perf_counter: Sanitize counter->mutex
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102         atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107         if (atomic_dec_and_test(&ctx->refcount)) {
108                 if (ctx->parent_ctx)
109                         put_ctx(ctx->parent_ctx);
110                 kfree(ctx);
111         }
112 }
113
114 /*
115  * Add a counter from the lists for its context.
116  * Must be called with ctx->mutex and ctx->lock held.
117  */
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
120 {
121         struct perf_counter *group_leader = counter->group_leader;
122
123         /*
124          * Depending on whether it is a standalone or sibling counter,
125          * add it straight to the context's counter list, or to the group
126          * leader's sibling list:
127          */
128         if (group_leader == counter)
129                 list_add_tail(&counter->list_entry, &ctx->counter_list);
130         else {
131                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132                 group_leader->nr_siblings++;
133         }
134
135         list_add_rcu(&counter->event_entry, &ctx->event_list);
136         ctx->nr_counters++;
137         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
138                 ctx->nr_enabled++;
139 }
140
141 /*
142  * Remove a counter from the lists for its context.
143  * Must be called with ctx->mutex and ctx->lock held.
144  */
145 static void
146 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
147 {
148         struct perf_counter *sibling, *tmp;
149
150         if (list_empty(&counter->list_entry))
151                 return;
152         ctx->nr_counters--;
153         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
154                 ctx->nr_enabled--;
155
156         list_del_init(&counter->list_entry);
157         list_del_rcu(&counter->event_entry);
158
159         if (counter->group_leader != counter)
160                 counter->group_leader->nr_siblings--;
161
162         /*
163          * If this was a group counter with sibling counters then
164          * upgrade the siblings to singleton counters by adding them
165          * to the context list directly:
166          */
167         list_for_each_entry_safe(sibling, tmp,
168                                  &counter->sibling_list, list_entry) {
169
170                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
171                 sibling->group_leader = sibling;
172         }
173 }
174
175 static void
176 counter_sched_out(struct perf_counter *counter,
177                   struct perf_cpu_context *cpuctx,
178                   struct perf_counter_context *ctx)
179 {
180         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
181                 return;
182
183         counter->state = PERF_COUNTER_STATE_INACTIVE;
184         counter->tstamp_stopped = ctx->time;
185         counter->pmu->disable(counter);
186         counter->oncpu = -1;
187
188         if (!is_software_counter(counter))
189                 cpuctx->active_oncpu--;
190         ctx->nr_active--;
191         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
192                 cpuctx->exclusive = 0;
193 }
194
195 static void
196 group_sched_out(struct perf_counter *group_counter,
197                 struct perf_cpu_context *cpuctx,
198                 struct perf_counter_context *ctx)
199 {
200         struct perf_counter *counter;
201
202         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
203                 return;
204
205         counter_sched_out(group_counter, cpuctx, ctx);
206
207         /*
208          * Schedule out siblings (if any):
209          */
210         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
211                 counter_sched_out(counter, cpuctx, ctx);
212
213         if (group_counter->hw_event.exclusive)
214                 cpuctx->exclusive = 0;
215 }
216
217 /*
218  * Mark this context as not being a clone of another.
219  * Called when counters are added to or removed from this context.
220  * We also increment our generation number so that anything that
221  * was cloned from this context before this will not match anything
222  * cloned from this context after this.
223  */
224 static void unclone_ctx(struct perf_counter_context *ctx)
225 {
226         ++ctx->generation;
227         if (!ctx->parent_ctx)
228                 return;
229         put_ctx(ctx->parent_ctx);
230         ctx->parent_ctx = NULL;
231 }
232
233 /*
234  * Cross CPU call to remove a performance counter
235  *
236  * We disable the counter on the hardware level first. After that we
237  * remove it from the context list.
238  */
239 static void __perf_counter_remove_from_context(void *info)
240 {
241         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
242         struct perf_counter *counter = info;
243         struct perf_counter_context *ctx = counter->ctx;
244         unsigned long flags;
245
246         /*
247          * If this is a task context, we need to check whether it is
248          * the current task context of this cpu. If not it has been
249          * scheduled out before the smp call arrived.
250          */
251         if (ctx->task && cpuctx->task_ctx != ctx)
252                 return;
253
254         spin_lock_irqsave(&ctx->lock, flags);
255         /*
256          * Protect the list operation against NMI by disabling the
257          * counters on a global level.
258          */
259         perf_disable();
260
261         counter_sched_out(counter, cpuctx, ctx);
262
263         list_del_counter(counter, ctx);
264
265         if (!ctx->task) {
266                 /*
267                  * Allow more per task counters with respect to the
268                  * reservation:
269                  */
270                 cpuctx->max_pertask =
271                         min(perf_max_counters - ctx->nr_counters,
272                             perf_max_counters - perf_reserved_percpu);
273         }
274
275         perf_enable();
276         spin_unlock_irqrestore(&ctx->lock, flags);
277 }
278
279
280 /*
281  * Remove the counter from a task's (or a CPU's) list of counters.
282  *
283  * Must be called with ctx->mutex held.
284  *
285  * CPU counters are removed with a smp call. For task counters we only
286  * call when the task is on a CPU.
287  */
288 static void perf_counter_remove_from_context(struct perf_counter *counter)
289 {
290         struct perf_counter_context *ctx = counter->ctx;
291         struct task_struct *task = ctx->task;
292
293         unclone_ctx(ctx);
294         if (!task) {
295                 /*
296                  * Per cpu counters are removed via an smp call and
297                  * the removal is always sucessful.
298                  */
299                 smp_call_function_single(counter->cpu,
300                                          __perf_counter_remove_from_context,
301                                          counter, 1);
302                 return;
303         }
304
305 retry:
306         task_oncpu_function_call(task, __perf_counter_remove_from_context,
307                                  counter);
308
309         spin_lock_irq(&ctx->lock);
310         /*
311          * If the context is active we need to retry the smp call.
312          */
313         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
314                 spin_unlock_irq(&ctx->lock);
315                 goto retry;
316         }
317
318         /*
319          * The lock prevents that this context is scheduled in so we
320          * can remove the counter safely, if the call above did not
321          * succeed.
322          */
323         if (!list_empty(&counter->list_entry)) {
324                 list_del_counter(counter, ctx);
325         }
326         spin_unlock_irq(&ctx->lock);
327 }
328
329 static inline u64 perf_clock(void)
330 {
331         return cpu_clock(smp_processor_id());
332 }
333
334 /*
335  * Update the record of the current time in a context.
336  */
337 static void update_context_time(struct perf_counter_context *ctx)
338 {
339         u64 now = perf_clock();
340
341         ctx->time += now - ctx->timestamp;
342         ctx->timestamp = now;
343 }
344
345 /*
346  * Update the total_time_enabled and total_time_running fields for a counter.
347  */
348 static void update_counter_times(struct perf_counter *counter)
349 {
350         struct perf_counter_context *ctx = counter->ctx;
351         u64 run_end;
352
353         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
354                 return;
355
356         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
357
358         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
359                 run_end = counter->tstamp_stopped;
360         else
361                 run_end = ctx->time;
362
363         counter->total_time_running = run_end - counter->tstamp_running;
364 }
365
366 /*
367  * Update total_time_enabled and total_time_running for all counters in a group.
368  */
369 static void update_group_times(struct perf_counter *leader)
370 {
371         struct perf_counter *counter;
372
373         update_counter_times(leader);
374         list_for_each_entry(counter, &leader->sibling_list, list_entry)
375                 update_counter_times(counter);
376 }
377
378 /*
379  * Cross CPU call to disable a performance counter
380  */
381 static void __perf_counter_disable(void *info)
382 {
383         struct perf_counter *counter = info;
384         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
385         struct perf_counter_context *ctx = counter->ctx;
386         unsigned long flags;
387
388         /*
389          * If this is a per-task counter, need to check whether this
390          * counter's task is the current task on this cpu.
391          */
392         if (ctx->task && cpuctx->task_ctx != ctx)
393                 return;
394
395         spin_lock_irqsave(&ctx->lock, flags);
396
397         /*
398          * If the counter is on, turn it off.
399          * If it is in error state, leave it in error state.
400          */
401         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
402                 update_context_time(ctx);
403                 update_counter_times(counter);
404                 if (counter == counter->group_leader)
405                         group_sched_out(counter, cpuctx, ctx);
406                 else
407                         counter_sched_out(counter, cpuctx, ctx);
408                 counter->state = PERF_COUNTER_STATE_OFF;
409                 ctx->nr_enabled--;
410         }
411
412         spin_unlock_irqrestore(&ctx->lock, flags);
413 }
414
415 /*
416  * Disable a counter.
417  */
418 static void perf_counter_disable(struct perf_counter *counter)
419 {
420         struct perf_counter_context *ctx = counter->ctx;
421         struct task_struct *task = ctx->task;
422
423         if (!task) {
424                 /*
425                  * Disable the counter on the cpu that it's on
426                  */
427                 smp_call_function_single(counter->cpu, __perf_counter_disable,
428                                          counter, 1);
429                 return;
430         }
431
432  retry:
433         task_oncpu_function_call(task, __perf_counter_disable, counter);
434
435         spin_lock_irq(&ctx->lock);
436         /*
437          * If the counter is still active, we need to retry the cross-call.
438          */
439         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
440                 spin_unlock_irq(&ctx->lock);
441                 goto retry;
442         }
443
444         /*
445          * Since we have the lock this context can't be scheduled
446          * in, so we can change the state safely.
447          */
448         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
449                 update_counter_times(counter);
450                 counter->state = PERF_COUNTER_STATE_OFF;
451                 ctx->nr_enabled--;
452         }
453
454         spin_unlock_irq(&ctx->lock);
455 }
456
457 static int
458 counter_sched_in(struct perf_counter *counter,
459                  struct perf_cpu_context *cpuctx,
460                  struct perf_counter_context *ctx,
461                  int cpu)
462 {
463         if (counter->state <= PERF_COUNTER_STATE_OFF)
464                 return 0;
465
466         counter->state = PERF_COUNTER_STATE_ACTIVE;
467         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
468         /*
469          * The new state must be visible before we turn it on in the hardware:
470          */
471         smp_wmb();
472
473         if (counter->pmu->enable(counter)) {
474                 counter->state = PERF_COUNTER_STATE_INACTIVE;
475                 counter->oncpu = -1;
476                 return -EAGAIN;
477         }
478
479         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
480
481         if (!is_software_counter(counter))
482                 cpuctx->active_oncpu++;
483         ctx->nr_active++;
484
485         if (counter->hw_event.exclusive)
486                 cpuctx->exclusive = 1;
487
488         return 0;
489 }
490
491 static int
492 group_sched_in(struct perf_counter *group_counter,
493                struct perf_cpu_context *cpuctx,
494                struct perf_counter_context *ctx,
495                int cpu)
496 {
497         struct perf_counter *counter, *partial_group;
498         int ret;
499
500         if (group_counter->state == PERF_COUNTER_STATE_OFF)
501                 return 0;
502
503         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
504         if (ret)
505                 return ret < 0 ? ret : 0;
506
507         group_counter->prev_state = group_counter->state;
508         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
509                 return -EAGAIN;
510
511         /*
512          * Schedule in siblings as one group (if any):
513          */
514         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
515                 counter->prev_state = counter->state;
516                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
517                         partial_group = counter;
518                         goto group_error;
519                 }
520         }
521
522         return 0;
523
524 group_error:
525         /*
526          * Groups can be scheduled in as one unit only, so undo any
527          * partial group before returning:
528          */
529         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
530                 if (counter == partial_group)
531                         break;
532                 counter_sched_out(counter, cpuctx, ctx);
533         }
534         counter_sched_out(group_counter, cpuctx, ctx);
535
536         return -EAGAIN;
537 }
538
539 /*
540  * Return 1 for a group consisting entirely of software counters,
541  * 0 if the group contains any hardware counters.
542  */
543 static int is_software_only_group(struct perf_counter *leader)
544 {
545         struct perf_counter *counter;
546
547         if (!is_software_counter(leader))
548                 return 0;
549
550         list_for_each_entry(counter, &leader->sibling_list, list_entry)
551                 if (!is_software_counter(counter))
552                         return 0;
553
554         return 1;
555 }
556
557 /*
558  * Work out whether we can put this counter group on the CPU now.
559  */
560 static int group_can_go_on(struct perf_counter *counter,
561                            struct perf_cpu_context *cpuctx,
562                            int can_add_hw)
563 {
564         /*
565          * Groups consisting entirely of software counters can always go on.
566          */
567         if (is_software_only_group(counter))
568                 return 1;
569         /*
570          * If an exclusive group is already on, no other hardware
571          * counters can go on.
572          */
573         if (cpuctx->exclusive)
574                 return 0;
575         /*
576          * If this group is exclusive and there are already
577          * counters on the CPU, it can't go on.
578          */
579         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
580                 return 0;
581         /*
582          * Otherwise, try to add it if all previous groups were able
583          * to go on.
