perf_counter: abstract wakeup flag setting in core to fix powerpc build
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *  For licencing details see kernel-base/COPYING
8  */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23 #include <linux/mm.h>
24 #include <linux/vmstat.h>
25 #include <linux/rculist.h>
26
27 #include <asm/irq_regs.h>
28
29 /*
30  * Each CPU has a list of per CPU counters:
31  */
32 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
33
34 int perf_max_counters __read_mostly = 1;
35 static int perf_reserved_percpu __read_mostly;
36 static int perf_overcommit __read_mostly = 1;
37
38 /*
39  * Mutex for (sysadmin-configurable) counter reservations:
40  */
41 static DEFINE_MUTEX(perf_resource_mutex);
42
43 /*
44  * Architecture provided APIs - weak aliases:
45  */
46 extern __weak const struct hw_perf_counter_ops *
47 hw_perf_counter_init(struct perf_counter *counter)
48 {
49         return NULL;
50 }
51
52 u64 __weak hw_perf_save_disable(void)           { return 0; }
53 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
54 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
55 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
56                struct perf_cpu_context *cpuctx,
57                struct perf_counter_context *ctx, int cpu)
58 {
59         return 0;
60 }
61
62 void __weak perf_counter_print_debug(void)      { }
63
64 static void
65 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
66 {
67         struct perf_counter *group_leader = counter->group_leader;
68
69         /*
70          * Depending on whether it is a standalone or sibling counter,
71          * add it straight to the context's counter list, or to the group
72          * leader's sibling list:
73          */
74         if (counter->group_leader == counter)
75                 list_add_tail(&counter->list_entry, &ctx->counter_list);
76         else
77                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
78
79         list_add_rcu(&counter->event_entry, &ctx->event_list);
80 }
81
82 static void
83 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
84 {
85         struct perf_counter *sibling, *tmp;
86
87         list_del_init(&counter->list_entry);
88         list_del_rcu(&counter->event_entry);
89
90         /*
91          * If this was a group counter with sibling counters then
92          * upgrade the siblings to singleton counters by adding them
93          * to the context list directly:
94          */
95         list_for_each_entry_safe(sibling, tmp,
96                                  &counter->sibling_list, list_entry) {
97
98                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
99                 sibling->group_leader = sibling;
100         }
101 }
102
103 static void
104 counter_sched_out(struct perf_counter *counter,
105                   struct perf_cpu_context *cpuctx,
106                   struct perf_counter_context *ctx)
107 {
108         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
109                 return;
110
111         counter->state = PERF_COUNTER_STATE_INACTIVE;
112         counter->hw_ops->disable(counter);
113         counter->oncpu = -1;
114
115         if (!is_software_counter(counter))
116                 cpuctx->active_oncpu--;
117         ctx->nr_active--;
118         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
119                 cpuctx->exclusive = 0;
120 }
121
122 static void
123 group_sched_out(struct perf_counter *group_counter,
124                 struct perf_cpu_context *cpuctx,
125                 struct perf_counter_context *ctx)
126 {
127         struct perf_counter *counter;
128
129         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
130                 return;
131
132         counter_sched_out(group_counter, cpuctx, ctx);
133
134         /*
135          * Schedule out siblings (if any):
136          */
137         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
138                 counter_sched_out(counter, cpuctx, ctx);
139
140         if (group_counter->hw_event.exclusive)
141                 cpuctx->exclusive = 0;
142 }
143
144 /*
145  * Cross CPU call to remove a performance counter
146  *
147  * We disable the counter on the hardware level first. After that we
148  * remove it from the context list.
149  */
150 static void __perf_counter_remove_from_context(void *info)
151 {
152         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
153         struct perf_counter *counter = info;
154         struct perf_counter_context *ctx = counter->ctx;
155         unsigned long flags;
156         u64 perf_flags;
157
158         /*
159          * If this is a task context, we need to check whether it is
160          * the current task context of this cpu. If not it has been
161          * scheduled out before the smp call arrived.
162          */
163         if (ctx->task && cpuctx->task_ctx != ctx)
164                 return;
165
166         curr_rq_lock_irq_save(&flags);
167         spin_lock(&ctx->lock);
168
169         counter_sched_out(counter, cpuctx, ctx);
170
171         counter->task = NULL;
172         ctx->nr_counters--;
173
174         /*
175          * Protect the list operation against NMI by disabling the
176          * counters on a global level. NOP for non NMI based counters.
177          */
178         perf_flags = hw_perf_save_disable();
179         list_del_counter(counter, ctx);
180         hw_perf_restore(perf_flags);
181
182         if (!ctx->task) {
183                 /*
184                  * Allow more per task counters with respect to the
185                  * reservation:
186                  */
187                 cpuctx->max_pertask =
188                         min(perf_max_counters - ctx->nr_counters,
189                             perf_max_counters - perf_reserved_percpu);
190         }
191
192         spin_unlock(&ctx->lock);
193         curr_rq_unlock_irq_restore(&flags);
194 }
195
196
197 /*
198  * Remove the counter from a task's (or a CPU's) list of counters.
199  *
200  * Must be called with counter->mutex and ctx->mutex held.
201  *
202  * CPU counters are removed with a smp call. For task counters we only
203  * call when the task is on a CPU.
204  */
205 static void perf_counter_remove_from_context(struct perf_counter *counter)
206 {
207         struct perf_counter_context *ctx = counter->ctx;
208         struct task_struct *task = ctx->task;
209
210         if (!task) {
211                 /*
212                  * Per cpu counters are removed via an smp call and
213                  * the removal is always sucessful.
214                  */
215                 smp_call_function_single(counter->cpu,
216                                          __perf_counter_remove_from_context,
217                                          counter, 1);
218                 return;
219         }
220
221 retry:
222         task_oncpu_function_call(task, __perf_counter_remove_from_context,
223                                  counter);
224
225         spin_lock_irq(&ctx->lock);
226         /*
227          * If the context is active we need to retry the smp call.
228          */
229         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
230                 spin_unlock_irq(&ctx->lock);
231                 goto retry;
232         }
233
234         /*
235          * The lock prevents that this context is scheduled in so we
236          * can remove the counter safely, if the call above did not
237          * succeed.
238          */
239         if (!list_empty(&counter->list_entry)) {
240                 ctx->nr_counters--;
241                 list_del_counter(counter, ctx);
242                 counter->task = NULL;
243         }
244         spin_unlock_irq(&ctx->lock);
245 }
246
247 /*
248  * Cross CPU call to disable a performance counter
249  */
250 static void __perf_counter_disable(void *info)
251 {
252         struct perf_counter *counter = info;
253         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
254         struct perf_counter_context *ctx = counter->ctx;
255         unsigned long flags;
256
257         /*
258          * If this is a per-task counter, need to check whether this
259          * counter's task is the current task on this cpu.
260          */
261         if (ctx->task && cpuctx->task_ctx != ctx)
262                 return;
263
264         curr_rq_lock_irq_save(&flags);
265         spin_lock(&ctx->lock);
266
267         /*
268          * If the counter is on, turn it off.
269          * If it is in error state, leave it in error state.
270          */
271         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
272                 if (counter == counter->group_leader)
273                         group_sched_out(counter, cpuctx, ctx);
274                 else
275                         counter_sched_out(counter, cpuctx, ctx);
276                 counter->state = PERF_COUNTER_STATE_OFF;
277         }
278
279         spin_unlock(&ctx->lock);
280         curr_rq_unlock_irq_restore(&flags);
281 }
282
283 /*
284  * Disable a counter.
285  */
286 static void perf_counter_disable(struct perf_counter *counter)
287 {
288         struct perf_counter_context *ctx = counter->ctx;
289         struct task_struct *task = ctx->task;
290
291         if (!task) {
292                 /*
293                  * Disable the counter on the cpu that it's on
294                  */
295                 smp_call_function_single(counter->cpu, __perf_counter_disable,
296                                          counter, 1);
297                 return;
298         }
299
300  retry:
301         task_oncpu_function_call(task, __perf_counter_disable, counter);
302
303         spin_lock_irq(&ctx->lock);
304         /*
305          * If the counter is still active, we need to retry the cross-call.
306          */
307         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
308                 spin_unlock_irq(&ctx->lock);
309                 goto retry;
310         }
311
312         /*
313          * Since we have the lock this context can't be scheduled
314          * in, so we can change the state safely.
315          */
316         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
317                 counter->state = PERF_COUNTER_STATE_OFF;
318
319         spin_unlock_irq(&ctx->lock);
320 }
321
322 /*
323  * Disable a counter and all its children.
