perf_counter: update mmap() counter read
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33  * Each CPU has a list of per CPU counters:
34  */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42  * Mutex for (sysadmin-configurable) counter reservations:
43  */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47  * Architecture provided APIs - weak aliases:
48  */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52         return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void)           { return 0; }
56 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59                struct perf_cpu_context *cpuctx,
60                struct perf_counter_context *ctx, int cpu)
61 {
62         return 0;
63 }
64
65 void __weak perf_counter_print_debug(void)      { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70         struct perf_counter *group_leader = counter->group_leader;
71
72         /*
73          * Depending on whether it is a standalone or sibling counter,
74          * add it straight to the context's counter list, or to the group
75          * leader's sibling list:
76          */
77         if (counter->group_leader == counter)
78                 list_add_tail(&counter->list_entry, &ctx->counter_list);
79         else {
80                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81                 group_leader->nr_siblings++;
82         }
83
84         list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90         struct perf_counter *sibling, *tmp;
91
92         list_del_init(&counter->list_entry);
93         list_del_rcu(&counter->event_entry);
94
95         if (counter->group_leader != counter)
96                 counter->group_leader->nr_siblings--;
97
98         /*
99          * If this was a group counter with sibling counters then
100          * upgrade the siblings to singleton counters by adding them
101          * to the context list directly:
102          */
103         list_for_each_entry_safe(sibling, tmp,
104                                  &counter->sibling_list, list_entry) {
105
106                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107                 sibling->group_leader = sibling;
108         }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113                   struct perf_cpu_context *cpuctx,
114                   struct perf_counter_context *ctx)
115 {
116         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117                 return;
118
119         counter->state = PERF_COUNTER_STATE_INACTIVE;
120         counter->tstamp_stopped = ctx->time_now;
121         counter->hw_ops->disable(counter);
122         counter->oncpu = -1;
123
124         if (!is_software_counter(counter))
125                 cpuctx->active_oncpu--;
126         ctx->nr_active--;
127         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128                 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133                 struct perf_cpu_context *cpuctx,
134                 struct perf_counter_context *ctx)
135 {
136         struct perf_counter *counter;
137
138         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139                 return;
140
141         counter_sched_out(group_counter, cpuctx, ctx);
142
143         /*
144          * Schedule out siblings (if any):
145          */
146         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147                 counter_sched_out(counter, cpuctx, ctx);
148
149         if (group_counter->hw_event.exclusive)
150                 cpuctx->exclusive = 0;
151 }
152
153 /*
154  * Cross CPU call to remove a performance counter
155  *
156  * We disable the counter on the hardware level first. After that we
157  * remove it from the context list.
158  */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162         struct perf_counter *counter = info;
163         struct perf_counter_context *ctx = counter->ctx;
164         unsigned long flags;
165         u64 perf_flags;
166
167         /*
168          * If this is a task context, we need to check whether it is
169          * the current task context of this cpu. If not it has been
170          * scheduled out before the smp call arrived.
171          */
172         if (ctx->task && cpuctx->task_ctx != ctx)
173                 return;
174
175         curr_rq_lock_irq_save(&flags);
176         spin_lock(&ctx->lock);
177
178         counter_sched_out(counter, cpuctx, ctx);
179
180         counter->task = NULL;
181         ctx->nr_counters--;
182
183         /*
184          * Protect the list operation against NMI by disabling the
185          * counters on a global level. NOP for non NMI based counters.
186          */
187         perf_flags = hw_perf_save_disable();
188         list_del_counter(counter, ctx);
189         hw_perf_restore(perf_flags);
190
191         if (!ctx->task) {
192                 /*
193                  * Allow more per task counters with respect to the
194                  * reservation:
195                  */
196                 cpuctx->max_pertask =
197                         min(perf_max_counters - ctx->nr_counters,
198                             perf_max_counters - perf_reserved_percpu);
199         }
200
201         spin_unlock(&ctx->lock);
202         curr_rq_unlock_irq_restore(&flags);
203 }
204
205
206 /*
207  * Remove the counter from a task's (or a CPU's) list of counters.