584          */
585         return can_add_hw;
586 }
587
588 static void add_counter_to_ctx(struct perf_counter *counter,
589                                struct perf_counter_context *ctx)
590 {
591         list_add_counter(counter, ctx);
592         counter->prev_state = PERF_COUNTER_STATE_OFF;
593         counter->tstamp_enabled = ctx->time;
594         counter->tstamp_running = ctx->time;
595         counter->tstamp_stopped = ctx->time;
596 }
597
598 /*
599  * Cross CPU call to install and enable a performance counter
600  */
601 static void __perf_install_in_context(void *info)
602 {
603         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
604         struct perf_counter *counter = info;
605         struct perf_counter_context *ctx = counter->ctx;
606         struct perf_counter *leader = counter->group_leader;
607         int cpu = smp_processor_id();
608         unsigned long flags;
609         int err;
610
611         /*
612          * If this is a task context, we need to check whether it is
613          * the current task context of this cpu. If not it has been
614          * scheduled out before the smp call arrived.
615          * Or possibly this is the right context but it isn't
616          * on this cpu because it had no counters.
617          */
618         if (ctx->task && cpuctx->task_ctx != ctx) {
619                 if (cpuctx->task_ctx || ctx->task != current)
620                         return;
621                 cpuctx->task_ctx = ctx;
622         }
623
624         spin_lock_irqsave(&ctx->lock, flags);
625         ctx->is_active = 1;
626         update_context_time(ctx);
627
628         /*
629          * Protect the list operation against NMI by disabling the
630          * counters on a global level. NOP for non NMI based counters.
631          */
632         perf_disable();
633
634         add_counter_to_ctx(counter, ctx);
635
636         /*
637          * Don't put the counter on if it is disabled or if
638          * it is in a group and the group isn't on.
639          */
640         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
641             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
642                 goto unlock;
643
644         /*
645          * An exclusive counter can't go on if there are already active
646          * hardware counters, and no hardware counter can go on if there
647          * is already an exclusive counter on.
648          */
649         if (!group_can_go_on(counter, cpuctx, 1))
650                 err = -EEXIST;
651         else
652                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
653
654         if (err) {
655                 /*
656                  * This counter couldn't go on.  If it is in a group
657                  * then we have to pull the whole group off.
658                  * If the counter group is pinned then put it in error state.
659                  */
660                 if (leader != counter)
661                         group_sched_out(leader, cpuctx, ctx);
662                 if (leader->hw_event.pinned) {
663                         update_group_times(leader);
664                         leader->state = PERF_COUNTER_STATE_ERROR;
665                 }
666         }
667
668         if (!err && !ctx->task && cpuctx->max_pertask)
669                 cpuctx->max_pertask--;
670
671  unlock:
672         perf_enable();
673
674         spin_unlock_irqrestore(&ctx->lock, flags);
675 }
676
677 /*
678  * Attach a performance counter to a context
679  *
680  * First we add the counter to the list with the hardware enable bit
681  * in counter->hw_config cleared.
682  *
683  * If the counter is attached to a task which is on a CPU we use a smp
684  * call to enable it in the task context. The task might have been
685  * scheduled away, but we check this in the smp call again.
686  *
687  * Must be called with ctx->mutex held.
688  */
689 static void
690 perf_install_in_context(struct perf_counter_context *ctx,
691                         struct perf_counter *counter,
692                         int cpu)
693 {
694         struct task_struct *task = ctx->task;
695
696         if (!task) {
697                 /*
698                  * Per cpu counters are installed via an smp call and
699                  * the install is always sucessful.
700                  */
701                 smp_call_function_single(cpu, __perf_install_in_context,
702                                          counter, 1);
703                 return;
704         }
705
706 retry:
707         task_oncpu_function_call(task, __perf_install_in_context,
708                                  counter);
709
710         spin_lock_irq(&ctx->lock);
711         /*
712          * we need to retry the smp call.
713          */
714         if (ctx->is_active && list_empty(&counter->list_entry)) {
715                 spin_unlock_irq(&ctx->lock);
716                 goto retry;
717         }
718
719         /*
720          * The lock prevents that this context is scheduled in so we
721          * can add the counter safely, if it the call above did not
722          * succeed.
723          */
724         if (list_empty(&counter->list_entry))
725                 add_counter_to_ctx(counter, ctx);
726         spin_unlock_irq(&ctx->lock);
727 }
728
729 /*
730  * Cross CPU call to enable a performance counter
731  */
732 static void __perf_counter_enable(void *info)
733 {
734         struct perf_counter *counter = info;
735         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736         struct perf_counter_context *ctx = counter->ctx;
737         struct perf_counter *leader = counter->group_leader;
738         unsigned long flags;
739         int err;
740
741         /*
742          * If this is a per-task counter, need to check whether this
743          * counter's task is the current task on this cpu.
744          */
745         if (ctx->task && cpuctx->task_ctx != ctx) {
746                 if (cpuctx->task_ctx || ctx->task != current)
747                         return;
748                 cpuctx->task_ctx = ctx;
749         }
750
751         spin_lock_irqsave(&ctx->lock, flags);
752         ctx->is_active = 1;
753         update_context_time(ctx);
754
755         counter->prev_state = counter->state;
756         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
757                 goto unlock;
758         counter->state = PERF_COUNTER_STATE_INACTIVE;
759         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
760         ctx->nr_enabled++;
761
762         /*
763          * If the counter is in a group and isn't the group leader,
764          * then don't put it on unless the group is on.
765          */
766         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
767                 goto unlock;
768
769         if (!group_can_go_on(counter, cpuctx, 1)) {
770                 err = -EEXIST;
771         } else {
772                 perf_disable();
773                 if (counter == leader)
774                         err = group_sched_in(counter, cpuctx, ctx,
775                                              smp_processor_id());
776                 else
777                         err = counter_sched_in(counter, cpuctx, ctx,
778                                                smp_processor_id());
779                 perf_enable();
780         }
781
782         if (err) {
783                 /*
784                  * If this counter can't go on and it's part of a
785                  * group, then the whole group has to come off.
786                  */
787                 if (leader != counter)
788                         group_sched_out(leader, cpuctx, ctx);
789                 if (leader->hw_event.pinned) {
790                         update_group_times(leader);
791                         leader->state = PERF_COUNTER_STATE_ERROR;
792                 }
793         }
794
795  unlock:
796         spin_unlock_irqrestore(&ctx->lock, flags);
797 }
798
799 /*
800  * Enable a counter.
801  */
802 static void perf_counter_enable(struct perf_counter *counter)
803 {
804         struct perf_counter_context *ctx = counter->ctx;
805         struct task_struct *task = ctx->task;
806
807         if (!task) {
808                 /*
809                  * Enable the counter on the cpu that it's on
810                  */
811                 smp_call_function_single(counter->cpu, __perf_counter_enable,
812                                          counter, 1);
813                 return;
814         }
815
816         spin_lock_irq(&ctx->lock);
817         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
818                 goto out;
819
820         /*
821          * If the counter is in error state, clear that first.
822          * That way, if we see the counter in error state below, we
823          * know that it has gone back into error state, as distinct
824          * from the task having been scheduled away before the
825          * cross-call arrived.
826          */
827         if (counter->state == PERF_COUNTER_STATE_ERROR)
828                 counter->state = PERF_COUNTER_STATE_OFF;
829
830  retry:
831         spin_unlock_irq(&ctx->lock);
832         task_oncpu_function_call(task, __perf_counter_enable, counter);
833
834         spin_lock_irq(&ctx->lock);
835
836         /*
837          * If the context is active and the counter is still off,
838          * we need to retry the cross-call.
839          */
840         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
841                 goto retry;
842
843         /*
844          * Since we have the lock this context can't be scheduled
845          * in, so we can change the state safely.
846          */
847         if (counter->state == PERF_COUNTER_STATE_OFF) {
848                 counter->state = PERF_COUNTER_STATE_INACTIVE;
849                 counter->tstamp_enabled =
850                         ctx->time - counter->total_time_enabled;
851                 ctx->nr_enabled++;
852         }
853  out:
854         spin_unlock_irq(&ctx->lock);
855 }
856
857 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
858 {
859         /*
860          * not supported on inherited counters
861          */
862         if (counter->hw_event.inherit)
863                 return -EINVAL;
864
865         atomic_add(refresh, &counter->event_limit);
866         perf_counter_enable(counter);
867
868         return 0;
869 }
870
871 void __perf_counter_sched_out(struct perf_counter_context *ctx,
872                               struct perf_cpu_context *cpuctx)
873 {
874         struct perf_counter *counter;
875
876         spin_lock(&ctx->lock);
877         ctx->is_active = 0;
878         if (likely(!ctx->nr_counters))
879                 goto out;
880         update_context_time(ctx);
881
882         perf_disable();
883         if (ctx->nr_active) {
884                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
885                         if (counter != counter->group_leader)
886                                 counter_sched_out(counter, cpuctx, ctx);
887                         else
888                                 group_sched_out(counter, cpuctx, ctx);
889                 }
890         }
891         perf_enable();
892  out:
893         spin_unlock(&ctx->lock);
894 }
895
896 /*
897  * Test whether two contexts are equivalent, i.e. whether they
898  * have both been cloned from the same version of the same context
899  * and they both have the same number of enabled counters.
900  * If the number of enabled counters is the same, then the set
901  * of enabled counters should be the same, because these are both
902  * inherited contexts, therefore we can't access individual counters
903  * in them directly with an fd; we can only enable/disable all
904  * counters via prctl, or enable/disable all counters in a family
905  * via ioctl, which will have the same effect on both contexts.
906  */
907 static int context_equiv(struct perf_counter_context *ctx1,
908                          struct perf_counter_context *ctx2)
909 {
910         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
911                 && ctx1->parent_gen == ctx2->parent_gen
912                 && ctx1->nr_enabled == ctx2->nr_enabled;
913 }
914
915 /*
916  * Called from scheduler to remove the counters of the current task,
917  * with interrupts disabled.
918  *
919  * We stop each counter and update the counter value in counter->count.
920  *
921  * This does not protect us against NMI, but disable()
922  * sets the disabled bit in the control field of counter _before_
923  * accessing the counter control register. If a NMI hits, then it will
924  * not restart the counter.
925  */
926 void perf_counter_task_sched_out(struct task_struct *task,
927                                  struct task_struct *next, int cpu)
928 {
929         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
930         struct perf_counter_context *ctx = task->perf_counter_ctxp;
931         struct perf_counter_context *next_ctx;
932         struct pt_regs *regs;
933
934         if (likely(!ctx || !cpuctx->task_ctx))
935                 return;
936
937         update_context_time(ctx);
938
939         regs = task_pt_regs(task);
940         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
941
942         next_ctx = next->perf_counter_ctxp;
943         if (next_ctx && context_equiv(ctx, next_ctx)) {
944                 task->perf_counter_ctxp = next_ctx;
945                 next->perf_counter_ctxp = ctx;
946                 ctx->task = next;
947                 next_ctx->task = task;
948                 return;
949         }
950
951         __perf_counter_sched_out(ctx, cpuctx);
952
953         cpuctx->task_ctx = NULL;
954 }
955
956 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
957 {
958         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
959
960         if (!cpuctx->task_ctx)
961                 return;
962         __perf_counter_sched_out(ctx, cpuctx);
963         cpuctx->task_ctx = NULL;
964 }
965
966 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
967 {
968         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
969 }
970
971 static void
972 __perf_counter_sched_in(struct perf_counter_context *ctx,
973                         struct perf_cpu_context *cpuctx, int cpu)
974 {
975         struct perf_counter *counter;
976         int can_add_hw = 1;
977
978         spin_lock(&ctx->lock);
979         ctx->is_active = 1;
980         if (likely(!ctx->nr_counters))
981                 goto out;
982
983         ctx->timestamp = perf_clock();
984
985         perf_disable();
986
987         /*
988          * First go through the list and put on any pinned groups
989          * in order to give them the best chance of going on.
990          */
991         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
992                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
993                     !counter->hw_event.pinned)
994                         continue;
995                 if (counter->cpu != -1 && counter->cpu != cpu)
996                         continue;
997
998                 if (counter != counter->group_leader)
999                         counter_sched_in(counter, cpuctx, ctx, cpu);
1000                 else {
1001                         if (group_can_go_on(counter, cpuctx, 1))
1002                                 group_sched_in(counter, cpuctx, ctx, cpu);
1003                 }
1004
1005                 /*
1006                  * If this pinned group hasn't been scheduled,
1007                  * put it in error state.
1008                  */
1009                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1010                         update_group_times(counter);
1011                         counter->state = PERF_COUNTER_STATE_ERROR;
1012                 }
1013         }
1014
1015         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1016                 /*
1017                  * Ignore counters in OFF or ERROR state, and
1018                  * ignore pinned counters since we did them already.
1019                  */
1020                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1021                     counter->hw_event.pinned)
1022                         continue;
1023
1024                 /*
1025                  * Listen to the 'cpu' scheduling filter constraint
1026                  * of counters:
1027                  */
1028                 if (counter->cpu != -1 && counter->cpu != cpu)
1029                         continue;
1030
1031                 if (counter != counter->group_leader) {
1032                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1033                                 can_add_hw = 0;
1034                 } else {
1035                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1036                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1037                                         can_add_hw = 0;
1038                         }
1039                 }
1040         }
1041         perf_enable();
1042  out:
1043         spin_unlock(&ctx->lock);
1044 }
1045
1046 /*
1047  * Called from scheduler to add the counters of the current task
1048  * with interrupts disabled.