324  */
325 static void perf_counter_disable_family(struct perf_counter *counter)
326 {
327         struct perf_counter *child;
328
329         perf_counter_disable(counter);
330
331         /*
332          * Lock the mutex to protect the list of children
333          */
334         mutex_lock(&counter->mutex);
335         list_for_each_entry(child, &counter->child_list, child_list)
336                 perf_counter_disable(child);
337         mutex_unlock(&counter->mutex);
338 }
339
340 static int
341 counter_sched_in(struct perf_counter *counter,
342                  struct perf_cpu_context *cpuctx,
343                  struct perf_counter_context *ctx,
344                  int cpu)
345 {
346         if (counter->state <= PERF_COUNTER_STATE_OFF)
347                 return 0;
348
349         counter->state = PERF_COUNTER_STATE_ACTIVE;
350         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
351         /*
352          * The new state must be visible before we turn it on in the hardware:
353          */
354         smp_wmb();
355
356         if (counter->hw_ops->enable(counter)) {
357                 counter->state = PERF_COUNTER_STATE_INACTIVE;
358                 counter->oncpu = -1;
359                 return -EAGAIN;
360         }
361
362         if (!is_software_counter(counter))
363                 cpuctx->active_oncpu++;
364         ctx->nr_active++;
365
366         if (counter->hw_event.exclusive)
367                 cpuctx->exclusive = 1;
368
369         return 0;
370 }
371
372 /*
373  * Return 1 for a group consisting entirely of software counters,
374  * 0 if the group contains any hardware counters.
375  */
376 static int is_software_only_group(struct perf_counter *leader)
377 {
378         struct perf_counter *counter;
379
380         if (!is_software_counter(leader))
381                 return 0;
382         list_for_each_entry(counter, &leader->sibling_list, list_entry)
383                 if (!is_software_counter(counter))
384                         return 0;
385         return 1;
386 }
387
388 /*
389  * Work out whether we can put this counter group on the CPU now.
390  */
391 static int group_can_go_on(struct perf_counter *counter,
392                            struct perf_cpu_context *cpuctx,
393                            int can_add_hw)
394 {
395         /*
396          * Groups consisting entirely of software counters can always go on.
397          */
398         if (is_software_only_group(counter))
399                 return 1;
400         /*
401          * If an exclusive group is already on, no other hardware
402          * counters can go on.
403          */
404         if (cpuctx->exclusive)
405                 return 0;
406         /*
407          * If this group is exclusive and there are already
408          * counters on the CPU, it can't go on.
409          */
410         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
411                 return 0;
412         /*
413          * Otherwise, try to add it if all previous groups were able
414          * to go on.
415          */
416         return can_add_hw;
417 }
418
419 /*
420  * Cross CPU call to install and enable a performance counter
421  */
422 static void __perf_install_in_context(void *info)
423 {
424         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425         struct perf_counter *counter = info;
426         struct perf_counter_context *ctx = counter->ctx;
427         struct perf_counter *leader = counter->group_leader;
428         int cpu = smp_processor_id();
429         unsigned long flags;
430         u64 perf_flags;
431         int err;
432
433         /*
434          * If this is a task context, we need to check whether it is
435          * the current task context of this cpu. If not it has been
436          * scheduled out before the smp call arrived.
437          */
438         if (ctx->task && cpuctx->task_ctx != ctx)
439                 return;
440
441         curr_rq_lock_irq_save(&flags);
442         spin_lock(&ctx->lock);
443
444         /*
445          * Protect the list operation against NMI by disabling the
446          * counters on a global level. NOP for non NMI based counters.
447          */
448         perf_flags = hw_perf_save_disable();
449
450         list_add_counter(counter, ctx);
451         ctx->nr_counters++;
452         counter->prev_state = PERF_COUNTER_STATE_OFF;
453
454         /*
455          * Don't put the counter on if it is disabled or if
456          * it is in a group and the group isn't on.
457          */
458         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
459             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
460                 goto unlock;
461
462         /*
463          * An exclusive counter can't go on if there are already active
464          * hardware counters, and no hardware counter can go on if there
465          * is already an exclusive counter on.
466          */
467         if (!group_can_go_on(counter, cpuctx, 1))
468                 err = -EEXIST;
469         else
470                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
471
472         if (err) {
473                 /*
474                  * This counter couldn't go on.  If it is in a group
475                  * then we have to pull the whole group off.
476                  * If the counter group is pinned then put it in error state.
477                  */
478                 if (leader != counter)
479                         group_sched_out(leader, cpuctx, ctx);
480                 if (leader->hw_event.pinned)
481                         leader->state = PERF_COUNTER_STATE_ERROR;
482         }
483
484         if (!err && !ctx->task && cpuctx->max_pertask)
485                 cpuctx->max_pertask--;
486
487  unlock:
488         hw_perf_restore(perf_flags);
489
490         spin_unlock(&ctx->lock);
491         curr_rq_unlock_irq_restore(&flags);
492 }
493
494 /*
495  * Attach a performance counter to a context
496  *
497  * First we add the counter to the list with the hardware enable bit
498  * in counter->hw_config cleared.
499  *
500  * If the counter is attached to a task which is on a CPU we use a smp
501  * call to enable it in the task context. The task might have been
502  * scheduled away, but we check this in the smp call again.
503  *
504  * Must be called with ctx->mutex held.
505  */
506 static void
507 perf_install_in_context(struct perf_counter_context *ctx,
508                         struct perf_counter *counter,
509                         int cpu)
510 {
511         struct task_struct *task = ctx->task;
512
513         if (!task) {
514                 /*
515                  * Per cpu counters are installed via an smp call and
516                  * the install is always sucessful.
517                  */
518                 smp_call_function_single(cpu, __perf_install_in_context,
519                                          counter, 1);
520                 return;
521         }
522
523         counter->task = task;
524 retry:
525         task_oncpu_function_call(task, __perf_install_in_context,
526                                  counter);
527
528         spin_lock_irq(&ctx->lock);
529         /*
530          * we need to retry the smp call.
531          */
532         if (ctx->is_active && list_empty(&counter->list_entry)) {
533                 spin_unlock_irq(&ctx->lock);
534                 goto retry;
535         }
536
537         /*
538          * The lock prevents that this context is scheduled in so we
539          * can add the counter safely, if it the call above did not
540          * succeed.
541          */
542         if (list_empty(&counter->list_entry)) {
543                 list_add_counter(counter, ctx);
544                 ctx->nr_counters++;
545         }
546         spin_unlock_irq(&ctx->lock);
547 }
548
549 /*
550  * Cross CPU call to enable a performance counter
551  */
552 static void __perf_counter_enable(void *info)
553 {
554         struct perf_counter *counter = info;
555         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
556         struct perf_counter_context *ctx = counter->ctx;
557         struct perf_counter *leader = counter->group_leader;
558         unsigned long flags;
559         int err;
560
561         /*
562          * If this is a per-task counter, need to check whether this
563          * counter's task is the current task on this cpu.
564          */
565         if (ctx->task && cpuctx->task_ctx != ctx)
566                 return;
567
568         curr_rq_lock_irq_save(&flags);
569         spin_lock(&ctx->lock);
570
571         counter->prev_state = counter->state;
572         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
573                 goto unlock;
574         counter->state = PERF_COUNTER_STATE_INACTIVE;
575
576         /*
577          * If the counter is in a group and isn't the group leader,
578          * then don't put it on unless the group is on.
579          */
580         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
581                 goto unlock;
582
583         if (!group_can_go_on(counter, cpuctx, 1))
584                 err = -EEXIST;
585         else
586                 err = counter_sched_in(counter, cpuctx, ctx,
587                                        smp_processor_id());
588
589         if (err) {
590                 /*
591                  * If this counter can't go on and it's part of a
592                  * group, then the whole group has to come off.
593                  */
594                 if (leader != counter)
595                         group_sched_out(leader, cpuctx, ctx);
596                 if (leader->hw_event.pinned)
597                         leader->state = PERF_COUNTER_STATE_ERROR;
598         }
599
600  unlock:
601         spin_unlock(&ctx->lock);
602         curr_rq_unlock_irq_restore(&flags);
603 }
604
605 /*
606  * Enable a counter.
607  */
608 static void perf_counter_enable(struct perf_counter *counter)
609 {
610         struct perf_counter_context *ctx = counter->ctx;
611         struct task_struct *task = ctx->task;
612
613         if (!task) {
614                 /*
615                  * Enable the counter on the cpu that it's on
616                  */
617                 smp_call_function_single(counter->cpu, __perf_counter_enable,
618                                          counter, 1);
619                 return;
620         }
621
622         spin_lock_irq(&ctx->lock);
623         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
624                 goto out;
625
626         /*
627          * If the counter is in error state, clear that first.
628          * That way, if we see the counter in error state below, we
629          * know that it has gone back into error state, as distinct
630          * from the task having been scheduled away before the
631          * cross-call arrived.
632          */
633         if (counter->state == PERF_COUNTER_STATE_ERROR)
634                 counter->state = PERF_COUNTER_STATE_OFF;
635
636  retry:
637         spin_unlock_irq(&ctx->lock);
638         task_oncpu_function_call(task, __perf_counter_enable, counter);
639
640         spin_lock_irq(&ctx->lock);
641
642         /*
643          * If the context is active and the counter is still off,
644          * we need to retry the cross-call.
