perf_counter: Accurate period data
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
48 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
49
50 static atomic64_t perf_counter_id;
51
52 /*
53  * Lock for (sysadmin-configurable) counter reservations:
54  */
55 static DEFINE_SPINLOCK(perf_resource_lock);
56
57 /*
58  * Architecture provided APIs - weak aliases:
59  */
60 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
61 {
62         return NULL;
63 }
64
65 void __weak hw_perf_disable(void)               { barrier(); }
66 void __weak hw_perf_enable(void)                { barrier(); }
67
68 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
69
70 int __weak
71 hw_perf_group_sched_in(struct perf_counter *group_leader,
72                struct perf_cpu_context *cpuctx,
73                struct perf_counter_context *ctx, int cpu)
74 {
75         return 0;
76 }
77
78 void __weak perf_counter_print_debug(void)      { }
79
80 static DEFINE_PER_CPU(int, disable_count);
81
82 void __perf_disable(void)
83 {
84         __get_cpu_var(disable_count)++;
85 }
86
87 bool __perf_enable(void)
88 {
89         return !--__get_cpu_var(disable_count);
90 }
91
92 void perf_disable(void)
93 {
94         __perf_disable();
95         hw_perf_disable();
96 }
97
98 void perf_enable(void)
99 {
100         if (__perf_enable())
101                 hw_perf_enable();
102 }
103
104 static void get_ctx(struct perf_counter_context *ctx)
105 {
106         atomic_inc(&ctx->refcount);
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111         struct perf_counter_context *ctx;
112
113         ctx = container_of(head, struct perf_counter_context, rcu_head);
114         kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_counter_context *ctx)
118 {
119         if (atomic_dec_and_test(&ctx->refcount)) {
120                 if (ctx->parent_ctx)
121                         put_ctx(ctx->parent_ctx);
122                 if (ctx->task)
123                         put_task_struct(ctx->task);
124                 call_rcu(&ctx->rcu_head, free_ctx);
125         }
126 }
127
128 /*
129  * Get the perf_counter_context for a task and lock it.
130  * This has to cope with with the fact that until it is locked,
131  * the context could get moved to another task.
132  */
133 static struct perf_counter_context *
134 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
135 {
136         struct perf_counter_context *ctx;
137
138         rcu_read_lock();
139  retry:
140         ctx = rcu_dereference(task->perf_counter_ctxp);
141         if (ctx) {
142                 /*
143                  * If this context is a clone of another, it might
144                  * get swapped for another underneath us by
145                  * perf_counter_task_sched_out, though the
146                  * rcu_read_lock() protects us from any context
147                  * getting freed.  Lock the context and check if it
148                  * got swapped before we could get the lock, and retry
149                  * if so.  If we locked the right context, then it
150                  * can't get swapped on us any more.
151                  */
152                 spin_lock_irqsave(&ctx->lock, *flags);
153                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
154                         spin_unlock_irqrestore(&ctx->lock, *flags);
155                         goto retry;
156                 }
157         }
158         rcu_read_unlock();
159         return ctx;
160 }
161
162 /*
163  * Get the context for a task and increment its pin_count so it
164  * can't get swapped to another task.  This also increments its
165  * reference count so that the context can't get freed.
166  */
167 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
168 {
169         struct perf_counter_context *ctx;
170         unsigned long flags;
171
172         ctx = perf_lock_task_context(task, &flags);
173         if (ctx) {
174                 ++ctx->pin_count;
175                 get_ctx(ctx);
176                 spin_unlock_irqrestore(&ctx->lock, flags);
177         }
178         return ctx;
179 }
180
181 static void perf_unpin_context(struct perf_counter_context *ctx)
182 {
183         unsigned long flags;
184
185         spin_lock_irqsave(&ctx->lock, flags);
186         --ctx->pin_count;
187         spin_unlock_irqrestore(&ctx->lock, flags);
188         put_ctx(ctx);
189 }
190
191 /*
192  * Add a counter from the lists for its context.
193  * Must be called with ctx->mutex and ctx->lock held.
194  */
195 static void
196 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
197 {
198         struct perf_counter *group_leader = counter->group_leader;
199
200         /*
201          * Depending on whether it is a standalone or sibling counter,
202          * add it straight to the context's counter list, or to the group
203          * leader's sibling list:
204          */
205         if (group_leader == counter)
206                 list_add_tail(&counter->list_entry, &ctx->counter_list);
207         else {
208                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
209                 group_leader->nr_siblings++;
210         }
211
212         list_add_rcu(&counter->event_entry, &ctx->event_list);
213         ctx->nr_counters++;
214 }
215
216 /*
217  * Remove a counter from the lists for its context.
218  * Must be called with ctx->mutex and ctx->lock held.
219  */
220 static void
221 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223         struct perf_counter *sibling, *tmp;
224
225         if (list_empty(&counter->list_entry))
226                 return;
227         ctx->nr_counters--;
228
229         list_del_init(&counter->list_entry);
230         list_del_rcu(&counter->event_entry);
231
232         if (counter->group_leader != counter)
233                 counter->group_leader->nr_siblings--;
234
235         /*
236          * If this was a group counter with sibling counters then
237          * upgrade the siblings to singleton counters by adding them
238          * to the context list directly:
239          */
240         list_for_each_entry_safe(sibling, tmp,
241                                  &counter->sibling_list, list_entry) {
242
243                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
244                 sibling->group_leader = sibling;
245         }
246 }
247
248 static void
249 counter_sched_out(struct perf_counter *counter,
250                   struct perf_cpu_context *cpuctx,
251                   struct perf_counter_context *ctx)
252 {
253         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
254                 return;
255
256         counter->state = PERF_COUNTER_STATE_INACTIVE;
257         counter->tstamp_stopped = ctx->time;
258         counter->pmu->disable(counter);
259         counter->oncpu = -1;
260
261         if (!is_software_counter(counter))
262                 cpuctx->active_oncpu--;
263         ctx->nr_active--;
264         if (counter->attr.exclusive || !cpuctx->active_oncpu)
265                 cpuctx->exclusive = 0;
266 }
267
268 static void
269 group_sched_out(struct perf_counter *group_counter,
270                 struct perf_cpu_context *cpuctx,
271                 struct perf_counter_context *ctx)
272 {
273         struct perf_counter *counter;
274
275         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
276                 return;
277
278         counter_sched_out(group_counter, cpuctx, ctx);
279
280         /*
281          * Schedule out siblings (if any):
282          */
283         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
284                 counter_sched_out(counter, cpuctx, ctx);
285
286         if (group_counter->attr.exclusive)
287                 cpuctx->exclusive = 0;
288 }
289
290 /*
291  * Cross CPU call to remove a performance counter
292  *
293  * We disable the counter on the hardware level first. After that we
294  * remove it from the context list.
295  */
296 static void __perf_counter_remove_from_context(void *info)
297 {
298         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
299         struct perf_counter *counter = info;
300         struct perf_counter_context *ctx = counter->ctx;
301
302         /*
303          * If this is a task context, we need to check whether it is
304          * the current task context of this cpu. If not it has been
305          * scheduled out before the smp call arrived.
306          */
307         if (ctx->task && cpuctx->task_ctx != ctx)
308                 return;
309
310         spin_lock(&ctx->lock);
311         /*
312          * Protect the list operation against NMI by disabling the
313          * counters on a global level.
314          */
315         perf_disable();
316
317         counter_sched_out(counter, cpuctx, ctx);
318
319         list_del_counter(counter, ctx);
320
321         if (!ctx->task) {
322                 /*
323                  * Allow more per task counters with respect to the
324                  * reservation:
325                  */
326                 cpuctx->max_pertask =
327                         min(perf_max_counters - ctx->nr_counters,
328                             perf_max_counters - perf_reserved_percpu);
329         }
330
331         perf_enable();
332         spin_unlock(&ctx->lock);
333 }
334
335
336 /*
337  * Remove the counter from a task's (or a CPU's) list of counters.
338  *
339  * Must be called with ctx->mutex held.
340  *
341  * CPU counters are removed with a smp call. For task counters we only
342  * call when the task is on a CPU.
343  *
344  * If counter->ctx is a cloned context, callers must make sure that
345  * every task struct that counter->ctx->task could possibly point to
346  * remains valid.  This is OK when called from perf_release since
347  * that only calls us on the top-level context, which can't be a clone.
348  * When called from perf_counter_exit_task, it's OK because the
349  * context has been detached from its task.
350  */
351 static void perf_counter_remove_from_context(struct perf_counter *counter)
352 {
353         struct perf_counter_context *ctx = counter->ctx;
354         struct task_struct *task = ctx->task;
355
356         if (!task) {
357                 /*
358                  * Per cpu counters are removed via an smp call and
359                  * the removal is always sucessful.
360                  */
361                 smp_call_function_single(counter->cpu,
362                                          __perf_counter_remove_from_context,
363                                          counter, 1);
364                 return;
365         }
366
367 retry:
368         task_oncpu_function_call(task, __perf_counter_remove_from_context,
369                                  counter);
370
371         spin_lock_irq(&ctx->lock);
372         /*
373          * If the context is active we need to retry the smp call.
374          */
375         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
376                 spin_unlock_irq(&ctx->lock);
377                 goto retry;
378         }
379
380         /*
381          * The lock prevents that this context is scheduled in so we
382          * can remove the counter safely, if the call above did not
383          * succeed.
384          */
385         if (!list_empty(&counter->list_entry)) {
386                 list_del_counter(counter, ctx);
387         }
388         spin_unlock_irq(&ctx->lock);
389 }
390
391 static inline u64 perf_clock(void)
392 {
393         return cpu_clock(smp_processor_id());
394 }
395
396 /*
397  * Update the record of the current time in a context.
398  */
399 static void update_context_time(struct perf_counter_context *ctx)
400 {
401         u64 now = perf_clock();
402
403         ctx->time += now - ctx->timestamp;
404         ctx->timestamp = now;
405 }
406
407 /*
408  * Update the total_time_enabled and total_time_running fields for a counter.
409  */
410 static void update_counter_times(struct perf_counter *counter)
411 {
412         struct perf_counter_context *ctx = counter->ctx;
413         u64 run_end;
414
415         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
416                 return;
417
418         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
419
420         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
421                 run_end = counter->tstamp_stopped;
422         else
423                 run_end = ctx->time;
424
425         counter->total_time_running = run_end - counter->tstamp_running;
426 }
427
428 /*
429  * Update total_time_enabled and total_time_running for all counters in a group.
430  */
431 static void update_group_times(struct perf_counter *leader)
432 {
433         struct perf_counter *counter;
434
435         update_counter_times(leader);
436         list_for_each_entry(counter, &leader->sibling_list, list_entry)
437                 update_counter_times(counter);
438 }
439
440 /*
441  * Cross CPU call to disable a performance counter
442  */
443 static void __perf_counter_disable(void *info)
444 {
445         struct perf_counter *counter = info;
446         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
447         struct perf_counter_context *ctx = counter->ctx;
448
449         /*
450          * If this is a per-task counter, need to check whether this
451          * counter's task is the current task on this cpu.
452          */
453         if (ctx->task && cpuctx->task_ctx != ctx)
454                 return;
455
456         spin_lock(&ctx->lock);
457
458         /*
459          * If the counter is on, turn it off.
460          * If it is in error state, leave it in error state.
461          */
462         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
463                 update_context_time(ctx);
464                 update_counter_times(counter);
465                 if (counter == counter->group_leader)
466                         group_sched_out(counter, cpuctx, ctx);
467                 else
468                         counter_sched_out(counter, cpuctx, ctx);
469                 counter->state = PERF_COUNTER_STATE_OFF;
470         }
471
472         spin_unlock(&ctx->lock);
473 }
474
475 /*
476  * Disable a counter.
477  *
478  * If counter->ctx is a cloned context, callers must make sure that
479  * every task struct that counter->ctx->task could possibly point to
480  * remains valid.  This condition is satisifed when called through
481  * perf_counter_for_each_child or perf_counter_for_each because they
482  * hold the top-level counter's child_mutex, so any descendant that
483  * goes to exit will block in sync_child_counter.
484  * When called from perf_pending_counter it's OK because counter->ctx
485  * is the current context on this CPU and preemption is disabled,
486  * hence we can't get into perf_counter_task_sched_out for this context.
487  */
488 static void perf_counter_disable(struct perf_counter *counter)
489 {
490         struct perf_counter_context *ctx = counter->ctx;
491         struct task_struct *task = ctx->task;
492
493         if (!task) {
494                 /*
495                  * Disable the counter on the cpu that it's on
496                  */
497                 smp_call_function_single(counter->cpu, __perf_counter_disable,
498                                          counter, 1);
499                 return;
500         }
501
502  retry:
503         task_oncpu_function_call(task, __perf_counter_disable, counter);
504
505         spin_lock_irq(&ctx->lock);
506         /*
507          * If the counter is still active, we need to retry the cross-call.
508          */
509         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
510                 spin_unlock_irq(&ctx->lock);
511                 goto retry;
512         }
513
514         /*
515          * Since we have the lock this context can't be scheduled
516          * in, so we can change the state safely.
517          */
518         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
519                 update_counter_times(counter);
520                 counter->state = PERF_COUNTER_STATE_OFF;
521         }
522
523         spin_unlock_irq(&ctx->lock);
524 }
525
526 static int
527 counter_sched_in(struct perf_counter *counter,
528                  struct perf_cpu_context *cpuctx,
529                  struct perf_counter_context *ctx,
530                  int cpu)
531 {
532         if (counter->state <= PERF_COUNTER_STATE_OFF)
533                 return 0;
534
535         counter->state = PERF_COUNTER_STATE_ACTIVE;
536         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
537         /*
538          * The new state must be visible before we turn it on in the hardware:
539          */
540         smp_wmb();
541
542         if (counter->pmu->enable(counter)) {
543                 counter->state = PERF_COUNTER_STATE_INACTIVE;
544                 counter->oncpu = -1;
545                 return -EAGAIN;
546         }
547
548         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
549
550         if (!is_software_counter(counter))
551                 cpuctx->active_oncpu++;
552         ctx->nr_active++;
553
554         if (counter->attr.exclusive)
555                 cpuctx->exclusive = 1;
556
557         return 0;
558 }
559
560 static int
561 group_sched_in(struct perf_counter *group_counter,
562                struct perf_cpu_context *cpuctx,
563                struct perf_counter_context *ctx,
564                int cpu)
565 {
566         struct perf_counter *counter, *partial_group;
567         int ret;
568
569         if (group_counter->state == PERF_COUNTER_STATE_OFF)
570                 return 0;
571
572         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
573         if (ret)
574                 return ret < 0 ? ret : 0;
575
576         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
577                 return -EAGAIN;
578
579         /*
580          * Schedule in siblings as one group (if any):
581          */
582         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
583                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
584                         partial_group = counter;
585                         goto group_error;
586                 }
587         }
588
589         return 0;
590
591 group_error:
592         /*
593          * Groups can be scheduled in as one unit only, so undo any
594          * partial group before returning:
595          */
596         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
597                 if (counter == partial_group)
598                         break;
599                 counter_sched_out(counter, cpuctx, ctx);
600         }
601         counter_sched_out(group_counter, cpuctx, ctx);
602
603         return -EAGAIN;
604 }
605
606 /*
607  * Return 1 for a group consisting entirely of software counters,
608  * 0 if the group contains any hardware counters.