1049  *
1050  * We restore the counter value and then enable it.
1051  *
1052  * This does not protect us against NMI, but enable()
1053  * sets the enabled bit in the control field of counter _before_
1054  * accessing the counter control register. If a NMI hits, then it will
1055  * keep the counter running.
1056  */
1057 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1058 {
1059         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1060         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1061
1062         if (likely(!ctx))
1063                 return;
1064         if (cpuctx->task_ctx == ctx)
1065                 return;
1066         __perf_counter_sched_in(ctx, cpuctx, cpu);
1067         cpuctx->task_ctx = ctx;
1068 }
1069
1070 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1071 {
1072         struct perf_counter_context *ctx = &cpuctx->ctx;
1073
1074         __perf_counter_sched_in(ctx, cpuctx, cpu);
1075 }
1076
1077 int perf_counter_task_disable(void)
1078 {
1079         struct task_struct *curr = current;
1080         struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1081         struct perf_counter *counter;
1082         unsigned long flags;
1083
1084         if (!ctx || !ctx->nr_counters)
1085                 return 0;
1086
1087         local_irq_save(flags);
1088
1089         __perf_counter_task_sched_out(ctx);
1090
1091         spin_lock(&ctx->lock);
1092
1093         /*
1094          * Disable all the counters:
1095          */
1096         perf_disable();
1097
1098         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1099                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
1100                         update_group_times(counter);
1101                         counter->state = PERF_COUNTER_STATE_OFF;
1102                 }
1103         }
1104
1105         perf_enable();
1106
1107         spin_unlock_irqrestore(&ctx->lock, flags);
1108
1109         return 0;
1110 }
1111
1112 int perf_counter_task_enable(void)
1113 {
1114         struct task_struct *curr = current;
1115         struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1116         struct perf_counter *counter;
1117         unsigned long flags;
1118         int cpu;
1119
1120         if (!ctx || !ctx->nr_counters)
1121                 return 0;
1122
1123         local_irq_save(flags);
1124         cpu = smp_processor_id();
1125
1126         __perf_counter_task_sched_out(ctx);
1127
1128         spin_lock(&ctx->lock);
1129
1130         /*
1131          * Disable all the counters:
1132          */
1133         perf_disable();
1134
1135         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1136                 if (counter->state > PERF_COUNTER_STATE_OFF)
1137                         continue;
1138                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1139                 counter->tstamp_enabled =
1140                         ctx->time - counter->total_time_enabled;
1141                 counter->hw_event.disabled = 0;
1142         }
1143         perf_enable();
1144
1145         spin_unlock(&ctx->lock);
1146
1147         perf_counter_task_sched_in(curr, cpu);
1148
1149         local_irq_restore(flags);
1150
1151         return 0;
1152 }
1153
1154 static void perf_log_period(struct perf_counter *counter, u64 period);
1155
1156 static void perf_adjust_freq(struct perf_counter_context *ctx)
1157 {
1158         struct perf_counter *counter;
1159         u64 irq_period;
1160         u64 events, period;
1161         s64 delta;
1162
1163         spin_lock(&ctx->lock);
1164         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1165                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1166                         continue;
1167
1168                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1169                         continue;
1170
1171                 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1172                 period = div64_u64(events, counter->hw_event.irq_freq);
1173
1174                 delta = (s64)(1 + period - counter->hw.irq_period);
1175                 delta >>= 1;
1176
1177                 irq_period = counter->hw.irq_period + delta;
1178
1179                 if (!irq_period)
1180                         irq_period = 1;
1181
1182                 perf_log_period(counter, irq_period);
1183
1184                 counter->hw.irq_period = irq_period;
1185                 counter->hw.interrupts = 0;
1186         }
1187         spin_unlock(&ctx->lock);
1188 }
1189
1190 /*
1191  * Round-robin a context's counters:
1192  */
1193 static void rotate_ctx(struct perf_counter_context *ctx)
1194 {
1195         struct perf_counter *counter;
1196
1197         if (!ctx->nr_counters)
1198                 return;
1199
1200         spin_lock(&ctx->lock);
1201         /*
1202          * Rotate the first entry last (works just fine for group counters too):
1203          */
1204         perf_disable();
1205         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1206                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1207                 break;
1208         }
1209         perf_enable();
1210
1211         spin_unlock(&ctx->lock);
1212 }
1213
1214 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1215 {
1216         struct perf_cpu_context *cpuctx;
1217         struct perf_counter_context *ctx;
1218
1219         if (!atomic_read(&nr_counters))
1220                 return;
1221
1222         cpuctx = &per_cpu(perf_cpu_context, cpu);
1223         ctx = curr->perf_counter_ctxp;
1224
1225         perf_adjust_freq(&cpuctx->ctx);
1226         if (ctx)
1227                 perf_adjust_freq(ctx);
1228
1229         perf_counter_cpu_sched_out(cpuctx);
1230         if (ctx)
1231                 __perf_counter_task_sched_out(ctx);
1232
1233         rotate_ctx(&cpuctx->ctx);
1234         if (ctx)
1235                 rotate_ctx(ctx);
1236
1237         perf_counter_cpu_sched_in(cpuctx, cpu);
1238         if (ctx)
1239                 perf_counter_task_sched_in(curr, cpu);
1240 }
1241
1242 /*
1243  * Cross CPU call to read the hardware counter
1244  */
1245 static void __read(void *info)
1246 {
1247         struct perf_counter *counter = info;
1248         struct perf_counter_context *ctx = counter->ctx;
1249         unsigned long flags;
1250
1251         local_irq_save(flags);
1252         if (ctx->is_active)
1253                 update_context_time(ctx);
1254         counter->pmu->read(counter);
1255         update_counter_times(counter);
1256         local_irq_restore(flags);
1257 }
1258
1259 static u64 perf_counter_read(struct perf_counter *counter)
1260 {
1261         /*
1262          * If counter is enabled and currently active on a CPU, update the
1263          * value in the counter structure:
1264          */
1265         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1266                 smp_call_function_single(counter->oncpu,
1267                                          __read, counter, 1);
1268         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1269                 update_counter_times(counter);
1270         }
1271
1272         return atomic64_read(&counter->count);
1273 }
1274
1275 /*
1276  * Initialize the perf_counter context in a task_struct:
1277  */
1278 static void
1279 __perf_counter_init_context(struct perf_counter_context *ctx,
1280                             struct task_struct *task)
1281 {
1282         memset(ctx, 0, sizeof(*ctx));
1283         spin_lock_init(&ctx->lock);
1284         mutex_init(&ctx->mutex);
1285         INIT_LIST_HEAD(&ctx->counter_list);
1286         INIT_LIST_HEAD(&ctx->event_list);
1287         atomic_set(&ctx->refcount, 1);
1288         ctx->task = task;
1289 }
1290
1291 static void put_context(struct perf_counter_context *ctx)
1292 {
1293         if (ctx->task)
1294                 put_task_struct(ctx->task);
1295 }
1296
1297 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1298 {
1299         struct perf_cpu_context *cpuctx;
1300         struct perf_counter_context *ctx;
1301         struct perf_counter_context *tctx;
1302         struct task_struct *task;
1303
1304         /*
1305          * If cpu is not a wildcard then this is a percpu counter:
1306          */
1307         if (cpu != -1) {
1308                 /* Must be root to operate on a CPU counter: */
1309                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1310                         return ERR_PTR(-EACCES);
1311
1312                 if (cpu < 0 || cpu > num_possible_cpus())
1313                         return ERR_PTR(-EINVAL);
1314
1315                 /*
1316                  * We could be clever and allow to attach a counter to an
1317                  * offline CPU and activate it when the CPU comes up, but
1318                  * that's for later.
1319                  */
1320                 if (!cpu_isset(cpu, cpu_online_map))
1321                         return ERR_PTR(-ENODEV);
1322
1323                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1324                 ctx = &cpuctx->ctx;
1325
1326                 return ctx;
1327         }
1328
1329         rcu_read_lock();
1330         if (!pid)
1331                 task = current;
1332         else
1333                 task = find_task_by_vpid(pid);
1334         if (task)
1335                 get_task_struct(task);
1336         rcu_read_unlock();
1337
1338         if (!task)
1339                 return ERR_PTR(-ESRCH);
1340
1341         /* Reuse ptrace permission checks for now. */
1342         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1343                 put_task_struct(task);
1344                 return ERR_PTR(-EACCES);
1345         }
1346
1347         ctx = task->perf_counter_ctxp;
1348         if (!ctx) {
1349                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1350                 if (!ctx) {
1351                         put_task_struct(task);
1352                         return ERR_PTR(-ENOMEM);
1353                 }
1354                 __perf_counter_init_context(ctx, task);
1355                 /*
1356                  * Make sure other cpus see correct values for *ctx
1357                  * once task->perf_counter_ctxp is visible to them.
1358                  */
1359                 smp_wmb();
1360                 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1361                 if (tctx) {
1362                         /*
1363                          * We raced with some other task; use
1364                          * the context they set.
1365                          */
1366                         kfree(ctx);
1367                         ctx = tctx;
1368                 }
1369         }
1370
1371         return ctx;
1372 }
1373
1374 static void free_counter_rcu(struct rcu_head *head)
1375 {
1376         struct perf_counter *counter;
1377
1378         counter = container_of(head, struct perf_counter, rcu_head);
1379         put_ctx(counter->ctx);
1380         kfree(counter);
1381 }
1382
1383 static void perf_pending_sync(struct perf_counter *counter);
1384
1385 static void free_counter(struct perf_counter *counter)
1386 {
1387         perf_pending_sync(counter);
1388
1389         atomic_dec(&nr_counters);
1390         if (counter->hw_event.mmap)
1391                 atomic_dec(&nr_mmap_tracking);
1392         if (counter->hw_event.munmap)
1393                 atomic_dec(&nr_munmap_tracking);
1394         if (counter->hw_event.comm)
1395                 atomic_dec(&nr_comm_tracking);
1396
1397         if (counter->destroy)
1398                 counter->destroy(counter);
1399
1400         call_rcu(&counter->rcu_head, free_counter_rcu);
1401 }
1402
1403 /*
1404  * Called when the last reference to the file is gone.
1405  */
1406 static int perf_release(struct inode *inode, struct file *file)
1407 {
1408         struct perf_counter *counter = file->private_data;
1409         struct perf_counter_context *ctx = counter->ctx;
1410
1411         file->private_data = NULL;
1412
1413         mutex_lock(&ctx->mutex);
1414         perf_counter_remove_from_context(counter);
1415         mutex_unlock(&ctx->mutex);
1416
1417         free_counter(counter);
1418         put_context(ctx);
1419
1420         return 0;
1421 }
1422
1423 /*
1424  * Read the performance counter - simple non blocking version for now
1425  */
1426 static ssize_t
1427 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1428 {
1429         u64 values[3];
1430         int n;
1431
1432         /*
1433          * Return end-of-file for a read on a counter that is in
1434          * error state (i.e. because it was pinned but it couldn't be
1435          * scheduled on to the CPU at some point).
