fault          = perf_mmap_fault,
2376         .page_mkwrite   = perf_mmap_fault,
2377 };
2378
2379 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2380 {
2381         struct perf_event *event = file->private_data;
2382         unsigned long user_locked, user_lock_limit;
2383         struct user_struct *user = current_user();
2384         unsigned long locked, lock_limit;
2385         struct perf_mmap_data *data;
2386         unsigned long vma_size;
2387         unsigned long nr_pages;
2388         long user_extra, extra;
2389         int ret = 0;
2390
2391         if (!(vma->vm_flags & VM_SHARED))
2392                 return -EINVAL;
2393
2394         vma_size = vma->vm_end - vma->vm_start;
2395         nr_pages = (vma_size / PAGE_SIZE) - 1;
2396
2397         /*
2398          * If we have data pages ensure they're a power-of-two number, so we
2399          * can do bitmasks instead of modulo.
2400          */
2401         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2402                 return -EINVAL;
2403
2404         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2405                 return -EINVAL;
2406
2407         if (vma->vm_pgoff != 0)
2408                 return -EINVAL;
2409
2410         WARN_ON_ONCE(event->ctx->parent_ctx);
2411         mutex_lock(&event->mmap_mutex);
2412         if (event->output) {
2413                 ret = -EINVAL;
2414                 goto unlock;
2415         }
2416
2417         if (atomic_inc_not_zero(&event->mmap_count)) {
2418                 if (nr_pages != event->data->nr_pages)
2419                         ret = -EINVAL;
2420                 goto unlock;
2421         }
2422
2423         user_extra = nr_pages + 1;
2424         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2425
2426         /*
2427          * Increase the limit linearly with more CPUs:
2428          */
2429         user_lock_limit *= num_online_cpus();
2430
2431         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2432
2433         extra = 0;
2434         if (user_locked > user_lock_limit)
2435                 extra = user_locked - user_lock_limit;
2436
2437         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2438         lock_limit >>= PAGE_SHIFT;
2439         locked = vma->vm_mm->locked_vm + extra;
2440
2441         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2442                 !capable(CAP_IPC_LOCK)) {
2443                 ret = -EPERM;
2444                 goto unlock;
2445         }
2446
2447         WARN_ON(event->data);
2448
2449         data = perf_mmap_data_alloc(event, nr_pages);
2450         ret = -ENOMEM;
2451         if (!data)
2452                 goto unlock;
2453
2454         ret = 0;
2455         perf_mmap_data_init(event, data);
2456
2457         atomic_set(&event->mmap_count, 1);
2458         atomic_long_add(user_extra, &user->locked_vm);
2459         vma->vm_mm->locked_vm += extra;
2460         event->data->nr_locked = extra;
2461         if (vma->vm_flags & VM_WRITE)
2462                 event->data->writable = 1;
2463
2464 unlock:
2465         mutex_unlock(&event->mmap_mutex);
2466
2467         vma->vm_flags |= VM_RESERVED;
2468         vma->vm_ops = &perf_mmap_vmops;
2469
2470         return ret;
2471 }
2472
2473 static int perf_fasync(int fd, struct file *filp, int on)
2474 {
2475         struct inode *inode = filp->f_path.dentry->d_inode;
2476         struct perf_event *event = filp->private_data;
2477         int retval;
2478
2479         mutex_lock(&inode->i_mutex);
2480         retval = fasync_helper(fd, filp, on, &event->fasync);
2481         mutex_unlock(&inode->i_mutex);
2482
2483         if (retval < 0)
2484                 return retval;
2485
2486         return 0;
2487 }
2488
2489 static const struct file_operations perf_fops = {
2490         .release                = perf_release,
2491         .read                   = perf_read,
2492         .poll                   = perf_poll,
2493         .unlocked_ioctl         = perf_ioctl,
2494         .compat_ioctl           = perf_ioctl,
2495         .mmap                   = perf_mmap,
2496         .fasync                 = perf_fasync,
2497 };
2498
2499 /*
2500  * Perf event wakeup
2501  *
2502  * If there's data, ensure we set the poll() state and publish everything
2503  * to user-space before waking everybody up.
2504  */
2505
2506 void perf_event_wakeup(struct perf_event *event)
2507 {
2508         wake_up_all(&event->waitq);
2509
2510         if (event->pending_kill) {
2511                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2512                 event->pending_kill = 0;
2513         }
2514 }
2515
2516 /*
2517  * Pending wakeups
2518  *
2519  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2520  *
2521  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2522  * single linked list and use cmpxchg() to add entries lockless.
2523  */
2524
2525 static void perf_pending_event(struct perf_pending_entry *entry)
2526 {
2527         struct perf_event *event = container_of(entry,
2528                         struct perf_event, pending);
2529
2530         if (event->pending_disable) {
2531                 event->pending_disable = 0;
2532                 __perf_event_disable(event);
2533         }
2534
2535         if (event->pending_wakeup) {
2536                 event->pending_wakeup = 0;
2537                 perf_event_wakeup(event);
2538         }
2539 }
2540
2541 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2542
2543 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2544         PENDING_TAIL,
2545 };
2546
2547 static void perf_pending_queue(struct perf_pending_entry *entry,
2548                                void (*func)(struct perf_pending_entry *))
2549 {
2550         struct perf_pending_entry **head;
2551
2552         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2553                 return;
2554
2555         entry->func = func;
2556
2557         head = &get_cpu_var(perf_pending_head);
2558
2559         do {
2560                 entry->next = *head;
2561         } while (cmpxchg(head, entry->next, entry) != entry->next);
2562
2563         set_perf_event_pending();
2564
2565         put_cpu_var(perf_pending_head);
2566 }
2567
2568 static int __perf_pending_run(void)
2569 {
2570         struct perf_pending_entry *list;
2571         int nr = 0;
2572
2573         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2574         while (list != PENDING_TAIL) {
2575                 void (*func)(struct perf_pending_entry *);
2576                 struct perf_pending_entry *entry = list;
2577
2578                 list = list->next;
2579
2580                 func = entry->func;
2581                 entry->next = NULL;
2582                 /*
2583                  * Ensure we observe the unqueue before we issue the wakeup,
2584                  * so that we won't be waiting forever.
2585                  * -- see perf_not_pending().
2586                  */
2587                 smp_wmb();
2588
2589                 func(entry);
2590                 nr++;
2591         }
2592
2593         return nr;
2594 }
2595
2596 static inline int perf_not_pending(struct perf_event *event)
2597 {
2598         /*
2599          * If we flush on whatever cpu we run, there is a chance we don't
2600          * need to wait.
2601          */
2602         get_cpu();
2603         __perf_pending_run();
2604         put_cpu();
2605
2606         /*
2607          * Ensure we see the proper queue state before going to sleep
2608          * so that we do not miss the wakeup. -- see perf_pending_handle()
2609          */
2610         smp_rmb();
2611         return event->pending.next == NULL;
2612 }
2613
2614 static void perf_pending_sync(struct perf_event *event)
2615 {
2616         wait_event(event->waitq, perf_not_pending(event));
2617 }
2618
2619 void perf_event_do_pending(void)
2620 {
2621         __perf_pending_run();
2622 }
2623
2624 /*
2625  * Callchain support -- arch specific
2626  */
2627
2628 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2629 {
2630         return NULL;
2631 }
2632
2633 /*
2634  * Output
2635  */
2636 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2637                               unsigned long offset, unsigned long head)
2638 {
2639         unsigned long mask;
2640
2641         if (!data->writable)
2642                 return true;
2643
2644         mask = perf_data_size(data) - 1;
2645
2646         offset = (offset - tail) & mask;
2647         head   = (head   - tail) & mask;
2648
2649         if ((int)(head - offset) < 0)
2650                 return false;
2651
2652         return true;
2653 }
2654
2655 static void perf_output_wakeup(struct perf_output_handle *handle)
2656 {
2657         atomic_set(&handle->data->poll, POLL_IN);
2658
2659         if (handle->nmi) {
2660                 handle->event->pending_wakeup = 1;
2661                 perf_pending_queue(&handle->event->pending,
2662                                    perf_pending_event);
2663         } else
2664                 perf_event_wakeup(handle->event);
2665 }
2666
2667 /*
2668  * Curious locking construct.
2669  *
2670  * We need to ensure a later event_id doesn't publish a head when a former
2671  * event_id isn't done writing. However since we need to deal with NMIs we
2672  * cannot fully serialize things.
2673  *
2674  * What we do is serialize between CPUs so we only have to deal with NMI
2675  * nesting on a single CPU.
2676  *
2677  * We only publish the head (and generate a wakeup) when the outer-most
2678  * event_id completes.
2679  */
2680 static void perf_output_lock(struct perf_output_handle *handle)
2681 {
2682         struct perf_mmap_data *data = handle->data;
2683         int cur, cpu = get_cpu();
2684
2685         handle->locked = 0;
2686
2687         for (;;) {
2688                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2689                 if (cur == -1) {
2690                         handle->locked = 1;
2691                         break;
2692                 }
2693                 if (cur == cpu)
2694                         break;
2695
2696                 cpu_relax();
2697         }
2698 }
2699
2700 static void perf_output_unlock(struct perf_output_handle *handle)
2701 {
2702         struct perf_mmap_data *data = handle->data;
2703         unsigned long head;
2704         int cpu;
2705
2706         data->done_head = data->head;
2707
2708         if (!handle->locked)
2709                 goto out;
2710
2711 again:
2712         /*
2713          * The xchg implies a full barrier that ensures all writes are done
2714          * before we publish the new head, matched by a rmb() in userspace when
2715          * reading this position.
2716          */
2717         while ((head = atomic_long_xchg(&data->done_head, 0)))
2718                 data->user_page->data_head = head;
2719
2720         /*
2721          * NMI can happen here, which means we can miss a done_head update.
2722          */
2723
2724         cpu = atomic_xchg(&data->lock, -1);
2725         WARN_ON_ONCE(cpu != smp_processor_id());
2726
2727         /*
2728          * Therefore we have to validate we did not indeed do so.
2729          */
2730         if (unlikely(atomic_long_read(&data->done_head))) {
2731                 /*
2732                  * Since we had it locked, we can lock it again.