208  *
209  * Must be called with counter->mutex and ctx->mutex held.
210  *
211  * CPU counters are removed with a smp call. For task counters we only
212  * call when the task is on a CPU.
213  */
214 static void perf_counter_remove_from_context(struct perf_counter *counter)
215 {
216         struct perf_counter_context *ctx = counter->ctx;
217         struct task_struct *task = ctx->task;
218
219         if (!task) {
220                 /*
221                  * Per cpu counters are removed via an smp call and
222                  * the removal is always sucessful.
223                  */
224                 smp_call_function_single(counter->cpu,
225                                          __perf_counter_remove_from_context,
226                                          counter, 1);
227                 return;
228         }
229
230 retry:
231         task_oncpu_function_call(task, __perf_counter_remove_from_context,
232                                  counter);
233
234         spin_lock_irq(&ctx->lock);
235         /*
236          * If the context is active we need to retry the smp call.
237          */
238         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
239                 spin_unlock_irq(&ctx->lock);
240                 goto retry;
241         }
242
243         /*
244          * The lock prevents that this context is scheduled in so we
245          * can remove the counter safely, if the call above did not
246          * succeed.
247          */
248         if (!list_empty(&counter->list_entry)) {
249                 ctx->nr_counters--;
250                 list_del_counter(counter, ctx);
251                 counter->task = NULL;
252         }
253         spin_unlock_irq(&ctx->lock);
254 }
255
256 /*
257  * Get the current time for this context.
258  * If this is a task context, we use the task's task clock,
259  * or for a per-cpu context, we use the cpu clock.
260  */
261 static u64 get_context_time(struct perf_counter_context *ctx, int update)
262 {
263         struct task_struct *curr = ctx->task;
264
265         if (!curr)
266                 return cpu_clock(smp_processor_id());
267
268         return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
269 }
270
271 /*
272  * Update the record of the current time in a context.
273  */
274 static void update_context_time(struct perf_counter_context *ctx, int update)
275 {
276         ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
277 }
278
279 /*
280  * Update the total_time_enabled and total_time_running fields for a counter.
281  */
282 static void update_counter_times(struct perf_counter *counter)
283 {
284         struct perf_counter_context *ctx = counter->ctx;
285         u64 run_end;
286
287         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
288                 counter->total_time_enabled = ctx->time_now -
289                         counter->tstamp_enabled;
290                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
291                         run_end = counter->tstamp_stopped;
292                 else
293                         run_end = ctx->time_now;
294                 counter->total_time_running = run_end - counter->tstamp_running;
295         }
296 }
297
298 /*
299  * Update total_time_enabled and total_time_running for all counters in a group.
300  */
301 static void update_group_times(struct perf_counter *leader)
302 {
303         struct perf_counter *counter;
304
305         update_counter_times(leader);
306         list_for_each_entry(counter, &leader->sibling_list, list_entry)
307                 update_counter_times(counter);
308 }
309
310 /*
311  * Cross CPU call to disable a performance counter
312  */
313 static void __perf_counter_disable(void *info)
314 {
315         struct perf_counter *counter = info;
316         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
317         struct perf_counter_context *ctx = counter->ctx;
318         unsigned long flags;
319
320         /*
321          * If this is a per-task counter, need to check whether this
322          * counter's task is the current task on this cpu.
323          */
324         if (ctx->task && cpuctx->task_ctx != ctx)
325                 return;
326
327         curr_rq_lock_irq_save(&flags);
328         spin_lock(&ctx->lock);
329
330         /*
331          * If the counter is on, turn it off.
332          * If it is in error state, leave it in error state.