609  */
610 static int is_software_only_group(struct perf_counter *leader)
611 {
612         struct perf_counter *counter;
613
614         if (!is_software_counter(leader))
615                 return 0;
616
617         list_for_each_entry(counter, &leader->sibling_list, list_entry)
618                 if (!is_software_counter(counter))
619                         return 0;
620
621         return 1;
622 }
623
624 /*
625  * Work out whether we can put this counter group on the CPU now.
626  */
627 static int group_can_go_on(struct perf_counter *counter,
628                            struct perf_cpu_context *cpuctx,
629                            int can_add_hw)
630 {
631         /*
632          * Groups consisting entirely of software counters can always go on.
633          */
634         if (is_software_only_group(counter))
635                 return 1;
636         /*
637          * If an exclusive group is already on, no other hardware
638          * counters can go on.
639          */
640         if (cpuctx->exclusive)
641                 return 0;
642         /*
643          * If this group is exclusive and there are already
644          * counters on the CPU, it can't go on.
645          */
646         if (counter->attr.exclusive && cpuctx->active_oncpu)
647                 return 0;
648         /*
649          * Otherwise, try to add it if all previous groups were able
650          * to go on.
651          */
652         return can_add_hw;
653 }
654
655 static void add_counter_to_ctx(struct perf_counter *counter,
656                                struct perf_counter_context *ctx)
657 {
658         list_add_counter(counter, ctx);
659         counter->tstamp_enabled = ctx->time;
660         counter->tstamp_running = ctx->time;
661         counter->tstamp_stopped = ctx->time;
662 }
663
664 /*
665  * Cross CPU call to install and enable a performance counter
666  *
667  * Must be called with ctx->mutex held
668  */
669 static void __perf_install_in_context(void *info)
670 {
671         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
672         struct perf_counter *counter = info;
673         struct perf_counter_context *ctx = counter->ctx;
674         struct perf_counter *leader = counter->group_leader;
675         int cpu = smp_processor_id();
676         int err;
677
678         /*
679          * If this is a task context, we need to check whether it is
680          * the current task context of this cpu. If not it has been
681          * scheduled out before the smp call arrived.
682          * Or possibly this is the right context but it isn't
683          * on this cpu because it had no counters.
684          */
685         if (ctx->task && cpuctx->task_ctx != ctx) {
686                 if (cpuctx->task_ctx || ctx->task != current)
687                         return;
688                 cpuctx->task_ctx = ctx;
689         }
690
691         spin_lock(&ctx->lock);
692         ctx->is_active = 1;
693         update_context_time(ctx);
694
695         /*
696          * Protect the list operation against NMI by disabling the
697          * counters on a global level. NOP for non NMI based counters.
698          */
699         perf_disable();
700
701         add_counter_to_ctx(counter, ctx);
702
703         /*
704          * Don't put the counter on if it is disabled or if
705          * it is in a group and the group isn't on.
706          */
707         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
708             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
709                 goto unlock;
710
711         /*
712          * An exclusive counter can't go on if there are already active
713          * hardware counters, and no hardware counter can go on if there
714          * is already an exclusive counter on.
715          */
716         if (!group_can_go_on(counter, cpuctx, 1))
717                 err = -EEXIST;
718         else
719                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
720
721         if (err) {
722                 /*
723                  * This counter couldn't go on.  If it is in a group
724                  * then we have to pull the whole group off.
725                  * If the counter group is pinned then put it in error state.
726                  */
727                 if (leader != counter)
728                         group_sched_out(leader, cpuctx, ctx);
729                 if (leader->attr.pinned) {
730                         update_group_times(leader);
731                         leader->state = PERF_COUNTER_STATE_ERROR;
732                 }
733         }
734
735         if (!err && !ctx->task && cpuctx->max_pertask)
736                 cpuctx->max_pertask--;
737
738  unlock:
739         perf_enable();
740
741         spin_unlock(&ctx->lock);
742 }
743
744 /*
745  * Attach a performance counter to a context
746  *
747  * First we add the counter to the list with the hardware enable bit
748  * in counter->hw_config cleared.
749  *
750  * If the counter is attached to a task which is on a CPU we use a smp
751  * call to enable it in the task context. The task might have been
752  * scheduled away, but we check this in the smp call again.
753  *
754  * Must be called with ctx->mutex held.
755  */
756 static void
757 perf_install_in_context(struct perf_counter_context *ctx,
758                         struct perf_counter *counter,
759                         int cpu)
760 {
761         struct task_struct *task = ctx->task;
762
763         if (!task) {
764                 /*
765                  * Per cpu counters are installed via an smp call and
766                  * the install is always sucessful.
767                  */
768                 smp_call_function_single(cpu, __perf_install_in_context,
769                                          counter, 1);
770                 return;
771         }
772
773 retry:
774         task_oncpu_function_call(task, __perf_install_in_context,
775                                  counter);
776
777         spin_lock_irq(&ctx->lock);
778         /*
779          * we need to retry the smp call.
780          */
781         if (ctx->is_active && list_empty(&counter->list_entry)) {
782                 spin_unlock_irq(&ctx->lock);
783                 goto retry;
784         }
785
786         /*
787          * The lock prevents that this context is scheduled in so we
788          * can add the counter safely, if it the call above did not
789          * succeed.
790          */
791         if (list_empty(&counter->list_entry))
792                 add_counter_to_ctx(counter, ctx);
793         spin_unlock_irq(&ctx->lock);
794 }
795
796 /*
797  * Cross CPU call to enable a performance counter
798  */
799 static void __perf_counter_enable(void *info)
800 {
801         struct perf_counter *counter = info;
802         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
803         struct perf_counter_context *ctx = counter->ctx;
804         struct perf_counter *leader = counter->group_leader;
805         int err;
806
807         /*
808          * If this is a per-task counter, need to check whether this
809          * counter's task is the current task on this cpu.
810          */
811         if (ctx->task && cpuctx->task_ctx != ctx) {
812                 if (cpuctx->task_ctx || ctx->task != current)
813                         return;
814                 cpuctx->task_ctx = ctx;
815         }
816
817         spin_lock(&ctx->lock);
818         ctx->is_active = 1;
819         update_context_time(ctx);
820
821         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
822                 goto unlock;
823         counter->state = PERF_COUNTER_STATE_INACTIVE;
824         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
825
826         /*
827          * If the counter is in a group and isn't the group leader,
828          * then don't put it on unless the group is on.
829          */
830         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
831                 goto unlock;
832
833         if (!group_can_go_on(counter, cpuctx, 1)) {
834                 err = -EEXIST;
835         } else {
836                 perf_disable();
837                 if (counter == leader)
838                         err = group_sched_in(counter, cpuctx, ctx,
839                                              smp_processor_id());
840                 else
841                         err = counter_sched_in(counter, cpuctx, ctx,
842                                                smp_processor_id());
843                 perf_enable();
844         }
845
846         if (err) {
847                 /*
848                  * If this counter can't go on and it's part of a
849                  * group, then the whole group has to come off.
850                  */
851                 if (leader != counter)
852                         group_sched_out(leader, cpuctx, ctx);
853                 if (leader->attr.pinned) {
854                         update_group_times(leader);
855                         leader->state = PERF_COUNTER_STATE_ERROR;
856                 }
857         }
858
859  unlock:
860         spin_unlock(&ctx->lock);
861 }
862
863 /*
864  * Enable a counter.
865  *
866  * If counter->ctx is a cloned context, callers must make sure that
867  * every task struct that counter->ctx->task could possibly point to
868  * remains valid.  This condition is satisfied when called through
869  * perf_counter_for_each_child or perf_counter_for_each as described
870  * for perf_counter_disable.
871  */
872 static void perf_counter_enable(struct perf_counter *counter)
873 {
874         struct perf_counter_context *ctx = counter->ctx;
875         struct task_struct *task = ctx->task;
876
877         if (!task) {
878                 /*
879                  * Enable the counter on the cpu that it's on
880                  */
881                 smp_call_function_single(counter->cpu, __perf_counter_enable,
882                                          counter, 1);
883                 return;
884         }
885
886         spin_lock_irq(&ctx->lock);
887         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
888                 goto out;
889
890         /*
891          * If the counter is in error state, clear that first.
892          * That way, if we see the counter in error state below, we
893          * know that it has gone back into error state, as distinct
894          * from the task having been scheduled away before the
895          * cross-call arrived.
896          */
897         if (counter->state == PERF_COUNTER_STATE_ERROR)
898                 counter->state = PERF_COUNTER_STATE_OFF;
899
900  retry:
901         spin_unlock_irq(&ctx->lock);
902         task_oncpu_function_call(task, __perf_counter_enable, counter);
903
904         spin_lock_irq(&ctx->lock);
905
906         /*
907          * If the context is active and the counter is still off,
908          * we need to retry the cross-call.
909          */
910         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
911                 goto retry;
912
913         /*
914          * Since we have the lock this context can't be scheduled
915          * in, so we can change the state safely.
916          */
917         if (counter->state == PERF_COUNTER_STATE_OFF) {
918                 counter->state = PERF_COUNTER_STATE_INACTIVE;
919                 counter->tstamp_enabled =
920                         ctx->time - counter->total_time_enabled;
921         }
922  out:
923         spin_unlock_irq(&ctx->lock);
924 }
925
926 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
927 {
928         /*
929          * not supported on inherited counters
930          */
931         if (counter->attr.inherit)
932                 return -EINVAL;
933
934         atomic_add(refresh, &counter->event_limit);
935         perf_counter_enable(counter);
936
937         return 0;
938 }
939
940 void __perf_counter_sched_out(struct perf_counter_context *ctx,
941                               struct perf_cpu_context *cpuctx)
942 {
943         struct perf_counter *counter;
944
945         spin_lock(&ctx->lock);
946         ctx->is_active = 0;
947         if (likely(!ctx->nr_counters))
948                 goto out;
949         update_context_time(ctx);
950
951         perf_disable();
952         if (ctx->nr_active) {
953                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
954                         if (counter != counter->group_leader)
955                                 counter_sched_out(counter, cpuctx, ctx);
956                         else
957                                 group_sched_out(counter, cpuctx, ctx);
958                 }
959         }
960         perf_enable();
961  out:
962         spin_unlock(&ctx->lock);
963 }
964
965 /*
966  * Test whether two contexts are equivalent, i.e. whether they
967  * have both been cloned from the same version of the same context
968  * and they both have the same number of enabled counters.
969  * If the number of enabled counters is the same, then the set
970  * of enabled counters should be the same, because these are both
971  * inherited contexts, therefore we can't access individual counters
972  * in them directly with an fd; we can only enable/disable all
973  * counters via prctl, or enable/disable all counters in a family
974  * via ioctl, which will have the same effect on both contexts.
975  */
976 static int context_equiv(struct perf_counter_context *ctx1,
977                          struct perf_counter_context *ctx2)
978 {
979         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
980                 && ctx1->parent_gen == ctx2->parent_gen
981                 && !ctx1->pin_count && !ctx2->pin_count;
982 }
983
984 /*
985  * Called from scheduler to remove the counters of the current task,
986  * with interrupts disabled.
987  *
988  * We stop each counter and update the counter value in counter->count.
989  *
990  * This does not protect us against NMI, but disable()
991  * sets the disabled bit in the control field of counter _before_
992  * accessing the counter control register. If a NMI hits, then it will
993  * not restart the counter.
994  */
995 void perf_counter_task_sched_out(struct task_struct *task,
996                                  struct task_struct *next, int cpu)
997 {
998         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
999         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1000         struct perf_counter_context *next_ctx;
1001         struct perf_counter_context *parent;
1002         struct pt_regs *regs;
1003         int do_switch = 1;
1004
1005         regs = task_pt_regs(task);
1006         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1007
1008         if (likely(!ctx || !cpuctx->task_ctx))
1009                 return;
1010
1011         update_context_time(ctx);
1012
1013         rcu_read_lock();
1014         parent = rcu_dereference(ctx->parent_ctx);
1015         next_ctx = next->perf_counter_ctxp;
1016         if (parent && next_ctx &&
1017             rcu_dereference(next_ctx->parent_ctx) == parent) {
1018                 /*
1019                  * Looks like the two contexts are clones, so we might be
1020                  * able to optimize the context switch.  We lock both
1021                  * contexts and check that they are clones under the
1022                  * lock (including re-checking that neither has been
1023                  * uncloned in the meantime).  It doesn't matter which
1024                  * order we take the locks because no other cpu could
1025                  * be trying to lock both of these tasks.
1026                  */
1027                 spin_lock(&ctx->lock);
1028                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1029                 if (context_equiv(ctx, next_ctx)) {
1030                         /*
1031                          * XXX do we need a memory barrier of sorts
1032                          * wrt to rcu_dereference() of perf_counter_ctxp
1033                          */
1034                         task->perf_counter_ctxp = next_ctx;
1035                         next->perf_counter_ctxp = ctx;
1036                         ctx->task = next;
1037                         next_ctx->task = task;
1038                         do_switch = 0;
1039                 }
1040                 spin_unlock(&next_ctx->lock);
1041                 spin_unlock(&ctx->lock);
1042         }
1043         rcu_read_unlock();
1044
1045         if (do_switch) {
1046                 __perf_counter_sched_out(ctx, cpuctx);
1047                 cpuctx->task_ctx = NULL;
1048         }
1049 }
1050
1051 /*
1052  * Called with IRQs disabled
1053  */
1054 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1055 {
1056         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1057
1058         if (!cpuctx->task_ctx)
1059                 return;
1060
1061         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1062                 return;
1063
1064         __perf_counter_sched_out(ctx, cpuctx);
1065         cpuctx->task_ctx = NULL;
1066 }
1067
1068 /*
1069  * Called with IRQs disabled
1070  */
1071 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1072 {
1073         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1074 }
1075
1076 static void
1077 __perf_counter_sched_in(struct perf_counter_context *ctx,
1078                         struct perf_cpu_context *cpuctx, int cpu)
1079 {
1080         struct perf_counter *counter;
1081         int can_add_hw = 1;
1082
1083         spin_lock(&ctx->lock);
1084         ctx->is_active = 1;
1085         if (likely(!ctx->nr_counters))
1086                 goto out;
1087
1088         ctx->timestamp = perf_clock();
1089
1090         perf_disable();
1091
1092         /*
1093          * First go through the list and put on any pinned groups
1094          * in order to give them the best chance of going on.
1095          */
1096         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1097                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1098                     !counter->attr.pinned)
1099                         continue;
1100                 if (counter->cpu != -1 && counter->cpu != cpu)
1101                         continue;
1102
1103                 if (counter != counter->group_leader)
1104                         counter_sched_in(counter, cpuctx, ctx, cpu);
1105                 else {
1106                         if (group_can_go_on(counter, cpuctx, 1))
1107                                 group_sched_in(counter, cpuctx, ctx, cpu);
1108                 }
1109
1110                 /*
1111                  * If this pinned group hasn't been scheduled,
1112                  * put it in error state.
1113                  */
1114                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1115                         update_group_times(counter);
1116                         counter->state = PERF_COUNTER_STATE_ERROR;
1117                 }
1118         }
1119
1120         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1121                 /*
1122                  * Ignore counters in OFF or ERROR state, and
1123                  * ignore pinned counters since we did them already.