2733                  */
2734                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2735                         cpu_relax();
2736
2737                 goto again;
2738         }
2739
2740         if (atomic_xchg(&data->wakeup, 0))
2741                 perf_output_wakeup(handle);
2742 out:
2743         put_cpu();
2744 }
2745
2746 void perf_output_copy(struct perf_output_handle *handle,
2747                       const void *buf, unsigned int len)
2748 {
2749         unsigned int pages_mask;
2750         unsigned long offset;
2751         unsigned int size;
2752         void **pages;
2753
2754         offset          = handle->offset;
2755         pages_mask      = handle->data->nr_pages - 1;
2756         pages           = handle->data->data_pages;
2757
2758         do {
2759                 unsigned long page_offset;
2760                 unsigned long page_size;
2761                 int nr;
2762
2763                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2764                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2765                 page_offset = offset & (page_size - 1);
2766                 size        = min_t(unsigned int, page_size - page_offset, len);
2767
2768                 memcpy(pages[nr] + page_offset, buf, size);
2769
2770                 len         -= size;
2771                 buf         += size;
2772                 offset      += size;
2773         } while (len);
2774
2775         handle->offset = offset;
2776
2777         /*
2778          * Check we didn't copy past our reservation window, taking the
2779          * possible unsigned int wrap into account.
2780          */
2781         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2782 }
2783
2784 int perf_output_begin(struct perf_output_handle *handle,
2785                       struct perf_event *event, unsigned int size,
2786                       int nmi, int sample)
2787 {
2788         struct perf_event *output_event;
2789         struct perf_mmap_data *data;
2790         unsigned long tail, offset, head;
2791         int have_lost;
2792         struct {
2793                 struct perf_event_header header;
2794                 u64                      id;
2795                 u64                      lost;
2796         } lost_event;
2797
2798         rcu_read_lock();
2799         /*
2800          * For inherited events we send all the output towards the parent.
2801          */
2802         if (event->parent)
2803                 event = event->parent;
2804
2805         output_event = rcu_dereference(event->output);
2806         if (output_event)
2807                 event = output_event;
2808
2809         data = rcu_dereference(event->data);
2810         if (!data)
2811                 goto out;
2812
2813         handle->data    = data;
2814         handle->event   = event;
2815         handle->nmi     = nmi;
2816         handle->sample  = sample;
2817
2818         if (!data->nr_pages)
2819                 goto fail;
2820
2821         have_lost = atomic_read(&data->lost);
2822         if (have_lost)
2823                 size += sizeof(lost_event);
2824
2825         perf_output_lock(handle);
2826
2827         do {
2828                 /*
2829                  * Userspace could choose to issue a mb() before updating the
2830                  * tail pointer. So that all reads will be completed before the
2831                  * write is issued.
2832                  */
2833                 tail = ACCESS_ONCE(data->user_page->data_tail);
2834                 smp_rmb();
2835                 offset = head = atomic_long_read(&data->head);
2836                 head += size;
2837                 if (unlikely(!perf_output_space(data, tail, offset, head)))
2838                         goto fail;
2839         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2840
2841         handle->offset  = offset;
2842         handle->head    = head;
2843
2844         if (head - tail > data->watermark)
2845                 atomic_set(&data->wakeup, 1);
2846
2847         if (have_lost) {
2848                 lost_event.header.type = PERF_RECORD_LOST;
2849                 lost_event.header.misc = 0;
2850                 lost_event.header.size = sizeof(lost_event);
2851                 lost_event.id          = event->id;
2852                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2853
2854                 perf_output_put(handle, lost_event);
2855         }
2856
2857         return 0;
2858
2859 fail:
2860         atomic_inc(&data->lost);
2861         perf_output_unlock(handle);
2862 out:
2863         rcu_read_unlock();
2864
2865         return -ENOSPC;
2866 }
2867
2868 void perf_output_end(struct perf_output_handle *handle)
2869 {
2870         struct perf_event *event = handle->event;
2871         struct perf_mmap_data *data = handle->data;
2872
2873         int wakeup_events = event->attr.wakeup_events;
2874
2875         if (handle->sample && wakeup_events) {
2876                 int events = atomic_inc_return(&data->events);
2877                 if (events >= wakeup_events) {
2878                         atomic_sub(wakeup_events, &data->events);
2879                         atomic_set(&data->wakeup, 1);
2880                 }
2881         }
2882
2883         perf_output_unlock(handle);
2884         rcu_read_unlock();
2885 }
2886
2887 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2888 {
2889         /*
2890          * only top level events have the pid namespace they were created in
2891          */
2892         if (event->parent)
2893                 event = event->parent;
2894
2895         return task_tgid_nr_ns(p, event->ns);
2896 }
2897
2898 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2899 {
2900         /*
2901          * only top level events have the pid namespace they were created in
2902          */
2903         if (event->parent)
2904                 event = event->parent;
2905
2906         return task_pid_nr_ns(p, event->ns);
2907 }
2908
2909 static void perf_output_read_one(struct perf_output_handle *handle,
2910                                  struct perf_event *event)
2911 {
2912         u64 read_format = event->attr.read_format;
2913         u64 values[4];
2914         int n = 0;
2915
2916         values[n++] = atomic64_read(&event->count);
2917         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2918                 values[n++] = event->total_time_enabled +
2919                         atomic64_read(&event->child_total_time_enabled);
2920         }
2921         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2922                 values[n++] = event->total_time_running +
2923                         atomic64_read(&event->child_total_time_running);
2924         }
2925         if (read_format & PERF_FORMAT_ID)
2926                 values[n++] = primary_event_id(event);
2927
2928         perf_output_copy(handle, values, n * sizeof(u64));
2929 }
2930
2931 /*
2932  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2933  */
2934 static void perf_output_read_group(struct perf_output_handle *handle,
2935                             struct perf_event *event)
2936 {
2937         struct perf_event *leader = event->group_leader, *sub;
2938         u64 read_format = event->attr.read_format;
2939         u64 values[5];
2940         int n = 0;
2941
2942         values[n++] = 1 + leader->nr_siblings;
2943
2944         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2945                 values[n++] = leader->total_time_enabled;
2946
2947         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2948                 values[n++] = leader->total_time_running;
2949
2950         if (leader != event)
2951                 leader->pmu->read(leader);
2952
2953         values[n++] = atomic64_read(&leader->count);
2954         if (read_format & PERF_FORMAT_ID)
2955                 values[n++] = primary_event_id(leader);
2956
2957         perf_output_copy(handle, values, n * sizeof(u64));
2958
2959         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2960                 n = 0;
2961
2962                 if (sub != event)
2963                         sub->pmu->read(sub);
2964
2965                 values[n++] = atomic64_read(&sub->count);
2966                 if (read_format & PERF_FORMAT_ID)
2967                         values[n++] = primary_event_id(sub);
2968
2969                 perf_output_copy(handle, values, n * sizeof(u64));
2970         }
2971 }
2972
2973 static void perf_output_read(struct perf_output_handle *handle,
2974                              struct perf_event *event)
2975 {
2976         if (event->attr.read_format & PERF_FORMAT_GROUP)
2977                 perf_output_read_group(handle, event);
2978         else
2979                 perf_output_read_one(handle, event);
2980 }
2981
2982 void perf_output_sample(struct perf_output_handle *handle,
2983                         struct perf_event_header *header,
2984                         struct perf_sample_data *data,
2985                         struct perf_event *event)
2986 {
2987         u64 sample_type = data->type;
2988
2989         perf_output_put(handle, *header);
2990
2991         if (sample_type & PERF_SAMPLE_IP)
2992                 perf_output_put(handle, data->ip);
2993
2994         if (sample_type & PERF_SAMPLE_TID)
2995                 perf_output_put(handle, data->tid_entry);
2996
2997         if (sample_type & PERF_SAMPLE_TIME)
2998                 perf_output_put(handle, data->time);
2999
3000         if (sample_type & PERF_SAMPLE_ADDR)
3001                 perf_output_put(handle, data->addr);
3002
3003         if (sample_type & PERF_SAMPLE_ID)
3004                 perf_output_put(handle, data->id);
3005
3006         if (sample_type & PERF_SAMPLE_STREAM_ID)
3007                 perf_output_put(handle, data->stream_id);
3008
3009         if (sample_type & PERF_SAMPLE_CPU)
3010                 perf_output_put(handle, data->cpu_entry);
3011
3012         if (sample_type & PERF_SAMPLE_PERIOD)
3013                 perf_output_put(handle, data->period);
3014
3015         if (sample_type & PERF_SAMPLE_READ)
3016                 perf_output_read(handle, event);
3017
3018         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3019                 if (data->callchain) {
3020                         int size = 1;
3021
3022                         if (data->callchain)
3023                                 size += data->callchain->nr;
3024
3025                         size *= sizeof(u64);
3026
3027                         perf_output_copy(handle, data->callchain, size);
3028                 } else {
3029                         u64 nr = 0;
3030                         perf_output_put(handle, nr);
3031                 }
3032         }
3033
3034         if (sample_type & PERF_SAMPLE_RAW) {
3035                 if (data->raw) {
3036                         perf_output_put(handle, data->raw->size);
3037                         perf_output_copy(handle, data->raw->data,
3038                                          data->raw->size);
3039                 } else {
3040                         struct {
3041                                 u32     size;
3042                                 u32     data;
3043                         } raw = {
3044                                 .size = sizeof(u32),
3045                                 .data = 0,
3046                         };
3047                         perf_output_put(handle, raw);
3048                 }
3049         }
3050 }
3051
3052 void perf_prepare_sample(struct perf_event_header *header,
3053                          struct perf_sample_data *data,
3054                          struct perf_event *event,
3055                          struct pt_regs *regs)
3056 {
3057         u64 sample_type = event->attr.sample_type;
3058
3059         data->type = sample_type;
3060
3061         header->type = PERF_RECORD_SAMPLE;
3062         header->size = sizeof(*header);
3063
3064         header->misc = 0;
3065         header->misc |= perf_misc_flags(regs);
3066
3067         if (sample_type & PERF_SAMPLE_IP) {
3068                 data->ip = perf_instruction_pointer(regs);
3069
3070                 header->size += sizeof(data->ip);
3071         }
3072
3073         if (sample_type & PERF_SAMPLE_TID) {
3074                 /* namespace issues */
3075                 data->tid_entry.pid = perf_event_pid(event, current);
3076                 data->tid_entry.tid = perf_event_tid(event, current);
3077
3078                 header->size += sizeof(data->tid_entry);
3079         }
3080
3081         if (sample_type & PERF_SAMPLE_TIME) {
3082                 data->time = perf_clock();
3083
3084                 header->size += sizeof(data->time);
3085         }
3086
3087         if (sample_type & PERF_SAMPLE_ADDR)
3088                 header->size += sizeof(data->addr);
3089
3090         if (sample_type & PERF_SAMPLE_ID) {
3091                 data->id = primary_event_id(event);
3092
3093                 header->size += sizeof(data->id);
3094         }
3095
3096         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3097                 data->stream_id = event->id;
3098
3099                 header->size += sizeof(data->stream_id);
3100         }
3101
3102         if (sample_type & PERF_SAMPLE_CPU) {
3103                 data->cpu_entry.cpu             = raw_smp_processor_id();
3104                 data->cpu_entry.reserved        = 0;
3105
3106                 header->size += sizeof(data->cpu_entry);