645          */
646         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
647                 goto retry;
648
649         /*
650          * Since we have the lock this context can't be scheduled
651          * in, so we can change the state safely.
652          */
653         if (counter->state == PERF_COUNTER_STATE_OFF)
654                 counter->state = PERF_COUNTER_STATE_INACTIVE;
655  out:
656         spin_unlock_irq(&ctx->lock);
657 }
658
659 /*
660  * Enable a counter and all its children.
661  */
662 static void perf_counter_enable_family(struct perf_counter *counter)
663 {
664         struct perf_counter *child;
665
666         perf_counter_enable(counter);
667
668         /*
669          * Lock the mutex to protect the list of children
670          */
671         mutex_lock(&counter->mutex);
672         list_for_each_entry(child, &counter->child_list, child_list)
673                 perf_counter_enable(child);
674         mutex_unlock(&counter->mutex);
675 }
676
677 void __perf_counter_sched_out(struct perf_counter_context *ctx,
678                               struct perf_cpu_context *cpuctx)
679 {
680         struct perf_counter *counter;
681         u64 flags;
682
683         spin_lock(&ctx->lock);
684         ctx->is_active = 0;
685         if (likely(!ctx->nr_counters))
686                 goto out;
687
688         flags = hw_perf_save_disable();
689         if (ctx->nr_active) {
690                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
691                         group_sched_out(counter, cpuctx, ctx);
692         }
693         hw_perf_restore(flags);
694  out:
695         spin_unlock(&ctx->lock);
696 }
697
698 /*
699  * Called from scheduler to remove the counters of the current task,
700  * with interrupts disabled.
701  *
702  * We stop each counter and update the counter value in counter->count.
703  *
704  * This does not protect us against NMI, but disable()
705  * sets the disabled bit in the control field of counter _before_
706  * accessing the counter control register. If a NMI hits, then it will
707  * not restart the counter.
708  */
709 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
710 {
711         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
712         struct perf_counter_context *ctx = &task->perf_counter_ctx;
713
714         if (likely(!cpuctx->task_ctx))
715                 return;
716
717         __perf_counter_sched_out(ctx, cpuctx);
718
719         cpuctx->task_ctx = NULL;
720 }
721
722 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
723 {
724         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
725 }
726
727 static int
728 group_sched_in(struct perf_counter *group_counter,
729                struct perf_cpu_context *cpuctx,
730                struct perf_counter_context *ctx,
731                int cpu)
732 {
733         struct perf_counter *counter, *partial_group;
734         int ret;
735
736         if (group_counter->state == PERF_COUNTER_STATE_OFF)
737                 return 0;
738
739         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
740         if (ret)
741                 return ret < 0 ? ret : 0;
742
743         group_counter->prev_state = group_counter->state;
744         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
745                 return -EAGAIN;
746
747         /*
748          * Schedule in siblings as one group (if any):
749          */
750         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
751                 counter->prev_state = counter->state;
752                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
753                         partial_group = counter;
754                         goto group_error;
755                 }
756         }
757
758         return 0;
759
760 group_error:
761         /*
762          * Groups can be scheduled in as one unit only, so undo any
763          * partial group before returning:
764          */
765         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
766                 if (counter == partial_group)
767                         break;
768                 counter_sched_out(counter, cpuctx, ctx);
769         }
770         counter_sched_out(group_counter, cpuctx, ctx);
771
772         return -EAGAIN;
773 }
774
775 static void
776 __perf_counter_sched_in(struct perf_counter_context *ctx,
777                         struct perf_cpu_context *cpuctx, int cpu)
778 {
779         struct perf_counter *counter;
780         u64 flags;
781         int can_add_hw = 1;
782
783         spin_lock(&ctx->lock);
784         ctx->is_active = 1;
785         if (likely(!ctx->nr_counters))
786                 goto out;
787
788         flags = hw_perf_save_disable();
789
790         /*
791          * First go through the list and put on any pinned groups
792          * in order to give them the best chance of going on.
793          */
794         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
795                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
796                     !counter->hw_event.pinned)
797                         continue;
798                 if (counter->cpu != -1 && counter->cpu != cpu)
799                         continue;
800
801                 if (group_can_go_on(counter, cpuctx, 1))
802                         group_sched_in(counter, cpuctx, ctx, cpu);
803
804                 /*
805                  * If this pinned group hasn't been scheduled,
806                  * put it in error state.
807                  */
808                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
809                         counter->state = PERF_COUNTER_STATE_ERROR;
810         }
811
812         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
813                 /*
814                  * Ignore counters in OFF or ERROR state, and
815                  * ignore pinned counters since we did them already.
816                  */
817                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
818                     counter->hw_event.pinned)
819                         continue;
820
821                 /*
822                  * Listen to the 'cpu' scheduling filter constraint
823                  * of counters:
824                  */
825                 if (counter->cpu != -1 && counter->cpu != cpu)
826                         continue;
827
828                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
829                         if (group_sched_in(counter, cpuctx, ctx, cpu))
830                                 can_add_hw = 0;
831                 }
832         }
833         hw_perf_restore(flags);
834  out:
835         spin_unlock(&ctx->lock);
836 }
837
838 /*
839  * Called from scheduler to add the counters of the current task
840  * with interrupts disabled.
841  *
842  * We restore the counter value and then enable it.
843  *
844  * This does not protect us against NMI, but enable()
845  * sets the enabled bit in the control field of counter _before_
846  * accessing the counter control register. If a NMI hits, then it will
847  * keep the counter running.
848  */
849 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
850 {
851         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
852         struct perf_counter_context *ctx = &task->perf_counter_ctx;
853
854         __perf_counter_sched_in(ctx, cpuctx, cpu);
855         cpuctx->task_ctx = ctx;
856 }
857
858 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
859 {
860         struct perf_counter_context *ctx = &cpuctx->ctx;
861
862         __perf_counter_sched_in(ctx, cpuctx, cpu);
863 }
864
865 int perf_counter_task_disable(void)
866 {
867         struct task_struct *curr = current;
868         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
869         struct perf_counter *counter;
870         unsigned long flags;
871         u64 perf_flags;
872         int cpu;
873
874         if (likely(!ctx->nr_counters))
875                 return 0;
876
877         curr_rq_lock_irq_save(&flags);
878         cpu = smp_processor_id();
879
880         /* force the update of the task clock: */
881         __task_delta_exec(curr, 1);
882
883         perf_counter_task_sched_out(curr, cpu);
884
885         spin_lock(&ctx->lock);
886
887         /*
888          * Disable all the counters:
889          */
890         perf_flags = hw_perf_save_disable();
891
892         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
893                 if (counter->state != PERF_COUNTER_STATE_ERROR)
894                         counter->state = PERF_COUNTER_STATE_OFF;
895         }
896
897         hw_perf_restore(perf_flags);
898
899         spin_unlock(&ctx->lock);
900
901         curr_rq_unlock_irq_restore(&flags);
902
903         return 0;
904 }
905
906 int perf_counter_task_enable(void)
907 {
908         struct task_struct *curr = current;
909         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
910         struct perf_counter *counter;
911         unsigned long flags;
912         u64 perf_flags;
913         int cpu;
914
915         if (likely(!ctx->nr_counters))
916                 return 0;
917
918         curr_rq_lock_irq_save(&flags);
919         cpu = smp_processor_id();
920
921         /* force the update of the task clock: */
922         __task_delta_exec(curr, 1);
923
924         perf_counter_task_sched_out(curr, cpu);
925
926         spin_lock(&ctx->lock);
927
928         /*
929          * Disable all the counters:
930          */
931         perf_flags = hw_perf_save_disable();
932
933         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
934                 if (counter->state > PERF_COUNTER_STATE_OFF)
935                         continue;
936                 counter->state = PERF_COUNTER_STATE_INACTIVE;
937                 counter->hw_event.disabled = 0;
938         }
939         hw_perf_restore(perf_flags);
940
941         spin_unlock(&ctx->lock);
942
943         perf_counter_task_sched_in(curr, cpu);
944
945         curr_rq_unlock_irq_restore(&flags);
946
947         return 0;
948 }
949
950 /*
951  * Round-robin a context's counters:
952  */
953 static void rotate_ctx(struct perf_counter_context *ctx)
954 {
955         struct perf_counter *counter;
956         u64 perf_flags;
957
958         if (!ctx->nr_counters)
959                 return;
960
961         spin_lock(&ctx->lock);
962         /*
963          * Rotate the first entry last (works just fine for group counters too):
964          */
965         perf_flags = hw_perf_save_disable();
966         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
967                 list_move_tail(&counter->list_entry, &ctx->counter_list);
968                 break;
969         }
970         hw_perf_restore(perf_flags);
971
972         spin_unlock(&ctx->lock);
973 }
974
975 void perf_counter_task_tick(struct task_struct *curr, int cpu)
976 {
977         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
978         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
979         const int rotate_percpu = 0;
980
981         if (rotate_percpu)
982                 perf_counter_cpu_sched_out(cpuctx);
983         perf_counter_task_sched_out(curr, cpu);
984
985         if (rotate_percpu)
986                 rotate_ctx(&cpuctx->ctx);
987         rotate_ctx(ctx);
988
989         if (rotate_percpu)
990                 perf_counter_cpu_sched_in(cpuctx, cpu);
991         perf_counter_task_sched_in(curr, cpu);
992 }
993
994 /*
995  * Cross CPU call to read the hardware counter
996  */
997 static void __read(void *info)
998 {
999         struct perf_counter *counter = info;
1000         unsigned long flags;
1001
1002         curr_rq_lock_irq_save(&flags);
1003         counter->hw_ops->read(counter);
1004         curr_rq_unlock_irq_restore(&flags);
1005 }
1006
1007 static u64 perf_counter_read(struct perf_counter *counter)
1008 {
1009         /*
1010          * If counter is enabled and currently active on a CPU, update the
1011          * value in the counter structure:
1012          */
1013         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1014                 smp_call_function_single(counter->oncpu,
1015                                          __read, counter, 1);
1016         }
1017
1018         return atomic64_read(&counter->count);
1019 }
1020
1021 /*
1022  * Cross CPU call to switch performance data pointers
1023  */
1024 static void __perf_switch_irq_data(void *info)
1025 {
1026         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1027         struct perf_counter *counter = info;
1028         struct perf_counter_context *ctx = counter->ctx;
1029         struct perf_data *oldirqdata = counter->irqdata;
1030
1031         /*
1032          * If this is a task context, we need to check whether it is
1033          * the current task context of this cpu. If not it has been
1034          * scheduled out before the smp call arrived.