1436          */
1437         if (counter->state == PERF_COUNTER_STATE_ERROR)
1438                 return 0;
1439
1440         mutex_lock(&counter->child_mutex);
1441         values[0] = perf_counter_read(counter);
1442         n = 1;
1443         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1444                 values[n++] = counter->total_time_enabled +
1445                         atomic64_read(&counter->child_total_time_enabled);
1446         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1447                 values[n++] = counter->total_time_running +
1448                         atomic64_read(&counter->child_total_time_running);
1449         mutex_unlock(&counter->child_mutex);
1450
1451         if (count < n * sizeof(u64))
1452                 return -EINVAL;
1453         count = n * sizeof(u64);
1454
1455         if (copy_to_user(buf, values, count))
1456                 return -EFAULT;
1457
1458         return count;
1459 }
1460
1461 static ssize_t
1462 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1463 {
1464         struct perf_counter *counter = file->private_data;
1465
1466         return perf_read_hw(counter, buf, count);
1467 }
1468
1469 static unsigned int perf_poll(struct file *file, poll_table *wait)
1470 {
1471         struct perf_counter *counter = file->private_data;
1472         struct perf_mmap_data *data;
1473         unsigned int events = POLL_HUP;
1474
1475         rcu_read_lock();
1476         data = rcu_dereference(counter->data);
1477         if (data)
1478                 events = atomic_xchg(&data->poll, 0);
1479         rcu_read_unlock();
1480
1481         poll_wait(file, &counter->waitq, wait);
1482
1483         return events;
1484 }
1485
1486 static void perf_counter_reset(struct perf_counter *counter)
1487 {
1488         (void)perf_counter_read(counter);
1489         atomic64_set(&counter->count, 0);
1490         perf_counter_update_userpage(counter);
1491 }
1492
1493 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1494                                           void (*func)(struct perf_counter *))
1495 {
1496         struct perf_counter_context *ctx = counter->ctx;
1497         struct perf_counter *sibling;
1498
1499         spin_lock_irq(&ctx->lock);
1500         counter = counter->group_leader;
1501
1502         func(counter);
1503         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1504                 func(sibling);
1505         spin_unlock_irq(&ctx->lock);
1506 }
1507
1508 static void perf_counter_for_each_child(struct perf_counter *counter,
1509                                         void (*func)(struct perf_counter *))
1510 {
1511         struct perf_counter *child;
1512
1513         mutex_lock(&counter->child_mutex);
1514         func(counter);
1515         list_for_each_entry(child, &counter->child_list, child_list)
1516                 func(child);
1517         mutex_unlock(&counter->child_mutex);
1518 }
1519
1520 static void perf_counter_for_each(struct perf_counter *counter,
1521                                   void (*func)(struct perf_counter *))
1522 {
1523         struct perf_counter *child;
1524
1525         mutex_lock(&counter->child_mutex);
1526         perf_counter_for_each_sibling(counter, func);
1527         list_for_each_entry(child, &counter->child_list, child_list)
1528                 perf_counter_for_each_sibling(child, func);
1529         mutex_unlock(&counter->child_mutex);
1530 }
1531
1532 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1533 {
1534         struct perf_counter *counter = file->private_data;
1535         void (*func)(struct perf_counter *);
1536         u32 flags = arg;
1537
1538         switch (cmd) {
1539         case PERF_COUNTER_IOC_ENABLE:
1540                 func = perf_counter_enable;
1541                 break;
1542         case PERF_COUNTER_IOC_DISABLE:
1543                 func = perf_counter_disable;
1544                 break;
1545         case PERF_COUNTER_IOC_RESET:
1546                 func = perf_counter_reset;
1547                 break;
1548
1549         case PERF_COUNTER_IOC_REFRESH:
1550                 return perf_counter_refresh(counter, arg);
1551         default:
1552                 return -ENOTTY;
1553         }
1554
1555         if (flags & PERF_IOC_FLAG_GROUP)
1556                 perf_counter_for_each(counter, func);
1557         else
1558                 perf_counter_for_each_child(counter, func);
1559
1560         return 0;
1561 }
1562
1563 /*
1564  * Callers need to ensure there can be no nesting of this function, otherwise
1565  * the seqlock logic goes bad. We can not serialize this because the arch
1566  * code calls this from NMI context.
1567  */
1568 void perf_counter_update_userpage(struct perf_counter *counter)
1569 {
1570         struct perf_mmap_data *data;
1571         struct perf_counter_mmap_page *userpg;
1572
1573         rcu_read_lock();
1574         data = rcu_dereference(counter->data);
1575         if (!data)
1576                 goto unlock;
1577
1578         userpg = data->user_page;
1579
1580         /*
1581          * Disable preemption so as to not let the corresponding user-space
1582          * spin too long if we get preempted.
1583          */
1584         preempt_disable();
1585         ++userpg->lock;
1586         barrier();
1587         userpg->index = counter->hw.idx;
1588         userpg->offset = atomic64_read(&counter->count);
1589         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1590                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1591
1592         barrier();
1593         ++userpg->lock;
1594         preempt_enable();
1595 unlock:
1596         rcu_read_unlock();
1597 }
1598
1599 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1600 {
1601         struct perf_counter *counter = vma->vm_file->private_data;
1602         struct perf_mmap_data *data;
1603         int ret = VM_FAULT_SIGBUS;
1604
1605         rcu_read_lock();
1606         data = rcu_dereference(counter->data);
1607         if (!data)
1608                 goto unlock;
1609
1610         if (vmf->pgoff == 0) {
1611                 vmf->page = virt_to_page(data->user_page);
1612         } else {
1613                 int nr = vmf->pgoff - 1;
1614
1615                 if ((unsigned)nr > data->nr_pages)
1616                         goto unlock;
1617
1618                 vmf->page = virt_to_page(data->data_pages[nr]);
1619         }
1620         get_page(vmf->page);
1621         ret = 0;
1622 unlock:
1623         rcu_read_unlock();
1624
1625         return ret;
1626 }
1627
1628 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1629 {
1630         struct perf_mmap_data *data;
1631         unsigned long size;
1632         int i;
1633
1634         WARN_ON(atomic_read(&counter->mmap_count));
1635
1636         size = sizeof(struct perf_mmap_data);
1637         size += nr_pages * sizeof(void *);
1638
1639         data = kzalloc(size, GFP_KERNEL);
1640         if (!data)
1641                 goto fail;
1642
1643         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1644         if (!data->user_page)
1645                 goto fail_user_page;
1646
1647         for (i = 0; i < nr_pages; i++) {
1648                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1649                 if (!data->data_pages[i])
1650                         goto fail_data_pages;
1651         }
1652
1653         data->nr_pages = nr_pages;
1654         atomic_set(&data->lock, -1);
1655
1656         rcu_assign_pointer(counter->data, data);
1657
1658         return 0;
1659
1660 fail_data_pages:
1661         for (i--; i >= 0; i--)
1662                 free_page((unsigned long)data->data_pages[i]);
1663
1664         free_page((unsigned long)data->user_page);
1665
1666 fail_user_page:
1667         kfree(data);
1668
1669 fail:
1670         return -ENOMEM;
1671 }
1672
1673 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1674 {
1675         struct perf_mmap_data *data = container_of(rcu_head,
1676                         struct perf_mmap_data, rcu_head);
1677         int i;
1678
1679         free_page((unsigned long)data->user_page);
1680         for (i = 0; i < data->nr_pages; i++)
1681                 free_page((unsigned long)data->data_pages[i]);
1682         kfree(data);
1683 }
1684
1685 static void perf_mmap_data_free(struct perf_counter *counter)
1686 {
1687         struct perf_mmap_data *data = counter->data;
1688
1689         WARN_ON(atomic_read(&counter->mmap_count));
1690
1691         rcu_assign_pointer(counter->data, NULL);
1692         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1693 }
1694
1695 static void perf_mmap_open(struct vm_area_struct *vma)
1696 {
1697         struct perf_counter *counter = vma->vm_file->private_data;
1698
1699         atomic_inc(&counter->mmap_count);
1700 }
1701
1702 static void perf_mmap_close(struct vm_area_struct *vma)
1703 {
1704         struct perf_counter *counter = vma->vm_file->private_data;
1705
1706         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1707                                       &counter->mmap_mutex)) {
1708                 struct user_struct *user = current_user();
1709
1710                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1711                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1712                 perf_mmap_data_free(counter);
1713                 mutex_unlock(&counter->mmap_mutex);
1714         }
1715 }
1716
1717 static struct vm_operations_struct perf_mmap_vmops = {
1718         .open  = perf_mmap_open,
1719         .close = perf_mmap_close,
1720         .fault = perf_mmap_fault,
1721 };
1722
1723 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1724 {
1725         struct perf_counter *counter = file->private_data;
1726         struct user_struct *user = current_user();
1727         unsigned long vma_size;
1728         unsigned long nr_pages;
1729         unsigned long user_locked, user_lock_limit;
1730         unsigned long locked, lock_limit;
1731         long user_extra, extra;
1732         int ret = 0;
1733
1734         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1735                 return -EINVAL;
1736
1737         vma_size = vma->vm_end - vma->vm_start;
1738         nr_pages = (vma_size / PAGE_SIZE) - 1;
1739
1740         /*
1741          * If we have data pages ensure they're a power-of-two number, so we
1742          * can do bitmasks instead of modulo.
1743          */
1744         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1745                 return -EINVAL;
1746
1747         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1748                 return -EINVAL;
1749
1750         if (vma->vm_pgoff != 0)
1751                 return -EINVAL;
1752
1753         mutex_lock(&counter->mmap_mutex);
1754         if (atomic_inc_not_zero(&counter->mmap_count)) {
1755                 if (nr_pages != counter->data->nr_pages)
1756                         ret = -EINVAL;
1757                 goto unlock;
1758         }
1759
1760         user_extra = nr_pages + 1;
1761         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1762         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1763
1764         extra = 0;
1765         if (user_locked > user_lock_limit)
1766                 extra = user_locked - user_lock_limit;
1767
1768         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1769         lock_limit >>= PAGE_SHIFT;
1770         locked = vma->vm_mm->locked_vm + extra;
1771
1772         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1773                 ret = -EPERM;
1774                 goto unlock;
1775         }
1776
1777         WARN_ON(counter->data);
1778         ret = perf_mmap_data_alloc(counter, nr_pages);
1779         if (ret)
1780                 goto unlock;
1781
1782         atomic_set(&counter->mmap_count, 1);
1783         atomic_long_add(user_extra, &user->locked_vm);
1784         vma->vm_mm->locked_vm += extra;
1785         counter->data->nr_locked = extra;
1786 unlock:
1787         mutex_unlock(&counter->mmap_mutex);
1788
1789         vma->vm_flags &= ~VM_MAYWRITE;
1790         vma->vm_flags |= VM_RESERVED;
1791         vma->vm_ops = &perf_mmap_vmops;
1792
1793         return ret;
1794 }
1795
1796 static int perf_fasync(int fd, struct file *filp, int on)
1797 {
1798         struct perf_counter *counter = filp->private_data;
1799         struct inode *inode = filp->f_path.dentry->d_inode;
1800         int retval;
1801
1802         mutex_lock(&inode->i_mutex);
1803         retval = fasync_helper(fd, filp, on, &counter->fasync);
1804         mutex_unlock(&inode->i_mutex);
1805
1806         if (retval < 0)
1807                 return retval;
1808
1809         return 0;
1810 }
1811
1812 static const struct file_operations perf_fops = {
1813         .release                = perf_release,
1814         .read                   = perf_read,
1815         .poll                   = perf_poll,
1816         .unlocked_ioctl         = perf_ioctl,
1817         .compat_ioctl           = perf_ioctl,
1818         .mmap                   = perf_mmap,
1819         .fasync                 = perf_fasync,
1820 };
1821
1822 /*
1823  * Perf counter wakeup
1824  *
1825  * If there's data, ensure we set the poll() state and publish everything
1826  * to user-space before waking everybody up.
1827  */
1828
1829 void perf_counter_wakeup(struct perf_counter *counter)
1830 {
1831         wake_up_all(&counter->waitq);
1832
1833         if (counter->pending_kill) {
1834                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1835                 counter->pending_kill = 0;
1836         }
1837 }
1838
1839 /*
1840  * Pending wakeups
1841  *
1842  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1843  *
1844  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1845  * single linked list and use cmpxchg() to add entries lockless.
1846  */
1847
1848 static void perf_pending_counter(struct perf_pending_entry *entry)
1849 {
1850         struct perf_counter *counter = container_of(entry,
1851                         struct perf_counter, pending);
1852
1853         if (counter->pending_disable) {
1854                 counter->pending_disable = 0;
1855                 perf_counter_disable(counter);
1856         }
1857
1858         if (counter->pending_wakeup) {
1859                 counter->pending_wakeup = 0;
1860                 perf_counter_wakeup(counter);
1861         }
1862 }
1863
1864 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1865
1866 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1867         PENDING_TAIL,
1868 };
1869
1870 static void perf_pending_queue(struct perf_pending_entry *entry,
1871                                void (*func)(struct perf_pending_entry *))
1872 {
1873         struct perf_pending_entry **head;
1874
1875         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1876                 return;
1877
1878         entry->func = func;
1879
1880         head = &get_cpu_var(perf_pending_head);
1881
1882         do {
1883                 entry->next = *head;
1884         } while (cmpxchg(head, entry->next, entry) != entry->next);
1885
1886         set_perf_counter_pending();
1887
1888         put_cpu_var(perf_pending_head);
1889 }
1890
1891 static int __perf_pending_run(void)
1892 {
1893         struct perf_pending_entry *list;
1894         int nr = 0;
1895
1896         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1897         while (list != PENDING_TAIL) {
1898                 void (*func)(struct perf_pending_entry *);
1899                 struct perf_pending_entry *entry = list;
1900
1901                 list = list->next;
1902
1903                 func = entry->func;
1904                 entry->next = NULL;
1905                 /*
1906                  * Ensure we observe the unqueue before we issue the wakeup,
1907                  * so that we won't be waiting forever.
1908                  * -- see perf_not_pending().
1909                  */
1910                 smp_wmb();
1911
1912                 func(entry);
1913                 nr++;
1914         }
1915
1916         return nr;
1917 }
1918
1919 static inline int perf_not_pending(struct perf_counter *counter)
1920 {
1921         /*
1922          * If we flush on whatever cpu we run, there is a chance we don't
1923          * need to wait.