1124                  */
1125                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1126                     counter->attr.pinned)
1127                         continue;
1128
1129                 /*
1130                  * Listen to the 'cpu' scheduling filter constraint
1131                  * of counters:
1132                  */
1133                 if (counter->cpu != -1 && counter->cpu != cpu)
1134                         continue;
1135
1136                 if (counter != counter->group_leader) {
1137                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1138                                 can_add_hw = 0;
1139                 } else {
1140                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1141                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1142                                         can_add_hw = 0;
1143                         }
1144                 }
1145         }
1146         perf_enable();
1147  out:
1148         spin_unlock(&ctx->lock);
1149 }
1150
1151 /*
1152  * Called from scheduler to add the counters of the current task
1153  * with interrupts disabled.
1154  *
1155  * We restore the counter value and then enable it.
1156  *
1157  * This does not protect us against NMI, but enable()
1158  * sets the enabled bit in the control field of counter _before_
1159  * accessing the counter control register. If a NMI hits, then it will
1160  * keep the counter running.
1161  */
1162 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1163 {
1164         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1165         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1166
1167         if (likely(!ctx))
1168                 return;
1169         if (cpuctx->task_ctx == ctx)
1170                 return;
1171         __perf_counter_sched_in(ctx, cpuctx, cpu);
1172         cpuctx->task_ctx = ctx;
1173 }
1174
1175 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1176 {
1177         struct perf_counter_context *ctx = &cpuctx->ctx;
1178
1179         __perf_counter_sched_in(ctx, cpuctx, cpu);
1180 }
1181
1182 #define MAX_INTERRUPTS (~0ULL)
1183
1184 static void perf_log_throttle(struct perf_counter *counter, int enable);
1185 static void perf_log_period(struct perf_counter *counter, u64 period);
1186
1187 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1188 {
1189         struct hw_perf_counter *hwc = &counter->hw;
1190         u64 period, sample_period;
1191         s64 delta;
1192
1193         events *= hwc->sample_period;
1194         period = div64_u64(events, counter->attr.sample_freq);
1195
1196         delta = (s64)(period - hwc->sample_period);
1197         delta = (delta + 7) / 8; /* low pass filter */
1198
1199         sample_period = hwc->sample_period + delta;
1200
1201         if (!sample_period)
1202                 sample_period = 1;
1203
1204         perf_log_period(counter, sample_period);
1205
1206         hwc->sample_period = sample_period;
1207 }
1208
1209 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1210 {
1211         struct perf_counter *counter;
1212         struct hw_perf_counter *hwc;
1213         u64 interrupts, freq;
1214
1215         spin_lock(&ctx->lock);
1216         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1217                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1218                         continue;
1219
1220                 hwc = &counter->hw;
1221
1222                 interrupts = hwc->interrupts;
1223                 hwc->interrupts = 0;
1224
1225                 /*
1226                  * unthrottle counters on the tick
1227                  */
1228                 if (interrupts == MAX_INTERRUPTS) {
1229                         perf_log_throttle(counter, 1);
1230                         counter->pmu->unthrottle(counter);
1231                         interrupts = 2*sysctl_perf_counter_limit/HZ;
1232                 }
1233
1234                 if (!counter->attr.freq || !counter->attr.sample_freq)
1235                         continue;
1236
1237                 /*
1238                  * if the specified freq < HZ then we need to skip ticks
1239                  */
1240                 if (counter->attr.sample_freq < HZ) {
1241                         freq = counter->attr.sample_freq;
1242
1243                         hwc->freq_count += freq;
1244                         hwc->freq_interrupts += interrupts;
1245
1246                         if (hwc->freq_count < HZ)
1247                                 continue;
1248
1249                         interrupts = hwc->freq_interrupts;
1250                         hwc->freq_interrupts = 0;
1251                         hwc->freq_count -= HZ;
1252                 } else
1253                         freq = HZ;
1254
1255                 perf_adjust_period(counter, freq * interrupts);
1256
1257                 /*
1258                  * In order to avoid being stalled by an (accidental) huge
1259                  * sample period, force reset the sample period if we didn't
1260                  * get any events in this freq period.
1261                  */
1262                 if (!interrupts) {
1263                         perf_disable();
1264                         counter->pmu->disable(counter);
1265                         atomic_set(&hwc->period_left, 0);
1266                         counter->pmu->enable(counter);
1267                         perf_enable();
1268                 }
1269         }
1270         spin_unlock(&ctx->lock);
1271 }
1272
1273 /*
1274  * Round-robin a context's counters:
1275  */
1276 static void rotate_ctx(struct perf_counter_context *ctx)
1277 {
1278         struct perf_counter *counter;
1279
1280         if (!ctx->nr_counters)
1281                 return;
1282
1283         spin_lock(&ctx->lock);
1284         /*
1285          * Rotate the first entry last (works just fine for group counters too):
1286          */
1287         perf_disable();
1288         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1289                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1290                 break;
1291         }
1292         perf_enable();
1293
1294         spin_unlock(&ctx->lock);
1295 }
1296
1297 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1298 {
1299         struct perf_cpu_context *cpuctx;
1300         struct perf_counter_context *ctx;
1301
1302         if (!atomic_read(&nr_counters))
1303                 return;
1304
1305         cpuctx = &per_cpu(perf_cpu_context, cpu);
1306         ctx = curr->perf_counter_ctxp;
1307
1308         perf_ctx_adjust_freq(&cpuctx->ctx);
1309         if (ctx)
1310                 perf_ctx_adjust_freq(ctx);
1311
1312         perf_counter_cpu_sched_out(cpuctx);
1313         if (ctx)
1314                 __perf_counter_task_sched_out(ctx);
1315
1316         rotate_ctx(&cpuctx->ctx);
1317         if (ctx)
1318                 rotate_ctx(ctx);
1319
1320         perf_counter_cpu_sched_in(cpuctx, cpu);
1321         if (ctx)
1322                 perf_counter_task_sched_in(curr, cpu);
1323 }
1324
1325 /*
1326  * Cross CPU call to read the hardware counter
1327  */
1328 static void __read(void *info)
1329 {
1330         struct perf_counter *counter = info;
1331         struct perf_counter_context *ctx = counter->ctx;
1332         unsigned long flags;
1333
1334         local_irq_save(flags);
1335         if (ctx->is_active)
1336                 update_context_time(ctx);
1337         counter->pmu->read(counter);
1338         update_counter_times(counter);
1339         local_irq_restore(flags);
1340 }
1341
1342 static u64 perf_counter_read(struct perf_counter *counter)
1343 {
1344         /*
1345          * If counter is enabled and currently active on a CPU, update the
1346          * value in the counter structure:
1347          */
1348         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1349                 smp_call_function_single(counter->oncpu,
1350                                          __read, counter, 1);
1351         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1352                 update_counter_times(counter);
1353         }
1354
1355         return atomic64_read(&counter->count);
1356 }
1357
1358 /*
1359  * Initialize the perf_counter context in a task_struct:
1360  */
1361 static void
1362 __perf_counter_init_context(struct perf_counter_context *ctx,
1363                             struct task_struct *task)
1364 {
1365         memset(ctx, 0, sizeof(*ctx));
1366         spin_lock_init(&ctx->lock);
1367         mutex_init(&ctx->mutex);
1368         INIT_LIST_HEAD(&ctx->counter_list);
1369         INIT_LIST_HEAD(&ctx->event_list);
1370         atomic_set(&ctx->refcount, 1);
1371         ctx->task = task;
1372 }
1373
1374 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1375 {
1376         struct perf_counter_context *parent_ctx;
1377         struct perf_counter_context *ctx;
1378         struct perf_cpu_context *cpuctx;
1379         struct task_struct *task;
1380         unsigned long flags;
1381         int err;
1382
1383         /*
1384          * If cpu is not a wildcard then this is a percpu counter:
1385          */
1386         if (cpu != -1) {
1387                 /* Must be root to operate on a CPU counter: */
1388                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1389                         return ERR_PTR(-EACCES);
1390
1391                 if (cpu < 0 || cpu > num_possible_cpus())
1392                         return ERR_PTR(-EINVAL);
1393
1394                 /*
1395                  * We could be clever and allow to attach a counter to an
1396                  * offline CPU and activate it when the CPU comes up, but
1397                  * that's for later.
1398                  */
1399                 if (!cpu_isset(cpu, cpu_online_map))
1400                         return ERR_PTR(-ENODEV);
1401
1402                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1403                 ctx = &cpuctx->ctx;
1404                 get_ctx(ctx);
1405
1406                 return ctx;
1407         }
1408
1409         rcu_read_lock();
1410         if (!pid)
1411                 task = current;
1412         else
1413                 task = find_task_by_vpid(pid);
1414         if (task)
1415                 get_task_struct(task);
1416         rcu_read_unlock();
1417
1418         if (!task)
1419                 return ERR_PTR(-ESRCH);
1420
1421         /*
1422          * Can't attach counters to a dying task.
1423          */
1424         err = -ESRCH;
1425         if (task->flags & PF_EXITING)
1426                 goto errout;
1427
1428         /* Reuse ptrace permission checks for now. */
1429         err = -EACCES;
1430         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1431                 goto errout;
1432
1433  retry:
1434         ctx = perf_lock_task_context(task, &flags);
1435         if (ctx) {
1436                 parent_ctx = ctx->parent_ctx;
1437                 if (parent_ctx) {
1438                         put_ctx(parent_ctx);
1439                         ctx->parent_ctx = NULL;         /* no longer a clone */
1440                 }
1441                 /*
1442                  * Get an extra reference before dropping the lock so that
1443                  * this context won't get freed if the task exits.
1444                  */
1445                 get_ctx(ctx);
1446                 spin_unlock_irqrestore(&ctx->lock, flags);
1447         }
1448
1449         if (!ctx) {
1450                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1451                 err = -ENOMEM;
1452                 if (!ctx)
1453                         goto errout;
1454                 __perf_counter_init_context(ctx, task);
1455                 get_ctx(ctx);
1456                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1457                         /*
1458                          * We raced with some other task; use
1459                          * the context they set.
1460                          */
1461                         kfree(ctx);
1462                         goto retry;
1463                 }
1464                 get_task_struct(task);
1465         }
1466
1467         put_task_struct(task);
1468         return ctx;
1469
1470  errout:
1471         put_task_struct(task);
1472         return ERR_PTR(err);
1473 }
1474
1475 static void free_counter_rcu(struct rcu_head *head)
1476 {
1477         struct perf_counter *counter;
1478
1479         counter = container_of(head, struct perf_counter, rcu_head);
1480         if (counter->ns)
1481                 put_pid_ns(counter->ns);
1482         kfree(counter);
1483 }
1484
1485 static void perf_pending_sync(struct perf_counter *counter);
1486
1487 static void free_counter(struct perf_counter *counter)
1488 {
1489         perf_pending_sync(counter);
1490
1491         atomic_dec(&nr_counters);
1492         if (counter->attr.mmap)
1493                 atomic_dec(&nr_mmap_counters);
1494         if (counter->attr.comm)
1495                 atomic_dec(&nr_comm_counters);
1496
1497         if (counter->destroy)
1498                 counter->destroy(counter);
1499
1500         put_ctx(counter->ctx);
1501         call_rcu(&counter->rcu_head, free_counter_rcu);
1502 }
1503
1504 /*
1505  * Called when the last reference to the file is gone.
1506  */
1507 static int perf_release(struct inode *inode, struct file *file)
1508 {
1509         struct perf_counter *counter = file->private_data;
1510         struct perf_counter_context *ctx = counter->ctx;
1511
1512         file->private_data = NULL;
1513
1514         WARN_ON_ONCE(ctx->parent_ctx);
1515         mutex_lock(&ctx->mutex);
1516         perf_counter_remove_from_context(counter);
1517         mutex_unlock(&ctx->mutex);
1518
1519         mutex_lock(&counter->owner->perf_counter_mutex);
1520         list_del_init(&counter->owner_entry);
1521         mutex_unlock(&counter->owner->perf_counter_mutex);
1522         put_task_struct(counter->owner);
1523
1524         free_counter(counter);
1525
1526         return 0;
1527 }
1528
1529 /*
1530  * Read the performance counter - simple non blocking version for now
1531  */
1532 static ssize_t
1533 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1534 {
1535         u64 values[3];
1536         int n;
1537
1538         /*
1539          * Return end-of-file for a read on a counter that is in
1540          * error state (i.e. because it was pinned but it couldn't be
1541          * scheduled on to the CPU at some point).
1542          */
1543         if (counter->state == PERF_COUNTER_STATE_ERROR)
1544                 return 0;
1545
1546         WARN_ON_ONCE(counter->ctx->parent_ctx);
1547         mutex_lock(&counter->child_mutex);
1548         values[0] = perf_counter_read(counter);
1549         n = 1;
1550         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1551                 values[n++] = counter->total_time_enabled +
1552                         atomic64_read(&counter->child_total_time_enabled);
1553         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1554                 values[n++] = counter->total_time_running +
1555                         atomic64_read(&counter->child_total_time_running);
1556         if (counter->attr.read_format & PERF_FORMAT_ID)
1557                 values[n++] = counter->id;
1558         mutex_unlock(&counter->child_mutex);
1559
1560         if (count < n * sizeof(u64))
1561                 return -EINVAL;
1562         count = n * sizeof(u64);
1563
1564         if (copy_to_user(buf, values, count))
1565                 return -EFAULT;
1566
1567         return count;
1568 }
1569
1570 static ssize_t
1571 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1572 {
1573         struct perf_counter *counter = file->private_data;
1574
1575         return perf_read_hw(counter, buf, count);
1576 }
1577
1578 static unsigned int perf_poll(struct file *file, poll_table *wait)
1579 {
1580         struct perf_counter *counter = file->private_data;
1581         struct perf_mmap_data *data;
1582         unsigned int events = POLL_HUP;
1583
1584         rcu_read_lock();
1585         data = rcu_dereference(counter->data);
1586         if (data)
1587                 events = atomic_xchg(&data->poll, 0);
1588         rcu_read_unlock();
1589
1590         poll_wait(file, &counter->waitq, wait);
1591
1592         return events;
1593 }
1594
1595 static void perf_counter_reset(struct perf_counter *counter)
1596 {
1597         (void)perf_counter_read(counter);
1598         atomic64_set(&counter->count, 0);
1599         perf_counter_update_userpage(counter);
1600 }
1601
1602 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1603                                           void (*func)(struct perf_counter *))
1604 {
1605         struct perf_counter_context *ctx = counter->ctx;
1606         struct perf_counter *sibling;
1607
1608         WARN_ON_ONCE(ctx->parent_ctx);
1609         mutex_lock(&ctx->mutex);
1610         counter = counter->group_leader;
1611
1612         func(counter);
1613         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1614                 func(sibling);
1615         mutex_unlock(&ctx->mutex);
1616 }
1617
1618 /*
1619  * Holding the top-level counter's child_mutex means that any
1620  * descendant process that has inherited this counter will block
1621  * in sync_child_counter if it goes to exit, thus satisfying the
1622  * task existence requirements of perf_counter_enable/disable.