1035          */
1036         if (ctx->task) {
1037                 if (cpuctx->task_ctx != ctx)
1038                         return;
1039                 spin_lock(&ctx->lock);
1040         }
1041
1042         /* Change the pointer NMI safe */
1043         atomic_long_set((atomic_long_t *)&counter->irqdata,
1044                         (unsigned long) counter->usrdata);
1045         counter->usrdata = oldirqdata;
1046
1047         if (ctx->task)
1048                 spin_unlock(&ctx->lock);
1049 }
1050
1051 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1052 {
1053         struct perf_counter_context *ctx = counter->ctx;
1054         struct perf_data *oldirqdata = counter->irqdata;
1055         struct task_struct *task = ctx->task;
1056
1057         if (!task) {
1058                 smp_call_function_single(counter->cpu,
1059                                          __perf_switch_irq_data,
1060                                          counter, 1);
1061                 return counter->usrdata;
1062         }
1063
1064 retry:
1065         spin_lock_irq(&ctx->lock);
1066         if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1067                 counter->irqdata = counter->usrdata;
1068                 counter->usrdata = oldirqdata;
1069                 spin_unlock_irq(&ctx->lock);
1070                 return oldirqdata;
1071         }
1072         spin_unlock_irq(&ctx->lock);
1073         task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1074         /* Might have failed, because task was scheduled out */
1075         if (counter->irqdata == oldirqdata)
1076                 goto retry;
1077
1078         return counter->usrdata;
1079 }
1080
1081 static void put_context(struct perf_counter_context *ctx)
1082 {
1083         if (ctx->task)
1084                 put_task_struct(ctx->task);
1085 }
1086
1087 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1088 {
1089         struct perf_cpu_context *cpuctx;
1090         struct perf_counter_context *ctx;
1091         struct task_struct *task;
1092
1093         /*
1094          * If cpu is not a wildcard then this is a percpu counter:
1095          */
1096         if (cpu != -1) {
1097                 /* Must be root to operate on a CPU counter: */
1098                 if (!capable(CAP_SYS_ADMIN))
1099                         return ERR_PTR(-EACCES);
1100
1101                 if (cpu < 0 || cpu > num_possible_cpus())
1102                         return ERR_PTR(-EINVAL);
1103
1104                 /*
1105                  * We could be clever and allow to attach a counter to an
1106                  * offline CPU and activate it when the CPU comes up, but
1107                  * that's for later.
1108                  */
1109                 if (!cpu_isset(cpu, cpu_online_map))
1110                         return ERR_PTR(-ENODEV);
1111
1112                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1113                 ctx = &cpuctx->ctx;
1114
1115                 return ctx;
1116         }
1117
1118         rcu_read_lock();
1119         if (!pid)
1120                 task = current;
1121         else
1122                 task = find_task_by_vpid(pid);
1123         if (task)
1124                 get_task_struct(task);
1125         rcu_read_unlock();
1126
1127         if (!task)
1128                 return ERR_PTR(-ESRCH);
1129
1130         ctx = &task->perf_counter_ctx;
1131         ctx->task = task;
1132
1133         /* Reuse ptrace permission checks for now. */
1134         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1135                 put_context(ctx);
1136                 return ERR_PTR(-EACCES);
1137         }
1138
1139         return ctx;
1140 }
1141
1142 static void free_counter_rcu(struct rcu_head *head)
1143 {
1144         struct perf_counter *counter;
1145
1146         counter = container_of(head, struct perf_counter, rcu_head);
1147         kfree(counter);
1148 }
1149
1150 /*
1151  * Called when the last reference to the file is gone.
1152  */
1153 static int perf_release(struct inode *inode, struct file *file)
1154 {
1155         struct perf_counter *counter = file->private_data;
1156         struct perf_counter_context *ctx = counter->ctx;
1157
1158         file->private_data = NULL;
1159
1160         mutex_lock(&ctx->mutex);
1161         mutex_lock(&counter->mutex);
1162
1163         perf_counter_remove_from_context(counter);
1164
1165         mutex_unlock(&counter->mutex);
1166         mutex_unlock(&ctx->mutex);
1167
1168         call_rcu(&counter->rcu_head, free_counter_rcu);
1169         put_context(ctx);
1170
1171         return 0;
1172 }
1173
1174 /*
1175  * Read the performance counter - simple non blocking version for now
1176  */
1177 static ssize_t
1178 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1179 {
1180         u64 cntval;
1181
1182         if (count != sizeof(cntval))
1183                 return -EINVAL;
1184
1185         /*
1186          * Return end-of-file for a read on a counter that is in
1187          * error state (i.e. because it was pinned but it couldn't be
1188          * scheduled on to the CPU at some point).