1924          */
1925         get_cpu();
1926         __perf_pending_run();
1927         put_cpu();
1928
1929         /*
1930          * Ensure we see the proper queue state before going to sleep
1931          * so that we do not miss the wakeup. -- see perf_pending_handle()
1932          */
1933         smp_rmb();
1934         return counter->pending.next == NULL;
1935 }
1936
1937 static void perf_pending_sync(struct perf_counter *counter)
1938 {
1939         wait_event(counter->waitq, perf_not_pending(counter));
1940 }
1941
1942 void perf_counter_do_pending(void)
1943 {
1944         __perf_pending_run();
1945 }
1946
1947 /*
1948  * Callchain support -- arch specific
1949  */
1950
1951 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 {
1953         return NULL;
1954 }
1955
1956 /*
1957  * Output
1958  */
1959
1960 struct perf_output_handle {
1961         struct perf_counter     *counter;
1962         struct perf_mmap_data   *data;
1963         unsigned int            offset;
1964         unsigned int            head;
1965         int                     nmi;
1966         int                     overflow;
1967         int                     locked;
1968         unsigned long           flags;
1969 };
1970
1971 static void perf_output_wakeup(struct perf_output_handle *handle)
1972 {
1973         atomic_set(&handle->data->poll, POLL_IN);
1974
1975         if (handle->nmi) {
1976                 handle->counter->pending_wakeup = 1;
1977                 perf_pending_queue(&handle->counter->pending,
1978                                    perf_pending_counter);
1979         } else
1980                 perf_counter_wakeup(handle->counter);
1981 }
1982
1983 /*
1984  * Curious locking construct.
1985  *
1986  * We need to ensure a later event doesn't publish a head when a former
1987  * event isn't done writing. However since we need to deal with NMIs we
1988  * cannot fully serialize things.
1989  *
1990  * What we do is serialize between CPUs so we only have to deal with NMI
1991  * nesting on a single CPU.
1992  *
1993  * We only publish the head (and generate a wakeup) when the outer-most
1994  * event completes.
1995  */
1996 static void perf_output_lock(struct perf_output_handle *handle)
1997 {
1998         struct perf_mmap_data *data = handle->data;
1999         int cpu;
2000
2001         handle->locked = 0;
2002
2003         local_irq_save(handle->flags);
2004         cpu = smp_processor_id();
2005
2006         if (in_nmi() && atomic_read(&data->lock) == cpu)
2007                 return;
2008
2009         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2010                 cpu_relax();
2011
2012         handle->locked = 1;
2013 }
2014
2015 static void perf_output_unlock(struct perf_output_handle *handle)
2016 {
2017         struct perf_mmap_data *data = handle->data;
2018         int head, cpu;
2019
2020         data->done_head = data->head;
2021
2022         if (!handle->locked)
2023                 goto out;
2024
2025 again:
2026         /*
2027          * The xchg implies a full barrier that ensures all writes are done
2028          * before we publish the new head, matched by a rmb() in userspace when
2029          * reading this position.
2030          */
2031         while ((head = atomic_xchg(&data->done_head, 0)))
2032                 data->user_page->data_head = head;
2033
2034         /*
2035          * NMI can happen here, which means we can miss a done_head update.
2036          */
2037
2038         cpu = atomic_xchg(&data->lock, -1);
2039         WARN_ON_ONCE(cpu != smp_processor_id());
2040
2041         /*
2042          * Therefore we have to validate we did not indeed do so.
2043          */
2044         if (unlikely(atomic_read(&data->done_head))) {
2045                 /*
2046                  * Since we had it locked, we can lock it again.
2047                  */
2048                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2049                         cpu_relax();
2050
2051                 goto again;
2052         }
2053
2054         if (atomic_xchg(&data->wakeup, 0))
2055                 perf_output_wakeup(handle);
2056 out:
2057         local_irq_restore(handle->flags);
2058 }
2059
2060 static int perf_output_begin(struct perf_output_handle *handle,
2061                              struct perf_counter *counter, unsigned int size,
2062                              int nmi, int overflow)
2063 {
2064         struct perf_mmap_data *data;
2065         unsigned int offset, head;
2066
2067         /*
2068          * For inherited counters we send all the output towards the parent.
2069          */
2070         if (counter->parent)
2071                 counter = counter->parent;
2072
2073         rcu_read_lock();
2074         data = rcu_dereference(counter->data);
2075         if (!data)
2076                 goto out;
2077
2078         handle->data     = data;
2079         handle->counter  = counter;
2080         handle->nmi      = nmi;
2081         handle->overflow = overflow;
2082
2083         if (!data->nr_pages)
2084                 goto fail;
2085
2086         perf_output_lock(handle);
2087
2088         do {
2089                 offset = head = atomic_read(&data->head);
2090                 head += size;
2091         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2092
2093         handle->offset  = offset;
2094         handle->head    = head;
2095
2096         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2097                 atomic_set(&data->wakeup, 1);
2098
2099         return 0;
2100
2101 fail:
2102         perf_output_wakeup(handle);
2103 out:
2104         rcu_read_unlock();
2105
2106         return -ENOSPC;
2107 }
2108
2109 static void perf_output_copy(struct perf_output_handle *handle,
2110                              void *buf, unsigned int len)
2111 {
2112         unsigned int pages_mask;
2113         unsigned int offset;
2114         unsigned int size;
2115         void **pages;
2116
2117         offset          = handle->offset;
2118         pages_mask      = handle->data->nr_pages - 1;
2119         pages           = handle->data->data_pages;
2120
2121         do {
2122                 unsigned int page_offset;
2123                 int nr;
2124
2125                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2126                 page_offset = offset & (PAGE_SIZE - 1);
2127                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2128
2129                 memcpy(pages[nr] + page_offset, buf, size);
2130
2131                 len         -= size;
2132                 buf         += size;
2133                 offset      += size;
2134         } while (len);
2135
2136         handle->offset = offset;
2137
2138         /*
2139          * Check we didn't copy past our reservation window, taking the
2140          * possible unsigned int wrap into account.
2141          */
2142         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2143 }
2144
2145 #define perf_output_put(handle, x) \
2146         perf_output_copy((handle), &(x), sizeof(x))
2147
2148 static void perf_output_end(struct perf_output_handle *handle)
2149 {
2150         struct perf_counter *counter = handle->counter;
2151         struct perf_mmap_data *data = handle->data;
2152
2153         int wakeup_events = counter->hw_event.wakeup_events;
2154
2155         if (handle->overflow && wakeup_events) {
2156                 int events = atomic_inc_return(&data->events);
2157                 if (events >= wakeup_events) {
2158                         atomic_sub(wakeup_events, &data->events);
2159                         atomic_set(&data->wakeup, 1);
2160                 }
2161         }
2162
2163         perf_output_unlock(handle);
2164         rcu_read_unlock();
2165 }
2166
2167 static void perf_counter_output(struct perf_counter *counter,
2168                                 int nmi, struct pt_regs *regs, u64 addr)
2169 {
2170         int ret;
2171         u64 record_type = counter->hw_event.record_type;
2172         struct perf_output_handle handle;
2173         struct perf_event_header header;
2174         u64 ip;
2175         struct {
2176                 u32 pid, tid;
2177         } tid_entry;
2178         struct {
2179                 u64 event;
2180                 u64 counter;
2181         } group_entry;
2182         struct perf_callchain_entry *callchain = NULL;
2183         int callchain_size = 0;
2184         u64 time;
2185         struct {
2186                 u32 cpu, reserved;
2187         } cpu_entry;
2188
2189         header.type = 0;
2190         header.size = sizeof(header);
2191
2192         header.misc = PERF_EVENT_MISC_OVERFLOW;
2193         header.misc |= perf_misc_flags(regs);
2194
2195         if (record_type & PERF_RECORD_IP) {
2196                 ip = perf_instruction_pointer(regs);
2197                 header.type |= PERF_RECORD_IP;
2198                 header.size += sizeof(ip);
2199         }
2200
2201         if (record_type & PERF_RECORD_TID) {
2202                 /* namespace issues */
2203                 tid_entry.pid = current->group_leader->pid;
2204                 tid_entry.tid = current->pid;
2205
2206                 header.type |= PERF_RECORD_TID;
2207                 header.size += sizeof(tid_entry);
2208         }
2209
2210         if (record_type & PERF_RECORD_TIME) {
2211                 /*
2212                  * Maybe do better on x86 and provide cpu_clock_nmi()
2213                  */
2214                 time = sched_clock();
2215
2216                 header.type |= PERF_RECORD_TIME;
2217                 header.size += sizeof(u64);
2218         }
2219
2220         if (record_type & PERF_RECORD_ADDR) {
2221                 header.type |= PERF_RECORD_ADDR;
2222                 header.size += sizeof(u64);
2223         }
2224
2225         if (record_type & PERF_RECORD_CONFIG) {
2226                 header.type |= PERF_RECORD_CONFIG;
2227                 header.size += sizeof(u64);
2228         }
2229
2230         if (record_type & PERF_RECORD_CPU) {
2231                 header.type |= PERF_RECORD_CPU;
2232                 header.size += sizeof(cpu_entry);
2233
2234                 cpu_entry.cpu = raw_smp_processor_id();
2235         }
2236
2237         if (record_type & PERF_RECORD_GROUP) {
2238                 header.type |= PERF_RECORD_GROUP;
2239                 header.size += sizeof(u64) +
2240                         counter->nr_siblings * sizeof(group_entry);
2241         }
2242
2243         if (record_type & PERF_RECORD_CALLCHAIN) {
2244                 callchain = perf_callchain(regs);
2245
2246                 if (callchain) {
2247                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2248
2249                         header.type |= PERF_RECORD_CALLCHAIN;
2250                         header.size += callchain_size;
2251                 }
2252         }
2253
2254         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2255         if (ret)
2256                 return;
2257
2258         perf_output_put(&handle, header);
2259
2260         if (record_type & PERF_RECORD_IP)
2261                 perf_output_put(&handle, ip);
2262
2263         if (record_type & PERF_RECORD_TID)
2264                 perf_output_put(&handle, tid_entry);
2265
2266         if (record_type & PERF_RECORD_TIME)
2267                 perf_output_put(&handle, time);
2268
2269         if (record_type & PERF_RECORD_ADDR)
2270                 perf_output_put(&handle, addr);
2271
2272         if (record_type & PERF_RECORD_CONFIG)
2273                 perf_output_put(&handle, counter->hw_event.config);
2274
2275         if (record_type & PERF_RECORD_CPU)
2276                 perf_output_put(&handle, cpu_entry);
2277
2278         /*
2279          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2280          */
2281         if (record_type & PERF_RECORD_GROUP) {
2282                 struct perf_counter *leader, *sub;
2283                 u64 nr = counter->nr_siblings;
2284
2285                 perf_output_put(&handle, nr);
2286
2287                 leader = counter->group_leader;
2288                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2289                         if (sub != counter)
2290                                 sub->pmu->read(sub);
2291
2292                         group_entry.event = sub->hw_event.config;
2293                         group_entry.counter = atomic64_read(&sub->count);
2294
2295                         perf_output_put(&handle, group_entry);
2296                 }
2297         }
2298
2299         if (callchain)
2300                 perf_output_copy(&handle, callchain, callchain_size);
2301
2302         perf_output_end(&handle);
2303 }
2304
2305 /*
2306  * comm tracking
2307  */
2308
2309 struct perf_comm_event {
2310         struct task_struct      *task;
2311         char                    *comm;
2312         int                     comm_size;
2313
2314         struct {
2315                 struct perf_event_header        header;
2316
2317                 u32                             pid;
2318                 u32                             tid;
2319         } event;
2320 };
2321
2322 static void perf_counter_comm_output(struct perf_counter *counter,
2323                                      struct perf_comm_event *comm_event)
2324 {
2325         struct perf_output_handle handle;
2326         int size = comm_event->event.header.size;
2327         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2328
2329         if (ret)
2330                 return;
2331
2332         perf_output_put(&handle, comm_event->event);
2333         perf_output_copy(&handle, comm_event->comm,
2334                                    comm_event->comm_size);
2335         perf_output_end(&handle);
2336 }
2337
2338 static int perf_counter_comm_match(struct perf_counter *counter,
2339                                    struct perf_comm_event *comm_event)
2340 {
2341         if (counter->hw_event.comm &&
2342             comm_event->event.header.type == PERF_EVENT_COMM)
2343                 return 1;
2344
2345         return 0;
2346 }
2347
2348 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2349                                   struct perf_comm_event *comm_event)
2350 {
2351         struct perf_counter *counter;
2352
2353         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2354                 return;
2355
2356         rcu_read_lock();
2357         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2358                 if (perf_counter_comm_match(counter, comm_event))
2359                         perf_counter_comm_output(counter, comm_event);
2360         }
2361         rcu_read_unlock();
2362 }
2363
2364 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2365 {
2366         struct perf_cpu_context *cpuctx;
2367         unsigned int size;
2368         char *comm = comm_event->task->comm;
2369
2370         size = ALIGN(strlen(comm)+1, sizeof(u64));
2371
2372         comm_event->comm = comm;
2373         comm_event->comm_size = size;
2374
2375         comm_event->event.header.size = sizeof(comm_event->event) + size;
2376
2377         cpuctx = &get_cpu_var(perf_cpu_context);
2378         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2379         put_cpu_var(perf_cpu_context);
2380
2381         perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2382 }
2383
2384 void perf_counter_comm(struct task_struct *task)
2385 {
2386         struct perf_comm_event comm_event;
2387
2388         if (!atomic_read(&nr_comm_tracking))
2389                 return;
2390         if (!current->perf_counter_ctxp)
2391                 return;
2392
2393         comm_event = (struct perf_comm_event){
2394                 .task   = task,
2395                 .event  = {
2396                         .header = { .type = PERF_EVENT_COMM, },