1623  */
1624 static void perf_counter_for_each_child(struct perf_counter *counter,
1625                                         void (*func)(struct perf_counter *))
1626 {
1627         struct perf_counter *child;
1628
1629         WARN_ON_ONCE(counter->ctx->parent_ctx);
1630         mutex_lock(&counter->child_mutex);
1631         func(counter);
1632         list_for_each_entry(child, &counter->child_list, child_list)
1633                 func(child);
1634         mutex_unlock(&counter->child_mutex);
1635 }
1636
1637 static void perf_counter_for_each(struct perf_counter *counter,
1638                                   void (*func)(struct perf_counter *))
1639 {
1640         struct perf_counter *child;
1641
1642         WARN_ON_ONCE(counter->ctx->parent_ctx);
1643         mutex_lock(&counter->child_mutex);
1644         perf_counter_for_each_sibling(counter, func);
1645         list_for_each_entry(child, &counter->child_list, child_list)
1646                 perf_counter_for_each_sibling(child, func);
1647         mutex_unlock(&counter->child_mutex);
1648 }
1649
1650 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1651 {
1652         struct perf_counter_context *ctx = counter->ctx;
1653         unsigned long size;
1654         int ret = 0;
1655         u64 value;
1656
1657         if (!counter->attr.sample_period)
1658                 return -EINVAL;
1659
1660         size = copy_from_user(&value, arg, sizeof(value));
1661         if (size != sizeof(value))
1662                 return -EFAULT;
1663
1664         if (!value)
1665                 return -EINVAL;
1666
1667         spin_lock_irq(&ctx->lock);
1668         if (counter->attr.freq) {
1669                 if (value > sysctl_perf_counter_limit) {
1670                         ret = -EINVAL;
1671                         goto unlock;
1672                 }
1673
1674                 counter->attr.sample_freq = value;
1675         } else {
1676                 perf_log_period(counter, value);
1677
1678                 counter->attr.sample_period = value;
1679                 counter->hw.sample_period = value;
1680         }
1681 unlock:
1682         spin_unlock_irq(&ctx->lock);
1683
1684         return ret;
1685 }
1686
1687 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1688 {
1689         struct perf_counter *counter = file->private_data;
1690         void (*func)(struct perf_counter *);
1691         u32 flags = arg;
1692
1693         switch (cmd) {
1694         case PERF_COUNTER_IOC_ENABLE:
1695                 func = perf_counter_enable;
1696                 break;
1697         case PERF_COUNTER_IOC_DISABLE:
1698                 func = perf_counter_disable;
1699                 break;
1700         case PERF_COUNTER_IOC_RESET:
1701                 func = perf_counter_reset;
1702                 break;
1703
1704         case PERF_COUNTER_IOC_REFRESH:
1705                 return perf_counter_refresh(counter, arg);
1706
1707         case PERF_COUNTER_IOC_PERIOD:
1708                 return perf_counter_period(counter, (u64 __user *)arg);
1709
1710         default:
1711                 return -ENOTTY;
1712         }
1713
1714         if (flags & PERF_IOC_FLAG_GROUP)
1715                 perf_counter_for_each(counter, func);
1716         else
1717                 perf_counter_for_each_child(counter, func);
1718
1719         return 0;
1720 }
1721
1722 int perf_counter_task_enable(void)
1723 {
1724         struct perf_counter *counter;
1725
1726         mutex_lock(&current->perf_counter_mutex);
1727         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1728                 perf_counter_for_each_child(counter, perf_counter_enable);
1729         mutex_unlock(&current->perf_counter_mutex);
1730
1731         return 0;
1732 }
1733
1734 int perf_counter_task_disable(void)
1735 {
1736         struct perf_counter *counter;
1737
1738         mutex_lock(&current->perf_counter_mutex);
1739         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1740                 perf_counter_for_each_child(counter, perf_counter_disable);
1741         mutex_unlock(&current->perf_counter_mutex);
1742
1743         return 0;
1744 }
1745
1746 /*
1747  * Callers need to ensure there can be no nesting of this function, otherwise
1748  * the seqlock logic goes bad. We can not serialize this because the arch
1749  * code calls this from NMI context.
1750  */
1751 void perf_counter_update_userpage(struct perf_counter *counter)
1752 {
1753         struct perf_counter_mmap_page *userpg;
1754         struct perf_mmap_data *data;
1755
1756         rcu_read_lock();
1757         data = rcu_dereference(counter->data);
1758         if (!data)
1759                 goto unlock;
1760
1761         userpg = data->user_page;
1762
1763         /*
1764          * Disable preemption so as to not let the corresponding user-space
1765          * spin too long if we get preempted.
1766          */
1767         preempt_disable();
1768         ++userpg->lock;
1769         barrier();
1770         userpg->index = counter->hw.idx;
1771         userpg->offset = atomic64_read(&counter->count);
1772         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1773                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1774
1775         barrier();
1776         ++userpg->lock;
1777         preempt_enable();
1778 unlock:
1779         rcu_read_unlock();
1780 }
1781
1782 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1783 {
1784         struct perf_counter *counter = vma->vm_file->private_data;
1785         struct perf_mmap_data *data;
1786         int ret = VM_FAULT_SIGBUS;
1787
1788         rcu_read_lock();
1789         data = rcu_dereference(counter->data);
1790         if (!data)
1791                 goto unlock;
1792
1793         if (vmf->pgoff == 0) {
1794                 vmf->page = virt_to_page(data->user_page);
1795         } else {
1796                 int nr = vmf->pgoff - 1;
1797
1798                 if ((unsigned)nr > data->nr_pages)
1799                         goto unlock;
1800
1801                 vmf->page = virt_to_page(data->data_pages[nr]);
1802         }
1803         get_page(vmf->page);
1804         ret = 0;
1805 unlock:
1806         rcu_read_unlock();
1807
1808         return ret;
1809 }
1810
1811 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1812 {
1813         struct perf_mmap_data *data;
1814         unsigned long size;
1815         int i;
1816
1817         WARN_ON(atomic_read(&counter->mmap_count));
1818
1819         size = sizeof(struct perf_mmap_data);
1820         size += nr_pages * sizeof(void *);
1821
1822         data = kzalloc(size, GFP_KERNEL);
1823         if (!data)
1824                 goto fail;
1825
1826         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1827         if (!data->user_page)
1828                 goto fail_user_page;
1829
1830         for (i = 0; i < nr_pages; i++) {
1831                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1832                 if (!data->data_pages[i])
1833                         goto fail_data_pages;
1834         }
1835
1836         data->nr_pages = nr_pages;
1837         atomic_set(&data->lock, -1);
1838
1839         rcu_assign_pointer(counter->data, data);
1840
1841         return 0;
1842
1843 fail_data_pages:
1844         for (i--; i >= 0; i--)
1845                 free_page((unsigned long)data->data_pages[i]);
1846
1847         free_page((unsigned long)data->user_page);
1848
1849 fail_user_page:
1850         kfree(data);
1851
1852 fail:
1853         return -ENOMEM;
1854 }
1855
1856 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1857 {
1858         struct perf_mmap_data *data;
1859         int i;
1860
1861         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1862
1863         free_page((unsigned long)data->user_page);
1864         for (i = 0; i < data->nr_pages; i++)
1865                 free_page((unsigned long)data->data_pages[i]);
1866         kfree(data);
1867 }
1868
1869 static void perf_mmap_data_free(struct perf_counter *counter)
1870 {
1871         struct perf_mmap_data *data = counter->data;
1872
1873         WARN_ON(atomic_read(&counter->mmap_count));
1874
1875         rcu_assign_pointer(counter->data, NULL);
1876         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1877 }
1878
1879 static void perf_mmap_open(struct vm_area_struct *vma)
1880 {
1881         struct perf_counter *counter = vma->vm_file->private_data;
1882
1883         atomic_inc(&counter->mmap_count);
1884 }
1885
1886 static void perf_mmap_close(struct vm_area_struct *vma)
1887 {
1888         struct perf_counter *counter = vma->vm_file->private_data;
1889
1890         WARN_ON_ONCE(counter->ctx->parent_ctx);
1891         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1892                 struct user_struct *user = current_user();
1893
1894                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1895                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1896                 perf_mmap_data_free(counter);
1897                 mutex_unlock(&counter->mmap_mutex);
1898         }
1899 }
1900
1901 static struct vm_operations_struct perf_mmap_vmops = {
1902         .open  = perf_mmap_open,
1903         .close = perf_mmap_close,
1904         .fault = perf_mmap_fault,
1905 };
1906
1907 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1908 {
1909         struct perf_counter *counter = file->private_data;
1910         unsigned long user_locked, user_lock_limit;
1911         struct user_struct *user = current_user();
1912         unsigned long locked, lock_limit;
1913         unsigned long vma_size;
1914         unsigned long nr_pages;
1915         long user_extra, extra;
1916         int ret = 0;
1917
1918         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1919                 return -EINVAL;
1920
1921         vma_size = vma->vm_end - vma->vm_start;
1922         nr_pages = (vma_size / PAGE_SIZE) - 1;
1923
1924         /*
1925          * If we have data pages ensure they're a power-of-two number, so we
1926          * can do bitmasks instead of modulo.
1927          */
1928         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1929                 return -EINVAL;
1930
1931         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1932                 return -EINVAL;
1933
1934         if (vma->vm_pgoff != 0)
1935                 return -EINVAL;
1936
1937         WARN_ON_ONCE(counter->ctx->parent_ctx);
1938         mutex_lock(&counter->mmap_mutex);
1939         if (atomic_inc_not_zero(&counter->mmap_count)) {
1940                 if (nr_pages != counter->data->nr_pages)
1941                         ret = -EINVAL;
1942                 goto unlock;
1943         }
1944
1945         user_extra = nr_pages + 1;
1946         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1947
1948         /*
1949          * Increase the limit linearly with more CPUs:
1950          */
1951         user_lock_limit *= num_online_cpus();
1952
1953         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1954
1955         extra = 0;
1956         if (user_locked > user_lock_limit)
1957                 extra = user_locked - user_lock_limit;
1958
1959         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1960         lock_limit >>= PAGE_SHIFT;
1961         locked = vma->vm_mm->locked_vm + extra;
1962
1963         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1964                 ret = -EPERM;
1965                 goto unlock;
1966         }
1967
1968         WARN_ON(counter->data);
1969         ret = perf_mmap_data_alloc(counter, nr_pages);
1970         if (ret)
1971                 goto unlock;
1972
1973         atomic_set(&counter->mmap_count, 1);
1974         atomic_long_add(user_extra, &user->locked_vm);
1975         vma->vm_mm->locked_vm += extra;
1976         counter->data->nr_locked = extra;
1977 unlock:
1978         mutex_unlock(&counter->mmap_mutex);
1979
1980         vma->vm_flags &= ~VM_MAYWRITE;
1981         vma->vm_flags |= VM_RESERVED;
1982         vma->vm_ops = &perf_mmap_vmops;
1983
1984         return ret;
1985 }
1986
1987 static int perf_fasync(int fd, struct file *filp, int on)
1988 {
1989         struct inode *inode = filp->f_path.dentry->d_inode;
1990         struct perf_counter *counter = filp->private_data;
1991         int retval;
1992
1993         mutex_lock(&inode->i_mutex);
1994         retval = fasync_helper(fd, filp, on, &counter->fasync);
1995         mutex_unlock(&inode->i_mutex);
1996
1997         if (retval < 0)
1998                 return retval;
1999
2000         return 0;
2001 }
2002
2003 static const struct file_operations perf_fops = {
2004         .release                = perf_release,
2005         .read                   = perf_read,
2006         .poll                   = perf_poll,
2007         .unlocked_ioctl         = perf_ioctl,
2008         .compat_ioctl           = perf_ioctl,
2009         .mmap                   = perf_mmap,
2010         .fasync                 = perf_fasync,
2011 };
2012
2013 /*
2014  * Perf counter wakeup
2015  *
2016  * If there's data, ensure we set the poll() state and publish everything
2017  * to user-space before waking everybody up.
2018  */
2019
2020 void perf_counter_wakeup(struct perf_counter *counter)
2021 {
2022         wake_up_all(&counter->waitq);
2023
2024         if (counter->pending_kill) {
2025                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2026                 counter->pending_kill = 0;
2027         }
2028 }
2029
2030 /*
2031  * Pending wakeups
2032  *
2033  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2034  *
2035  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2036  * single linked list and use cmpxchg() to add entries lockless.
2037  */
2038
2039 static void perf_pending_counter(struct perf_pending_entry *entry)
2040 {
2041         struct perf_counter *counter = container_of(entry,
2042                         struct perf_counter, pending);
2043
2044         if (counter->pending_disable) {
2045                 counter->pending_disable = 0;
2046                 perf_counter_disable(counter);
2047         }
2048
2049         if (counter->pending_wakeup) {
2050                 counter->pending_wakeup = 0;
2051                 perf_counter_wakeup(counter);
2052         }
2053 }
2054
2055 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2056
2057 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2058         PENDING_TAIL,
2059 };
2060
2061 static void perf_pending_queue(struct perf_pending_entry *entry,
2062                                void (*func)(struct perf_pending_entry *))
2063 {
2064         struct perf_pending_entry **head;
2065
2066         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2067                 return;
2068
2069         entry->func = func;
2070
2071         head = &get_cpu_var(perf_pending_head);
2072
2073         do {
2074                 entry->next = *head;
2075         } while (cmpxchg(head, entry->next, entry) != entry->next);
2076
2077         set_perf_counter_pending();
2078
2079         put_cpu_var(perf_pending_head);
2080 }
2081
2082 static int __perf_pending_run(void)
2083 {
2084         struct perf_pending_entry *list;
2085         int nr = 0;
2086
2087         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2088         while (list != PENDING_TAIL) {
2089                 void (*func)(struct perf_pending_entry *);
2090                 struct perf_pending_entry *entry = list;
2091
2092                 list = list->next;
2093
2094                 func = entry->func;
2095                 entry->next = NULL;
2096                 /*
2097                  * Ensure we observe the unqueue before we issue the wakeup,
2098                  * so that we won't be waiting forever.
2099                  * -- see perf_not_pending().
2100                  */
2101                 smp_wmb();
2102
2103                 func(entry);
2104                 nr++;
2105         }
2106
2107         return nr;
2108 }
2109
2110 static inline int perf_not_pending(struct perf_counter *counter)
2111 {
2112         /*
2113          * If we flush on whatever cpu we run, there is a chance we don't
2114          * need to wait.
2115          */
2116         get_cpu();
2117         __perf_pending_run();
2118         put_cpu();
2119
2120         /*
2121          * Ensure we see the proper queue state before going to sleep
2122          * so that we do not miss the wakeup. -- see perf_pending_handle()
2123          */
2124         smp_rmb();
2125         return counter->pending.next == NULL;
2126 }
2127
2128 static void perf_pending_sync(struct perf_counter *counter)
2129 {
2130         wait_event(counter->waitq, perf_not_pending(counter));
2131 }
2132
2133 void perf_counter_do_pending(void)
2134 {
2135         __perf_pending_run();
2136 }
2137
2138 /*
2139  * Callchain support -- arch specific
2140  */
2141
2142 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2143 {
2144         return NULL;
2145 }
2146
2147 /*
2148  * Output
2149  */
2150
2151 struct perf_output_handle {
2152         struct perf_counter     *counter;
2153         struct perf_mmap_data   *data;
2154         unsigned long           head;
2155         unsigned long           offset;
2156         int                     nmi;
2157         int                     overflow;
2158         int                     locked;
2159         unsigned long           flags;
2160 };
2161
2162 static void perf_output_wakeup(struct perf_output_handle *handle)
2163 {
2164         atomic_set(&handle->data->poll, POLL_IN);
2165
2166         if (handle->nmi) {
2167                 handle->counter->pending_wakeup = 1;
2168                 perf_pending_queue(&handle->counter->pending,
2169                                    perf_pending_counter);
2170         } else
2171                 perf_counter_wakeup(handle->counter);
2172 }
2173
2174 /*
2175  * Curious locking construct.