1189          */
1190         if (counter->state == PERF_COUNTER_STATE_ERROR)
1191                 return 0;
1192
1193         mutex_lock(&counter->mutex);
1194         cntval = perf_counter_read(counter);
1195         mutex_unlock(&counter->mutex);
1196
1197         return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1198 }
1199
1200 static ssize_t
1201 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1202 {
1203         if (!usrdata->len)
1204                 return 0;
1205
1206         count = min(count, (size_t)usrdata->len);
1207         if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1208                 return -EFAULT;
1209
1210         /* Adjust the counters */
1211         usrdata->len -= count;
1212         if (!usrdata->len)
1213                 usrdata->rd_idx = 0;
1214         else
1215                 usrdata->rd_idx += count;
1216
1217         return count;
1218 }
1219
1220 static ssize_t
1221 perf_read_irq_data(struct perf_counter  *counter,
1222                    char __user          *buf,
1223                    size_t               count,
1224                    int                  nonblocking)
1225 {
1226         struct perf_data *irqdata, *usrdata;
1227         DECLARE_WAITQUEUE(wait, current);
1228         ssize_t res, res2;
1229
1230         irqdata = counter->irqdata;
1231         usrdata = counter->usrdata;
1232
1233         if (usrdata->len + irqdata->len >= count)
1234                 goto read_pending;
1235
1236         if (nonblocking)
1237                 return -EAGAIN;
1238
1239         spin_lock_irq(&counter->waitq.lock);
1240         __add_wait_queue(&counter->waitq, &wait);
1241         for (;;) {
1242                 set_current_state(TASK_INTERRUPTIBLE);
1243                 if (usrdata->len + irqdata->len >= count)
1244                         break;
1245
1246                 if (signal_pending(current))
1247                         break;
1248
1249                 if (counter->state == PERF_COUNTER_STATE_ERROR)
1250                         break;
1251
1252                 spin_unlock_irq(&counter->waitq.lock);
1253                 schedule();
1254                 spin_lock_irq(&counter->waitq.lock);
1255         }
1256         __remove_wait_queue(&counter->waitq, &wait);
1257         __set_current_state(TASK_RUNNING);
1258         spin_unlock_irq(&counter->waitq.lock);
1259
1260         if (usrdata->len + irqdata->len < count &&
1261             counter->state != PERF_COUNTER_STATE_ERROR)
1262                 return -ERESTARTSYS;
1263 read_pending:
1264         mutex_lock(&counter->mutex);
1265
1266         /* Drain pending data first: */
1267         res = perf_copy_usrdata(usrdata, buf, count);
1268         if (res < 0 || res == count)
1269                 goto out;
1270
1271         /* Switch irq buffer: */
1272         usrdata = perf_switch_irq_data(counter);
1273         res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1274         if (res2 < 0) {
1275                 if (!res)
1276                         res = -EFAULT;
1277         } else {
1278                 res += res2;
1279         }
1280 out:
1281         mutex_unlock(&counter->mutex);
1282
1283         return res;
1284 }
1285
1286 static ssize_t
1287 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1288 {
1289         struct perf_counter *counter = file->private_data;
1290
1291         switch (counter->hw_event.record_type) {
1292         case PERF_RECORD_SIMPLE:
1293                 return perf_read_hw(counter, buf, count);
1294
1295         case PERF_RECORD_IRQ:
1296         case PERF_RECORD_GROUP:
1297                 return perf_read_irq_data(counter, buf, count,
1298                                           file->f_flags & O_NONBLOCK);
1299         }
1300         return -EINVAL;
1301 }
1302
1303 static unsigned int perf_poll(struct file *file, poll_table *wait)
1304 {
1305         struct perf_counter *counter = file->private_data;
1306         unsigned int events = 0;
1307         unsigned long flags;
1308
1309         poll_wait(file, &counter->waitq, wait);
1310
1311         spin_lock_irqsave(&counter->waitq.lock, flags);
1312         if (counter->usrdata->len || counter->irqdata->len)
1313                 events |= POLLIN;
1314         spin_unlock_irqrestore(&counter->waitq.lock, flags);
1315
1316         return events;
1317 }
1318
1319 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1320 {
1321         struct perf_counter *counter = file->private_data;
1322         int err = 0;
1323
1324         switch (cmd) {
1325         case PERF_COUNTER_IOC_ENABLE:
1326                 perf_counter_enable_family(counter);
1327                 break;
1328         case PERF_COUNTER_IOC_DISABLE:
1329                 perf_counter_disable_family(counter);
1330                 break;
1331         default:
1332                 err = -ENOTTY;
1333         }
1334         return err;
1335 }
1336
1337 static const struct file_operations perf_fops = {
1338         .release                = perf_release,
1339         .read                   = perf_read,
1340         .poll                   = perf_poll,
1341         .unlocked_ioctl         = perf_ioctl,
1342         .compat_ioctl           = perf_ioctl,
1343 };
1344
1345 /*
1346  * Generic software counter infrastructure
1347  */
1348
1349 static void perf_swcounter_update(struct perf_counter *counter)
1350 {
1351         struct hw_perf_counter *hwc = &counter->hw;
1352         u64 prev, now;
1353         s64 delta;
1354
1355 again:
1356         prev = atomic64_read(&hwc->prev_count);
1357         now = atomic64_read(&hwc->count);
1358         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1359                 goto again;
1360
1361         delta = now - prev;
1362
1363         atomic64_add(delta, &counter->count);
1364         atomic64_sub(delta, &hwc->period_left);
1365 }
1366
1367 static void perf_swcounter_set_period(struct perf_counter *counter)
1368 {
1369         struct hw_perf_counter *hwc = &counter->hw;
1370         s64 left = atomic64_read(&hwc->period_left);
1371         s64 period = hwc->irq_period;
1372
1373         if (unlikely(left <= -period)) {
1374                 left = period;
1375                 atomic64_set(&hwc->period_left, left);
1376         }
1377
1378         if (unlikely(left <= 0)) {
1379                 left += period;
1380                 atomic64_add(period, &hwc->period_left);
1381         }
1382
1383         atomic64_set(&hwc->prev_count, -left);
1384         atomic64_set(&hwc->count, -left);
1385 }
1386
1387 static void perf_swcounter_save_and_restart(struct perf_counter *counter)
1388 {
1389         perf_swcounter_update(counter);
1390         perf_swcounter_set_period(counter);
1391 }
1392
1393 static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
1394 {
1395         struct perf_data *irqdata = counter->irqdata;
1396
1397         if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
1398                 irqdata->overrun++;
1399         } else {
1400                 u64 *p = (u64 *) &irqdata->data[irqdata->len];
1401
1402                 *p = data;
1403                 irqdata->len += sizeof(u64);
1404         }
1405 }
1406
1407 static void perf_swcounter_handle_group(struct perf_counter *sibling)
1408 {
1409         struct perf_counter *counter, *group_leader = sibling->group_leader;
1410
1411         list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
1412                 counter->hw_ops->read(counter);
1413                 perf_swcounter_store_irq(sibling, counter->hw_event.type);
1414                 perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
1415         }
1416 }
1417
1418 static void perf_swcounter_interrupt(struct perf_counter *counter,
1419                                      int nmi, struct pt_regs *regs)
1420 {
1421         switch (counter->hw_event.record_type) {
1422         case PERF_RECORD_SIMPLE:
1423                 break;
1424
1425         case PERF_RECORD_IRQ:
1426                 perf_swcounter_store_irq(counter, instruction_pointer(regs));
1427                 break;
1428
1429         case PERF_RECORD_GROUP:
1430                 perf_swcounter_handle_group(counter);
1431                 break;
1432         }
1433
1434         if (nmi) {
1435                 counter->wakeup_pending = 1;
1436                 set_perf_counter_pending();
1437         } else
1438                 wake_up(&counter->waitq);
1439 }
1440
1441 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1442 {
1443         struct perf_counter *counter;
1444         struct pt_regs *regs;
1445
1446         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1447         counter->hw_ops->read(counter);
1448
1449         regs = get_irq_regs();
1450         /*
1451          * In case we exclude kernel IPs or are somehow not in interrupt
1452          * context, provide the next best thing, the user IP.
1453          */
1454         if ((counter->hw_event.exclude_kernel || !regs) &&
1455                         !counter->hw_event.exclude_user)
1456                 regs = task_pt_regs(current);
1457
1458         if (regs)
1459                 perf_swcounter_interrupt(counter, 0, regs);
1460
1461         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1462
1463         return HRTIMER_RESTART;
1464 }
1465
1466 static void perf_swcounter_overflow(struct perf_counter *counter,
1467                                     int nmi, struct pt_regs *regs)
1468 {
1469         perf_swcounter_save_and_restart(counter);
1470         perf_swcounter_interrupt(counter, nmi, regs);
1471 }
1472
1473 static int perf_swcounter_match(struct perf_counter *counter,
1474                                 enum hw_event_types event,
1475                                 struct pt_regs *regs)
1476 {
1477         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1478                 return 0;
1479
1480         if (counter->hw_event.raw)
1481                 return 0;
1482
1483         if (counter->hw_event.type != event)
1484                 return 0;
1485
1486         if (counter->hw_event.exclude_user && user_mode(regs))
1487                 return 0;
1488
1489         if (counter->hw_event.exclude_kernel && !user_mode(regs))
1490                 return 0;
1491
1492         return 1;