333          */
334         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335                 update_context_time(ctx, 1);
336                 update_counter_times(counter);
337                 if (counter == counter->group_leader)
338                         group_sched_out(counter, cpuctx, ctx);
339                 else
340                         counter_sched_out(counter, cpuctx, ctx);
341                 counter->state = PERF_COUNTER_STATE_OFF;
342         }
343
344         spin_unlock(&ctx->lock);
345         curr_rq_unlock_irq_restore(&flags);
346 }
347
348 /*
349  * Disable a counter.
350  */
351 static void perf_counter_disable(struct perf_counter *counter)
352 {
353         struct perf_counter_context *ctx = counter->ctx;
354         struct task_struct *task = ctx->task;
355
356         if (!task) {
357                 /*
358                  * Disable the counter on the cpu that it's on
359                  */
360                 smp_call_function_single(counter->cpu, __perf_counter_disable,
361                                          counter, 1);
362                 return;
363         }
364
365  retry:
366         task_oncpu_function_call(task, __perf_counter_disable, counter);
367
368         spin_lock_irq(&ctx->lock);
369         /*
370          * If the counter is still active, we need to retry the cross-call.
371          */
372         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
373                 spin_unlock_irq(&ctx->lock);
374                 goto retry;
375         }
376
377         /*
378          * Since we have the lock this context can't be scheduled
379          * in, so we can change the state safely.
380          */
381         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
382                 update_counter_times(counter);
383                 counter->state = PERF_COUNTER_STATE_OFF;
384         }
385
386         spin_unlock_irq(&ctx->lock);
387 }
388
389 /*
390  * Disable a counter and all its children.
391  */
392 static void perf_counter_disable_family(struct perf_counter *counter)
393 {
394         struct perf_counter *child;
395
396         perf_counter_disable(counter);
397
398         /*
399          * Lock the mutex to protect the list of children
400          */
401         mutex_lock(&counter->mutex);
402         list_for_each_entry(child, &counter->child_list, child_list)
403                 perf_counter_disable(child);
404         mutex_unlock(&counter->mutex);
405 }
406
407 static int
408 counter_sched_in(struct perf_counter *counter,
409                  struct perf_cpu_context *cpuctx,
410                  struct perf_counter_context *ctx,
411                  int cpu)
412 {
413         if (counter->state <= PERF_COUNTER_STATE_OFF)
414                 return 0;
415
416         counter->state = PERF_COUNTER_STATE_ACTIVE;
417         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
418         /*
419          * The new state must be visible before we turn it on in the hardware:
420          */
421         smp_wmb();
422
423         if (counter->hw_ops->enable(counter)) {
424                 counter->state = PERF_COUNTER_STATE_INACTIVE;
425                 counter->oncpu = -1;
426                 return -EAGAIN;
427         }
428
429         counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
430
431         if (!is_software_counter(counter))
432                 cpuctx->active_oncpu++;
433         ctx->nr_active++;
434
435         if (counter->hw_event.exclusive)
436                 cpuctx->exclusive = 1;
437
438         return 0;
439 }
440
441 /*
442  * Return 1 for a group consisting entirely of software counters,
443  * 0 if the group contains any hardware counters.
444  */
445 static int is_software_only_group(struct perf_counter *leader)
446 {
447         struct perf_counter *counter;
448
449         if (!is_software_counter(leader))
450                 return 0;
451
452         list_for_each_entry(counter, &leader->sibling_list, list_entry)
453                 if (!is_software_counter(counter))
454                         return 0;
455
456         return 1;
457 }
458
459 /*
460  * Work out whether we can put this counter group on the CPU now.
461  */
462 static int group_can_go_on(struct perf_counter *counter,
463                            struct perf_cpu_context *cpuctx,
464                            int can_add_hw)
465 {
466         /*
467          * Groups consisting entirely of software counters can always go on.
468          */
469         if (is_software_only_group(counter))
470                 return 1;
471         /*
472          * If an exclusive group is already on, no other hardware
473          * counters can go on.