2397                         .pid    = task->group_leader->pid,
2398                         .tid    = task->pid,
2399                 },
2400         };
2401
2402         perf_counter_comm_event(&comm_event);
2403 }
2404
2405 /*
2406  * mmap tracking
2407  */
2408
2409 struct perf_mmap_event {
2410         struct file     *file;
2411         char            *file_name;
2412         int             file_size;
2413
2414         struct {
2415                 struct perf_event_header        header;
2416
2417                 u32                             pid;
2418                 u32                             tid;
2419                 u64                             start;
2420                 u64                             len;
2421                 u64                             pgoff;
2422         } event;
2423 };
2424
2425 static void perf_counter_mmap_output(struct perf_counter *counter,
2426                                      struct perf_mmap_event *mmap_event)
2427 {
2428         struct perf_output_handle handle;
2429         int size = mmap_event->event.header.size;
2430         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2431
2432         if (ret)
2433                 return;
2434
2435         perf_output_put(&handle, mmap_event->event);
2436         perf_output_copy(&handle, mmap_event->file_name,
2437                                    mmap_event->file_size);
2438         perf_output_end(&handle);
2439 }
2440
2441 static int perf_counter_mmap_match(struct perf_counter *counter,
2442                                    struct perf_mmap_event *mmap_event)
2443 {
2444         if (counter->hw_event.mmap &&
2445             mmap_event->event.header.type == PERF_EVENT_MMAP)
2446                 return 1;
2447
2448         if (counter->hw_event.munmap &&
2449             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2450                 return 1;
2451
2452         return 0;
2453 }
2454
2455 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2456                                   struct perf_mmap_event *mmap_event)
2457 {
2458         struct perf_counter *counter;
2459
2460         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2461                 return;
2462
2463         rcu_read_lock();
2464         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2465                 if (perf_counter_mmap_match(counter, mmap_event))
2466                         perf_counter_mmap_output(counter, mmap_event);
2467         }
2468         rcu_read_unlock();
2469 }
2470
2471 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2472 {
2473         struct perf_cpu_context *cpuctx;
2474         struct file *file = mmap_event->file;
2475         unsigned int size;
2476         char tmp[16];
2477         char *buf = NULL;
2478         char *name;
2479
2480         if (file) {
2481                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2482                 if (!buf) {
2483                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2484                         goto got_name;
2485                 }
2486                 name = d_path(&file->f_path, buf, PATH_MAX);
2487                 if (IS_ERR(name)) {
2488                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2489                         goto got_name;
2490                 }
2491         } else {
2492                 name = strncpy(tmp, "//anon", sizeof(tmp));
2493                 goto got_name;
2494         }
2495
2496 got_name:
2497         size = ALIGN(strlen(name)+1, sizeof(u64));
2498
2499         mmap_event->file_name = name;
2500         mmap_event->file_size = size;
2501
2502         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2503
2504         cpuctx = &get_cpu_var(perf_cpu_context);
2505         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2506         put_cpu_var(perf_cpu_context);
2507
2508         perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2509
2510         kfree(buf);
2511 }
2512
2513 void perf_counter_mmap(unsigned long addr, unsigned long len,
2514                        unsigned long pgoff, struct file *file)
2515 {
2516         struct perf_mmap_event mmap_event;
2517
2518         if (!atomic_read(&nr_mmap_tracking))
2519                 return;
2520         if (!current->perf_counter_ctxp)
2521                 return;
2522
2523         mmap_event = (struct perf_mmap_event){
2524                 .file   = file,
2525                 .event  = {
2526                         .header = { .type = PERF_EVENT_MMAP, },
2527                         .pid    = current->group_leader->pid,
2528                         .tid    = current->pid,
2529                         .start  = addr,
2530                         .len    = len,
2531                         .pgoff  = pgoff,
2532                 },
2533         };
2534
2535         perf_counter_mmap_event(&mmap_event);
2536 }
2537
2538 void perf_counter_munmap(unsigned long addr, unsigned long len,
2539                          unsigned long pgoff, struct file *file)
2540 {
2541         struct perf_mmap_event mmap_event;
2542
2543         if (!atomic_read(&nr_munmap_tracking))
2544                 return;
2545
2546         mmap_event = (struct perf_mmap_event){
2547                 .file   = file,
2548                 .event  = {
2549                         .header = { .type = PERF_EVENT_MUNMAP, },
2550                         .pid    = current->group_leader->pid,
2551                         .tid    = current->pid,
2552                         .start  = addr,
2553                         .len    = len,
2554                         .pgoff  = pgoff,
2555                 },
2556         };
2557
2558         perf_counter_mmap_event(&mmap_event);
2559 }
2560
2561 /*
2562  * Log irq_period changes so that analyzing tools can re-normalize the
2563  * event flow.
2564  */
2565
2566 static void perf_log_period(struct perf_counter *counter, u64 period)
2567 {
2568         struct perf_output_handle handle;
2569         int ret;
2570
2571         struct {
2572                 struct perf_event_header        header;
2573                 u64                             time;
2574                 u64                             period;
2575         } freq_event = {
2576                 .header = {
2577                         .type = PERF_EVENT_PERIOD,
2578                         .misc = 0,
2579                         .size = sizeof(freq_event),
2580                 },
2581                 .time = sched_clock(),
2582                 .period = period,
2583         };
2584
2585         if (counter->hw.irq_period == period)
2586                 return;
2587
2588         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2589         if (ret)
2590                 return;
2591
2592         perf_output_put(&handle, freq_event);
2593         perf_output_end(&handle);
2594 }
2595
2596 /*
2597  * Generic counter overflow handling.
2598  */
2599
2600 int perf_counter_overflow(struct perf_counter *counter,
2601                           int nmi, struct pt_regs *regs, u64 addr)
2602 {
2603         int events = atomic_read(&counter->event_limit);
2604         int ret = 0;
2605
2606         counter->hw.interrupts++;
2607
2608         /*
2609          * XXX event_limit might not quite work as expected on inherited
2610          * counters
2611          */
2612
2613         counter->pending_kill = POLL_IN;
2614         if (events && atomic_dec_and_test(&counter->event_limit)) {
2615                 ret = 1;
2616                 counter->pending_kill = POLL_HUP;
2617                 if (nmi) {
2618                         counter->pending_disable = 1;
2619                         perf_pending_queue(&counter->pending,
2620                                            perf_pending_counter);
2621                 } else
2622                         perf_counter_disable(counter);
2623         }
2624
2625         perf_counter_output(counter, nmi, regs, addr);
2626         return ret;
2627 }
2628
2629 /*
2630  * Generic software counter infrastructure
2631  */
2632
2633 static void perf_swcounter_update(struct perf_counter *counter)
2634 {
2635         struct hw_perf_counter *hwc = &counter->hw;
2636         u64 prev, now;
2637         s64 delta;
2638
2639 again:
2640         prev = atomic64_read(&hwc->prev_count);
2641         now = atomic64_read(&hwc->count);
2642         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2643                 goto again;
2644
2645         delta = now - prev;
2646
2647         atomic64_add(delta, &counter->count);
2648         atomic64_sub(delta, &hwc->period_left);
2649 }
2650
2651 static void perf_swcounter_set_period(struct perf_counter *counter)
2652 {
2653         struct hw_perf_counter *hwc = &counter->hw;
2654         s64 left = atomic64_read(&hwc->period_left);
2655         s64 period = hwc->irq_period;
2656
2657         if (unlikely(left <= -period)) {
2658                 left = period;
2659                 atomic64_set(&hwc->period_left, left);
2660         }
2661
2662         if (unlikely(left <= 0)) {
2663                 left += period;
2664                 atomic64_add(period, &hwc->period_left);
2665         }
2666
2667         atomic64_set(&hwc->prev_count, -left);
2668         atomic64_set(&hwc->count, -left);
2669 }
2670
2671 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2672 {
2673         enum hrtimer_restart ret = HRTIMER_RESTART;
2674         struct perf_counter *counter;
2675         struct pt_regs *regs;
2676         u64 period;
2677
2678         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2679         counter->pmu->read(counter);
2680
2681         regs = get_irq_regs();
2682         /*
2683          * In case we exclude kernel IPs or are somehow not in interrupt
2684          * context, provide the next best thing, the user IP.
2685          */
2686         if ((counter->hw_event.exclude_kernel || !regs) &&
2687                         !counter->hw_event.exclude_user)
2688                 regs = task_pt_regs(current);
2689
2690         if (regs) {
2691                 if (perf_counter_overflow(counter, 0, regs, 0))
2692                         ret = HRTIMER_NORESTART;
2693         }
2694
2695         period = max_t(u64, 10000, counter->hw.irq_period);
2696         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2697
2698         return ret;
2699 }
2700
2701 static void perf_swcounter_overflow(struct perf_counter *counter,
2702                                     int nmi, struct pt_regs *regs, u64 addr)
2703 {
2704         perf_swcounter_update(counter);
2705         perf_swcounter_set_period(counter);
2706         if (perf_counter_overflow(counter, nmi, regs, addr))
2707                 /* soft-disable the counter */
2708                 ;
2709
2710 }
2711
2712 static int perf_swcounter_match(struct perf_counter *counter,
2713                                 enum perf_event_types type,
2714                                 u32 event, struct pt_regs *regs)
2715 {
2716         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2717                 return 0;
2718
2719         if (perf_event_raw(&counter->hw_event))
2720                 return 0;
2721
2722         if (perf_event_type(&counter->hw_event) != type)
2723                 return 0;
2724
2725         if (perf_event_id(&counter->hw_event) != event)
2726                 return 0;
2727
2728         if (counter->hw_event.exclude_user && user_mode(regs))
2729                 return 0;
2730
2731         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2732                 return 0;
2733
2734         return 1;
2735 }
2736
2737 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2738                                int nmi, struct pt_regs *regs, u64 addr)
2739 {
2740         int neg = atomic64_add_negative(nr, &counter->hw.count);
2741         if (counter->hw.irq_period && !neg)
2742                 perf_swcounter_overflow(counter, nmi, regs, addr);
2743 }
2744
2745 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2746                                      enum perf_event_types type, u32 event,
2747                                      u64 nr, int nmi, struct pt_regs *regs,
2748                                      u64 addr)
2749 {
2750         struct perf_counter *counter;
2751
2752         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2753                 return;
2754
2755         rcu_read_lock();
2756         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2757                 if (perf_swcounter_match(counter, type, event, regs))
2758                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2759         }
2760         rcu_read_unlock();
2761 }
2762
2763 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2764 {
2765         if (in_nmi())
2766                 return &cpuctx->recursion[3];
2767
2768         if (in_irq())
2769                 return &cpuctx->recursion[2];
2770
2771         if (in_softirq())
2772                 return &cpuctx->recursion[1];
2773
2774         return &cpuctx->recursion[0];
2775 }
2776
2777 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2778                                    u64 nr, int nmi, struct pt_regs *regs,
2779                                    u64 addr)
2780 {
2781         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2782         int *recursion = perf_swcounter_recursion_context(cpuctx);
2783
2784         if (*recursion)
2785                 goto out;
2786
2787         (*recursion)++;
2788         barrier();
2789
2790         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2791                                  nr, nmi, regs, addr);
2792         if (cpuctx->task_ctx) {
2793                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2794                                          nr, nmi, regs, addr);
2795         }
2796
2797         barrier();
2798         (*recursion)--;
2799
2800 out:
2801         put_cpu_var(perf_cpu_context);
2802 }
2803
2804 void
2805 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2806 {
2807         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2808 }
2809
2810 static void perf_swcounter_read(struct perf_counter *counter)
2811 {
2812         perf_swcounter_update(counter);
2813 }
2814
2815 static int perf_swcounter_enable(struct perf_counter *counter)
2816 {
2817         perf_swcounter_set_period(counter);
2818         return 0;
2819 }
2820
2821 static void perf_swcounter_disable(struct perf_counter *counter)
2822 {
2823         perf_swcounter_update(counter);
2824 }
2825
2826 static const struct pmu perf_ops_generic = {
2827         .enable         = perf_swcounter_enable,
2828         .disable        = perf_swcounter_disable,
2829         .read           = perf_swcounter_read,
2830 };
2831
2832 /*
2833  * Software counter: cpu wall time clock
2834  */
2835
2836 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2837 {
2838         int cpu = raw_smp_processor_id();
2839         s64 prev;
2840         u64 now;
2841
2842         now = cpu_clock(cpu);
2843         prev = atomic64_read(&counter->hw.prev_count);
2844         atomic64_set(&counter->hw.prev_count, now);
2845         atomic64_add(now - prev, &counter->count);
2846 }
2847
2848 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2849 {
2850         struct hw_perf_counter *hwc = &counter->hw;
2851         int cpu = raw_smp_processor_id();
2852
2853         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2854         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2855         hwc->hrtimer.function = perf_swcounter_hrtimer;
2856         if (hwc->irq_period) {
2857                 u64 period = max_t(u64, 10000, hwc->irq_period);
2858                 __hrtimer_start_range_ns(&hwc->hrtimer,