3107         }
3108
3109         if (sample_type & PERF_SAMPLE_PERIOD)
3110                 header->size += sizeof(data->period);
3111
3112         if (sample_type & PERF_SAMPLE_READ)
3113                 header->size += perf_event_read_size(event);
3114
3115         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3116                 int size = 1;
3117
3118                 data->callchain = perf_callchain(regs);
3119
3120                 if (data->callchain)
3121                         size += data->callchain->nr;
3122
3123                 header->size += size * sizeof(u64);
3124         }
3125
3126         if (sample_type & PERF_SAMPLE_RAW) {
3127                 int size = sizeof(u32);
3128
3129                 if (data->raw)
3130                         size += data->raw->size;
3131                 else
3132                         size += sizeof(u32);
3133
3134                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3135                 header->size += size;
3136         }
3137 }
3138
3139 static void perf_event_output(struct perf_event *event, int nmi,
3140                                 struct perf_sample_data *data,
3141                                 struct pt_regs *regs)
3142 {
3143         struct perf_output_handle handle;
3144         struct perf_event_header header;
3145
3146         perf_prepare_sample(&header, data, event, regs);
3147
3148         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3149                 return;
3150
3151         perf_output_sample(&handle, &header, data, event);
3152
3153         perf_output_end(&handle);
3154 }
3155
3156 /*
3157  * read event_id
3158  */
3159
3160 struct perf_read_event {
3161         struct perf_event_header        header;
3162
3163         u32                             pid;
3164         u32                             tid;
3165 };
3166
3167 static void
3168 perf_event_read_event(struct perf_event *event,
3169                         struct task_struct *task)
3170 {
3171         struct perf_output_handle handle;
3172         struct perf_read_event read_event = {
3173                 .header = {
3174                         .type = PERF_RECORD_READ,
3175                         .misc = 0,
3176                         .size = sizeof(read_event) + perf_event_read_size(event),
3177                 },
3178                 .pid = perf_event_pid(event, task),
3179                 .tid = perf_event_tid(event, task),
3180         };
3181         int ret;
3182
3183         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3184         if (ret)
3185                 return;
3186
3187         perf_output_put(&handle, read_event);
3188         perf_output_read(&handle, event);
3189
3190         perf_output_end(&handle);
3191 }
3192
3193 /*
3194  * task tracking -- fork/exit
3195  *
3196  * enabled by: attr.comm | attr.mmap | attr.task
3197  */
3198
3199 struct perf_task_event {
3200         struct task_struct              *task;
3201         struct perf_event_context       *task_ctx;
3202
3203         struct {
3204                 struct perf_event_header        header;
3205
3206                 u32                             pid;
3207                 u32                             ppid;
3208                 u32                             tid;
3209                 u32                             ptid;
3210                 u64                             time;
3211         } event_id;
3212 };
3213
3214 static void perf_event_task_output(struct perf_event *event,
3215                                      struct perf_task_event *task_event)
3216 {
3217         struct perf_output_handle handle;
3218         int size;
3219         struct task_struct *task = task_event->task;
3220         int ret;
3221
3222         size  = task_event->event_id.header.size;
3223         ret = perf_output_begin(&handle, event, size, 0, 0);
3224
3225         if (ret)
3226                 return;
3227
3228         task_event->event_id.pid = perf_event_pid(event, task);
3229         task_event->event_id.ppid = perf_event_pid(event, current);
3230
3231         task_event->event_id.tid = perf_event_tid(event, task);
3232         task_event->event_id.ptid = perf_event_tid(event, current);
3233
3234         task_event->event_id.time = perf_clock();
3235
3236         perf_output_put(&handle, task_event->event_id);
3237
3238         perf_output_end(&handle);
3239 }
3240
3241 static int perf_event_task_match(struct perf_event *event)
3242 {
3243         if (event->attr.comm || event->attr.mmap || event->attr.task)
3244                 return 1;
3245
3246         return 0;
3247 }
3248
3249 static void perf_event_task_ctx(struct perf_event_context *ctx,
3250                                   struct perf_task_event *task_event)
3251 {
3252         struct perf_event *event;
3253
3254         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3255                 if (perf_event_task_match(event))
3256                         perf_event_task_output(event, task_event);
3257         }
3258 }
3259
3260 static void perf_event_task_event(struct perf_task_event *task_event)
3261 {
3262         struct perf_cpu_context *cpuctx;
3263         struct perf_event_context *ctx = task_event->task_ctx;
3264
3265         rcu_read_lock();
3266         cpuctx = &get_cpu_var(perf_cpu_context);
3267         perf_event_task_ctx(&cpuctx->ctx, task_event);
3268         put_cpu_var(perf_cpu_context);
3269
3270         if (!ctx)
3271                 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3272         if (ctx)
3273                 perf_event_task_ctx(ctx, task_event);
3274         rcu_read_unlock();
3275 }
3276
3277 static void perf_event_task(struct task_struct *task,
3278                               struct perf_event_context *task_ctx,
3279                               int new)
3280 {
3281         struct perf_task_event task_event;
3282
3283         if (!atomic_read(&nr_comm_events) &&
3284             !atomic_read(&nr_mmap_events) &&
3285             !atomic_read(&nr_task_events))
3286                 return;
3287
3288         task_event = (struct perf_task_event){
3289                 .task     = task,
3290                 .task_ctx = task_ctx,
3291                 .event_id    = {
3292                         .header = {
3293                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3294                                 .misc = 0,
3295                                 .size = sizeof(task_event.event_id),
3296                         },
3297                         /* .pid  */
3298                         /* .ppid */
3299                         /* .tid  */
3300                         /* .ptid */
3301                 },
3302         };
3303
3304         perf_event_task_event(&task_event);
3305 }
3306
3307 void perf_event_fork(struct task_struct *task)
3308 {
3309         perf_event_task(task, NULL, 1);
3310 }
3311
3312 /*
3313  * comm tracking
3314  */
3315
3316 struct perf_comm_event {
3317         struct task_struct      *task;
3318         char                    *comm;
3319         int                     comm_size;
3320
3321         struct {
3322                 struct perf_event_header        header;
3323
3324                 u32                             pid;
3325                 u32                             tid;
3326         } event_id;
3327 };
3328
3329 static void perf_event_comm_output(struct perf_event *event,
3330                                      struct perf_comm_event *comm_event)
3331 {
3332         struct perf_output_handle handle;
3333         int size = comm_event->event_id.header.size;
3334         int ret = perf_output_begin(&handle, event, size, 0, 0);
3335
3336         if (ret)
3337                 return;
3338
3339         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3340         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3341
3342         perf_output_put(&handle, comm_event->event_id);
3343         perf_output_copy(&handle, comm_event->comm,
3344                                    comm_event->comm_size);
3345         perf_output_end(&handle);
3346 }
3347
3348 static int perf_event_comm_match(struct perf_event *event)
3349 {
3350         if (event->attr.comm)
3351                 return 1;
3352
3353         return 0;
3354 }
3355
3356 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3357                                   struct perf_comm_event *comm_event)
3358 {
3359         struct perf_event *event;
3360
3361         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3362                 if (perf_event_comm_match(event))
3363                         perf_event_comm_output(event, comm_event);
3364         }
3365 }
3366
3367 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3368 {
3369         struct perf_cpu_context *cpuctx;
3370         struct perf_event_context *ctx;
3371         unsigned int size;
3372         char comm[TASK_COMM_LEN];
3373
3374         memset(comm, 0, sizeof(comm));
3375         strncpy(comm, comm_event->task->comm, sizeof(comm));
3376         size = ALIGN(strlen(comm)+1, sizeof(u64));
3377
3378         comm_event->comm = comm;
3379         comm_event->comm_size = size;
3380
3381         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3382
3383         rcu_read_lock();
3384         cpuctx = &get_cpu_var(perf_cpu_context);
3385         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3386         put_cpu_var(perf_cpu_context);
3387
3388         /*
3389          * doesn't really matter which of the child contexts the
3390          * events ends up in.
3391          */
3392         ctx = rcu_dereference(current->perf_event_ctxp);
3393         if (ctx)
3394                 perf_event_comm_ctx(ctx, comm_event);
3395         rcu_read_unlock();
3396 }
3397
3398 void perf_event_comm(struct task_struct *task)
3399 {
3400         struct perf_comm_event comm_event;
3401
3402         if (task->perf_event_ctxp)
3403                 perf_event_enable_on_exec(task);
3404
3405         if (!atomic_read(&nr_comm_events))
3406                 return;
3407
3408         comm_event = (struct perf_comm_event){
3409                 .task   = task,
3410                 /* .comm      */
3411                 /* .comm_size */
3412                 .event_id  = {
3413                         .header = {
3414                                 .type = PERF_RECORD_COMM,
3415                                 .misc = 0,
3416                                 /* .size */
3417                         },
3418                         /* .pid */
3419                         /* .tid */
3420                 },
3421         };
3422
3423         perf_event_comm_event(&comm_event);
3424 }
3425
3426 /*
3427  * mmap tracking
3428  */
3429
3430 struct perf_mmap_event {
3431         struct vm_area_struct   *vma;
3432
3433         const char              *file_name;
3434         int                     file_size;
3435
3436         struct {
3437                 struct perf_event_header        header;
3438
3439                 u32                             pid;
3440                 u32                             tid;
3441                 u64                             start;
3442                 u64                             len;
3443                 u64                             pgoff;
3444         } event_id;
3445 };
3446
3447 static void perf_event_mmap_output(struct perf_event *event,
3448                                      struct perf_mmap_event *mmap_event)
3449 {
3450         struct perf_output_handle handle;
3451         int size = mmap_event->event_id.header.size;
3452         int ret = perf_output_begin(&handle, event, size, 0, 0);
3453
3454         if (ret)
3455                 return;
3456
3457         mmap_event->event_id.pid = perf_event_pid(event, current);
3458         mmap_event->event_id.tid = perf_event_tid(event, current);
3459
3460         perf_output_put(&handle, mmap_event->event_id);
3461         perf_output_copy(&handle, mmap_event->file_name,
3462                                    mmap_event->file_size);
3463         perf_output_end(&handle);
3464 }
3465
3466 static int perf_event_mmap_match(struct perf_event *event,
3467                                    struct perf_mmap_event *mmap_event)
3468 {
3469         if (event->attr.mmap)
3470                 return 1;
3471
3472         return 0;
3473 }
3474
3475 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3476                                   struct perf_mmap_event *mmap_event)
3477 {
3478         struct perf_event *event;
3479
3480         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3481                 if (perf_event_mmap_match(event, mmap_event))
3482                         perf_event_mmap_output(event, mmap_event);
3483         }
3484 }
3485
3486 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3487 {
3488         struct perf_cpu_context *cpuctx;
3489         struct perf_event_context *ctx;
3490         struct vm_area_struct *vma = mmap_event->vma;
3491         struct file *file = vma->vm_file;
3492         unsigned int size;
3493         char tmp[16];
3494         char *buf = NULL;
3495         const char *name;
3496
3497         memset(tmp, 0, sizeof(tmp));
3498
3499         if (file) {
3500                 /*
3501                  * d_path works from the end of the buffer backwards, so we
3502                  * need to add enough zero bytes after the string to handle
3503                  * the 64bit alignment we do later.