2176  *
2177  * We need to ensure a later event doesn't publish a head when a former
2178  * event isn't done writing. However since we need to deal with NMIs we
2179  * cannot fully serialize things.
2180  *
2181  * What we do is serialize between CPUs so we only have to deal with NMI
2182  * nesting on a single CPU.
2183  *
2184  * We only publish the head (and generate a wakeup) when the outer-most
2185  * event completes.
2186  */
2187 static void perf_output_lock(struct perf_output_handle *handle)
2188 {
2189         struct perf_mmap_data *data = handle->data;
2190         int cpu;
2191
2192         handle->locked = 0;
2193
2194         local_irq_save(handle->flags);
2195         cpu = smp_processor_id();
2196
2197         if (in_nmi() && atomic_read(&data->lock) == cpu)
2198                 return;
2199
2200         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2201                 cpu_relax();
2202
2203         handle->locked = 1;
2204 }
2205
2206 static void perf_output_unlock(struct perf_output_handle *handle)
2207 {
2208         struct perf_mmap_data *data = handle->data;
2209         unsigned long head;
2210         int cpu;
2211
2212         data->done_head = data->head;
2213
2214         if (!handle->locked)
2215                 goto out;
2216
2217 again:
2218         /*
2219          * The xchg implies a full barrier that ensures all writes are done
2220          * before we publish the new head, matched by a rmb() in userspace when
2221          * reading this position.
2222          */
2223         while ((head = atomic_long_xchg(&data->done_head, 0)))
2224                 data->user_page->data_head = head;
2225
2226         /*
2227          * NMI can happen here, which means we can miss a done_head update.
2228          */
2229
2230         cpu = atomic_xchg(&data->lock, -1);
2231         WARN_ON_ONCE(cpu != smp_processor_id());
2232
2233         /*
2234          * Therefore we have to validate we did not indeed do so.
2235          */
2236         if (unlikely(atomic_long_read(&data->done_head))) {
2237                 /*
2238                  * Since we had it locked, we can lock it again.
2239                  */
2240                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2241                         cpu_relax();
2242
2243                 goto again;
2244         }
2245
2246         if (atomic_xchg(&data->wakeup, 0))
2247                 perf_output_wakeup(handle);
2248 out:
2249         local_irq_restore(handle->flags);
2250 }
2251
2252 static int perf_output_begin(struct perf_output_handle *handle,
2253                              struct perf_counter *counter, unsigned int size,
2254                              int nmi, int overflow)
2255 {
2256         struct perf_mmap_data *data;
2257         unsigned int offset, head;
2258
2259         /*
2260          * For inherited counters we send all the output towards the parent.
2261          */
2262         if (counter->parent)
2263                 counter = counter->parent;
2264
2265         rcu_read_lock();
2266         data = rcu_dereference(counter->data);
2267         if (!data)
2268                 goto out;
2269
2270         handle->data     = data;
2271         handle->counter  = counter;
2272         handle->nmi      = nmi;
2273         handle->overflow = overflow;
2274
2275         if (!data->nr_pages)
2276                 goto fail;
2277
2278         perf_output_lock(handle);
2279
2280         do {
2281                 offset = head = atomic_long_read(&data->head);
2282                 head += size;
2283         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2284
2285         handle->offset  = offset;
2286         handle->head    = head;
2287
2288         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2289                 atomic_set(&data->wakeup, 1);
2290
2291         return 0;
2292
2293 fail:
2294         perf_output_wakeup(handle);
2295 out:
2296         rcu_read_unlock();
2297
2298         return -ENOSPC;
2299 }
2300
2301 static void perf_output_copy(struct perf_output_handle *handle,
2302                              const void *buf, unsigned int len)
2303 {
2304         unsigned int pages_mask;
2305         unsigned int offset;
2306         unsigned int size;
2307         void **pages;
2308
2309         offset          = handle->offset;
2310         pages_mask      = handle->data->nr_pages - 1;
2311         pages           = handle->data->data_pages;
2312
2313         do {
2314                 unsigned int page_offset;
2315                 int nr;
2316
2317                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2318                 page_offset = offset & (PAGE_SIZE - 1);
2319                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2320
2321                 memcpy(pages[nr] + page_offset, buf, size);
2322
2323                 len         -= size;
2324                 buf         += size;
2325                 offset      += size;
2326         } while (len);
2327
2328         handle->offset = offset;
2329
2330         /*
2331          * Check we didn't copy past our reservation window, taking the
2332          * possible unsigned int wrap into account.
2333          */
2334         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2335 }
2336
2337 #define perf_output_put(handle, x) \
2338         perf_output_copy((handle), &(x), sizeof(x))
2339
2340 static void perf_output_end(struct perf_output_handle *handle)
2341 {
2342         struct perf_counter *counter = handle->counter;
2343         struct perf_mmap_data *data = handle->data;
2344
2345         int wakeup_events = counter->attr.wakeup_events;
2346
2347         if (handle->overflow && wakeup_events) {
2348                 int events = atomic_inc_return(&data->events);
2349                 if (events >= wakeup_events) {
2350                         atomic_sub(wakeup_events, &data->events);
2351                         atomic_set(&data->wakeup, 1);
2352                 }
2353         }
2354
2355         perf_output_unlock(handle);
2356         rcu_read_unlock();
2357 }
2358
2359 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2360 {
2361         /*
2362          * only top level counters have the pid namespace they were created in
2363          */
2364         if (counter->parent)
2365                 counter = counter->parent;
2366
2367         return task_tgid_nr_ns(p, counter->ns);
2368 }
2369
2370 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2371 {
2372         /*
2373          * only top level counters have the pid namespace they were created in
2374          */
2375         if (counter->parent)
2376                 counter = counter->parent;
2377
2378         return task_pid_nr_ns(p, counter->ns);
2379 }
2380
2381 static void perf_counter_output(struct perf_counter *counter, int nmi,
2382                                 struct perf_sample_data *data)
2383 {
2384         int ret;
2385         u64 sample_type = counter->attr.sample_type;
2386         struct perf_output_handle handle;
2387         struct perf_event_header header;
2388         u64 ip;
2389         struct {
2390                 u32 pid, tid;
2391         } tid_entry;
2392         struct {
2393                 u64 id;
2394                 u64 counter;
2395         } group_entry;
2396         struct perf_callchain_entry *callchain = NULL;
2397         int callchain_size = 0;
2398         u64 time;
2399         struct {
2400                 u32 cpu, reserved;
2401         } cpu_entry;
2402
2403         header.type = 0;
2404         header.size = sizeof(header);
2405
2406         header.misc = PERF_EVENT_MISC_OVERFLOW;
2407         header.misc |= perf_misc_flags(data->regs);
2408
2409         if (sample_type & PERF_SAMPLE_IP) {
2410                 ip = perf_instruction_pointer(data->regs);
2411                 header.type |= PERF_SAMPLE_IP;
2412                 header.size += sizeof(ip);
2413         }
2414
2415         if (sample_type & PERF_SAMPLE_TID) {
2416                 /* namespace issues */
2417                 tid_entry.pid = perf_counter_pid(counter, current);
2418                 tid_entry.tid = perf_counter_tid(counter, current);
2419
2420                 header.type |= PERF_SAMPLE_TID;
2421                 header.size += sizeof(tid_entry);
2422         }
2423
2424         if (sample_type & PERF_SAMPLE_TIME) {
2425                 /*
2426                  * Maybe do better on x86 and provide cpu_clock_nmi()
2427                  */
2428                 time = sched_clock();
2429
2430                 header.type |= PERF_SAMPLE_TIME;
2431                 header.size += sizeof(u64);
2432         }
2433
2434         if (sample_type & PERF_SAMPLE_ADDR) {
2435                 header.type |= PERF_SAMPLE_ADDR;
2436                 header.size += sizeof(u64);
2437         }
2438
2439         if (sample_type & PERF_SAMPLE_ID) {
2440                 header.type |= PERF_SAMPLE_ID;
2441                 header.size += sizeof(u64);
2442         }
2443
2444         if (sample_type & PERF_SAMPLE_CPU) {
2445                 header.type |= PERF_SAMPLE_CPU;
2446                 header.size += sizeof(cpu_entry);
2447
2448                 cpu_entry.cpu = raw_smp_processor_id();
2449         }
2450
2451         if (sample_type & PERF_SAMPLE_PERIOD) {
2452                 header.type |= PERF_SAMPLE_PERIOD;
2453                 header.size += sizeof(u64);
2454         }
2455
2456         if (sample_type & PERF_SAMPLE_GROUP) {
2457                 header.type |= PERF_SAMPLE_GROUP;
2458                 header.size += sizeof(u64) +
2459                         counter->nr_siblings * sizeof(group_entry);
2460         }
2461
2462         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2463                 callchain = perf_callchain(data->regs);
2464
2465                 if (callchain) {
2466                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2467
2468                         header.type |= PERF_SAMPLE_CALLCHAIN;
2469                         header.size += callchain_size;
2470                 }
2471         }
2472
2473         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2474         if (ret)
2475                 return;
2476
2477         perf_output_put(&handle, header);
2478
2479         if (sample_type & PERF_SAMPLE_IP)
2480                 perf_output_put(&handle, ip);
2481
2482         if (sample_type & PERF_SAMPLE_TID)
2483                 perf_output_put(&handle, tid_entry);
2484
2485         if (sample_type & PERF_SAMPLE_TIME)
2486                 perf_output_put(&handle, time);
2487
2488         if (sample_type & PERF_SAMPLE_ADDR)
2489                 perf_output_put(&handle, data->addr);
2490
2491         if (sample_type & PERF_SAMPLE_ID)
2492                 perf_output_put(&handle, counter->id);
2493
2494         if (sample_type & PERF_SAMPLE_CPU)
2495                 perf_output_put(&handle, cpu_entry);
2496
2497         if (sample_type & PERF_SAMPLE_PERIOD)
2498                 perf_output_put(&handle, data->period);
2499
2500         /*
2501          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2502          */
2503         if (sample_type & PERF_SAMPLE_GROUP) {
2504                 struct perf_counter *leader, *sub;
2505                 u64 nr = counter->nr_siblings;
2506
2507                 perf_output_put(&handle, nr);
2508
2509                 leader = counter->group_leader;
2510                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2511                         if (sub != counter)
2512                                 sub->pmu->read(sub);
2513
2514                         group_entry.id = sub->id;
2515                         group_entry.counter = atomic64_read(&sub->count);
2516
2517                         perf_output_put(&handle, group_entry);
2518                 }
2519         }
2520
2521         if (callchain)
2522                 perf_output_copy(&handle, callchain, callchain_size);
2523
2524         perf_output_end(&handle);
2525 }
2526
2527 /*
2528  * fork tracking
2529  */
2530
2531 struct perf_fork_event {
2532         struct task_struct      *task;
2533
2534         struct {
2535                 struct perf_event_header        header;
2536
2537                 u32                             pid;
2538                 u32                             ppid;
2539         } event;
2540 };
2541
2542 static void perf_counter_fork_output(struct perf_counter *counter,
2543                                      struct perf_fork_event *fork_event)
2544 {
2545         struct perf_output_handle handle;
2546         int size = fork_event->event.header.size;
2547         struct task_struct *task = fork_event->task;
2548         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2549
2550         if (ret)
2551                 return;
2552
2553         fork_event->event.pid = perf_counter_pid(counter, task);
2554         fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2555
2556         perf_output_put(&handle, fork_event->event);
2557         perf_output_end(&handle);
2558 }
2559
2560 static int perf_counter_fork_match(struct perf_counter *counter)
2561 {
2562         if (counter->attr.comm || counter->attr.mmap)
2563                 return 1;
2564
2565         return 0;
2566 }
2567
2568 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2569                                   struct perf_fork_event *fork_event)
2570 {
2571         struct perf_counter *counter;
2572
2573         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2574                 return;
2575
2576         rcu_read_lock();
2577         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2578                 if (perf_counter_fork_match(counter))
2579                         perf_counter_fork_output(counter, fork_event);
2580         }
2581         rcu_read_unlock();
2582 }
2583
2584 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2585 {
2586         struct perf_cpu_context *cpuctx;
2587         struct perf_counter_context *ctx;
2588
2589         cpuctx = &get_cpu_var(perf_cpu_context);
2590         perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2591         put_cpu_var(perf_cpu_context);
2592
2593         rcu_read_lock();
2594         /*
2595          * doesn't really matter which of the child contexts the
2596          * events ends up in.
2597          */
2598         ctx = rcu_dereference(current->perf_counter_ctxp);
2599         if (ctx)
2600                 perf_counter_fork_ctx(ctx, fork_event);
2601         rcu_read_unlock();
2602 }
2603
2604 void perf_counter_fork(struct task_struct *task)
2605 {
2606         struct perf_fork_event fork_event;
2607
2608         if (!atomic_read(&nr_comm_counters) &&
2609             !atomic_read(&nr_mmap_counters))
2610                 return;
2611
2612         fork_event = (struct perf_fork_event){
2613                 .task   = task,
2614                 .event  = {
2615                         .header = {
2616                                 .type = PERF_EVENT_FORK,
2617                                 .size = sizeof(fork_event.event),
2618                         },
2619                 },
2620         };
2621
2622         perf_counter_fork_event(&fork_event);
2623 }
2624
2625 /*
2626  * comm tracking
2627  */
2628
2629 struct perf_comm_event {
2630         struct task_struct      *task;
2631         char                    *comm;
2632         int                     comm_size;
2633
2634         struct {
2635                 struct perf_event_header        header;
2636
2637                 u32                             pid;
2638                 u32                             tid;
2639         } event;
2640 };
2641
2642 static void perf_counter_comm_output(struct perf_counter *counter,
2643                                      struct perf_comm_event *comm_event)
2644 {
2645         struct perf_output_handle handle;
2646         int size = comm_event->event.header.size;
2647         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2648
2649         if (ret)
2650                 return;
2651
2652         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2653         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2654
2655         perf_output_put(&handle, comm_event->event);
2656         perf_output_copy(&handle, comm_event->comm,
2657                                    comm_event->comm_size);
2658         perf_output_end(&handle);
2659 }
2660
2661 static int perf_counter_comm_match(struct perf_counter *counter)
2662 {
2663         if (counter->attr.comm)
2664                 return 1;
2665
2666         return 0;
2667 }
2668
2669 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2670                                   struct perf_comm_event *comm_event)
2671 {
2672         struct perf_counter *counter;
2673
2674         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2675                 return;
2676
2677         rcu_read_lock();
2678         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2679                 if (perf_counter_comm_match(counter))
2680                         perf_counter_comm_output(counter, comm_event);
2681         }
2682         rcu_read_unlock();
2683 }
2684
2685 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2686 {
2687         struct perf_cpu_context *cpuctx;
2688         struct perf_counter_context *ctx;
2689         unsigned int size;
2690         char *comm = comm_event->task->comm;
2691
2692         size = ALIGN(strlen(comm)+1, sizeof(u64));
2693
2694         comm_event->comm = comm;
2695         comm_event->comm_size = size;
2696
2697         comm_event->event.header.size = sizeof(comm_event->event) + size;
2698
2699         cpuctx = &get_cpu_var(perf_cpu_context);
2700         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2701         put_cpu_var(perf_cpu_context);
2702
2703         rcu_read_lock();
2704         /*
2705          * doesn't really matter which of the child contexts the
2706          * events ends up in.