474          */
475         if (cpuctx->exclusive)
476                 return 0;
477         /*
478          * If this group is exclusive and there are already
479          * counters on the CPU, it can't go on.
480          */
481         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
482                 return 0;
483         /*
484          * Otherwise, try to add it if all previous groups were able
485          * to go on.
486          */
487         return can_add_hw;
488 }
489
490 static void add_counter_to_ctx(struct perf_counter *counter,
491                                struct perf_counter_context *ctx)
492 {
493         list_add_counter(counter, ctx);
494         ctx->nr_counters++;
495         counter->prev_state = PERF_COUNTER_STATE_OFF;
496         counter->tstamp_enabled = ctx->time_now;
497         counter->tstamp_running = ctx->time_now;
498         counter->tstamp_stopped = ctx->time_now;
499 }
500
501 /*
502  * Cross CPU call to install and enable a performance counter
503  */
504 static void __perf_install_in_context(void *info)
505 {
506         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
507         struct perf_counter *counter = info;
508         struct perf_counter_context *ctx = counter->ctx;
509         struct perf_counter *leader = counter->group_leader;
510         int cpu = smp_processor_id();
511         unsigned long flags;
512         u64 perf_flags;
513         int err;
514
515         /*
516          * If this is a task context, we need to check whether it is
517          * the current task context of this cpu. If not it has been
518          * scheduled out before the smp call arrived.
519          */
520         if (ctx->task && cpuctx->task_ctx != ctx)
521                 return;
522
523         curr_rq_lock_irq_save(&flags);
524         spin_lock(&ctx->lock);
525         update_context_time(ctx, 1);
526
527         /*
528          * Protect the list operation against NMI by disabling the
529          * counters on a global level. NOP for non NMI based counters.
530          */
531         perf_flags = hw_perf_save_disable();
532
533         add_counter_to_ctx(counter, ctx);
534
535         /*
536          * Don't put the counter on if it is disabled or if
537          * it is in a group and the group isn't on.
538          */
539         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
540             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
541                 goto unlock;
542
543         /*
544          * An exclusive counter can't go on if there are already active
545          * hardware counters, and no hardware counter can go on if there
546          * is already an exclusive counter on.
547          */
548         if (!group_can_go_on(counter, cpuctx, 1))
549                 err = -EEXIST;
550         else
551                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
552
553         if (err) {
554                 /*
555                  * This counter couldn't go on.  If it is in a group
556                  * then we have to pull the whole group off.
557                  * If the counter group is pinned then put it in error state.
558                  */
559                 if (leader != counter)
560                         group_sched_out(leader, cpuctx, ctx);
561                 if (leader->hw_event.pinned) {
562                         update_group_times(leader);
563                         leader->state = PERF_COUNTER_STATE_ERROR;
564                 }
565         }
566
567         if (!err && !ctx->task && cpuctx->max_pertask)
568                 cpuctx->max_pertask--;
569
570  unlock:
571         hw_perf_restore(perf_flags);
572
573         spin_unlock(&ctx->lock);
574         curr_rq_unlock_irq_restore(&flags);
575 }
576
577 /*
578  * Attach a performance counter to a context
579  *
580  * First we add the counter to the list with the hardware enable bit
581  * in counter->hw_config cleared.
582  *
583  * If the counter is attached to a task which is on a CPU we use a smp
584  * call to enable it in the task context. The task might have been
585  * scheduled away, but we check this in the smp call again.
586  *
587  * Must be called with ctx->mutex held.
588  */
589 static void
590 perf_install_in_context(struct perf_counter_context *ctx,
591                         struct perf_counter *counter,
592                         int cpu)
593 {
594         struct task_struct *task = ctx->task;
595
596         if (!task) {
597                 /*
598                  * Per cpu counters are installed via an smp call and
599                  * the install is always sucessful.