3504                  */
3505                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3506                 if (!buf) {
3507                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3508                         goto got_name;
3509                 }
3510                 name = d_path(&file->f_path, buf, PATH_MAX);
3511                 if (IS_ERR(name)) {
3512                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3513                         goto got_name;
3514                 }
3515         } else {
3516                 if (arch_vma_name(mmap_event->vma)) {
3517                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3518                                        sizeof(tmp));
3519                         goto got_name;
3520                 }
3521
3522                 if (!vma->vm_mm) {
3523                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3524                         goto got_name;
3525                 }
3526
3527                 name = strncpy(tmp, "//anon", sizeof(tmp));
3528                 goto got_name;
3529         }
3530
3531 got_name:
3532         size = ALIGN(strlen(name)+1, sizeof(u64));
3533
3534         mmap_event->file_name = name;
3535         mmap_event->file_size = size;
3536
3537         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3538
3539         rcu_read_lock();
3540         cpuctx = &get_cpu_var(perf_cpu_context);
3541         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3542         put_cpu_var(perf_cpu_context);
3543
3544         /*
3545          * doesn't really matter which of the child contexts the
3546          * events ends up in.
3547          */
3548         ctx = rcu_dereference(current->perf_event_ctxp);
3549         if (ctx)
3550                 perf_event_mmap_ctx(ctx, mmap_event);
3551         rcu_read_unlock();
3552
3553         kfree(buf);
3554 }
3555
3556 void __perf_event_mmap(struct vm_area_struct *vma)
3557 {
3558         struct perf_mmap_event mmap_event;
3559
3560         if (!atomic_read(&nr_mmap_events))
3561                 return;
3562
3563         mmap_event = (struct perf_mmap_event){
3564                 .vma    = vma,
3565                 /* .file_name */
3566                 /* .file_size */
3567                 .event_id  = {
3568                         .header = {
3569                                 .type = PERF_RECORD_MMAP,
3570                                 .misc = 0,
3571                                 /* .size */
3572                         },
3573                         /* .pid */
3574                         /* .tid */
3575                         .start  = vma->vm_start,
3576                         .len    = vma->vm_end - vma->vm_start,
3577                         .pgoff  = vma->vm_pgoff,
3578                 },
3579         };
3580
3581         perf_event_mmap_event(&mmap_event);
3582 }
3583
3584 /*
3585  * IRQ throttle logging
3586  */
3587
3588 static void perf_log_throttle(struct perf_event *event, int enable)
3589 {
3590         struct perf_output_handle handle;
3591         int ret;
3592
3593         struct {
3594                 struct perf_event_header        header;
3595                 u64                             time;
3596                 u64                             id;
3597                 u64                             stream_id;
3598         } throttle_event = {
3599                 .header = {
3600                         .type = PERF_RECORD_THROTTLE,
3601                         .misc = 0,
3602                         .size = sizeof(throttle_event),
3603                 },
3604                 .time           = perf_clock(),
3605                 .id             = primary_event_id(event),
3606                 .stream_id      = event->id,
3607         };
3608
3609         if (enable)
3610                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3611
3612         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3613         if (ret)
3614                 return;
3615
3616         perf_output_put(&handle, throttle_event);
3617         perf_output_end(&handle);
3618 }
3619
3620 /*
3621  * Generic event overflow handling, sampling.
3622  */
3623
3624 static int __perf_event_overflow(struct perf_event *event, int nmi,
3625                                    int throttle, struct perf_sample_data *data,
3626                                    struct pt_regs *regs)
3627 {
3628         int events = atomic_read(&event->event_limit);
3629         struct hw_perf_event *hwc = &event->hw;
3630         int ret = 0;
3631
3632         throttle = (throttle && event->pmu->unthrottle != NULL);
3633
3634         if (!throttle) {
3635                 hwc->interrupts++;
3636         } else {
3637                 if (hwc->interrupts != MAX_INTERRUPTS) {
3638                         hwc->interrupts++;
3639                         if (HZ * hwc->interrupts >
3640                                         (u64)sysctl_perf_event_sample_rate) {
3641                                 hwc->interrupts = MAX_INTERRUPTS;
3642                                 perf_log_throttle(event, 0);
3643                                 ret = 1;
3644                         }
3645                 } else {
3646                         /*
3647                          * Keep re-disabling events even though on the previous
3648                          * pass we disabled it - just in case we raced with a
3649                          * sched-in and the event got enabled again:
3650                          */
3651                         ret = 1;
3652                 }
3653         }
3654
3655         if (event->attr.freq) {
3656                 u64 now = perf_clock();
3657                 s64 delta = now - hwc->freq_stamp;
3658
3659                 hwc->freq_stamp = now;
3660
3661                 if (delta > 0 && delta < TICK_NSEC)
3662                         perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3663         }
3664
3665         /*
3666          * XXX event_limit might not quite work as expected on inherited
3667          * events
3668          */
3669
3670         event->pending_kill = POLL_IN;
3671         if (events && atomic_dec_and_test(&event->event_limit)) {
3672                 ret = 1;
3673                 event->pending_kill = POLL_HUP;
3674                 if (nmi) {
3675                         event->pending_disable = 1;
3676                         perf_pending_queue(&event->pending,
3677                                            perf_pending_event);
3678                 } else
3679                         perf_event_disable(event);
3680         }
3681
3682         if (event->overflow_handler)
3683                 event->overflow_handler(event, nmi, data, regs);
3684         else
3685                 perf_event_output(event, nmi, data, regs);
3686
3687         return ret;
3688 }
3689
3690 int perf_event_overflow(struct perf_event *event, int nmi,
3691                           struct perf_sample_data *data,
3692                           struct pt_regs *regs)
3693 {
3694         return __perf_event_overflow(event, nmi, 1, data, regs);
3695 }
3696
3697 /*
3698  * Generic software event infrastructure
3699  */
3700
3701 /*
3702  * We directly increment event->count and keep a second value in
3703  * event->hw.period_left to count intervals. This period event
3704  * is kept in the range [-sample_period, 0] so that we can use the
3705  * sign as trigger.
3706  */
3707
3708 static u64 perf_swevent_set_period(struct perf_event *event)
3709 {
3710         struct hw_perf_event *hwc = &event->hw;
3711         u64 period = hwc->last_period;
3712         u64 nr, offset;
3713         s64 old, val;
3714
3715         hwc->last_period = hwc->sample_period;
3716
3717 again:
3718         old = val = atomic64_read(&hwc->period_left);
3719         if (val < 0)
3720                 return 0;
3721
3722         nr = div64_u64(period + val, period);
3723         offset = nr * period;
3724         val -= offset;
3725         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3726                 goto again;
3727
3728         return nr;
3729 }
3730
3731 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3732                                     int nmi, struct perf_sample_data *data,
3733                                     struct pt_regs *regs)
3734 {
3735         struct hw_perf_event *hwc = &event->hw;
3736         int throttle = 0;
3737
3738         data->period = event->hw.last_period;
3739         if (!overflow)
3740                 overflow = perf_swevent_set_period(event);
3741
3742         if (hwc->interrupts == MAX_INTERRUPTS)
3743                 return;
3744
3745         for (; overflow; overflow--) {
3746                 if (__perf_event_overflow(event, nmi, throttle,
3747                                             data, regs)) {
3748                         /*
3749                          * We inhibit the overflow from happening when
3750                          * hwc->interrupts == MAX_INTERRUPTS.
3751                          */
3752                         break;
3753                 }
3754                 throttle = 1;
3755         }
3756 }
3757
3758 static void perf_swevent_unthrottle(struct perf_event *event)
3759 {
3760         /*
3761          * Nothing to do, we already reset hwc->interrupts.
3762          */
3763 }
3764
3765 static void perf_swevent_add(struct perf_event *event, u64 nr,
3766                                int nmi, struct perf_sample_data *data,
3767                                struct pt_regs *regs)
3768 {
3769         struct hw_perf_event *hwc = &event->hw;
3770
3771         atomic64_add(nr, &event->count);
3772
3773         if (!regs)
3774                 return;
3775
3776         if (!hwc->sample_period)
3777                 return;
3778
3779         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3780                 return perf_swevent_overflow(event, 1, nmi, data, regs);
3781
3782         if (atomic64_add_negative(nr, &hwc->period_left))
3783                 return;
3784
3785         perf_swevent_overflow(event, 0, nmi, data, regs);
3786 }
3787
3788 static int perf_swevent_is_counting(struct perf_event *event)
3789 {
3790         /*
3791          * The event is active, we're good!
3792          */
3793         if (event->state == PERF_EVENT_STATE_ACTIVE)
3794                 return 1;
3795
3796         /*
3797          * The event is off/error, not counting.
3798          */
3799         if (event->state != PERF_EVENT_STATE_INACTIVE)
3800                 return 0;
3801
3802         /*
3803          * The event is inactive, if the context is active
3804          * we're part of a group that didn't make it on the 'pmu',
3805          * not counting.
3806          */
3807         if (event->ctx->is_active)
3808                 return 0;
3809
3810         /*
3811          * We're inactive and the context is too, this means the
3812          * task is scheduled out, we're counting events that happen
3813          * to us, like migration events.