2859                                 ns_to_ktime(period), 0,
2860                                 HRTIMER_MODE_REL, 0);
2861         }
2862
2863         return 0;
2864 }
2865
2866 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2867 {
2868         if (counter->hw.irq_period)
2869                 hrtimer_cancel(&counter->hw.hrtimer);
2870         cpu_clock_perf_counter_update(counter);
2871 }
2872
2873 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2874 {
2875         cpu_clock_perf_counter_update(counter);
2876 }
2877
2878 static const struct pmu perf_ops_cpu_clock = {
2879         .enable         = cpu_clock_perf_counter_enable,
2880         .disable        = cpu_clock_perf_counter_disable,
2881         .read           = cpu_clock_perf_counter_read,
2882 };
2883
2884 /*
2885  * Software counter: task time clock
2886  */
2887
2888 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2889 {
2890         u64 prev;
2891         s64 delta;
2892
2893         prev = atomic64_xchg(&counter->hw.prev_count, now);
2894         delta = now - prev;
2895         atomic64_add(delta, &counter->count);
2896 }
2897
2898 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2899 {
2900         struct hw_perf_counter *hwc = &counter->hw;
2901         u64 now;
2902
2903         now = counter->ctx->time;
2904
2905         atomic64_set(&hwc->prev_count, now);
2906         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2907         hwc->hrtimer.function = perf_swcounter_hrtimer;
2908         if (hwc->irq_period) {
2909                 u64 period = max_t(u64, 10000, hwc->irq_period);
2910                 __hrtimer_start_range_ns(&hwc->hrtimer,
2911                                 ns_to_ktime(period), 0,
2912                                 HRTIMER_MODE_REL, 0);
2913         }
2914
2915         return 0;
2916 }
2917
2918 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2919 {
2920         if (counter->hw.irq_period)
2921                 hrtimer_cancel(&counter->hw.hrtimer);
2922         task_clock_perf_counter_update(counter, counter->ctx->time);
2923
2924 }
2925
2926 static void task_clock_perf_counter_read(struct perf_counter *counter)
2927 {
2928         u64 time;
2929
2930         if (!in_nmi()) {
2931                 update_context_time(counter->ctx);
2932                 time = counter->ctx->time;
2933         } else {
2934                 u64 now = perf_clock();
2935                 u64 delta = now - counter->ctx->timestamp;
2936                 time = counter->ctx->time + delta;
2937         }
2938
2939         task_clock_perf_counter_update(counter, time);
2940 }
2941
2942 static const struct pmu perf_ops_task_clock = {
2943         .enable         = task_clock_perf_counter_enable,
2944         .disable        = task_clock_perf_counter_disable,
2945         .read           = task_clock_perf_counter_read,
2946 };
2947
2948 /*
2949  * Software counter: cpu migrations
2950  */
2951
2952 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2953 {
2954         struct task_struct *curr = counter->ctx->task;
2955
2956         if (curr)
2957                 return curr->se.nr_migrations;
2958         return cpu_nr_migrations(smp_processor_id());
2959 }
2960
2961 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2962 {
2963         u64 prev, now;
2964         s64 delta;
2965
2966         prev = atomic64_read(&counter->hw.prev_count);
2967         now = get_cpu_migrations(counter);
2968
2969         atomic64_set(&counter->hw.prev_count, now);
2970
2971         delta = now - prev;
2972
2973         atomic64_add(delta, &counter->count);
2974 }
2975
2976 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2977 {
2978         cpu_migrations_perf_counter_update(counter);
2979 }
2980
2981 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2982 {
2983         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2984                 atomic64_set(&counter->hw.prev_count,
2985                              get_cpu_migrations(counter));
2986         return 0;
2987 }
2988
2989 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2990 {
2991         cpu_migrations_perf_counter_update(counter);
2992 }
2993
2994 static const struct pmu perf_ops_cpu_migrations = {
2995         .enable         = cpu_migrations_perf_counter_enable,
2996         .disable        = cpu_migrations_perf_counter_disable,
2997         .read           = cpu_migrations_perf_counter_read,
2998 };
2999
3000 #ifdef CONFIG_EVENT_PROFILE
3001 void perf_tpcounter_event(int event_id)
3002 {
3003         struct pt_regs *regs = get_irq_regs();
3004
3005         if (!regs)
3006                 regs = task_pt_regs(current);
3007
3008         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3009 }
3010 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3011
3012 extern int ftrace_profile_enable(int);
3013 extern void ftrace_profile_disable(int);
3014
3015 static void tp_perf_counter_destroy(struct perf_counter *counter)
3016 {
3017         ftrace_profile_disable(perf_event_id(&counter->hw_event));
3018 }
3019
3020 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3021 {
3022         int event_id = perf_event_id(&counter->hw_event);
3023         int ret;
3024
3025         ret = ftrace_profile_enable(event_id);
3026         if (ret)
3027                 return NULL;
3028
3029         counter->destroy = tp_perf_counter_destroy;
3030         counter->hw.irq_period = counter->hw_event.irq_period;
3031
3032         return &perf_ops_generic;
3033 }
3034 #else
3035 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3036 {
3037         return NULL;
3038 }
3039 #endif
3040
3041 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3042 {
3043         const struct pmu *pmu = NULL;
3044
3045         /*
3046          * Software counters (currently) can't in general distinguish
3047          * between user, kernel and hypervisor events.
3048          * However, context switches and cpu migrations are considered
3049          * to be kernel events, and page faults are never hypervisor
3050          * events.
3051          */
3052         switch (perf_event_id(&counter->hw_event)) {
3053         case PERF_COUNT_CPU_CLOCK:
3054                 pmu = &perf_ops_cpu_clock;
3055
3056                 break;
3057         case PERF_COUNT_TASK_CLOCK:
3058                 /*
3059                  * If the user instantiates this as a per-cpu counter,
3060                  * use the cpu_clock counter instead.
3061                  */
3062                 if (counter->ctx->task)
3063                         pmu = &perf_ops_task_clock;
3064                 else
3065                         pmu = &perf_ops_cpu_clock;
3066
3067                 break;
3068         case PERF_COUNT_PAGE_FAULTS:
3069         case PERF_COUNT_PAGE_FAULTS_MIN:
3070         case PERF_COUNT_PAGE_FAULTS_MAJ:
3071         case PERF_COUNT_CONTEXT_SWITCHES:
3072                 pmu = &perf_ops_generic;
3073                 break;
3074         case PERF_COUNT_CPU_MIGRATIONS:
3075                 if (!counter->hw_event.exclude_kernel)
3076                         pmu = &perf_ops_cpu_migrations;
3077                 break;
3078         }
3079
3080         return pmu;
3081 }
3082
3083 /*
3084  * Allocate and initialize a counter structure
3085  */
3086 static struct perf_counter *
3087 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3088                    int cpu,
3089                    struct perf_counter_context *ctx,
3090                    struct perf_counter *group_leader,
3091                    gfp_t gfpflags)
3092 {
3093         const struct pmu *pmu;
3094         struct perf_counter *counter;
3095         struct hw_perf_counter *hwc;
3096         long err;
3097
3098         counter = kzalloc(sizeof(*counter), gfpflags);
3099         if (!counter)
3100                 return ERR_PTR(-ENOMEM);
3101
3102         /*
3103          * Single counters are their own group leaders, with an
3104          * empty sibling list:
3105          */
3106         if (!group_leader)
3107                 group_leader = counter;
3108
3109         mutex_init(&counter->child_mutex);
3110         INIT_LIST_HEAD(&counter->child_list);
3111
3112         INIT_LIST_HEAD(&counter->list_entry);
3113         INIT_LIST_HEAD(&counter->event_entry);
3114         INIT_LIST_HEAD(&counter->sibling_list);
3115         init_waitqueue_head(&counter->waitq);
3116
3117         mutex_init(&counter->mmap_mutex);
3118
3119         counter->cpu                    = cpu;
3120         counter->hw_event               = *hw_event;
3121         counter->group_leader           = group_leader;
3122         counter->pmu                    = NULL;
3123         counter->ctx                    = ctx;
3124         get_ctx(ctx);
3125
3126         counter->state = PERF_COUNTER_STATE_INACTIVE;
3127         if (hw_event->disabled)
3128                 counter->state = PERF_COUNTER_STATE_OFF;
3129
3130         pmu = NULL;
3131
3132         hwc = &counter->hw;
3133         if (hw_event->freq && hw_event->irq_freq)
3134                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3135         else
3136                 hwc->irq_period = hw_event->irq_period;
3137
3138         /*
3139          * we currently do not support PERF_RECORD_GROUP on inherited counters
3140          */
3141         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3142                 goto done;
3143
3144         if (perf_event_raw(hw_event)) {
3145                 pmu = hw_perf_counter_init(counter);
3146                 goto done;
3147         }
3148
3149         switch (perf_event_type(hw_event)) {
3150         case PERF_TYPE_HARDWARE:
3151                 pmu = hw_perf_counter_init(counter);
3152                 break;
3153
3154         case PERF_TYPE_SOFTWARE:
3155                 pmu = sw_perf_counter_init(counter);
3156                 break;
3157
3158         case PERF_TYPE_TRACEPOINT:
3159                 pmu = tp_perf_counter_init(counter);
3160                 break;
3161         }
3162 done:
3163         err = 0;
3164         if (!pmu)
3165                 err = -EINVAL;
3166         else if (IS_ERR(pmu))
3167                 err = PTR_ERR(pmu);
3168
3169         if (err) {
3170                 kfree(counter);
3171                 return ERR_PTR(err);
3172         }
3173
3174         counter->pmu = pmu;
3175
3176         atomic_inc(&nr_counters);
3177         if (counter->hw_event.mmap)
3178                 atomic_inc(&nr_mmap_tracking);
3179         if (counter->hw_event.munmap)
3180                 atomic_inc(&nr_munmap_tracking);
3181         if (counter->hw_event.comm)
3182                 atomic_inc(&nr_comm_tracking);
3183
3184         return counter;
3185 }
3186
3187 /**
3188  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3189  *
3190  * @hw_event_uptr:      event type attributes for monitoring/sampling
3191  * @pid:                target pid
3192  * @cpu:                target cpu
3193  * @group_fd:           group leader counter fd
3194  */
3195 SYSCALL_DEFINE5(perf_counter_open,
3196                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3197                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3198 {
3199         struct perf_counter *counter, *group_leader;
3200         struct perf_counter_hw_event hw_event;
3201         struct perf_counter_context *ctx;
3202         struct file *counter_file = NULL;
3203         struct file *group_file = NULL;
3204         int fput_needed = 0;
3205         int fput_needed2 = 0;
3206         int ret;
3207
3208         /* for future expandability... */
3209         if (flags)
3210                 return -EINVAL;
3211
3212         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3213                 return -EFAULT;
3214
3215         /*
3216          * Get the target context (task or percpu):
3217          */
3218         ctx = find_get_context(pid, cpu);
3219         if (IS_ERR(ctx))
3220                 return PTR_ERR(ctx);
3221
3222         /*
3223          * Look up the group leader (we will attach this counter to it):
3224          */
3225         group_leader = NULL;
3226         if (group_fd != -1) {
3227                 ret = -EINVAL;
3228                 group_file = fget_light(group_fd, &fput_needed);
3229                 if (!group_file)
3230                         goto err_put_context;
3231                 if (group_file->f_op != &perf_fops)
3232                         goto err_put_context;
3233
3234                 group_leader = group_file->private_data;
3235                 /*
3236                  * Do not allow a recursive hierarchy (this new sibling
3237                  * becoming part of another group-sibling):
3238                  */
3239                 if (group_leader->group_leader != group_leader)
3240                         goto err_put_context;
3241                 /*
3242                  * Do not allow to attach to a group in a different
3243                  * task or CPU context:
3244                  */
3245                 if (group_leader->ctx != ctx)
3246                         goto err_put_context;
3247                 /*
3248                  * Only a group leader can be exclusive or pinned
3249                  */
3250                 if (hw_event.exclusive || hw_event.pinned)
3251                         goto err_put_context;
3252         }
3253
3254         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3255                                      GFP_KERNEL);
3256         ret = PTR_ERR(counter);
3257         if (IS_ERR(counter))
3258                 goto err_put_context;
3259
3260         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3261         if (ret < 0)
3262                 goto err_free_put_context;
3263
3264         counter_file = fget_light(ret, &fput_needed2);
3265         if (!counter_file)
3266                 goto err_free_put_context;
3267
3268         counter->filp = counter_file;
3269         mutex_lock(&ctx->mutex);
3270         perf_install_in_context(ctx, counter, cpu);
3271         mutex_unlock(&ctx->mutex);
3272
3273         fput_light(counter_file, fput_needed2);
3274
3275 out_fput:
3276         fput_light(group_file, fput_needed);
3277
3278         return ret;
3279
3280 err_free_put_context:
3281         kfree(counter);
3282
3283 err_put_context:
3284         put_context(ctx);
3285
3286         goto out_fput;
3287 }
3288
3289 /*
3290  * inherit a counter from parent task to child task:
3291  */
3292 static struct perf_counter *
3293 inherit_counter(struct perf_counter *parent_counter,
3294               struct task_struct *parent,
3295               struct perf_counter_context *parent_ctx,
3296               struct task_struct *child,
3297               struct perf_counter *group_leader,
3298               struct perf_counter_context *child_ctx)
3299 {
3300         struct perf_counter *child_counter;
3301
3302         /*
3303          * Instead of creating recursive hierarchies of counters,
3304          * we link inherited counters back to the original parent,
3305          * which has a filp for sure, which we use as the reference
3306          * count:
3307          */
3308         if (parent_counter->parent)
3309                 parent_counter = parent_counter->parent;
3310
3311         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3312                                            parent_counter->cpu, child_ctx,
3313                                            group_leader, GFP_KERNEL);
3314         if (IS_ERR(child_counter))
3315                 return child_counter;
3316
3317         /*
3318          * Make the child state follow the state of the parent counter,
3319          * not its hw_event.disabled bit.  We hold the parent's mutex,
3320          * so we won't race with perf_counter_{en,dis}able_family.