1493 }
1494
1495 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1496                                int nmi, struct pt_regs *regs)
1497 {
1498         int neg = atomic64_add_negative(nr, &counter->hw.count);
1499         if (counter->hw.irq_period && !neg)
1500                 perf_swcounter_overflow(counter, nmi, regs);
1501 }
1502
1503 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1504                                      enum hw_event_types event, u64 nr,
1505                                      int nmi, struct pt_regs *regs)
1506 {
1507         struct perf_counter *counter;
1508
1509         if (list_empty(&ctx->event_list))
1510                 return;
1511
1512         rcu_read_lock();
1513         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1514                 if (perf_swcounter_match(counter, event, regs))
1515                         perf_swcounter_add(counter, nr, nmi, regs);
1516         }
1517         rcu_read_unlock();
1518 }
1519
1520 void perf_swcounter_event(enum hw_event_types event, u64 nr,
1521                           int nmi, struct pt_regs *regs)
1522 {
1523         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1524
1525         perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
1526         if (cpuctx->task_ctx)
1527                 perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);
1528
1529         put_cpu_var(perf_cpu_context);
1530 }
1531
1532 static void perf_swcounter_read(struct perf_counter *counter)
1533 {
1534         perf_swcounter_update(counter);
1535 }
1536
1537 static int perf_swcounter_enable(struct perf_counter *counter)
1538 {
1539         perf_swcounter_set_period(counter);
1540         return 0;
1541 }
1542
1543 static void perf_swcounter_disable(struct perf_counter *counter)
1544 {
1545         perf_swcounter_update(counter);
1546 }
1547
1548 static const struct hw_perf_counter_ops perf_ops_generic = {
1549         .enable         = perf_swcounter_enable,
1550         .disable        = perf_swcounter_disable,
1551         .read           = perf_swcounter_read,
1552 };
1553
1554 /*
1555  * Software counter: cpu wall time clock
1556  */
1557
1558 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1559 {
1560         int cpu = raw_smp_processor_id();
1561         s64 prev;
1562         u64 now;
1563
1564         now = cpu_clock(cpu);
1565         prev = atomic64_read(&counter->hw.prev_count);
1566         atomic64_set(&counter->hw.prev_count, now);
1567         atomic64_add(now - prev, &counter->count);
1568 }
1569
1570 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1571 {
1572         struct hw_perf_counter *hwc = &counter->hw;
1573         int cpu = raw_smp_processor_id();
1574
1575         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1576         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1577         hwc->hrtimer.function = perf_swcounter_hrtimer;
1578         if (hwc->irq_period) {
1579                 __hrtimer_start_range_ns(&hwc->hrtimer,
1580                                 ns_to_ktime(hwc->irq_period), 0,
1581                                 HRTIMER_MODE_REL, 0);
1582         }
1583
1584         return 0;
1585 }
1586
1587 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1588 {
1589         hrtimer_cancel(&counter->hw.hrtimer);
1590         cpu_clock_perf_counter_update(counter);
1591 }
1592
1593 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1594 {
1595         cpu_clock_perf_counter_update(counter);
1596 }
1597
1598 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1599         .enable         = cpu_clock_perf_counter_enable,
1600         .disable        = cpu_clock_perf_counter_disable,
1601         .read           = cpu_clock_perf_counter_read,
1602 };
1603
1604 /*
1605  * Software counter: task time clock
1606  */
1607
1608 /*
1609  * Called from within the scheduler:
1610  */
1611 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1612 {
1613         struct task_struct *curr = counter->task;
1614         u64 delta;
1615
1616         delta = __task_delta_exec(curr, update);
1617
1618         return curr->se.sum_exec_runtime + delta;
1619 }
1620
1621 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1622 {
1623         u64 prev;
1624         s64 delta;
1625
1626         prev = atomic64_read(&counter->hw.prev_count);
1627
1628         atomic64_set(&counter->hw.prev_count, now);
1629
1630         delta = now - prev;
1631
1632         atomic64_add(delta, &counter->count);
1633 }
1634
1635 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1636 {
1637         struct hw_perf_counter *hwc = &counter->hw;
1638
1639         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1640         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1641         hwc->hrtimer.function = perf_swcounter_hrtimer;
1642         if (hwc->irq_period) {
1643                 __hrtimer_start_range_ns(&hwc->hrtimer,
1644                                 ns_to_ktime(hwc->irq_period), 0,
1645                                 HRTIMER_MODE_REL, 0);
1646         }
1647
1648         return 0;
1649 }
1650
1651 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1652 {
1653         hrtimer_cancel(&counter->hw.hrtimer);
1654         task_clock_perf_counter_update(counter,
1655                         task_clock_perf_counter_val(counter, 0));
1656 }
1657
1658 static void task_clock_perf_counter_read(struct perf_counter *counter)
1659 {
1660         task_clock_perf_counter_update(counter,
1661                         task_clock_perf_counter_val(counter, 1));
1662 }
1663
1664 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1665         .enable         = task_clock_perf_counter_enable,
1666         .disable        = task_clock_perf_counter_disable,
1667         .read           = task_clock_perf_counter_read,
1668 };
1669
1670 /*
1671  * Software counter: context switches
1672  */
1673
1674 static u64 get_context_switches(struct perf_counter *counter)
1675 {
1676         struct task_struct *curr = counter->ctx->task;
1677
1678         if (curr)
1679                 return curr->nvcsw + curr->nivcsw;
1680         return cpu_nr_switches(smp_processor_id());
1681 }
1682
1683 static void context_switches_perf_counter_update(struct perf_counter *counter)
1684 {
1685         u64 prev, now;
1686         s64 delta;
1687
1688         prev = atomic64_read(&counter->hw.prev_count);
1689         now = get_context_switches(counter);
1690
1691         atomic64_set(&counter->hw.prev_count, now);
1692
1693         delta = now - prev;
1694
1695         atomic64_add(delta, &counter->count);
1696 }
1697
1698 static void context_switches_perf_counter_read(struct perf_counter *counter)
1699 {
1700         context_switches_perf_counter_update(counter);
1701 }
1702
1703 static int context_switches_perf_counter_enable(struct perf_counter *counter)
1704 {
1705         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1706                 atomic64_set(&counter->hw.prev_count,
1707                              get_context_switches(counter));
1708         return 0;
1709 }
1710
1711 static void context_switches_perf_counter_disable(struct perf_counter *counter)
1712 {
1713         context_switches_perf_counter_update(counter);
1714 }
1715
1716 static const struct hw_perf_counter_ops perf_ops_context_switches = {
1717         .enable         = context_switches_perf_counter_enable,
1718         .disable        = context_switches_perf_counter_disable,
1719         .read           = context_switches_perf_counter_read,
1720 };
1721
1722 /*
1723  * Software counter: cpu migrations
1724  */
1725
1726 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1727 {
1728         struct task_struct *curr = counter->ctx->task;
1729
1730         if (curr)
1731                 return curr->se.nr_migrations;
1732         return cpu_nr_migrations(smp_processor_id());
1733 }
1734
1735 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1736 {
1737         u64 prev, now;
1738         s64 delta;
1739
1740         prev = atomic64_read(&counter->hw.prev_count);
1741         now = get_cpu_migrations(counter);
1742
1743         atomic64_set(&counter->hw.prev_count, now);
1744
1745         delta = now - prev;
1746
1747         atomic64_add(delta, &counter->count);
1748 }
1749
1750 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1751 {
1752         cpu_migrations_perf_counter_update(counter);
1753 }
1754
1755 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1756 {
1757         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1758                 atomic64_set(&counter->hw.prev_count,
1759                              get_cpu_migrations(counter));
1760         return 0;
1761 }
1762
1763 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1764 {
1765         cpu_migrations_perf_counter_update(counter);
1766 }
1767
1768 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1769         .enable         = cpu_migrations_perf_counter_enable,
1770         .disable        = cpu_migrations_perf_counter_disable,
1771         .read           = cpu_migrations_perf_counter_read,
1772 };
1773
1774 static const struct hw_perf_counter_ops *
1775 sw_perf_counter_init(struct perf_counter *counter)
1776 {
1777         struct perf_counter_hw_event *hw_event = &counter->hw_event;
1778         const struct hw_perf_counter_ops *hw_ops = NULL;
1779         struct hw_perf_counter *hwc = &counter->hw;
1780
1781         /*
1782          * Software counters (currently) can't in general distinguish
1783          * between user, kernel and hypervisor events.
1784          * However, context switches and cpu migrations are considered
1785          * to be kernel events, and page faults are never hypervisor
1786          * events.
1787          */
1788         switch (counter->hw_event.type) {
1789         case PERF_COUNT_CPU_CLOCK:
1790                 hw_ops = &perf_ops_cpu_clock;
1791
1792                 if (hw_event->irq_period && hw_event->irq_period < 10000)
1793                         hw_event->irq_period = 10000;
1794                 break;
1795         case PERF_COUNT_TASK_CLOCK:
1796                 /*
1797                  * If the user instantiates this as a per-cpu counter,
1798                  * use the cpu_clock counter instead.