600                  */
601                 smp_call_function_single(cpu, __perf_install_in_context,
602                                          counter, 1);
603                 return;
604         }
605
606         counter->task = task;
607 retry:
608         task_oncpu_function_call(task, __perf_install_in_context,
609                                  counter);
610
611         spin_lock_irq(&ctx->lock);
612         /*
613          * we need to retry the smp call.
614          */
615         if (ctx->is_active && list_empty(&counter->list_entry)) {
616                 spin_unlock_irq(&ctx->lock);
617                 goto retry;
618         }
619
620         /*
621          * The lock prevents that this context is scheduled in so we
622          * can add the counter safely, if it the call above did not
623          * succeed.
624          */
625         if (list_empty(&counter->list_entry))
626                 add_counter_to_ctx(counter, ctx);
627         spin_unlock_irq(&ctx->lock);
628 }
629
630 /*
631  * Cross CPU call to enable a performance counter
632  */
633 static void __perf_counter_enable(void *info)
634 {
635         struct perf_counter *counter = info;
636         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
637         struct perf_counter_context *ctx = counter->ctx;
638         struct perf_counter *leader = counter->group_leader;
639         unsigned long flags;
640         int err;
641
642         /*
643          * If this is a per-task counter, need to check whether this
644          * counter's task is the current task on this cpu.
645          */
646         if (ctx->task && cpuctx->task_ctx != ctx)
647                 return;
648
649         curr_rq_lock_irq_save(&flags);
650         spin_lock(&ctx->lock);
651         update_context_time(ctx, 1);
652
653         counter->prev_state = counter->state;
654         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
655                 goto unlock;
656         counter->state = PERF_COUNTER_STATE_INACTIVE;
657         counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
658
659         /*
660          * If the counter is in a group and isn't the group leader,
661          * then don't put it on unless the group is on.
662          */
663         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
664                 goto unlock;
665
666         if (!group_can_go_on(counter, cpuctx, 1))
667                 err = -EEXIST;
668         else
669                 err = counter_sched_in(counter, cpuctx, ctx,
670                                        smp_processor_id());
671
672         if (err) {
673                 /*
674                  * If this counter can't go on and it's part of a
675                  * group, then the whole group has to come off.
676                  */
677                 if (leader != counter)
678                         group_sched_out(leader, cpuctx, ctx);
679                 if (leader->hw_event.pinned) {
680                         update_group_times(leader);
681                         leader->state = PERF_COUNTER_STATE_ERROR;
682                 }
683         }
684
685  unlock:
686         spin_unlock(&ctx->lock);
687         curr_rq_unlock_irq_restore(&flags);
688 }
689
690 /*
691  * Enable a counter.
692  */
693 static void perf_counter_enable(struct perf_counter *counter)
694 {
695         struct perf_counter_context *ctx = counter->ctx;
696         struct task_struct *task = ctx->task;
697
698         if (!task) {
699                 /*
700                  * Enable the counter on the cpu that it's on
701                  */
702                 smp_call_function_single(counter->cpu, __perf_counter_enable,
703                                          counter, 1);
704                 return;
705         }
706
707         spin_lock_irq(&ctx->lock);
708         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
709                 goto out;
710
711         /*
712          * If the counter is in error state, clear that first.
713          * That way, if we see the counter in error state below, we
714          * know that it has gone back into error state, as distinct
715          * from the task having been scheduled away before the
716          * cross-call arrived.
717          */
718         if (counter->state == PERF_COUNTER_STATE_ERROR)
719                 counter->state = PERF_COUNTER_STATE_OFF;
720
721  retry:
722         spin_unlock_irq(&ctx->lock);
723         task_oncpu_function_call(task, __perf_counter_enable, counter);
724
725         spin_lock_irq(&ctx->lock);
726
727         /*
728          * If the context is active and the counter is still off,
729          * we need to retry the cross-call.
730          */
731         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
732                 goto retry;
733
734         /*
735          * Since we have the lock this context can't be scheduled
736          * in, so we can change the state safely.