2707          */
2708         ctx = rcu_dereference(current->perf_counter_ctxp);
2709         if (ctx)
2710                 perf_counter_comm_ctx(ctx, comm_event);
2711         rcu_read_unlock();
2712 }
2713
2714 void perf_counter_comm(struct task_struct *task)
2715 {
2716         struct perf_comm_event comm_event;
2717
2718         if (!atomic_read(&nr_comm_counters))
2719                 return;
2720
2721         comm_event = (struct perf_comm_event){
2722                 .task   = task,
2723                 .event  = {
2724                         .header = { .type = PERF_EVENT_COMM, },
2725                 },
2726         };
2727
2728         perf_counter_comm_event(&comm_event);
2729 }
2730
2731 /*
2732  * mmap tracking
2733  */
2734
2735 struct perf_mmap_event {
2736         struct vm_area_struct   *vma;
2737
2738         const char              *file_name;
2739         int                     file_size;
2740
2741         struct {
2742                 struct perf_event_header        header;
2743
2744                 u32                             pid;
2745                 u32                             tid;
2746                 u64                             start;
2747                 u64                             len;
2748                 u64                             pgoff;
2749         } event;
2750 };
2751
2752 static void perf_counter_mmap_output(struct perf_counter *counter,
2753                                      struct perf_mmap_event *mmap_event)
2754 {
2755         struct perf_output_handle handle;
2756         int size = mmap_event->event.header.size;
2757         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2758
2759         if (ret)
2760                 return;
2761
2762         mmap_event->event.pid = perf_counter_pid(counter, current);
2763         mmap_event->event.tid = perf_counter_tid(counter, current);
2764
2765         perf_output_put(&handle, mmap_event->event);
2766         perf_output_copy(&handle, mmap_event->file_name,
2767                                    mmap_event->file_size);
2768         perf_output_end(&handle);
2769 }
2770
2771 static int perf_counter_mmap_match(struct perf_counter *counter,
2772                                    struct perf_mmap_event *mmap_event)
2773 {
2774         if (counter->attr.mmap)
2775                 return 1;
2776
2777         return 0;
2778 }
2779
2780 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2781                                   struct perf_mmap_event *mmap_event)
2782 {
2783         struct perf_counter *counter;
2784
2785         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2786                 return;
2787
2788         rcu_read_lock();
2789         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2790                 if (perf_counter_mmap_match(counter, mmap_event))
2791                         perf_counter_mmap_output(counter, mmap_event);
2792         }
2793         rcu_read_unlock();
2794 }
2795
2796 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2797 {
2798         struct perf_cpu_context *cpuctx;
2799         struct perf_counter_context *ctx;
2800         struct vm_area_struct *vma = mmap_event->vma;
2801         struct file *file = vma->vm_file;
2802         unsigned int size;
2803         char tmp[16];
2804         char *buf = NULL;
2805         const char *name;
2806
2807         if (file) {
2808                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2809                 if (!buf) {
2810                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2811                         goto got_name;
2812                 }
2813                 name = d_path(&file->f_path, buf, PATH_MAX);
2814                 if (IS_ERR(name)) {
2815                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2816                         goto got_name;
2817                 }
2818         } else {
2819                 name = arch_vma_name(mmap_event->vma);
2820                 if (name)
2821                         goto got_name;
2822
2823                 if (!vma->vm_mm) {
2824                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
2825                         goto got_name;
2826                 }
2827
2828                 name = strncpy(tmp, "//anon", sizeof(tmp));
2829                 goto got_name;
2830         }
2831
2832 got_name:
2833         size = ALIGN(strlen(name)+1, sizeof(u64));
2834
2835         mmap_event->file_name = name;
2836         mmap_event->file_size = size;
2837
2838         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2839
2840         cpuctx = &get_cpu_var(perf_cpu_context);
2841         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2842         put_cpu_var(perf_cpu_context);
2843
2844         rcu_read_lock();
2845         /*
2846          * doesn't really matter which of the child contexts the
2847          * events ends up in.
2848          */
2849         ctx = rcu_dereference(current->perf_counter_ctxp);
2850         if (ctx)
2851                 perf_counter_mmap_ctx(ctx, mmap_event);
2852         rcu_read_unlock();
2853
2854         kfree(buf);
2855 }
2856
2857 void __perf_counter_mmap(struct vm_area_struct *vma)
2858 {
2859         struct perf_mmap_event mmap_event;
2860
2861         if (!atomic_read(&nr_mmap_counters))
2862                 return;
2863
2864         mmap_event = (struct perf_mmap_event){
2865                 .vma    = vma,
2866                 .event  = {
2867                         .header = { .type = PERF_EVENT_MMAP, },
2868                         .start  = vma->vm_start,
2869                         .len    = vma->vm_end - vma->vm_start,
2870                         .pgoff  = vma->vm_pgoff,
2871                 },
2872         };
2873
2874         perf_counter_mmap_event(&mmap_event);
2875 }
2876
2877 /*
2878  * Log sample_period changes so that analyzing tools can re-normalize the
2879  * event flow.
2880  */
2881
2882 struct freq_event {
2883         struct perf_event_header        header;
2884         u64                             time;
2885         u64                             id;
2886         u64                             period;
2887 };
2888
2889 static void perf_log_period(struct perf_counter *counter, u64 period)
2890 {
2891         struct perf_output_handle handle;
2892         struct freq_event event;
2893         int ret;
2894
2895         if (counter->hw.sample_period == period)
2896                 return;
2897
2898         if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
2899                 return;
2900
2901         event = (struct freq_event) {
2902                 .header = {
2903                         .type = PERF_EVENT_PERIOD,
2904                         .misc = 0,
2905                         .size = sizeof(event),
2906                 },
2907                 .time = sched_clock(),
2908                 .id = counter->id,
2909                 .period = period,
2910         };
2911
2912         ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
2913         if (ret)
2914                 return;
2915
2916         perf_output_put(&handle, event);
2917         perf_output_end(&handle);
2918 }
2919
2920 /*
2921  * IRQ throttle logging
2922  */
2923
2924 static void perf_log_throttle(struct perf_counter *counter, int enable)
2925 {
2926         struct perf_output_handle handle;
2927         int ret;
2928
2929         struct {
2930                 struct perf_event_header        header;
2931                 u64                             time;
2932         } throttle_event = {
2933                 .header = {
2934                         .type = PERF_EVENT_THROTTLE + 1,
2935                         .misc = 0,
2936                         .size = sizeof(throttle_event),
2937                 },
2938                 .time = sched_clock(),
2939         };
2940
2941         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2942         if (ret)
2943                 return;
2944
2945         perf_output_put(&handle, throttle_event);
2946         perf_output_end(&handle);
2947 }
2948
2949 /*
2950  * Generic counter overflow handling.
2951  */
2952
2953 int perf_counter_overflow(struct perf_counter *counter, int nmi,
2954                           struct perf_sample_data *data)
2955 {
2956         int events = atomic_read(&counter->event_limit);
2957         int throttle = counter->pmu->unthrottle != NULL;
2958         struct hw_perf_counter *hwc = &counter->hw;
2959         int ret = 0;
2960
2961         if (!throttle) {
2962                 hwc->interrupts++;
2963         } else {
2964                 if (hwc->interrupts != MAX_INTERRUPTS) {
2965                         hwc->interrupts++;
2966                         if (HZ * hwc->interrupts > (u64)sysctl_perf_counter_limit) {
2967                                 hwc->interrupts = MAX_INTERRUPTS;
2968                                 perf_log_throttle(counter, 0);
2969                                 ret = 1;
2970                         }
2971                 } else {
2972                         /*
2973                          * Keep re-disabling counters even though on the previous
2974                          * pass we disabled it - just in case we raced with a
2975                          * sched-in and the counter got enabled again:
2976                          */
2977                         ret = 1;
2978                 }
2979         }
2980
2981         if (counter->attr.freq) {
2982                 u64 now = sched_clock();
2983                 s64 delta = now - hwc->freq_stamp;
2984
2985                 hwc->freq_stamp = now;
2986
2987                 if (delta > 0 && delta < TICK_NSEC)
2988                         perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
2989         }
2990
2991         /*
2992          * XXX event_limit might not quite work as expected on inherited
2993          * counters
2994          */
2995
2996         counter->pending_kill = POLL_IN;
2997         if (events && atomic_dec_and_test(&counter->event_limit)) {
2998                 ret = 1;
2999                 counter->pending_kill = POLL_HUP;
3000                 if (nmi) {
3001                         counter->pending_disable = 1;
3002                         perf_pending_queue(&counter->pending,
3003                                            perf_pending_counter);
3004                 } else
3005                         perf_counter_disable(counter);
3006         }
3007
3008         perf_counter_output(counter, nmi, data);
3009         return ret;
3010 }
3011
3012 /*
3013  * Generic software counter infrastructure
3014  */
3015
3016 static void perf_swcounter_update(struct perf_counter *counter)
3017 {
3018         struct hw_perf_counter *hwc = &counter->hw;
3019         u64 prev, now;
3020         s64 delta;
3021
3022 again:
3023         prev = atomic64_read(&hwc->prev_count);
3024         now = atomic64_read(&hwc->count);
3025         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3026                 goto again;
3027
3028         delta = now - prev;
3029
3030         atomic64_add(delta, &counter->count);
3031         atomic64_sub(delta, &hwc->period_left);
3032 }
3033
3034 static void perf_swcounter_set_period(struct perf_counter *counter)
3035 {
3036         struct hw_perf_counter *hwc = &counter->hw;
3037         s64 left = atomic64_read(&hwc->period_left);
3038         s64 period = hwc->sample_period;
3039
3040         if (unlikely(left <= -period)) {
3041                 left = period;
3042                 atomic64_set(&hwc->period_left, left);
3043                 hwc->last_period = period;
3044         }
3045
3046         if (unlikely(left <= 0)) {
3047                 left += period;
3048                 atomic64_add(period, &hwc->period_left);
3049                 hwc->last_period = period;
3050         }
3051
3052         atomic64_set(&hwc->prev_count, -left);
3053         atomic64_set(&hwc->count, -left);
3054 }
3055
3056 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3057 {
3058         enum hrtimer_restart ret = HRTIMER_RESTART;
3059         struct perf_sample_data data;
3060         struct perf_counter *counter;
3061         u64 period;
3062
3063         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3064         counter->pmu->read(counter);
3065
3066         data.addr = 0;
3067         data.regs = get_irq_regs();
3068         /*
3069          * In case we exclude kernel IPs or are somehow not in interrupt
3070          * context, provide the next best thing, the user IP.
3071          */
3072         if ((counter->attr.exclude_kernel || !data.regs) &&
3073                         !counter->attr.exclude_user)
3074                 data.regs = task_pt_regs(current);
3075
3076         if (data.regs) {
3077                 if (perf_counter_overflow(counter, 0, &data))
3078                         ret = HRTIMER_NORESTART;
3079         }
3080
3081         period = max_t(u64, 10000, counter->hw.sample_period);
3082         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3083
3084         return ret;
3085 }
3086
3087 static void perf_swcounter_overflow(struct perf_counter *counter,
3088                                     int nmi, struct pt_regs *regs, u64 addr)
3089 {
3090         struct perf_sample_data data = {
3091                 .regs   = regs,
3092                 .addr   = addr,
3093                 .period = counter->hw.last_period,
3094         };
3095
3096         perf_swcounter_update(counter);
3097         perf_swcounter_set_period(counter);
3098         if (perf_counter_overflow(counter, nmi, &data))
3099                 /* soft-disable the counter */
3100                 ;
3101
3102 }
3103
3104 static int perf_swcounter_is_counting(struct perf_counter *counter)
3105 {
3106         struct perf_counter_context *ctx;
3107         unsigned long flags;
3108         int count;
3109
3110         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3111                 return 1;
3112
3113         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3114                 return 0;
3115
3116         /*
3117          * If the counter is inactive, it could be just because
3118          * its task is scheduled out, or because it's in a group
3119          * which could not go on the PMU.  We want to count in
3120          * the first case but not the second.  If the context is
3121          * currently active then an inactive software counter must
3122          * be the second case.  If it's not currently active then
3123          * we need to know whether the counter was active when the
3124          * context was last active, which we can determine by
3125          * comparing counter->tstamp_stopped with ctx->time.
3126          *
3127          * We are within an RCU read-side critical section,
3128          * which protects the existence of *ctx.
3129          */
3130         ctx = counter->ctx;
3131         spin_lock_irqsave(&ctx->lock, flags);
3132         count = 1;
3133         /* Re-check state now we have the lock */
3134         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3135             counter->ctx->is_active ||
3136             counter->tstamp_stopped < ctx->time)
3137                 count = 0;
3138         spin_unlock_irqrestore(&ctx->lock, flags);
3139         return count;
3140 }
3141
3142 static int perf_swcounter_match(struct perf_counter *counter,
3143                                 enum perf_event_types type,
3144                                 u32 event, struct pt_regs *regs)
3145 {
3146         if (!perf_swcounter_is_counting(counter))
3147                 return 0;
3148
3149         if (counter->attr.type != type)
3150                 return 0;
3151         if (counter->attr.config != event)
3152                 return 0;
3153
3154         if (regs) {
3155                 if (counter->attr.exclude_user && user_mode(regs))
3156                         return 0;
3157
3158                 if (counter->attr.exclude_kernel && !user_mode(regs))
3159                         return 0;
3160         }
3161
3162         return 1;
3163 }
3164
3165 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3166                                int nmi, struct pt_regs *regs, u64 addr)
3167 {
3168         int neg = atomic64_add_negative(nr, &counter->hw.count);
3169
3170         if (counter->hw.sample_period && !neg && regs)
3171                 perf_swcounter_overflow(counter, nmi, regs, addr);
3172 }
3173
3174 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3175                                      enum perf_event_types type, u32 event,
3176                                      u64 nr, int nmi, struct pt_regs *regs,
3177                                      u64 addr)
3178 {
3179         struct perf_counter *counter;
3180
3181         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3182                 return;
3183
3184         rcu_read_lock();
3185         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3186                 if (perf_swcounter_match(counter, type, event, regs))
3187                         perf_swcounter_add(counter, nr, nmi, regs, addr);
3188         }
3189         rcu_read_unlock();
3190 }
3191
3192 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3193 {
3194         if (in_nmi())
3195                 return &cpuctx->recursion[3];
3196
3197         if (in_irq())
3198                 return &cpuctx->recursion[2];
3199
3200         if (in_softirq())
3201                 return &cpuctx->recursion[1];
3202
3203         return &cpuctx->recursion[0];
3204 }
3205
3206 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3207                                    u64 nr, int nmi, struct pt_regs *regs,
3208                                    u64 addr)
3209 {
3210         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3211         int *recursion = perf_swcounter_recursion_context(cpuctx);
3212         struct perf_counter_context *ctx;
3213
3214         if (*recursion)
3215                 goto out;
3216
3217         (*recursion)++;
3218         barrier();
3219
3220         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3221                                  nr, nmi, regs, addr);
3222         rcu_read_lock();
3223         /*
3224          * doesn't really matter which of the child contexts the
3225          * events ends up in.