3321          */
3322         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3323                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3324         else
3325                 child_counter->state = PERF_COUNTER_STATE_OFF;
3326
3327         /*
3328          * Link it up in the child's context:
3329          */
3330         add_counter_to_ctx(child_counter, child_ctx);
3331
3332         child_counter->parent = parent_counter;
3333         /*
3334          * inherit into child's child as well:
3335          */
3336         child_counter->hw_event.inherit = 1;
3337
3338         /*
3339          * Get a reference to the parent filp - we will fput it
3340          * when the child counter exits. This is safe to do because
3341          * we are in the parent and we know that the filp still
3342          * exists and has a nonzero count:
3343          */
3344         atomic_long_inc(&parent_counter->filp->f_count);
3345
3346         /*
3347          * Link this into the parent counter's child list
3348          */
3349         mutex_lock(&parent_counter->child_mutex);
3350         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3351         mutex_unlock(&parent_counter->child_mutex);
3352
3353         return child_counter;
3354 }
3355
3356 static int inherit_group(struct perf_counter *parent_counter,
3357               struct task_struct *parent,
3358               struct perf_counter_context *parent_ctx,
3359               struct task_struct *child,
3360               struct perf_counter_context *child_ctx)
3361 {
3362         struct perf_counter *leader;
3363         struct perf_counter *sub;
3364         struct perf_counter *child_ctr;
3365
3366         leader = inherit_counter(parent_counter, parent, parent_ctx,
3367                                  child, NULL, child_ctx);
3368         if (IS_ERR(leader))
3369                 return PTR_ERR(leader);
3370         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3371                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3372                                             child, leader, child_ctx);
3373                 if (IS_ERR(child_ctr))
3374                         return PTR_ERR(child_ctr);
3375         }
3376         return 0;
3377 }
3378
3379 static void sync_child_counter(struct perf_counter *child_counter,
3380                                struct perf_counter *parent_counter)
3381 {
3382         u64 child_val;
3383
3384         child_val = atomic64_read(&child_counter->count);
3385
3386         /*
3387          * Add back the child's count to the parent's count:
3388          */
3389         atomic64_add(child_val, &parent_counter->count);
3390         atomic64_add(child_counter->total_time_enabled,
3391                      &parent_counter->child_total_time_enabled);
3392         atomic64_add(child_counter->total_time_running,
3393                      &parent_counter->child_total_time_running);
3394
3395         /*
3396          * Remove this counter from the parent's list
3397          */
3398         mutex_lock(&parent_counter->child_mutex);
3399         list_del_init(&child_counter->child_list);
3400         mutex_unlock(&parent_counter->child_mutex);
3401
3402         /*
3403          * Release the parent counter, if this was the last
3404          * reference to it.
3405          */
3406         fput(parent_counter->filp);
3407 }
3408
3409 static void
3410 __perf_counter_exit_task(struct task_struct *child,
3411                          struct perf_counter *child_counter,
3412                          struct perf_counter_context *child_ctx)
3413 {
3414         struct perf_counter *parent_counter;
3415
3416         update_counter_times(child_counter);
3417         list_del_counter(child_counter, child_ctx);
3418
3419         parent_counter = child_counter->parent;
3420         /*
3421          * It can happen that parent exits first, and has counters
3422          * that are still around due to the child reference. These
3423          * counters need to be zapped - but otherwise linger.
3424          */
3425         if (parent_counter) {
3426                 sync_child_counter(child_counter, parent_counter);
3427                 free_counter(child_counter);
3428         }
3429 }
3430
3431 /*
3432  * When a child task exits, feed back counter values to parent counters.
3433  *
3434  * Note: we may be running in child context, but the PID is not hashed
3435  * anymore so new counters will not be added.
3436  * (XXX not sure that is true when we get called from flush_old_exec.
3437  *  -- paulus)
3438  */
3439 void perf_counter_exit_task(struct task_struct *child)
3440 {
3441         struct perf_counter *child_counter, *tmp;
3442         struct perf_counter_context *child_ctx;
3443         unsigned long flags;
3444
3445         WARN_ON_ONCE(child != current);
3446
3447         child_ctx = child->perf_counter_ctxp;
3448
3449         if (likely(!child_ctx))
3450                 return;
3451
3452         local_irq_save(flags);
3453         __perf_counter_task_sched_out(child_ctx);
3454         child->perf_counter_ctxp = NULL;
3455         local_irq_restore(flags);
3456
3457         mutex_lock(&child_ctx->mutex);
3458
3459 again:
3460         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3461                                  list_entry)
3462                 __perf_counter_exit_task(child, child_counter, child_ctx);
3463
3464         /*
3465          * If the last counter was a group counter, it will have appended all
3466          * its siblings to the list, but we obtained 'tmp' before that which
3467          * will still point to the list head terminating the iteration.
3468          */
3469         if (!list_empty(&child_ctx->counter_list))
3470                 goto again;
3471
3472         mutex_unlock(&child_ctx->mutex);
3473
3474         put_ctx(child_ctx);
3475 }
3476
3477 /*
3478  * Initialize the perf_counter context in task_struct
3479  */
3480 void perf_counter_init_task(struct task_struct *child)
3481 {
3482         struct perf_counter_context *child_ctx, *parent_ctx;
3483         struct perf_counter *counter;
3484         struct task_struct *parent = current;
3485         int inherited_all = 1;
3486
3487         child->perf_counter_ctxp = NULL;
3488
3489         /*
3490          * This is executed from the parent task context, so inherit
3491          * counters that have been marked for cloning.
3492          * First allocate and initialize a context for the child.
3493          */
3494
3495         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3496         if (!child_ctx)
3497                 return;
3498
3499         parent_ctx = parent->perf_counter_ctxp;
3500         if (likely(!parent_ctx || !parent_ctx->nr_counters))
3501                 return;
3502
3503         __perf_counter_init_context(child_ctx, child);
3504         child->perf_counter_ctxp = child_ctx;
3505
3506         /*
3507          * Lock the parent list. No need to lock the child - not PID
3508          * hashed yet and not running, so nobody can access it.
3509          */
3510         mutex_lock(&parent_ctx->mutex);
3511
3512         /*
3513          * We dont have to disable NMIs - we are only looking at
3514          * the list, not manipulating it:
3515          */
3516         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3517                 if (counter != counter->group_leader)
3518                         continue;
3519
3520                 if (!counter->hw_event.inherit) {
3521                         inherited_all = 0;
3522                         continue;
3523                 }
3524
3525                 if (inherit_group(counter, parent,
3526                                   parent_ctx, child, child_ctx)) {
3527                         inherited_all = 0;
3528                         break;
3529                 }
3530         }
3531
3532         if (inherited_all) {
3533                 /*
3534                  * Mark the child context as a clone of the parent
3535                  * context, or of whatever the parent is a clone of.
3536                  */
3537                 if (parent_ctx->parent_ctx) {
3538                         child_ctx->parent_ctx = parent_ctx->parent_ctx;
3539                         child_ctx->parent_gen = parent_ctx->parent_gen;
3540                 } else {
3541                         child_ctx->parent_ctx = parent_ctx;
3542                         child_ctx->parent_gen = parent_ctx->generation;
3543                 }
3544                 get_ctx(child_ctx->parent_ctx);
3545         }
3546
3547         mutex_unlock(&parent_ctx->mutex);
3548 }
3549
3550 static void __cpuinit perf_counter_init_cpu(int cpu)
3551 {
3552         struct perf_cpu_context *cpuctx;
3553
3554         cpuctx = &per_cpu(perf_cpu_context, cpu);
3555         __perf_counter_init_context(&cpuctx->ctx, NULL);
3556
3557         spin_lock(&perf_resource_lock);
3558         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3559         spin_unlock(&perf_resource_lock);
3560
3561         hw_perf_counter_setup(cpu);
3562 }
3563
3564 #ifdef CONFIG_HOTPLUG_CPU
3565 static void __perf_counter_exit_cpu(void *info)
3566 {
3567         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3568         struct perf_counter_context *ctx = &cpuctx->ctx;
3569         struct perf_counter *counter, *tmp;
3570
3571         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3572                 __perf_counter_remove_from_context(counter);
3573 }
3574 static void perf_counter_exit_cpu(int cpu)
3575 {
3576         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3577         struct perf_counter_context *ctx = &cpuctx->ctx;
3578
3579         mutex_lock(&ctx->mutex);
3580         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3581         mutex_unlock(&ctx->mutex);
3582 }
3583 #else
3584 static inline void perf_counter_exit_cpu(int cpu) { }
3585 #endif
3586
3587 static int __cpuinit
3588 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3589 {
3590         unsigned int cpu = (long)hcpu;
3591
3592         switch (action) {
3593
3594         case CPU_UP_PREPARE:
3595         case CPU_UP_PREPARE_FROZEN:
3596                 perf_counter_init_cpu(cpu);
3597                 break;
3598
3599         case CPU_DOWN_PREPARE:
3600         case CPU_DOWN_PREPARE_FROZEN:
3601                 perf_counter_exit_cpu(cpu);
3602                 break;
3603
3604         default:
3605                 break;
3606         }
3607
3608         return NOTIFY_OK;
3609 }
3610
3611 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3612         .notifier_call          = perf_cpu_notify,
3613 };
3614
3615 void __init perf_counter_init(void)
3616 {
3617         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3618                         (void *)(long)smp_processor_id());
3619         register_cpu_notifier(&perf_cpu_nb);
3620 }
3621
3622 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3623 {
3624         return sprintf(buf, "%d\n", perf_reserved_percpu);
3625 }
3626
3627 static ssize_t
3628 perf_set_reserve_percpu(struct sysdev_class *class,
3629                         const char *buf,
3630                         size_t count)
3631 {
3632         struct perf_cpu_context *cpuctx;
3633         unsigned long val;
3634         int err, cpu, mpt;
3635
3636         err = strict_strtoul(buf, 10, &val);
3637         if (err)
3638                 return err;
3639         if (val > perf_max_counters)
3640                 return -EINVAL;
3641
3642         spin_lock(&perf_resource_lock);
3643         perf_reserved_percpu = val;
3644         for_each_online_cpu(cpu) {
3645                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3646                 spin_lock_irq(&cpuctx->ctx.lock);
3647                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3648                           perf_max_counters - perf_reserved_percpu);
3649                 cpuctx->max_pertask = mpt;
3650                 spin_unlock_irq(&cpuctx->ctx.lock);
3651         }
3652         spin_unlock(&perf_resource_lock);
3653
3654         return count;
3655 }
3656
3657 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3658 {
3659         return sprintf(buf, "%d\n", perf_overcommit);
3660 }
3661
3662 static ssize_t
3663 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3664 {
3665         unsigned long val;
3666         int err;
3667
3668         err = strict_strtoul(buf, 10, &val);
3669         if (err)
3670                 return err;
3671         if (val > 1)
3672                 return -EINVAL;
3673
3674         spin_lock(&perf_resource_lock);
3675         perf_overcommit = val;
3676         spin_unlock(&perf_resource_lock);
3677
3678         return count;
3679 }
3680
3681 static SYSDEV_CLASS_ATTR(
3682                                 reserve_percpu,
3683                                 0644,
3684                                 perf_show_reserve_percpu,
3685                                 perf_set_reserve_percpu
3686                         );
3687
3688 static SYSDEV_CLASS_ATTR(
3689                                 overcommit,
3690                                 0644,
3691                                 perf_show_overcommit,
3692                                 perf_set_overcommit
3693                         );
3694
3695 static struct attribute *perfclass_attrs[] = {
3696         &attr_reserve_percpu.attr,
3697         &attr_overcommit.attr,
3698         NULL
3699 };
3700
3701 static struct attribute_group perfclass_attr_group = {
3702         .attrs                  = perfclass_attrs,
3703         .name                   = "perf_counters",
3704 };
3705
3706 static int __init perf_counter_sysfs_init(void)
3707 {
3708         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3709                                   &perfclass_attr_group);
3710 }
3711 device_initcall(perf_counter_sysfs_init);