737          */
738         if (counter->state == PERF_COUNTER_STATE_OFF) {
739                 counter->state = PERF_COUNTER_STATE_INACTIVE;
740                 counter->tstamp_enabled = ctx->time_now -
741                         counter->total_time_enabled;
742         }
743  out:
744         spin_unlock_irq(&ctx->lock);
745 }
746
747 /*
748  * Enable a counter and all its children.
749  */
750 static void perf_counter_enable_family(struct perf_counter *counter)
751 {
752         struct perf_counter *child;
753
754         perf_counter_enable(counter);
755
756         /*
757          * Lock the mutex to protect the list of children
758          */
759         mutex_lock(&counter->mutex);
760         list_for_each_entry(child, &counter->child_list, child_list)
761                 perf_counter_enable(child);
762         mutex_unlock(&counter->mutex);
763 }
764
765 void __perf_counter_sched_out(struct perf_counter_context *ctx,
766                               struct perf_cpu_context *cpuctx)
767 {
768         struct perf_counter *counter;
769         u64 flags;
770
771         spin_lock(&ctx->lock);
772         ctx->is_active = 0;
773         if (likely(!ctx->nr_counters))
774                 goto out;
775         update_context_time(ctx, 0);
776
777         flags = hw_perf_save_disable();
778         if (ctx->nr_active) {
779                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
780                         group_sched_out(counter, cpuctx, ctx);
781         }
782         hw_perf_restore(flags);
783  out:
784         spin_unlock(&ctx->lock);
785 }
786
787 /*
788  * Called from scheduler to remove the counters of the current task,
789  * with interrupts disabled.
790  *
791  * We stop each counter and update the counter value in counter->count.
792  *
793  * This does not protect us against NMI, but disable()
794  * sets the disabled bit in the control field of counter _before_
795  * accessing the counter control register. If a NMI hits, then it will
796  * not restart the counter.
797  */
798 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
799 {
800         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
801         struct perf_counter_context *ctx = &task->perf_counter_ctx;
802         struct pt_regs *regs;
803
804         if (likely(!cpuctx->task_ctx))
805                 return;
806
807         regs = task_pt_regs(task);
808         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
809         __perf_counter_sched_out(ctx, cpuctx);
810
811         cpuctx->task_ctx = NULL;
812 }
813
814 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
815 {
816         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
817 }
818
819 static int
820 group_sched_in(struct perf_counter *group_counter,
821                struct perf_cpu_context *cpuctx,
822                struct perf_counter_context *ctx,
823                int cpu)
824 {
825         struct perf_counter *counter, *partial_group;
826         int ret;
827
828         if (group_counter->state == PERF_COUNTER_STATE_OFF)
829                 return 0;
830
831         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
832         if (ret)
833                 return ret < 0 ? ret : 0;
834
835         group_counter->prev_state = group_counter->state;
836         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
837                 return -EAGAIN;
838
839         /*
840          * Schedule in siblings as one group (if any):
841          */
842         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
843                 counter->prev_state = counter->state;
844                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
845                         partial_group = counter;
846                         goto group_error;
847                 }
848         }
849
850         return 0;
851
852 group_error:
853         /*
854          * Groups can be scheduled in as one unit only, so undo any
855          * partial group before returning:
856          */
857         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
858                 if (counter == partial_group)
859                         break;
860                 counter_sched_out(counter, cpuctx, ctx);
861         }
862         counter_sched_out(group_counter, cpuctx, ctx);
863
864         return -EAGAIN;
865 }
866
867 static void
868 __perf_counter_sched_in(struct perf_counter_context *ctx,
869                         struct perf_cpu_context *cpuctx, int cpu)
870 {
871         struct perf_counter *counter;
872         u64 flags;
873         int can_add_hw = 1;
874
875         spin_lock(&ctx->lock);
876         ctx->is_active = 1;
877         if (likely(!ctx->nr_counters))
878                 goto out;
879
880         /*
881          * Add any time since the last sched_out to the lost time
882          * so it doesn't get included in the total_time_enabled and
883          * total_time_running measures for counters in the context.