3226          */
3227         ctx = rcu_dereference(current->perf_counter_ctxp);
3228         if (ctx)
3229                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3230         rcu_read_unlock();
3231
3232         barrier();
3233         (*recursion)--;
3234
3235 out:
3236         put_cpu_var(perf_cpu_context);
3237 }
3238
3239 void
3240 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3241 {
3242         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3243 }
3244
3245 static void perf_swcounter_read(struct perf_counter *counter)
3246 {
3247         perf_swcounter_update(counter);
3248 }
3249
3250 static int perf_swcounter_enable(struct perf_counter *counter)
3251 {
3252         perf_swcounter_set_period(counter);
3253         return 0;
3254 }
3255
3256 static void perf_swcounter_disable(struct perf_counter *counter)
3257 {
3258         perf_swcounter_update(counter);
3259 }
3260
3261 static const struct pmu perf_ops_generic = {
3262         .enable         = perf_swcounter_enable,
3263         .disable        = perf_swcounter_disable,
3264         .read           = perf_swcounter_read,
3265 };
3266
3267 /*
3268  * Software counter: cpu wall time clock
3269  */
3270
3271 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3272 {
3273         int cpu = raw_smp_processor_id();
3274         s64 prev;
3275         u64 now;
3276
3277         now = cpu_clock(cpu);
3278         prev = atomic64_read(&counter->hw.prev_count);
3279         atomic64_set(&counter->hw.prev_count, now);
3280         atomic64_add(now - prev, &counter->count);
3281 }
3282
3283 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3284 {
3285         struct hw_perf_counter *hwc = &counter->hw;
3286         int cpu = raw_smp_processor_id();
3287
3288         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3289         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3290         hwc->hrtimer.function = perf_swcounter_hrtimer;
3291         if (hwc->sample_period) {
3292                 u64 period = max_t(u64, 10000, hwc->sample_period);
3293                 __hrtimer_start_range_ns(&hwc->hrtimer,
3294                                 ns_to_ktime(period), 0,
3295                                 HRTIMER_MODE_REL, 0);
3296         }
3297
3298         return 0;
3299 }
3300
3301 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3302 {
3303         if (counter->hw.sample_period)
3304                 hrtimer_cancel(&counter->hw.hrtimer);
3305         cpu_clock_perf_counter_update(counter);
3306 }
3307
3308 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3309 {
3310         cpu_clock_perf_counter_update(counter);
3311 }
3312
3313 static const struct pmu perf_ops_cpu_clock = {
3314         .enable         = cpu_clock_perf_counter_enable,
3315         .disable        = cpu_clock_perf_counter_disable,
3316         .read           = cpu_clock_perf_counter_read,
3317 };
3318
3319 /*
3320  * Software counter: task time clock
3321  */
3322
3323 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3324 {
3325         u64 prev;
3326         s64 delta;
3327
3328         prev = atomic64_xchg(&counter->hw.prev_count, now);
3329         delta = now - prev;
3330         atomic64_add(delta, &counter->count);
3331 }
3332
3333 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3334 {
3335         struct hw_perf_counter *hwc = &counter->hw;
3336         u64 now;
3337
3338         now = counter->ctx->time;
3339
3340         atomic64_set(&hwc->prev_count, now);
3341         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3342         hwc->hrtimer.function = perf_swcounter_hrtimer;
3343         if (hwc->sample_period) {
3344                 u64 period = max_t(u64, 10000, hwc->sample_period);
3345                 __hrtimer_start_range_ns(&hwc->hrtimer,
3346                                 ns_to_ktime(period), 0,
3347                                 HRTIMER_MODE_REL, 0);
3348         }
3349
3350         return 0;
3351 }
3352
3353 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3354 {
3355         if (counter->hw.sample_period)
3356                 hrtimer_cancel(&counter->hw.hrtimer);
3357         task_clock_perf_counter_update(counter, counter->ctx->time);
3358
3359 }
3360
3361 static void task_clock_perf_counter_read(struct perf_counter *counter)
3362 {
3363         u64 time;
3364
3365         if (!in_nmi()) {
3366                 update_context_time(counter->ctx);
3367                 time = counter->ctx->time;
3368         } else {
3369                 u64 now = perf_clock();
3370                 u64 delta = now - counter->ctx->timestamp;
3371                 time = counter->ctx->time + delta;
3372         }
3373
3374         task_clock_perf_counter_update(counter, time);
3375 }
3376
3377 static const struct pmu perf_ops_task_clock = {
3378         .enable         = task_clock_perf_counter_enable,
3379         .disable        = task_clock_perf_counter_disable,
3380         .read           = task_clock_perf_counter_read,
3381 };
3382
3383 /*
3384  * Software counter: cpu migrations
3385  */
3386 void perf_counter_task_migration(struct task_struct *task, int cpu)
3387 {
3388         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3389         struct perf_counter_context *ctx;
3390
3391         perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3392                                  PERF_COUNT_CPU_MIGRATIONS,
3393                                  1, 1, NULL, 0);
3394
3395         ctx = perf_pin_task_context(task);
3396         if (ctx) {
3397                 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3398                                          PERF_COUNT_CPU_MIGRATIONS,
3399                                          1, 1, NULL, 0);
3400                 perf_unpin_context(ctx);
3401         }
3402 }
3403
3404 #ifdef CONFIG_EVENT_PROFILE
3405 void perf_tpcounter_event(int event_id)
3406 {
3407         struct pt_regs *regs = get_irq_regs();
3408
3409         if (!regs)
3410                 regs = task_pt_regs(current);
3411
3412         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3413 }
3414 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3415
3416 extern int ftrace_profile_enable(int);
3417 extern void ftrace_profile_disable(int);
3418
3419 static void tp_perf_counter_destroy(struct perf_counter *counter)
3420 {
3421         ftrace_profile_disable(perf_event_id(&counter->attr));
3422 }
3423
3424 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3425 {
3426         int event_id = perf_event_id(&counter->attr);
3427         int ret;
3428
3429         ret = ftrace_profile_enable(event_id);
3430         if (ret)
3431                 return NULL;
3432
3433         counter->destroy = tp_perf_counter_destroy;
3434
3435         return &perf_ops_generic;
3436 }
3437 #else
3438 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3439 {
3440         return NULL;
3441 }
3442 #endif
3443
3444 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3445 {
3446         const struct pmu *pmu = NULL;
3447
3448         /*
3449          * Software counters (currently) can't in general distinguish
3450          * between user, kernel and hypervisor events.
3451          * However, context switches and cpu migrations are considered
3452          * to be kernel events, and page faults are never hypervisor
3453          * events.
3454          */
3455         switch (counter->attr.config) {
3456         case PERF_COUNT_CPU_CLOCK:
3457                 pmu = &perf_ops_cpu_clock;
3458
3459                 break;
3460         case PERF_COUNT_TASK_CLOCK:
3461                 /*
3462                  * If the user instantiates this as a per-cpu counter,
3463                  * use the cpu_clock counter instead.
3464                  */
3465                 if (counter->ctx->task)
3466                         pmu = &perf_ops_task_clock;
3467                 else
3468                         pmu = &perf_ops_cpu_clock;
3469
3470                 break;
3471         case PERF_COUNT_PAGE_FAULTS:
3472         case PERF_COUNT_PAGE_FAULTS_MIN:
3473         case PERF_COUNT_PAGE_FAULTS_MAJ:
3474         case PERF_COUNT_CONTEXT_SWITCHES:
3475         case PERF_COUNT_CPU_MIGRATIONS:
3476                 pmu = &perf_ops_generic;
3477                 break;
3478         }
3479
3480         return pmu;
3481 }
3482
3483 /*
3484  * Allocate and initialize a counter structure
3485  */
3486 static struct perf_counter *
3487 perf_counter_alloc(struct perf_counter_attr *attr,
3488                    int cpu,
3489                    struct perf_counter_context *ctx,
3490                    struct perf_counter *group_leader,
3491                    gfp_t gfpflags)
3492 {
3493         const struct pmu *pmu;
3494         struct perf_counter *counter;
3495         struct hw_perf_counter *hwc;
3496         long err;
3497
3498         counter = kzalloc(sizeof(*counter), gfpflags);
3499         if (!counter)
3500                 return ERR_PTR(-ENOMEM);
3501
3502         /*
3503          * Single counters are their own group leaders, with an
3504          * empty sibling list:
3505          */
3506         if (!group_leader)
3507                 group_leader = counter;
3508
3509         mutex_init(&counter->child_mutex);
3510         INIT_LIST_HEAD(&counter->child_list);
3511
3512         INIT_LIST_HEAD(&counter->list_entry);
3513         INIT_LIST_HEAD(&counter->event_entry);
3514         INIT_LIST_HEAD(&counter->sibling_list);
3515         init_waitqueue_head(&counter->waitq);
3516
3517         mutex_init(&counter->mmap_mutex);
3518
3519         counter->cpu            = cpu;
3520         counter->attr           = *attr;
3521         counter->group_leader   = group_leader;
3522         counter->pmu            = NULL;
3523         counter->ctx            = ctx;
3524         counter->oncpu          = -1;
3525
3526         counter->ns             = get_pid_ns(current->nsproxy->pid_ns);
3527         counter->id             = atomic64_inc_return(&perf_counter_id);
3528
3529         counter->state          = PERF_COUNTER_STATE_INACTIVE;
3530
3531         if (attr->disabled)
3532                 counter->state = PERF_COUNTER_STATE_OFF;
3533
3534         pmu = NULL;
3535
3536         hwc = &counter->hw;
3537         hwc->sample_period = attr->sample_period;
3538         if (attr->freq && attr->sample_freq)
3539                 hwc->sample_period = 1;
3540
3541         atomic64_set(&hwc->period_left, hwc->sample_period);
3542
3543         /*
3544          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3545          */
3546         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3547                 goto done;
3548
3549         if (attr->type == PERF_TYPE_RAW) {
3550                 pmu = hw_perf_counter_init(counter);
3551                 goto done;
3552         }
3553
3554         switch (attr->type) {
3555         case PERF_TYPE_HARDWARE:
3556         case PERF_TYPE_HW_CACHE:
3557                 pmu = hw_perf_counter_init(counter);
3558                 break;
3559
3560         case PERF_TYPE_SOFTWARE:
3561                 pmu = sw_perf_counter_init(counter);
3562                 break;
3563
3564         case PERF_TYPE_TRACEPOINT:
3565                 pmu = tp_perf_counter_init(counter);
3566                 break;
3567         }
3568 done:
3569         err = 0;
3570         if (!pmu)
3571                 err = -EINVAL;
3572         else if (IS_ERR(pmu))
3573                 err = PTR_ERR(pmu);
3574
3575         if (err) {
3576                 if (counter->ns)
3577                         put_pid_ns(counter->ns);
3578                 kfree(counter);
3579                 return ERR_PTR(err);
3580         }
3581
3582         counter->pmu = pmu;
3583
3584         atomic_inc(&nr_counters);
3585         if (counter->attr.mmap)
3586                 atomic_inc(&nr_mmap_counters);
3587         if (counter->attr.comm)
3588                 atomic_inc(&nr_comm_counters);
3589
3590         return counter;
3591 }
3592
3593 /**
3594  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3595  *
3596  * @attr_uptr:  event type attributes for monitoring/sampling
3597  * @pid:                target pid
3598  * @cpu:                target cpu
3599  * @group_fd:           group leader counter fd
3600  */
3601 SYSCALL_DEFINE5(perf_counter_open,
3602                 const struct perf_counter_attr __user *, attr_uptr,
3603                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3604 {
3605         struct perf_counter *counter, *group_leader;
3606         struct perf_counter_attr attr;
3607         struct perf_counter_context *ctx;
3608         struct file *counter_file = NULL;
3609         struct file *group_file = NULL;
3610         int fput_needed = 0;
3611         int fput_needed2 = 0;
3612         int ret;
3613
3614         /* for future expandability... */
3615         if (flags)
3616                 return -EINVAL;
3617
3618         if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0)
3619                 return -EFAULT;
3620
3621         /*
3622          * Get the target context (task or percpu):
3623          */
3624         ctx = find_get_context(pid, cpu);
3625         if (IS_ERR(ctx))
3626                 return PTR_ERR(ctx);
3627
3628         /*
3629          * Look up the group leader (we will attach this counter to it):
3630          */
3631         group_leader = NULL;
3632         if (group_fd != -1) {
3633                 ret = -EINVAL;
3634                 group_file = fget_light(group_fd, &fput_needed);
3635                 if (!group_file)
3636                         goto err_put_context;
3637                 if (group_file->f_op != &perf_fops)
3638                         goto err_put_context;
3639
3640                 group_leader = group_file->private_data;
3641                 /*
3642                  * Do not allow a recursive hierarchy (this new sibling
3643                  * becoming part of another group-sibling):
3644                  */
3645                 if (group_leader->group_leader != group_leader)
3646                         goto err_put_context;
3647                 /*
3648                  * Do not allow to attach to a group in a different
3649                  * task or CPU context:
3650                  */
3651                 if (group_leader->ctx != ctx)
3652                         goto err_put_context;
3653                 /*
3654                  * Only a group leader can be exclusive or pinned
3655                  */
3656                 if (attr.exclusive || attr.pinned)
3657                         goto err_put_context;
3658         }
3659
3660         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3661                                      GFP_KERNEL);
3662         ret = PTR_ERR(counter);
3663         if (IS_ERR(counter))
3664                 goto err_put_context;
3665
3666         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3667         if (ret < 0)
3668                 goto err_free_put_context;
3669
3670         counter_file = fget_light(ret, &fput_needed2);
3671         if (!counter_file)
3672                 goto err_free_put_context;
3673
3674         counter->filp = counter_file;
3675         WARN_ON_ONCE(ctx->parent_ctx);
3676         mutex_lock(&ctx->mutex);
3677         perf_install_in_context(ctx, counter, cpu);
3678         ++ctx->generation;
3679         mutex_unlock(&ctx->mutex);
3680
3681         counter->owner = current;
3682         get_task_struct(current);
3683         mutex_lock(&current->perf_counter_mutex);
3684         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3685         mutex_unlock(&current->perf_counter_mutex);
3686
3687         fput_light(counter_file, fput_needed2);
3688
3689 out_fput:
3690         fput_light(group_file, fput_needed);
3691
3692         return ret;
3693
3694 err_free_put_context:
3695         kfree(counter);
3696
3697 err_put_context:
3698         put_ctx(ctx);
3699
3700         goto out_fput;
3701 }
3702
3703 /*
3704  * inherit a counter from parent task to child task:
3705  */
3706 static struct perf_counter *
3707 inherit_counter(struct perf_counter *parent_counter,
3708               struct task_struct *parent,
3709               struct perf_counter_context *parent_ctx,
3710               struct task_struct *child,
3711               struct perf_counter *group_leader,
3712               struct perf_counter_context *child_ctx)
3713 {
3714         struct perf_counter *child_counter;
3715
3716         /*
3717          * Instead of creating recursive hierarchies of counters,
3718          * we link inherited counters back to the original parent,
3719          * which has a filp for sure, which we use as the reference
3720          * count:
3721          */
3722         if (parent_counter->parent)
3723                 parent_counter = parent_counter->parent;
3724
3725         child_counter = perf_counter_alloc(&parent_counter->attr,
3726                                            parent_counter->cpu, child_ctx,
3727                                            group_leader, GFP_KERNEL);
3728         if (IS_ERR(child_counter))
3729                 return child_counter;
3730         get_ctx(child_ctx);
3731
3732         /*
3733          * Make the child state follow the state of the parent counter,
3734          * not its attr.disabled bit.  We hold the parent's mutex,
3735          * so we won't race with perf_counter_{en, dis}able_family.