3814          */
3815         return 1;
3816 }
3817
3818 static int perf_tp_event_match(struct perf_event *event,
3819                                 struct perf_sample_data *data);
3820
3821 static int perf_swevent_match(struct perf_event *event,
3822                                 enum perf_type_id type,
3823                                 u32 event_id,
3824                                 struct perf_sample_data *data,
3825                                 struct pt_regs *regs)
3826 {
3827         if (!perf_swevent_is_counting(event))
3828                 return 0;
3829
3830         if (event->attr.type != type)
3831                 return 0;
3832         if (event->attr.config != event_id)
3833                 return 0;
3834
3835         if (regs) {
3836                 if (event->attr.exclude_user && user_mode(regs))
3837                         return 0;
3838
3839                 if (event->attr.exclude_kernel && !user_mode(regs))
3840                         return 0;
3841         }
3842
3843         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3844             !perf_tp_event_match(event, data))
3845                 return 0;
3846
3847         return 1;
3848 }
3849
3850 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3851                                      enum perf_type_id type,
3852                                      u32 event_id, u64 nr, int nmi,
3853                                      struct perf_sample_data *data,
3854                                      struct pt_regs *regs)
3855 {
3856         struct perf_event *event;
3857
3858         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3859                 if (perf_swevent_match(event, type, event_id, data, regs))
3860                         perf_swevent_add(event, nr, nmi, data, regs);
3861         }
3862 }
3863
3864 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3865 {
3866         if (in_nmi())
3867                 return &cpuctx->recursion[3];
3868
3869         if (in_irq())
3870                 return &cpuctx->recursion[2];
3871
3872         if (in_softirq())
3873                 return &cpuctx->recursion[1];
3874
3875         return &cpuctx->recursion[0];
3876 }
3877
3878 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3879                                     u64 nr, int nmi,
3880                                     struct perf_sample_data *data,
3881                                     struct pt_regs *regs)
3882 {
3883         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3884         int *recursion = perf_swevent_recursion_context(cpuctx);
3885         struct perf_event_context *ctx;
3886
3887         if (*recursion)
3888                 goto out;
3889
3890         (*recursion)++;
3891         barrier();
3892
3893         rcu_read_lock();
3894         perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3895                                  nr, nmi, data, regs);
3896         /*
3897          * doesn't really matter which of the child contexts the
3898          * events ends up in.
3899          */
3900         ctx = rcu_dereference(current->perf_event_ctxp);
3901         if (ctx)
3902                 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3903         rcu_read_unlock();
3904
3905         barrier();
3906         (*recursion)--;
3907
3908 out:
3909         put_cpu_var(perf_cpu_context);
3910 }
3911
3912 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3913                             struct pt_regs *regs, u64 addr)
3914 {
3915         struct perf_sample_data data = {
3916                 .addr = addr,
3917         };
3918
3919         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3920                                 &data, regs);
3921 }
3922
3923 static void perf_swevent_read(struct perf_event *event)
3924 {
3925 }
3926
3927 static int perf_swevent_enable(struct perf_event *event)
3928 {
3929         struct hw_perf_event *hwc = &event->hw;
3930
3931         if (hwc->sample_period) {
3932                 hwc->last_period = hwc->sample_period;
3933                 perf_swevent_set_period(event);
3934         }
3935         return 0;
3936 }
3937
3938 static void perf_swevent_disable(struct perf_event *event)
3939 {
3940 }
3941
3942 static const struct pmu perf_ops_generic = {
3943         .enable         = perf_swevent_enable,
3944         .disable        = perf_swevent_disable,
3945         .read           = perf_swevent_read,
3946         .unthrottle     = perf_swevent_unthrottle,
3947 };
3948
3949 /*
3950  * hrtimer based swevent callback
3951  */
3952
3953 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3954 {
3955         enum hrtimer_restart ret = HRTIMER_RESTART;
3956         struct perf_sample_data data;
3957         struct pt_regs *regs;
3958         struct perf_event *event;
3959         u64 period;
3960
3961         event   = container_of(hrtimer, struct perf_event, hw.hrtimer);
3962         event->pmu->read(event);
3963
3964         data.addr = 0;
3965         regs = get_irq_regs();
3966         /*
3967          * In case we exclude kernel IPs or are somehow not in interrupt
3968          * context, provide the next best thing, the user IP.
3969          */
3970         if ((event->attr.exclude_kernel || !regs) &&
3971                         !event->attr.exclude_user)
3972                 regs = task_pt_regs(current);
3973
3974         if (regs) {
3975                 if (!(event->attr.exclude_idle && current->pid == 0))
3976                         if (perf_event_overflow(event, 0, &data, regs))
3977                                 ret = HRTIMER_NORESTART;
3978         }
3979
3980         period = max_t(u64, 10000, event->hw.sample_period);
3981         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3982
3983         return ret;
3984 }
3985
3986 static void perf_swevent_start_hrtimer(struct perf_event *event)
3987 {
3988         struct hw_perf_event *hwc = &event->hw;
3989
3990         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3991         hwc->hrtimer.function = perf_swevent_hrtimer;
3992         if (hwc->sample_period) {
3993                 u64 period;
3994
3995                 if (hwc->remaining) {
3996                         if (hwc->remaining < 0)
3997                                 period = 10000;
3998                         else
3999                                 period = hwc->remaining;
4000                         hwc->remaining = 0;
4001                 } else {
4002                         period = max_t(u64, 10000, hwc->sample_period);
4003                 }
4004                 __hrtimer_start_range_ns(&hwc->hrtimer,
4005                                 ns_to_ktime(period), 0,
4006                                 HRTIMER_MODE_REL, 0);
4007         }
4008 }
4009
4010 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4011 {
4012         struct hw_perf_event *hwc = &event->hw;
4013
4014         if (hwc->sample_period) {
4015                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4016                 hwc->remaining = ktime_to_ns(remaining);
4017
4018                 hrtimer_cancel(&hwc->hrtimer);
4019         }
4020 }
4021
4022 /*
4023  * Software event: cpu wall time clock
4024  */
4025
4026 static void cpu_clock_perf_event_update(struct perf_event *event)
4027 {
4028         int cpu = raw_smp_processor_id();
4029         s64 prev;
4030         u64 now;
4031
4032         now = cpu_clock(cpu);
4033         prev = atomic64_read(&event->hw.prev_count);
4034         atomic64_set(&event->hw.prev_count, now);
4035         atomic64_add(now - prev, &event->count);
4036 }
4037
4038 static int cpu_clock_perf_event_enable(struct perf_event *event)
4039 {
4040         struct hw_perf_event *hwc = &event->hw;
4041         int cpu = raw_smp_processor_id();
4042
4043         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4044         perf_swevent_start_hrtimer(event);
4045
4046         return 0;
4047 }
4048
4049 static void cpu_clock_perf_event_disable(struct perf_event *event)
4050 {
4051         perf_swevent_cancel_hrtimer(event);
4052         cpu_clock_perf_event_update(event);
4053 }
4054
4055 static void cpu_clock_perf_event_read(struct perf_event *event)
4056 {
4057         cpu_clock_perf_event_update(event);
4058 }
4059
4060 static const struct pmu perf_ops_cpu_clock = {
4061         .enable         = cpu_clock_perf_event_enable,
4062         .disable        = cpu_clock_perf_event_disable,
4063         .read           = cpu_clock_perf_event_read,
4064 };
4065
4066 /*
4067  * Software event: task time clock
4068  */
4069
4070 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4071 {
4072         u64 prev;
4073         s64 delta;
4074
4075         prev = atomic64_xchg(&event->hw.prev_count, now);
4076         delta = now - prev;
4077         atomic64_add(delta, &event->count);
4078 }
4079
4080 static int task_clock_perf_event_enable(struct perf_event *event)
4081 {
4082         struct hw_perf_event *hwc = &event->hw;
4083         u64 now;
4084
4085         now = event->ctx->time;
4086
4087         atomic64_set(&hwc->prev_count, now);
4088
4089         perf_swevent_start_hrtimer(event);
4090
4091         return 0;
4092 }
4093
4094 static void task_clock_perf_event_disable(struct perf_event *event)
4095 {
4096         perf_swevent_cancel_hrtimer(event);
4097         task_clock_perf_event_update(event, event->ctx->time);
4098
4099 }
4100
4101 static void task_clock_perf_event_read(struct perf_event *event)
4102 {
4103         u64 time;
4104
4105         if (!in_nmi()) {
4106                 update_context_time(event->ctx);
4107                 time = event->ctx->time;
4108         } else {
4109                 u64 now = perf_clock();
4110                 u64 delta = now - event->ctx->timestamp;
4111                 time = event->ctx->time + delta;
4112         }
4113
4114         task_clock_perf_event_update(event, time);
4115 }
4116
4117 static const struct pmu perf_ops_task_clock = {
4118         .enable         = task_clock_perf_event_enable,
4119         .disable        = task_clock_perf_event_disable,
4120         .read           = task_clock_perf_event_read,
4121 };
4122
4123 #ifdef CONFIG_EVENT_PROFILE
4124
4125 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4126                           int entry_size)
4127 {
4128         struct perf_raw_record raw = {
4129                 .size = entry_size,
4130                 .data = record,
4131         };
4132
4133         struct perf_sample_data data = {
4134                 .addr = addr,
4135                 .raw = &raw,
4136         };
4137
4138         struct pt_regs *regs = get_irq_regs();
4139
4140         if (!regs)
4141                 regs = task_pt_regs(current);
4142
4143         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4144                                 &data, regs);
4145 }
4146 EXPORT_SYMBOL_GPL(perf_tp_event);
4147
4148 static int perf_tp_event_match(struct perf_event *event,
4149                                 struct perf_sample_data *data)
4150 {
4151         void *record = data->raw->data;
4152
4153         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4154                 return 1;
4155         return 0;
4156 }
4157
4158 static void tp_perf_event_destroy(struct perf_event *event)
4159 {
4160         ftrace_profile_disable(event->attr.config);
4161 }
4162
4163 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4164 {
4165         /*
4166          * Raw tracepoint data is a severe data leak, only allow root to
4167          * have these.
4168          */
4169         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4170                         perf_paranoid_tracepoint_raw() &&
4171                         !capable(CAP_SYS_ADMIN))
4172                 return ERR_PTR(-EPERM);
4173
4174         if (ftrace_profile_enable(event->attr.config))
4175                 return NULL;
4176
4177         event->destroy = tp_perf_event_destroy;
4178
4179         return &perf_ops_generic;
4180 }
4181
4182 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4183 {
4184         char *filter_str;
4185         int ret;
4186
4187         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4188                 return -EINVAL;
4189
4190         filter_str = strndup_user(arg, PAGE_SIZE);
4191         if (IS_ERR(filter_str))
4192                 return PTR_ERR(filter_str);
4193
4194         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4195
4196         kfree(filter_str);
4197         return ret;
4198 }
4199
4200 static void perf_event_free_filter(struct perf_event *event)
4201 {
4202         ftrace_profile_free_filter(event);
4203 }
4204
4205 #else
4206
4207 static int perf_tp_event_match(struct perf_event *event,
4208                                 struct perf_sample_data *data)
4209 {
4210         return 1;
4211 }
4212
4213 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4214 {
4215         return NULL;
4216 }
4217
4218 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4219 {
4220         return -ENOENT;
4221 }
4222
4223 static void perf_event_free_filter(struct perf_event *event)
4224 {
4225 }
4226
4227 #endif /* CONFIG_EVENT_PROFILE */
4228
4229 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4230 static void bp_perf_event_destroy(struct perf_event *event)
4231 {
4232         release_bp_slot(event);
4233 }
4234
4235 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4236 {
4237         int err;
4238         /*
4239          * The breakpoint is already filled if we haven't created the counter
4240          * through perf syscall
4241          * FIXME: manage to get trigerred to NULL if it comes from syscalls
4242          */
4243         if (!bp->callback)
4244                 err = register_perf_hw_breakpoint(bp);
4245         else
4246                 err = __register_perf_hw_breakpoint(bp);
4247         if (err)
4248                 return ERR_PTR(err);
4249
4250         bp->destroy = bp_perf_event_destroy;
4251
4252         return &perf_ops_bp;
4253 }
4254
4255 void perf_bp_event(struct perf_event *bp, void *regs)
4256 {
4257         /* TODO */
4258 }
4259 #else
4260 static void bp_perf_event_destroy(struct perf_event *event)
4261 {
4262 }
4263
4264 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4265 {
4266         return NULL;
4267 }
4268
4269 void perf_bp_event(struct perf_event *bp, void *regs)
4270 {
4271 }
4272 #endif
4273
4274 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4275
4276 static void sw_perf_event_destroy(struct perf_event *event)
4277 {
4278         u64 event_id = event->attr.config;
4279
4280         WARN_ON(event->parent);
4281
4282         atomic_dec(&perf_swevent_enabled[event_id]);
4283 }
4284
4285 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4286 {
4287         const struct pmu *pmu = NULL;
4288         u64 event_id = event->attr.config;
4289
4290         /*
4291          * Software events (currently) can't in general distinguish
4292          * between user, kernel and hypervisor events.