1799                  */
1800                 if (counter->ctx->task)
1801                         hw_ops = &perf_ops_task_clock;
1802                 else
1803                         hw_ops = &perf_ops_cpu_clock;
1804
1805                 if (hw_event->irq_period && hw_event->irq_period < 10000)
1806                         hw_event->irq_period = 10000;
1807                 break;
1808         case PERF_COUNT_PAGE_FAULTS:
1809         case PERF_COUNT_PAGE_FAULTS_MIN:
1810         case PERF_COUNT_PAGE_FAULTS_MAJ:
1811                 hw_ops = &perf_ops_generic;
1812                 break;
1813         case PERF_COUNT_CONTEXT_SWITCHES:
1814                 if (!counter->hw_event.exclude_kernel)
1815                         hw_ops = &perf_ops_context_switches;
1816                 break;
1817         case PERF_COUNT_CPU_MIGRATIONS:
1818                 if (!counter->hw_event.exclude_kernel)
1819                         hw_ops = &perf_ops_cpu_migrations;
1820                 break;
1821         default:
1822                 break;
1823         }
1824
1825         if (hw_ops)
1826                 hwc->irq_period = hw_event->irq_period;
1827
1828         return hw_ops;
1829 }
1830
1831 /*
1832  * Allocate and initialize a counter structure
1833  */
1834 static struct perf_counter *
1835 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1836                    int cpu,
1837                    struct perf_counter_context *ctx,
1838                    struct perf_counter *group_leader,
1839                    gfp_t gfpflags)
1840 {
1841         const struct hw_perf_counter_ops *hw_ops;
1842         struct perf_counter *counter;
1843
1844         counter = kzalloc(sizeof(*counter), gfpflags);
1845         if (!counter)
1846                 return NULL;
1847
1848         /*
1849          * Single counters are their own group leaders, with an
1850          * empty sibling list:
1851          */
1852         if (!group_leader)
1853                 group_leader = counter;
1854
1855         mutex_init(&counter->mutex);
1856         INIT_LIST_HEAD(&counter->list_entry);
1857         INIT_LIST_HEAD(&counter->event_entry);
1858         INIT_LIST_HEAD(&counter->sibling_list);
1859         init_waitqueue_head(&counter->waitq);
1860
1861         INIT_LIST_HEAD(&counter->child_list);
1862
1863         counter->irqdata                = &counter->data[0];
1864         counter->usrdata                = &counter->data[1];
1865         counter->cpu                    = cpu;
1866         counter->hw_event               = *hw_event;
1867         counter->wakeup_pending         = 0;
1868         counter->group_leader           = group_leader;
1869         counter->hw_ops                 = NULL;
1870         counter->ctx                    = ctx;
1871
1872         counter->state = PERF_COUNTER_STATE_INACTIVE;
1873         if (hw_event->disabled)
1874                 counter->state = PERF_COUNTER_STATE_OFF;
1875
1876         hw_ops = NULL;
1877         if (!hw_event->raw && hw_event->type < 0)
1878                 hw_ops = sw_perf_counter_init(counter);
1879         else
1880                 hw_ops = hw_perf_counter_init(counter);
1881
1882         if (!hw_ops) {
1883                 kfree(counter);
1884                 return NULL;
1885         }
1886         counter->hw_ops = hw_ops;
1887
1888         return counter;
1889 }
1890
1891 /**
1892  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
1893  *
1894  * @hw_event_uptr:      event type attributes for monitoring/sampling
1895  * @pid:                target pid
1896  * @cpu:                target cpu
1897  * @group_fd:           group leader counter fd
1898  */
1899 SYSCALL_DEFINE5(perf_counter_open,
1900                 const struct perf_counter_hw_event __user *, hw_event_uptr,
1901                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
1902 {
1903         struct perf_counter *counter, *group_leader;
1904         struct perf_counter_hw_event hw_event;
1905         struct perf_counter_context *ctx;
1906         struct file *counter_file = NULL;
1907         struct file *group_file = NULL;
1908         int fput_needed = 0;
1909         int fput_needed2 = 0;
1910         int ret;
1911
1912         /* for future expandability... */
1913         if (flags)
1914                 return -EINVAL;
1915
1916         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1917                 return -EFAULT;
1918
1919         /*
1920          * Get the target context (task or percpu):
1921          */
1922         ctx = find_get_context(pid, cpu);
1923         if (IS_ERR(ctx))
1924                 return PTR_ERR(ctx);
1925
1926         /*
1927          * Look up the group leader (we will attach this counter to it):
1928          */
1929         group_leader = NULL;
1930         if (group_fd != -1) {
1931                 ret = -EINVAL;
1932                 group_file = fget_light(group_fd, &fput_needed);
1933                 if (!group_file)
1934                         goto err_put_context;
1935                 if (group_file->f_op != &perf_fops)
1936                         goto err_put_context;
1937
1938                 group_leader = group_file->private_data;
1939                 /*
1940                  * Do not allow a recursive hierarchy (this new sibling
1941                  * becoming part of another group-sibling):
1942                  */
1943                 if (group_leader->group_leader != group_leader)
1944                         goto err_put_context;
1945                 /*
1946                  * Do not allow to attach to a group in a different
1947                  * task or CPU context:
1948                  */
1949                 if (group_leader->ctx != ctx)
1950                         goto err_put_context;
1951                 /*
1952                  * Only a group leader can be exclusive or pinned
1953                  */
1954                 if (hw_event.exclusive || hw_event.pinned)
1955                         goto err_put_context;
1956         }
1957
1958         ret = -EINVAL;
1959         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
1960                                      GFP_KERNEL);
1961         if (!counter)
1962                 goto err_put_context;
1963
1964         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1965         if (ret < 0)
1966                 goto err_free_put_context;
1967
1968         counter_file = fget_light(ret, &fput_needed2);
1969         if (!counter_file)
1970                 goto err_free_put_context;
1971
1972         counter->filp = counter_file;
1973         mutex_lock(&ctx->mutex);
1974         perf_install_in_context(ctx, counter, cpu);
1975         mutex_unlock(&ctx->mutex);
1976
1977         fput_light(counter_file, fput_needed2);
1978
1979 out_fput:
1980         fput_light(group_file, fput_needed);
1981
1982         return ret;
1983
1984 err_free_put_context:
1985         kfree(counter);
1986
1987 err_put_context:
1988         put_context(ctx);
1989
1990         goto out_fput;
1991 }
1992
1993 /*
1994  * Initialize the perf_counter context in a task_struct:
1995  */
1996 static void
1997 __perf_counter_init_context(struct perf_counter_context *ctx,
1998                             struct task_struct *task)
1999 {
2000         memset(ctx, 0, sizeof(*ctx));
2001         spin_lock_init(&ctx->lock);
2002         mutex_init(&ctx->mutex);
2003         INIT_LIST_HEAD(&ctx->counter_list);
2004         INIT_LIST_HEAD(&ctx->event_list);
2005         ctx->task = task;
2006 }
2007
2008 /*
2009  * inherit a counter from parent task to child task:
2010  */
2011 static struct perf_counter *
2012 inherit_counter(struct perf_counter *parent_counter,
2013               struct task_struct *parent,
2014               struct perf_counter_context *parent_ctx,
2015               struct task_struct *child,
2016               struct perf_counter *group_leader,
2017               struct perf_counter_context *child_ctx)
2018 {
2019         struct perf_counter *child_counter;
2020
2021         /*
2022          * Instead of creating recursive hierarchies of counters,
2023          * we link inherited counters back to the original parent,
2024          * which has a filp for sure, which we use as the reference
2025          * count:
2026          */
2027         if (parent_counter->parent)
2028                 parent_counter = parent_counter->parent;
2029
2030         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2031                                            parent_counter->cpu, child_ctx,
2032                                            group_leader, GFP_KERNEL);
2033         if (!child_counter)
2034                 return NULL;
2035
2036         /*
2037          * Link it up in the child's context:
2038          */
2039         child_counter->task = child;
2040         list_add_counter(child_counter, child_ctx);
2041         child_ctx->nr_counters++;
2042
2043         child_counter->parent = parent_counter;
2044         /*
2045          * inherit into child's child as well:
2046          */
2047         child_counter->hw_event.inherit = 1;
2048
2049         /*
2050          * Get a reference to the parent filp - we will fput it
2051          * when the child counter exits. This is safe to do because
2052          * we are in the parent and we know that the filp still
2053          * exists and has a nonzero count:
2054          */
2055         atomic_long_inc(&parent_counter->filp->f_count);
2056
2057         /*
2058          * Link this into the parent counter's child list
2059          */
2060         mutex_lock(&parent_counter->mutex);
2061         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2062
2063         /*
2064          * Make the child state follow the state of the parent counter,
2065          * not its hw_event.disabled bit.  We hold the parent's mutex,
2066          * so we won't race with perf_counter_{en,dis}able_family.
2067          */
2068         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2069                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2070         else
2071                 child_counter->state = PERF_COUNTER_STATE_OFF;
2072
2073         mutex_unlock(&parent_counter->mutex);
2074
2075         return child_counter;
2076 }
2077
2078 static int inherit_group(struct perf_counter *parent_counter,
2079               struct task_struct *parent,
2080               struct perf_counter_context *parent_ctx,
2081               struct task_struct *child,
2082               struct perf_counter_context *child_ctx)
2083 {
2084         struct perf_counter *leader;
2085         struct perf_counter *sub;
2086
2087         leader = inherit_counter(parent_counter, parent, parent_ctx,
2088                                  child, NULL, child_ctx);
2089         if (!leader)
2090                 return -ENOMEM;
2091         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2092                 if (!inherit_counter(sub, parent, parent_ctx,
2093                                      child, leader, child_ctx))
2094                         return -ENOMEM;
2095         }
2096         return 0;
2097 }
2098
2099 static void sync_child_counter(struct perf_counter *child_counter,
2100                                struct perf_counter *parent_counter)
2101 {
2102         u64 parent_val, child_val;
2103
2104         parent_val = atomic64_read(&parent_counter->count);
2105         child_val = atomic64_read(&child_counter->count);
2106
2107         /*
2108          * Add back the child's count to the parent's count:
2109          */
2110         atomic64_add(child_val, &parent_counter->count);
2111
2112         /*
2113          * Remove this counter from the parent's list
2114          */
2115         mutex_lock(&parent_counter->mutex);
2116         list_del_init(&child_counter->child_list);
2117         mutex_unlock(&parent_counter->mutex);
2118
2119         /*
2120          * Release the parent counter, if this was the last
2121          * reference to it.