3736          */
3737         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3738                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3739         else
3740                 child_counter->state = PERF_COUNTER_STATE_OFF;
3741
3742         if (parent_counter->attr.freq)
3743                 child_counter->hw.sample_period = parent_counter->hw.sample_period;
3744
3745         /*
3746          * Link it up in the child's context:
3747          */
3748         add_counter_to_ctx(child_counter, child_ctx);
3749
3750         child_counter->parent = parent_counter;
3751         /*
3752          * inherit into child's child as well:
3753          */
3754         child_counter->attr.inherit = 1;
3755
3756         /*
3757          * Get a reference to the parent filp - we will fput it
3758          * when the child counter exits. This is safe to do because
3759          * we are in the parent and we know that the filp still
3760          * exists and has a nonzero count:
3761          */
3762         atomic_long_inc(&parent_counter->filp->f_count);
3763
3764         /*
3765          * Link this into the parent counter's child list
3766          */
3767         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3768         mutex_lock(&parent_counter->child_mutex);
3769         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3770         mutex_unlock(&parent_counter->child_mutex);
3771
3772         return child_counter;
3773 }
3774
3775 static int inherit_group(struct perf_counter *parent_counter,
3776               struct task_struct *parent,
3777               struct perf_counter_context *parent_ctx,
3778               struct task_struct *child,
3779               struct perf_counter_context *child_ctx)
3780 {
3781         struct perf_counter *leader;
3782         struct perf_counter *sub;
3783         struct perf_counter *child_ctr;
3784
3785         leader = inherit_counter(parent_counter, parent, parent_ctx,
3786                                  child, NULL, child_ctx);
3787         if (IS_ERR(leader))
3788                 return PTR_ERR(leader);
3789         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3790                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3791                                             child, leader, child_ctx);
3792                 if (IS_ERR(child_ctr))
3793                         return PTR_ERR(child_ctr);
3794         }
3795         return 0;
3796 }
3797
3798 static void sync_child_counter(struct perf_counter *child_counter,
3799                                struct perf_counter *parent_counter)
3800 {
3801         u64 child_val;
3802
3803         child_val = atomic64_read(&child_counter->count);
3804
3805         /*
3806          * Add back the child's count to the parent's count:
3807          */
3808         atomic64_add(child_val, &parent_counter->count);
3809         atomic64_add(child_counter->total_time_enabled,
3810                      &parent_counter->child_total_time_enabled);
3811         atomic64_add(child_counter->total_time_running,
3812                      &parent_counter->child_total_time_running);
3813
3814         /*
3815          * Remove this counter from the parent's list
3816          */
3817         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3818         mutex_lock(&parent_counter->child_mutex);
3819         list_del_init(&child_counter->child_list);
3820         mutex_unlock(&parent_counter->child_mutex);
3821
3822         /*
3823          * Release the parent counter, if this was the last
3824          * reference to it.
3825          */
3826         fput(parent_counter->filp);
3827 }
3828
3829 static void
3830 __perf_counter_exit_task(struct perf_counter *child_counter,
3831                          struct perf_counter_context *child_ctx)
3832 {
3833         struct perf_counter *parent_counter;
3834
3835         update_counter_times(child_counter);
3836         perf_counter_remove_from_context(child_counter);
3837
3838         parent_counter = child_counter->parent;
3839         /*
3840          * It can happen that parent exits first, and has counters
3841          * that are still around due to the child reference. These
3842          * counters need to be zapped - but otherwise linger.
3843          */
3844         if (parent_counter) {
3845                 sync_child_counter(child_counter, parent_counter);
3846                 free_counter(child_counter);
3847         }
3848 }
3849
3850 /*
3851  * When a child task exits, feed back counter values to parent counters.
3852  */
3853 void perf_counter_exit_task(struct task_struct *child)
3854 {
3855         struct perf_counter *child_counter, *tmp;
3856         struct perf_counter_context *child_ctx;
3857         unsigned long flags;
3858
3859         if (likely(!child->perf_counter_ctxp))
3860                 return;
3861
3862         local_irq_save(flags);
3863         /*
3864          * We can't reschedule here because interrupts are disabled,
3865          * and either child is current or it is a task that can't be
3866          * scheduled, so we are now safe from rescheduling changing
3867          * our context.
3868          */
3869         child_ctx = child->perf_counter_ctxp;
3870         __perf_counter_task_sched_out(child_ctx);
3871
3872         /*
3873          * Take the context lock here so that if find_get_context is
3874          * reading child->perf_counter_ctxp, we wait until it has
3875          * incremented the context's refcount before we do put_ctx below.
3876          */
3877         spin_lock(&child_ctx->lock);
3878         child->perf_counter_ctxp = NULL;
3879         if (child_ctx->parent_ctx) {
3880                 /*
3881                  * This context is a clone; unclone it so it can't get
3882                  * swapped to another process while we're removing all
3883                  * the counters from it.
3884                  */
3885                 put_ctx(child_ctx->parent_ctx);
3886                 child_ctx->parent_ctx = NULL;
3887         }
3888         spin_unlock(&child_ctx->lock);
3889         local_irq_restore(flags);
3890
3891         /*
3892          * We can recurse on the same lock type through:
3893          *
3894          *   __perf_counter_exit_task()
3895          *     sync_child_counter()
3896          *       fput(parent_counter->filp)
3897          *         perf_release()
3898          *           mutex_lock(&ctx->mutex)
3899          *
3900          * But since its the parent context it won't be the same instance.
3901          */
3902         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
3903
3904 again:
3905         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3906                                  list_entry)
3907                 __perf_counter_exit_task(child_counter, child_ctx);
3908
3909         /*
3910          * If the last counter was a group counter, it will have appended all
3911          * its siblings to the list, but we obtained 'tmp' before that which
3912          * will still point to the list head terminating the iteration.
3913          */
3914         if (!list_empty(&child_ctx->counter_list))
3915                 goto again;
3916
3917         mutex_unlock(&child_ctx->mutex);
3918
3919         put_ctx(child_ctx);
3920 }
3921
3922 /*
3923  * free an unexposed, unused context as created by inheritance by
3924  * init_task below, used by fork() in case of fail.
3925  */
3926 void perf_counter_free_task(struct task_struct *task)
3927 {
3928         struct perf_counter_context *ctx = task->perf_counter_ctxp;
3929         struct perf_counter *counter, *tmp;
3930
3931         if (!ctx)
3932                 return;
3933
3934         mutex_lock(&ctx->mutex);
3935 again:
3936         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3937                 struct perf_counter *parent = counter->parent;
3938
3939                 if (WARN_ON_ONCE(!parent))
3940                         continue;
3941
3942                 mutex_lock(&parent->child_mutex);
3943                 list_del_init(&counter->child_list);
3944                 mutex_unlock(&parent->child_mutex);
3945
3946                 fput(parent->filp);
3947
3948                 list_del_counter(counter, ctx);
3949                 free_counter(counter);
3950         }
3951
3952         if (!list_empty(&ctx->counter_list))
3953                 goto again;
3954
3955         mutex_unlock(&ctx->mutex);
3956
3957         put_ctx(ctx);
3958 }
3959
3960 /*
3961  * Initialize the perf_counter context in task_struct
3962  */
3963 int perf_counter_init_task(struct task_struct *child)
3964 {
3965         struct perf_counter_context *child_ctx, *parent_ctx;
3966         struct perf_counter_context *cloned_ctx;
3967         struct perf_counter *counter;
3968         struct task_struct *parent = current;
3969         int inherited_all = 1;
3970         int ret = 0;
3971
3972         child->perf_counter_ctxp = NULL;
3973
3974         mutex_init(&child->perf_counter_mutex);
3975         INIT_LIST_HEAD(&child->perf_counter_list);
3976
3977         if (likely(!parent->perf_counter_ctxp))
3978                 return 0;
3979
3980         /*
3981          * This is executed from the parent task context, so inherit
3982          * counters that have been marked for cloning.
3983          * First allocate and initialize a context for the child.
3984          */
3985
3986         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3987         if (!child_ctx)
3988                 return -ENOMEM;
3989
3990         __perf_counter_init_context(child_ctx, child);
3991         child->perf_counter_ctxp = child_ctx;
3992         get_task_struct(child);
3993
3994         /*
3995          * If the parent's context is a clone, pin it so it won't get
3996          * swapped under us.
3997          */
3998         parent_ctx = perf_pin_task_context(parent);
3999
4000         /*
4001          * No need to check if parent_ctx != NULL here; since we saw
4002          * it non-NULL earlier, the only reason for it to become NULL
4003          * is if we exit, and since we're currently in the middle of
4004          * a fork we can't be exiting at the same time.
4005          */
4006
4007         /*
4008          * Lock the parent list. No need to lock the child - not PID
4009          * hashed yet and not running, so nobody can access it.
4010          */
4011         mutex_lock(&parent_ctx->mutex);
4012
4013         /*
4014          * We dont have to disable NMIs - we are only looking at
4015          * the list, not manipulating it:
4016          */
4017         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4018                 if (counter != counter->group_leader)
4019                         continue;
4020
4021                 if (!counter->attr.inherit) {
4022                         inherited_all = 0;
4023                         continue;
4024                 }
4025
4026                 ret = inherit_group(counter, parent, parent_ctx,
4027                                              child, child_ctx);
4028                 if (ret) {
4029                         inherited_all = 0;
4030                         break;
4031                 }
4032         }
4033
4034         if (inherited_all) {
4035                 /*
4036                  * Mark the child context as a clone of the parent
4037                  * context, or of whatever the parent is a clone of.
4038                  * Note that if the parent is a clone, it could get
4039                  * uncloned at any point, but that doesn't matter
4040                  * because the list of counters and the generation
4041                  * count can't have changed since we took the mutex.
4042                  */
4043                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4044                 if (cloned_ctx) {
4045                         child_ctx->parent_ctx = cloned_ctx;
4046                         child_ctx->parent_gen = parent_ctx->parent_gen;
4047                 } else {
4048                         child_ctx->parent_ctx = parent_ctx;
4049                         child_ctx->parent_gen = parent_ctx->generation;
4050                 }
4051                 get_ctx(child_ctx->parent_ctx);
4052         }
4053
4054         mutex_unlock(&parent_ctx->mutex);
4055
4056         perf_unpin_context(parent_ctx);
4057
4058         return ret;
4059 }
4060
4061 static void __cpuinit perf_counter_init_cpu(int cpu)
4062 {
4063         struct perf_cpu_context *cpuctx;
4064
4065         cpuctx = &per_cpu(perf_cpu_context, cpu);
4066         __perf_counter_init_context(&cpuctx->ctx, NULL);
4067
4068         spin_lock(&perf_resource_lock);
4069         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4070         spin_unlock(&perf_resource_lock);
4071
4072         hw_perf_counter_setup(cpu);
4073 }
4074
4075 #ifdef CONFIG_HOTPLUG_CPU
4076 static void __perf_counter_exit_cpu(void *info)
4077 {
4078         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4079         struct perf_counter_context *ctx = &cpuctx->ctx;
4080         struct perf_counter *counter, *tmp;
4081
4082         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4083                 __perf_counter_remove_from_context(counter);
4084 }
4085 static void perf_counter_exit_cpu(int cpu)
4086 {
4087         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4088         struct perf_counter_context *ctx = &cpuctx->ctx;
4089
4090         mutex_lock(&ctx->mutex);
4091         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4092         mutex_unlock(&ctx->mutex);
4093 }
4094 #else
4095 static inline void perf_counter_exit_cpu(int cpu) { }
4096 #endif
4097
4098 static int __cpuinit
4099 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4100 {
4101         unsigned int cpu = (long)hcpu;
4102
4103         switch (action) {
4104
4105         case CPU_UP_PREPARE:
4106         case CPU_UP_PREPARE_FROZEN:
4107                 perf_counter_init_cpu(cpu);
4108                 break;
4109
4110         case CPU_DOWN_PREPARE:
4111         case CPU_DOWN_PREPARE_FROZEN:
4112                 perf_counter_exit_cpu(cpu);
4113                 break;
4114
4115         default:
4116                 break;
4117         }
4118
4119         return NOTIFY_OK;
4120 }
4121
4122 /*
4123  * This has to have a higher priority than migration_notifier in sched.c.
4124  */
4125 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4126         .notifier_call          = perf_cpu_notify,
4127         .priority               = 20,
4128 };
4129
4130 void __init perf_counter_init(void)
4131 {
4132         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4133                         (void *)(long)smp_processor_id());
4134         register_cpu_notifier(&perf_cpu_nb);
4135 }
4136
4137 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4138 {
4139         return sprintf(buf, "%d\n", perf_reserved_percpu);
4140 }
4141
4142 static ssize_t
4143 perf_set_reserve_percpu(struct sysdev_class *class,
4144                         const char *buf,
4145                         size_t count)
4146 {
4147         struct perf_cpu_context *cpuctx;
4148         unsigned long val;
4149         int err, cpu, mpt;
4150
4151         err = strict_strtoul(buf, 10, &val);
4152         if (err)
4153                 return err;
4154         if (val > perf_max_counters)
4155                 return -EINVAL;
4156
4157         spin_lock(&perf_resource_lock);
4158         perf_reserved_percpu = val;
4159         for_each_online_cpu(cpu) {
4160                 cpuctx = &per_cpu(perf_cpu_context, cpu);
4161                 spin_lock_irq(&cpuctx->ctx.lock);
4162                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4163                           perf_max_counters - perf_reserved_percpu);
4164                 cpuctx->max_pertask = mpt;
4165                 spin_unlock_irq(&cpuctx->ctx.lock);
4166         }
4167         spin_unlock(&perf_resource_lock);
4168
4169         return count;
4170 }
4171
4172 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4173 {
4174         return sprintf(buf, "%d\n", perf_overcommit);
4175 }
4176
4177 static ssize_t
4178 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4179 {
4180         unsigned long val;
4181         int err;
4182
4183         err = strict_strtoul(buf, 10, &val);
4184         if (err)
4185                 return err;
4186         if (val > 1)
4187                 return -EINVAL;
4188
4189         spin_lock(&perf_resource_lock);
4190         perf_overcommit = val;
4191         spin_unlock(&perf_resource_lock);
4192
4193         return count;
4194 }
4195
4196 static SYSDEV_CLASS_ATTR(
4197                                 reserve_percpu,
4198                                 0644,
4199                                 perf_show_reserve_percpu,
4200                                 perf_set_reserve_percpu
4201                         );
4202
4203 static SYSDEV_CLASS_ATTR(
4204                                 overcommit,
4205                                 0644,
4206                                 perf_show_overcommit,
4207                                 perf_set_overcommit
4208                         );
4209
4210 static struct attribute *perfclass_attrs[] = {
4211         &attr_reserve_percpu.attr,
4212         &attr_overcommit.attr,
4213         NULL
4214 };
4215
4216 static struct attribute_group perfclass_attr_group = {
4217         .attrs                  = perfclass_attrs,
4218         .name                   = "perf_counters",
4219 };
4220
4221 static int __init perf_counter_sysfs_init(void)
4222 {
4223         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4224                                   &perfclass_attr_group);
4225 }
4226 device_initcall(perf_counter_sysfs_init);