4293          * However, context switches and cpu migrations are considered
4294          * to be kernel events, and page faults are never hypervisor
4295          * events.
4296          */
4297         switch (event_id) {
4298         case PERF_COUNT_SW_CPU_CLOCK:
4299                 pmu = &perf_ops_cpu_clock;
4300
4301                 break;
4302         case PERF_COUNT_SW_TASK_CLOCK:
4303                 /*
4304                  * If the user instantiates this as a per-cpu event,
4305                  * use the cpu_clock event instead.
4306                  */
4307                 if (event->ctx->task)
4308                         pmu = &perf_ops_task_clock;
4309                 else
4310                         pmu = &perf_ops_cpu_clock;
4311
4312                 break;
4313         case PERF_COUNT_SW_PAGE_FAULTS:
4314         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4315         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4316         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4317         case PERF_COUNT_SW_CPU_MIGRATIONS:
4318         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4319         case PERF_COUNT_SW_EMULATION_FAULTS:
4320                 if (!event->parent) {
4321                         atomic_inc(&perf_swevent_enabled[event_id]);
4322                         event->destroy = sw_perf_event_destroy;
4323                 }
4324                 pmu = &perf_ops_generic;
4325                 break;
4326         }
4327
4328         return pmu;
4329 }
4330
4331 /*
4332  * Allocate and initialize a event structure
4333  */
4334 static struct perf_event *
4335 perf_event_alloc(struct perf_event_attr *attr,
4336                    int cpu,
4337                    struct perf_event_context *ctx,
4338                    struct perf_event *group_leader,
4339                    struct perf_event *parent_event,
4340                    perf_callback_t callback,
4341                    gfp_t gfpflags)
4342 {
4343         const struct pmu *pmu;
4344         struct perf_event *event;
4345         struct hw_perf_event *hwc;
4346         long err;
4347
4348         event = kzalloc(sizeof(*event), gfpflags);
4349         if (!event)
4350                 return ERR_PTR(-ENOMEM);
4351
4352         /*
4353          * Single events are their own group leaders, with an
4354          * empty sibling list:
4355          */
4356         if (!group_leader)
4357                 group_leader = event;
4358
4359         mutex_init(&event->child_mutex);
4360         INIT_LIST_HEAD(&event->child_list);
4361
4362         INIT_LIST_HEAD(&event->group_entry);
4363         INIT_LIST_HEAD(&event->event_entry);
4364         INIT_LIST_HEAD(&event->sibling_list);
4365         init_waitqueue_head(&event->waitq);
4366
4367         mutex_init(&event->mmap_mutex);
4368
4369         event->cpu              = cpu;
4370         event->attr             = *attr;
4371         event->group_leader     = group_leader;
4372         event->pmu              = NULL;
4373         event->ctx              = ctx;
4374         event->oncpu            = -1;
4375
4376         event->parent           = parent_event;
4377
4378         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4379         event->id               = atomic64_inc_return(&perf_event_id);
4380
4381         event->state            = PERF_EVENT_STATE_INACTIVE;
4382
4383         if (!callback && parent_event)
4384                 callback = parent_event->callback;
4385         
4386         event->callback = callback;
4387
4388         if (attr->disabled)
4389                 event->state = PERF_EVENT_STATE_OFF;
4390
4391         pmu = NULL;
4392
4393         hwc = &event->hw;
4394         hwc->sample_period = attr->sample_period;
4395         if (attr->freq && attr->sample_freq)
4396                 hwc->sample_period = 1;
4397         hwc->last_period = hwc->sample_period;
4398
4399         atomic64_set(&hwc->period_left, hwc->sample_period);
4400
4401         /*
4402          * we currently do not support PERF_FORMAT_GROUP on inherited events
4403          */
4404         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4405                 goto done;
4406
4407         switch (attr->type) {
4408         case PERF_TYPE_RAW:
4409         case PERF_TYPE_HARDWARE:
4410         case PERF_TYPE_HW_CACHE:
4411                 pmu = hw_perf_event_init(event);
4412                 break;
4413
4414         case PERF_TYPE_SOFTWARE:
4415                 pmu = sw_perf_event_init(event);
4416                 break;
4417
4418         case PERF_TYPE_TRACEPOINT:
4419                 pmu = tp_perf_event_init(event);
4420                 break;
4421
4422         case PERF_TYPE_BREAKPOINT:
4423                 pmu = bp_perf_event_init(event);
4424                 break;
4425
4426
4427         default:
4428                 break;
4429         }
4430 done:
4431         err = 0;
4432         if (!pmu)
4433                 err = -EINVAL;
4434         else if (IS_ERR(pmu))
4435                 err = PTR_ERR(pmu);
4436
4437         if (err) {
4438                 if (event->ns)
4439                         put_pid_ns(event->ns);
4440                 kfree(event);
4441                 return ERR_PTR(err);
4442         }
4443
4444         event->pmu = pmu;
4445
4446         if (!event->parent) {
4447                 atomic_inc(&nr_events);
4448                 if (event->attr.mmap)
4449                         atomic_inc(&nr_mmap_events);
4450                 if (event->attr.comm)
4451                         atomic_inc(&nr_comm_events);
4452                 if (event->attr.task)
4453                         atomic_inc(&nr_task_events);
4454         }
4455
4456         return event;
4457 }
4458
4459 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4460                           struct perf_event_attr *attr)
4461 {
4462         u32 size;
4463         int ret;
4464
4465         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4466                 return -EFAULT;
4467
4468         /*
4469          * zero the full structure, so that a short copy will be nice.
4470          */
4471         memset(attr, 0, sizeof(*attr));
4472
4473         ret = get_user(size, &uattr->size);
4474         if (ret)
4475                 return ret;
4476
4477         if (size > PAGE_SIZE)   /* silly large */
4478                 goto err_size;
4479
4480         if (!size)              /* abi compat */
4481                 size = PERF_ATTR_SIZE_VER0;
4482
4483         if (size < PERF_ATTR_SIZE_VER0)
4484                 goto err_size;
4485
4486         /*
4487          * If we're handed a bigger struct than we know of,
4488          * ensure all the unknown bits are 0 - i.e. new
4489          * user-space does not rely on any kernel feature
4490          * extensions we dont know about yet.
4491          */
4492         if (size > sizeof(*attr)) {
4493                 unsigned char __user *addr;
4494                 unsigned char __user *end;
4495                 unsigned char val;
4496
4497                 addr = (void __user *)uattr + sizeof(*attr);
4498                 end  = (void __user *)uattr + size;
4499
4500                 for (; addr < end; addr++) {
4501                         ret = get_user(val, addr);
4502                         if (ret)
4503                                 return ret;
4504                         if (val)
4505                                 goto err_size;
4506                 }
4507                 size = sizeof(*attr);
4508         }
4509
4510         ret = copy_from_user(attr, uattr, size);
4511         if (ret)
4512                 return -EFAULT;
4513
4514         /*
4515          * If the type exists, the corresponding creation will verify
4516          * the attr->config.
4517          */
4518         if (attr->type >= PERF_TYPE_MAX)
4519                 return -EINVAL;
4520
4521         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4522                 return -EINVAL;
4523
4524         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4525                 return -EINVAL;
4526
4527         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4528                 return -EINVAL;
4529
4530 out:
4531         return ret;
4532
4533 err_size:
4534         put_user(sizeof(*attr), &uattr->size);
4535         ret = -E2BIG;
4536         goto out;
4537 }
4538
4539 static int perf_event_set_output(struct perf_event *event, int output_fd)
4540 {
4541         struct perf_event *output_event = NULL;
4542         struct file *output_file = NULL;
4543         struct perf_event *old_output;
4544         int fput_needed = 0;
4545         int ret = -EINVAL;
4546
4547         if (!output_fd)
4548                 goto set;
4549
4550         output_file = fget_light(output_fd, &fput_needed);
4551         if (!output_file)
4552                 return -EBADF;
4553
4554         if (output_file->f_op != &perf_fops)
4555                 goto out;
4556
4557         output_event = output_file->private_data;
4558
4559         /* Don't chain output fds */
4560         if (output_event->output)
4561                 goto out;
4562
4563         /* Don't set an output fd when we already have an output channel */
4564         if (event->data)
4565                 goto out;
4566
4567         atomic_long_inc(&output_file->f_count);
4568
4569 set:
4570         mutex_lock(&event->mmap_mutex);
4571         old_output = event->output;
4572         rcu_assign_pointer(event->output, output_event);
4573         mutex_unlock(&event->mmap_mutex);
4574
4575         if (old_output) {
4576                 /*
4577                  * we need to make sure no existing perf_output_*()
4578                  * is still referencing this event.