2122          */
2123         fput(parent_counter->filp);
2124 }
2125
2126 static void
2127 __perf_counter_exit_task(struct task_struct *child,
2128                          struct perf_counter *child_counter,
2129                          struct perf_counter_context *child_ctx)
2130 {
2131         struct perf_counter *parent_counter;
2132         struct perf_counter *sub, *tmp;
2133
2134         /*
2135          * If we do not self-reap then we have to wait for the
2136          * child task to unschedule (it will happen for sure),
2137          * so that its counter is at its final count. (This
2138          * condition triggers rarely - child tasks usually get
2139          * off their CPU before the parent has a chance to
2140          * get this far into the reaping action)
2141          */
2142         if (child != current) {
2143                 wait_task_inactive(child, 0);
2144                 list_del_init(&child_counter->list_entry);
2145         } else {
2146                 struct perf_cpu_context *cpuctx;
2147                 unsigned long flags;
2148                 u64 perf_flags;
2149
2150                 /*
2151                  * Disable and unlink this counter.
2152                  *
2153                  * Be careful about zapping the list - IRQ/NMI context
2154                  * could still be processing it:
2155                  */
2156                 curr_rq_lock_irq_save(&flags);
2157                 perf_flags = hw_perf_save_disable();
2158
2159                 cpuctx = &__get_cpu_var(perf_cpu_context);
2160
2161                 group_sched_out(child_counter, cpuctx, child_ctx);
2162
2163                 list_del_init(&child_counter->list_entry);
2164
2165                 child_ctx->nr_counters--;
2166
2167                 hw_perf_restore(perf_flags);
2168                 curr_rq_unlock_irq_restore(&flags);
2169         }
2170
2171         parent_counter = child_counter->parent;
2172         /*
2173          * It can happen that parent exits first, and has counters
2174          * that are still around due to the child reference. These
2175          * counters need to be zapped - but otherwise linger.
2176          */
2177         if (parent_counter) {
2178                 sync_child_counter(child_counter, parent_counter);
2179                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2180                                          list_entry) {
2181                         if (sub->parent) {
2182                                 sync_child_counter(sub, sub->parent);
2183                                 kfree(sub);
2184                         }
2185                 }
2186                 kfree(child_counter);
2187         }
2188 }
2189
2190 /*
2191  * When a child task exits, feed back counter values to parent counters.
2192  *
2193  * Note: we may be running in child context, but the PID is not hashed
2194  * anymore so new counters will not be added.
2195  */
2196 void perf_counter_exit_task(struct task_struct *child)
2197 {
2198         struct perf_counter *child_counter, *tmp;
2199         struct perf_counter_context *child_ctx;
2200
2201         child_ctx = &child->perf_counter_ctx;
2202
2203         if (likely(!child_ctx->nr_counters))
2204                 return;
2205
2206         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2207                                  list_entry)
2208                 __perf_counter_exit_task(child, child_counter, child_ctx);
2209 }
2210
2211 /*
2212  * Initialize the perf_counter context in task_struct
2213  */
2214 void perf_counter_init_task(struct task_struct *child)
2215 {
2216         struct perf_counter_context *child_ctx, *parent_ctx;
2217         struct perf_counter *counter;
2218         struct task_struct *parent = current;
2219
2220         child_ctx  =  &child->perf_counter_ctx;
2221         parent_ctx = &parent->perf_counter_ctx;
2222
2223         __perf_counter_init_context(child_ctx, child);
2224
2225         /*
2226          * This is executed from the parent task context, so inherit
2227          * counters that have been marked for cloning:
2228          */
2229
2230         if (likely(!parent_ctx->nr_counters))
2231                 return;
2232
2233         /*
2234          * Lock the parent list. No need to lock the child - not PID
2235          * hashed yet and not running, so nobody can access it.
2236          */
2237         mutex_lock(&parent_ctx->mutex);
2238
2239         /*
2240          * We dont have to disable NMIs - we are only looking at
2241          * the list, not manipulating it:
2242          */
2243         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2244                 if (!counter->hw_event.inherit)
2245                         continue;
2246
2247                 if (inherit_group(counter, parent,
2248                                   parent_ctx, child, child_ctx))
2249                         break;
2250         }
2251
2252         mutex_unlock(&parent_ctx->mutex);
2253 }
2254
2255 static void __cpuinit perf_counter_init_cpu(int cpu)
2256 {
2257         struct perf_cpu_context *cpuctx;
2258
2259         cpuctx = &per_cpu(perf_cpu_context, cpu);
2260         __perf_counter_init_context(&cpuctx->ctx, NULL);
2261
2262         mutex_lock(&perf_resource_mutex);
2263         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2264         mutex_unlock(&perf_resource_mutex);
2265
2266         hw_perf_counter_setup(cpu);
2267 }
2268
2269 #ifdef CONFIG_HOTPLUG_CPU
2270 static void __perf_counter_exit_cpu(void *info)
2271 {
2272         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2273         struct perf_counter_context *ctx = &cpuctx->ctx;
2274         struct perf_counter *counter, *tmp;
2275
2276         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2277                 __perf_counter_remove_from_context(counter);
2278 }
2279 static void perf_counter_exit_cpu(int cpu)
2280 {
2281         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2282         struct perf_counter_context *ctx = &cpuctx->ctx;
2283
2284         mutex_lock(&ctx->mutex);
2285         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2286         mutex_unlock(&ctx->mutex);
2287 }
2288 #else
2289 static inline void perf_counter_exit_cpu(int cpu) { }
2290 #endif
2291
2292 static int __cpuinit
2293 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2294 {
2295         unsigned int cpu = (long)hcpu;
2296
2297         switch (action) {
2298
2299         case CPU_UP_PREPARE:
2300         case CPU_UP_PREPARE_FROZEN:
2301                 perf_counter_init_cpu(cpu);
2302                 break;
2303
2304         case CPU_DOWN_PREPARE:
2305         case CPU_DOWN_PREPARE_FROZEN:
2306                 perf_counter_exit_cpu(cpu);
2307                 break;
2308
2309         default:
2310                 break;
2311         }
2312
2313         return NOTIFY_OK;
2314 }
2315
2316 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2317         .notifier_call          = perf_cpu_notify,
2318 };
2319
2320 static int __init perf_counter_init(void)
2321 {
2322         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2323                         (void *)(long)smp_processor_id());
2324         register_cpu_notifier(&perf_cpu_nb);
2325
2326         return 0;
2327 }
2328 early_initcall(perf_counter_init);
2329
2330 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2331 {
2332         return sprintf(buf, "%d\n", perf_reserved_percpu);
2333 }
2334
2335 static ssize_t
2336 perf_set_reserve_percpu(struct sysdev_class *class,
2337                         const char *buf,
2338                         size_t count)
2339 {
2340         struct perf_cpu_context *cpuctx;
2341         unsigned long val;
2342         int err, cpu, mpt;
2343
2344         err = strict_strtoul(buf, 10, &val);
2345         if (err)
2346                 return err;
2347         if (val > perf_max_counters)
2348                 return -EINVAL;
2349
2350         mutex_lock(&perf_resource_mutex);
2351         perf_reserved_percpu = val;
2352         for_each_online_cpu(cpu) {
2353                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2354                 spin_lock_irq(&cpuctx->ctx.lock);
2355                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2356                           perf_max_counters - perf_reserved_percpu);
2357                 cpuctx->max_pertask = mpt;
2358                 spin_unlock_irq(&cpuctx->ctx.lock);
2359         }
2360         mutex_unlock(&perf_resource_mutex);
2361
2362         return count;
2363 }
2364
2365 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2366 {
2367         return sprintf(buf, "%d\n", perf_overcommit);
2368 }
2369
2370 static ssize_t
2371 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2372 {
2373         unsigned long val;
2374         int err;
2375
2376         err = strict_strtoul(buf, 10, &val);
2377         if (err)
2378                 return err;
2379         if (val > 1)
2380                 return -EINVAL;
2381
2382         mutex_lock(&perf_resource_mutex);
2383         perf_overcommit = val;
2384         mutex_unlock(&perf_resource_mutex);
2385
2386         return count;
2387 }
2388
2389 static SYSDEV_CLASS_ATTR(
2390                                 reserve_percpu,
2391                                 0644,
2392                                 perf_show_reserve_percpu,
2393                                 perf_set_reserve_percpu
2394                         );
2395
2396 static SYSDEV_CLASS_ATTR(
2397                                 overcommit,
2398                                 0644,
2399                                 perf_show_overcommit,
2400                                 perf_set_overcommit
2401                         );
2402
2403 static struct attribute *perfclass_attrs[] = {
2404         &attr_reserve_percpu.attr,
2405         &attr_overcommit.attr,
2406         NULL
2407 };
2408
2409 static struct attribute_group perfclass_attr_group = {
2410         .attrs                  = perfclass_attrs,
2411         .name                   = "perf_counters",
2412 };
2413
2414 static int __init perf_counter_sysfs_init(void)
2415 {
2416         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2417                                   &perfclass_attr_group);
2418 }
2419 device_initcall(perf_counter_sysfs_init);