884          */
885         ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
886
887         flags = hw_perf_save_disable();
888
889         /*
890          * First go through the list and put on any pinned groups
891          * in order to give them the best chance of going on.
892          */
893         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
894                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
895                     !counter->hw_event.pinned)
896                         continue;
897                 if (counter->cpu != -1 && counter->cpu != cpu)
898                         continue;
899
900                 if (group_can_go_on(counter, cpuctx, 1))
901                         group_sched_in(counter, cpuctx, ctx, cpu);
902
903                 /*
904                  * If this pinned group hasn't been scheduled,
905                  * put it in error state.
906                  */
907                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
908                         update_group_times(counter);
909                         counter->state = PERF_COUNTER_STATE_ERROR;
910                 }
911         }
912
913         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
914                 /*
915                  * Ignore counters in OFF or ERROR state, and
916                  * ignore pinned counters since we did them already.
917                  */
918                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
919                     counter->hw_event.pinned)
920                         continue;
921
922                 /*
923                  * Listen to the 'cpu' scheduling filter constraint
924                  * of counters:
925                  */
926                 if (counter->cpu != -1 && counter->cpu != cpu)
927                         continue;
928
929                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
930                         if (group_sched_in(counter, cpuctx, ctx, cpu))
931                                 can_add_hw = 0;
932                 }
933         }
934         hw_perf_restore(flags);
935  out:
936         spin_unlock(&ctx->lock);
937 }
938
939 /*
940  * Called from scheduler to add the counters of the current task
941  * with interrupts disabled.
942  *
943  * We restore the counter value and then enable it.
944  *
945  * This does not protect us against NMI, but enable()
946  * sets the enabled bit in the control field of counter _before_
947  * accessing the counter control register. If a NMI hits, then it will
948  * keep the counter running.
949  */
950 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
951 {
952         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
953         struct perf_counter_context *ctx = &task->perf_counter_ctx;
954
955         __perf_counter_sched_in(ctx, cpuctx, cpu);
956         cpuctx->task_ctx = ctx;
957 }
958
959 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
960 {
961         struct perf_counter_context *ctx = &cpuctx->ctx;
962
963         __perf_counter_sched_in(ctx, cpuctx, cpu);
964 }
965
966 int perf_counter_task_disable(void)
967 {
968         struct task_struct *curr = current;
969         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
970         struct perf_counter *counter;
971         unsigned long flags;
972         u64 perf_flags;
973         int cpu;
974
975         if (likely(!ctx->nr_counters))
976                 return 0;
977
978         curr_rq_lock_irq_save(&flags);
979         cpu = smp_processor_id();
980
981         /* force the update of the task clock: */
982         __task_delta_exec(curr, 1);
983
984         perf_counter_task_sched_out(curr, cpu);
985
986         spin_lock(&ctx->lock);
987
988         /*
989          * Disable all the counters:
990          */
991         perf_flags = hw_perf_save_disable();
992
993         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
995                         update_group_times(counter);
996                         counter->state = PERF_COUNTER_STATE_OFF;
997                 }
998         }
999
1000         hw_perf_restore(perf_flags);
1001
1002         spin_unlock(&ctx->lock);
1003
1004         curr_rq_unlock_irq_restore(&flags);
1005
1006         return 0;
1007 }
1008
1009 int perf_counter_task_enable(void)
1010 {
1011         struct task_struct *curr = current;
1012         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1013         struct perf_counter *counter;
1014         unsigned long flags;