4579                  */
4580                 synchronize_rcu();
4581                 fput(old_output->filp);
4582         }
4583
4584         ret = 0;
4585 out:
4586         fput_light(output_file, fput_needed);
4587         return ret;
4588 }
4589
4590 /**
4591  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4592  *
4593  * @attr_uptr:  event_id type attributes for monitoring/sampling
4594  * @pid:                target pid
4595  * @cpu:                target cpu
4596  * @group_fd:           group leader event fd
4597  */
4598 SYSCALL_DEFINE5(perf_event_open,
4599                 struct perf_event_attr __user *, attr_uptr,
4600                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4601 {
4602         struct perf_event *event, *group_leader;
4603         struct perf_event_attr attr;
4604         struct perf_event_context *ctx;
4605         struct file *event_file = NULL;
4606         struct file *group_file = NULL;
4607         int fput_needed = 0;
4608         int fput_needed2 = 0;
4609         int err;
4610
4611         /* for future expandability... */
4612         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4613                 return -EINVAL;
4614
4615         err = perf_copy_attr(attr_uptr, &attr);
4616         if (err)
4617                 return err;
4618
4619         if (!attr.exclude_kernel) {
4620                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4621                         return -EACCES;
4622         }
4623
4624         if (attr.freq) {
4625                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4626                         return -EINVAL;
4627         }
4628
4629         /*
4630          * Get the target context (task or percpu):
4631          */
4632         ctx = find_get_context(pid, cpu);
4633         if (IS_ERR(ctx))
4634                 return PTR_ERR(ctx);
4635
4636         /*
4637          * Look up the group leader (we will attach this event to it):
4638          */
4639         group_leader = NULL;
4640         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4641                 err = -EINVAL;
4642                 group_file = fget_light(group_fd, &fput_needed);
4643                 if (!group_file)
4644                         goto err_put_context;
4645                 if (group_file->f_op != &perf_fops)
4646                         goto err_put_context;
4647
4648                 group_leader = group_file->private_data;
4649                 /*
4650                  * Do not allow a recursive hierarchy (this new sibling
4651                  * becoming part of another group-sibling):
4652                  */
4653                 if (group_leader->group_leader != group_leader)
4654                         goto err_put_context;
4655                 /*
4656                  * Do not allow to attach to a group in a different
4657                  * task or CPU context:
4658                  */
4659                 if (group_leader->ctx != ctx)
4660                         goto err_put_context;
4661                 /*
4662                  * Only a group leader can be exclusive or pinned
4663                  */
4664                 if (attr.exclusive || attr.pinned)
4665                         goto err_put_context;
4666         }
4667
4668         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4669                                      NULL, NULL, GFP_KERNEL);
4670         err = PTR_ERR(event);
4671         if (IS_ERR(event))
4672                 goto err_put_context;
4673
4674         err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4675         if (err < 0)
4676                 goto err_free_put_context;
4677
4678         event_file = fget_light(err, &fput_needed2);
4679         if (!event_file)
4680                 goto err_free_put_context;
4681
4682         if (flags & PERF_FLAG_FD_OUTPUT) {
4683                 err = perf_event_set_output(event, group_fd);
4684                 if (err)
4685                         goto err_fput_free_put_context;
4686         }
4687
4688         event->filp = event_file;
4689         WARN_ON_ONCE(ctx->parent_ctx);
4690         mutex_lock(&ctx->mutex);
4691         perf_install_in_context(ctx, event, cpu);
4692         ++ctx->generation;
4693         mutex_unlock(&ctx->mutex);
4694
4695         event->owner = current;
4696         get_task_struct(current);
4697         mutex_lock(&current->perf_event_mutex);
4698         list_add_tail(&event->owner_entry, &current->perf_event_list);
4699         mutex_unlock(&current->perf_event_mutex);
4700
4701 err_fput_free_put_context:
4702         fput_light(event_file, fput_needed2);
4703
4704 err_free_put_context:
4705         if (err < 0)
4706                 kfree(event);
4707
4708 err_put_context:
4709         if (err < 0)
4710                 put_ctx(ctx);
4711
4712         fput_light(group_file, fput_needed);
4713
4714         return err;
4715 }
4716
4717 /**
4718  * perf_event_create_kernel_counter
4719  *
4720  * @attr: attributes of the counter to create
4721  * @cpu: cpu in which the counter is bound
4722  * @pid: task to profile
4723  */
4724 struct perf_event *
4725 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4726                                  pid_t pid, perf_callback_t callback)
4727 {
4728         struct perf_event *event;
4729         struct perf_event_context *ctx;
4730         int err;
4731
4732         /*
4733          * Get the target context (task or percpu):
4734          */
4735
4736         ctx = find_get_context(pid, cpu);
4737         if (IS_ERR(ctx))
4738                 return NULL;
4739
4740         event = perf_event_alloc(attr, cpu, ctx, NULL,
4741                                      NULL, callback, GFP_KERNEL);
4742         err = PTR_ERR(event);
4743         if (IS_ERR(event))
4744                 goto err_put_context;
4745
4746         event->filp = NULL;
4747         WARN_ON_ONCE(ctx->parent_ctx);
4748         mutex_lock(&ctx->mutex);
4749         perf_install_in_context(ctx, event, cpu);
4750         ++ctx->generation;
4751         mutex_unlock(&ctx->mutex);
4752
4753         event->owner = current;
4754         get_task_struct(current);
4755         mutex_lock(&current->perf_event_mutex);
4756         list_add_tail(&event->owner_entry, &current->perf_event_list);
4757         mutex_unlock(&current->perf_event_mutex);
4758
4759         return event;
4760
4761 err_put_context:
4762         if (err < 0)
4763                 put_ctx(ctx);
4764
4765         return NULL;
4766 }
4767 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4768
4769 /*
4770  * inherit a event from parent task to child task:
4771  */
4772 static struct perf_event *
4773 inherit_event(struct perf_event *parent_event,
4774               struct task_struct *parent,
4775               struct perf_event_context *parent_ctx,
4776               struct task_struct *child,
4777               struct perf_event *group_leader,
4778               struct perf_event_context *child_ctx)
4779 {
4780         struct perf_event *child_event;
4781
4782         /*
4783          * Instead of creating recursive hierarchies of events,
4784          * we link inherited events back to the original parent,
4785          * which has a filp for sure, which we use as the reference
4786          * count:
4787          */
4788         if (parent_event->parent)
4789                 parent_event = parent_event->parent;
4790
4791         child_event = perf_event_alloc(&parent_event->attr,
4792                                            parent_event->cpu, child_ctx,
4793                                            group_leader, parent_event,
4794                                            NULL, GFP_KERNEL);
4795         if (IS_ERR(child_event))
4796                 return child_event;
4797         get_ctx(child_ctx);
4798
4799         /*
4800          * Make the child state follow the state of the parent event,
4801          * not its attr.disabled bit.  We hold the parent's mutex,
4802          * so we won't race with perf_event_{en, dis}able_family.
4803          */
4804         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4805                 child_event->state = PERF_EVENT_STATE_INACTIVE;
4806         else
4807                 child_event->state = PERF_EVENT_STATE_OFF;
4808
4809         if (parent_event->attr.freq)
4810                 child_event->hw.sample_period = parent_event->hw.sample_period;
4811
4812         child_event->overflow_handler = parent_event->overflow_handler;
4813
4814         /*
4815          * Link it up in the child's context:
4816          */
4817         add_event_to_ctx(child_event, child_ctx);
4818
4819         /*
4820          * Get a reference to the parent filp - we will fput it
4821          * when the child event exits. This is safe to do because
4822          * we are in the parent and we know that the filp still
4823          * exists and has a nonzero count:
4824          */
4825         atomic_long_inc(&parent_event->filp->f_count);
4826
4827         /*
4828          * Link this into the parent event's child list
4829          */
4830         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4831         mutex_lock(&parent_event->child_mutex);
4832         list_add_tail(&child_event->child_list, &parent_event->child_list);
4833         mutex_unlock(&parent_event->child_mutex);
4834
4835         return child_event;
4836 }
4837
4838 static int inherit_group(struct perf_event *parent_event,
4839               struct task_struct *parent,
4840               struct perf_event_context *parent_ctx,
4841               struct task_struct *child,
4842               struct perf_event_context *child_ctx)
4843 {
4844         struct perf_event *leader;
4845         struct perf_event *sub;
4846         struct perf_event *child_ctr;
4847
4848         leader = inherit_event(parent_event, parent, parent_ctx,
4849                                  child, NULL, child_ctx);
4850         if (IS_ERR(leader))
4851                 return PTR_ERR(leader);
4852         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4853                 child_ctr = inherit_event(sub, parent, parent_ctx,
4854                                             child, leader, child_ctx);
4855                 if (IS_ERR(child_ctr))
4856                         return PTR_ERR(child_ctr);
4857         }
4858         return 0;
4859 }
4860
4861 static void sync_child_event(struct perf_event *child_event,
4862                                struct task_struct *child)
4863 {
4864         struct perf_event *parent_event = child_event->parent;
4865         u64 child_val;
4866
4867         if (child_event->attr.inherit_stat)
4868                 perf_event_read_event(child_event, child);
4869
4870         child_val = atomic64_read(&child_event->count);
4871
4872         /*
4873          * Add back the child's count to the parent's count:
4874          */
4875         atomic64_add(child_val, &parent_event->count);
4876         atomic64_add(child_event->total_time_enabled,
4877                      &parent_event->child_total_time_enabled);
4878         atomic64_add(child_event->total_time_running,
4879                      &parent_event->child_total_time_running);
4880
4881         /*
4882          * Remove this event from the parent's list
4883          */
4884         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4885         mutex_lock(&parent_event->child_mutex);
4886         list_del_init(&child_event->child_list);
4887         mutex_unlock(&parent_event->child_mutex);
4888
4889         /*
4890          * Release the parent event, if this was the last
4891          * reference to it.
4892          */
4893         fput(parent_event->filp);
4894 }
4895
4896 static void
4897 __perf_event_exit_task(struct perf_event *child_event,
4898                          struct perf_event_context *child_ctx,
4899                          struct task_struct *child)
4900 {
4901         struct perf_event *parent_event;
4902
4903         update_event_times(child_event);
4904         perf_event_remove_from_context(child_event);
4905
4906         parent_event = child_event->parent;
4907         /*
4908          * It can happen that parent exits first, and has events
4909          * that are still around due to the child reference. These
4910          * events need to be zapped - but otherwise linger.
4911          */
4912         if (parent_event) {
4913                 sync_child_event(child_event, child);
4914                 free_event(child_event);
4915         }
4916 }
4917
4918 /*
4919  * When a child task exits, feed back event values to parent events.
4920  */
4921 void perf_event_exit_task(struct task_struct *child)
4922 {
4923         struct perf_event *child_event, *tmp;
4924         struct perf_event_context *child_ctx;
4925         unsigned long flags;
4926
4927         if (likely(!child->perf_event_ctxp)) {
4928                 perf_event_task(child, NULL, 0);
4929                 return;
4930         }
4931
4932         local_irq_save(flags);
4933         /*
4934          * We can't reschedule here because interrupts are disabled,
4935          * and either child is current or it is a task that can't be
4936          * scheduled, so we are now safe from rescheduling changing
4937          * our context.
4938          */
4939         child_ctx = child->perf_event_ctxp;
4940         __perf_event_task_sched_out(child_ctx);
4941
4942         /*
4943          * Take the context lock here so that if find_get_context is
4944          * reading child->perf_event_ctxp, we wait until it has
4945          * incremented the context's refcount before we do put_ctx below.
4946          */
4947         spin_lock(&child_ctx->lock);
4948         child->perf_event_ctxp = NULL;
4949         /*
4950          * If this context is a clone; unclone it so it can't get
4951          * swapped to another process while we're removing all
4952          * the events from it.
4953          */
4954         unclone_ctx(child_ctx);
4955         spin_unlock_irqrestore(&child_ctx->lock, flags);
4956
4957         /*
4958          * Report the task dead after unscheduling the events so that we
4959          * won't get any samples after PERF_RECORD_EXIT. We can however still
4960          * get a few PERF_RECORD_READ events.
4961          */
4962         perf_event_task(child, child_ctx, 0);
4963
4964         /*
4965          * We can recurse on the same lock type through:
4966          *
4967          *   __perf_event_exit_task()
4968          *     sync_child_event()
4969          *       fput(parent_event->filp)
4970          *         perf_release()
4971          *           mutex_lock(&ctx->mutex)
4972          *
4973          * But since its the parent context it won't be the same instance.
4974          */
4975         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4976
4977 again:
4978         list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4979                                  group_entry)
4980                 __perf_event_exit_task(child_event, child_ctx, child);
4981
4982         /*
4983          * If the last event was a group event, it will have appended all
4984          * its siblings to the list, but we obtained 'tmp' before that which
4985          * will still point to the list head terminating the iteration.
4986          */
4987         if (!list_empty(&child_ctx->group_list))
4988                 goto again;
4989
4990         mutex_unlock(&child_ctx->mutex);
4991
4992         put_ctx(child_ctx);
4993 }
4994
4995 /*
4996  * free an unexposed, unused context as created by inheritance by
4997  * init_task below, used by fork() in case of fail.
4998  */
4999 void perf_event_free_task(struct task_struct *task)
5000 {
5001         struct perf_event_context *ctx = task->perf_event_ctxp;
5002         struct perf_event *event, *tmp;
5003
5004         if (!ctx)
5005                 return;
5006
5007         mutex_lock(&ctx->mutex);
5008 again:
5009         list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5010                 struct perf_event *parent = event->parent;
5011
5012                 if (WARN_ON_ONCE(!parent))
5013                         continue;
5014
5015                 mutex_lock(&parent->child_mutex);
5016                 list_del_init(&event->child_list);
5017                 mutex_unlock(&parent->child_mutex);
5018
5019                 fput(parent->filp);
5020
5021                 list_del_event(event, ctx);
5022                 free_event(event);
5023         }
5024
5025         if (!list_empty(&ctx->group_list))
5026                 goto again;
5027
5028         mutex_unlock(&ctx->mutex);
5029
5030         put_ctx(ctx);
5031 }
5032
5033 /*
5034  * Initialize the perf_event context in task_struct
5035  */
5036 int perf_event_init_task(struct task_struct *child)
5037 {
5038         struct perf_event_context *child_ctx, *parent_ctx;
5039         struct perf_event_context *cloned_ctx;
5040         struct perf_event *event;
5041         struct task_struct *parent = current;
5042         int inherited_all = 1;
5043         int ret = 0;
5044
5045         child->perf_event_ctxp = NULL;
5046
5047         mutex_init(&child->perf_event_mutex);
5048         INIT_LIST_HEAD(&child->perf_event_list);
5049
5050         if (likely(!parent->perf_event_ctxp))
5051                 return 0;
5052
5053         /*
5054          * This is executed from the parent task context, so inherit
5055          * events that have been marked for cloning.
5056          * First allocate and initialize a context for the child.
5057          */
5058
5059         child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5060         if (!child_ctx)
5061                 return -ENOMEM;
5062
5063         __perf_event_init_context(child_ctx, child);
5064         child->perf_event_ctxp = child_ctx;
5065         get_task_struct(child);
5066
5067         /*
5068          * If the parent's context is a clone, pin it so it won't get
5069          * swapped under us.
5070          */
5071         parent_ctx = perf_pin_task_context(parent);
5072
5073         /*
5074          * No need to check if parent_ctx != NULL here; since we saw
5075          * it non-NULL earlier, the only reason for it to become NULL
5076          * is if we exit, and since we're currently in the middle of
5077          * a fork we can't be exiting at the same time.
5078          */
5079
5080         /*
5081          * Lock the parent list. No need to lock the child - not PID
5082          * hashed yet and not running, so nobody can access it.
5083          */
5084         mutex_lock(&parent_ctx->mutex);
5085
5086         /*
5087          * We dont have to disable NMIs - we are only looking at
5088          * the list, not manipulating it:
5089          */
5090         list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5091
5092                 if (!event->attr.inherit) {
5093                         inherited_all = 0;
5094                         continue;
5095                 }
5096
5097                 ret = inherit_group(event, parent, parent_ctx,
5098                                              child, child_ctx);
5099                 if (ret) {
5100                         inherited_all = 0;
5101                         break;
5102                 }
5103         }
5104
5105         if (inherited_all) {
5106                 /*
5107                  * Mark the child context as a clone of the parent
5108                  * context, or of whatever the parent is a clone of.
5109                  * Note that if the parent is a clone, it could get
5110                  * uncloned at any point, but that doesn't matter
5111                  * because the list of events and the generation
5112                  * count can't have changed since we took the mutex.
5113                  */
5114                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5115                 if (cloned_ctx) {
5116                         child_ctx->parent_ctx = cloned_ctx;
5117                         child_ctx->parent_gen = parent_ctx->parent_gen;
5118                 } else {
5119                         child_ctx->parent_ctx = parent_ctx;
5120                         child_ctx->parent_gen = parent_ctx->generation;
5121                 }
5122                 get_ctx(child_ctx->parent_ctx);
5123         }
5124
5125         mutex_unlock(&parent_ctx->mutex);
5126
5127         perf_unpin_context(parent_ctx);
5128
5129         return ret;
5130 }
5131
5132 static void __cpuinit perf_event_init_cpu(int cpu)
5133 {
5134         struct perf_cpu_context *cpuctx;
5135
5136         cpuctx = &per_cpu(perf_cpu_context, cpu);
5137         __perf_event_init_context(&cpuctx->ctx, NULL);
5138
5139         spin_lock(&perf_resource_lock);
5140         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5141         spin_unlock(&perf_resource_lock);
5142
5143         hw_perf_event_setup(cpu);
5144 }
5145
5146 #ifdef CONFIG_HOTPLUG_CPU
5147 static void __perf_event_exit_cpu(void *info)
5148 {
5149         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5150         struct perf_event_context *ctx = &cpuctx->ctx;
5151         struct perf_event *event, *tmp;
5152
5153         list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5154                 __perf_event_remove_from_context(event);
5155 }
5156 static void perf_event_exit_cpu(int cpu)
5157 {
5158         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5159         struct perf_event_context *ctx = &cpuctx->ctx;
5160
5161         mutex_lock(&ctx->mutex);
5162         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5163         mutex_unlock(&ctx->mutex);
5164 }
5165 #else
5166 static inline void perf_event_exit_cpu(int cpu) { }
5167 #endif
5168
5169 static int __cpuinit
5170 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5171 {
5172         unsigned int cpu = (long)hcpu;
5173
5174         switch (action) {
5175
5176         case CPU_UP_PREPARE:
5177         case CPU_UP_PREPARE_FROZEN:
5178                 perf_event_init_cpu(cpu);
5179                 break;
5180
5181         case CPU_ONLINE:
5182         case CPU_ONLINE_FROZEN:
5183                 hw_perf_event_setup_online(cpu);
5184                 break;
5185
5186         case CPU_DOWN_PREPARE:
5187         case CPU_DOWN_PREPARE_FROZEN:
5188                 perf_event_exit_cpu(cpu);
5189                 break;
5190
5191         default:
5192                 break;
5193         }
5194
5195         return NOTIFY_OK;
5196 }
5197
5198 /*
5199  * This has to have a higher priority than migration_notifier in sched.c.
5200  */
5201 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5202         .notifier_call          = perf_cpu_notify,
5203         .priority               = 20,
5204 };
5205
5206 void __init perf_event_init(void)
5207 {
5208         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5209                         (void *)(long)smp_processor_id());
5210         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5211                         (void *)(long)smp_processor_id());
5212         register_cpu_notifier(&perf_cpu_nb);
5213 }
5214
5215 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5216 {
5217         return sprintf(buf, "%d\n", perf_reserved_percpu);
5218 }
5219
5220 static ssize_t
5221 perf_set_reserve_percpu(struct sysdev_class *class,
5222                         const char *buf,
5223                         size_t count)
5224 {
5225         struct perf_cpu_context *cpuctx;
5226         unsigned long val;
5227         int err, cpu, mpt;
5228
5229         err = strict_strtoul(buf, 10, &val);
5230         if (err)
5231                 return err;
5232         if (val > perf_max_events)
5233                 return -EINVAL;
5234
5235         spin_lock(&perf_resource_lock);
5236         perf_reserved_percpu = val;
5237         for_each_online_cpu(cpu) {
5238                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5239                 spin_lock_irq(&cpuctx->ctx.lock);
5240                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5241                           perf_max_events - perf_reserved_percpu);
5242                 cpuctx->max_pertask = mpt;
5243                 spin_unlock_irq(&cpuctx->ctx.lock);
5244         }
5245         spin_unlock(&perf_resource_lock);
5246
5247         return count;
5248 }
5249
5250 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5251 {
5252         return sprintf(buf, "%d\n", perf_overcommit);
5253 }
5254
5255 static ssize_t
5256 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5257 {
5258         unsigned long val;
5259         int err;
5260
5261         err = strict_strtoul(buf, 10, &val);
5262         if (err)
5263                 return err;
5264         if (val > 1)
5265                 return -EINVAL;
5266
5267         spin_lock(&perf_resource_lock);
5268         perf_overcommit = val;
5269         spin_unlock(&perf_resource_lock);
5270
5271         return count;
5272 }
5273
5274 static SYSDEV_CLASS_ATTR(
5275                                 reserve_percpu,
5276                                 0644,
5277                                 perf_show_reserve_percpu,
5278                                 perf_set_reserve_percpu
5279                         );
5280
5281 static SYSDEV_CLASS_ATTR(
5282                                 overcommit,
5283                                 0644,
5284                                 perf_show_overcommit,
5285                                 perf_set_overcommit
5286                         );
5287
5288 static struct attribute *perfclass_attrs[] = {
5289         &attr_reserve_percpu.attr,
5290         &attr_overcommit.attr,
5291         NULL
5292 };
5293
5294 static struct attribute_group perfclass_attr_group = {
5295         .attrs                  = perfclass_attrs,
5296         .name                   = "perf_events",
5297 };
5298
5299 static int __init perf_event_sysfs_init(void)
5300 {
5301         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5302                                   &perfclass_attr_group);
5303 }
5304 device_initcall(perf_event_sysfs_init);