1015         u64 perf_flags;
1016         int cpu;
1017
1018         if (likely(!ctx->nr_counters))
1019                 return 0;
1020
1021         curr_rq_lock_irq_save(&flags);
1022         cpu = smp_processor_id();
1023
1024         /* force the update of the task clock: */
1025         __task_delta_exec(curr, 1);
1026
1027         perf_counter_task_sched_out(curr, cpu);
1028
1029         spin_lock(&ctx->lock);
1030
1031         /*
1032          * Disable all the counters:
1033          */
1034         perf_flags = hw_perf_save_disable();
1035
1036         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1037                 if (counter->state > PERF_COUNTER_STATE_OFF)
1038                         continue;
1039                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1040                 counter->tstamp_enabled = ctx->time_now -
1041                         counter->total_time_enabled;
1042                 counter->hw_event.disabled = 0;
1043         }
1044         hw_perf_restore(perf_flags);
1045
1046         spin_unlock(&ctx->lock);
1047
1048         perf_counter_task_sched_in(curr, cpu);
1049
1050         curr_rq_unlock_irq_restore(&flags);
1051
1052         return 0;
1053 }
1054
1055 /*
1056  * Round-robin a context's counters:
1057  */
1058 static void rotate_ctx(struct perf_counter_context *ctx)
1059 {
1060         struct perf_counter *counter;
1061         u64 perf_flags;
1062
1063         if (!ctx->nr_counters)
1064                 return;
1065
1066         spin_lock(&ctx->lock);
1067         /*
1068          * Rotate the first entry last (works just fine for group counters too):
1069          */
1070         perf_flags = hw_perf_save_disable();
1071         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1072                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1073                 break;
1074         }
1075         hw_perf_restore(perf_flags);
1076
1077         spin_unlock(&ctx->lock);
1078 }
1079
1080 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1081 {
1082         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1083         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1084         const int rotate_percpu = 0;
1085
1086         if (rotate_percpu)
1087                 perf_counter_cpu_sched_out(cpuctx);
1088         perf_counter_task_sched_out(curr, cpu);
1089
1090         if (rotate_percpu)
1091                 rotate_ctx(&cpuctx->ctx);
1092         rotate_ctx(ctx);
1093
1094         if (rotate_percpu)
1095                 perf_counter_cpu_sched_in(cpuctx, cpu);
1096         perf_counter_task_sched_in(curr, cpu);
1097 }
1098
1099 /*
1100  * Cross CPU call to read the hardware counter
1101  */
1102 static void __read(void *info)
1103 {
1104         struct perf_counter *counter = info;
1105         struct perf_counter_context *ctx = counter->ctx;
1106         unsigned long flags;
1107
1108         curr_rq_lock_irq_save(&flags);
1109         if (ctx->is_active)
1110                 update_context_time(ctx, 1);
1111         counter->hw_ops->read(counter);
1112         update_counter_times(counter);
1113         curr_rq_unlock_irq_restore(&flags);
1114 }
1115
1116 static u64 perf_counter_read(struct perf_counter *counter)
1117 {
1118         /*
1119          * If counter is enabled and currently active on a CPU, update the
1120          * value in the counter structure:
1121          */
1122         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1123                 smp_call_function_single(counter->oncpu,
1124                                          __read, counter, 1);
1125         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1126                 update_counter_times(counter);
1127         }
1128
1129         return atomic64_read(&counter->count);
1130 }
1131
1132 static void put_context(struct perf_counter_context *ctx)
1133 {
1134         if (ctx->task)
1135                 put_task_struct(ctx->task);
1136 }
1137
1138 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1139 {
1140         struct perf_cpu_context *cpuctx;
1141         struct perf_counter_context *ctx;
1142         struct task_struct *task;
1143
1144         /*
1145          * If cpu is not a wildcard then this is a percpu counter:
1146          */
1147         if (cpu != -1) {
1148                 /* Must be root to operate on a CPU counter: */
1149                 if (!capable(CAP_SYS_ADMIN))
1150                         return ERR_PTR(-EACCES);
1151
1152                 if (cpu < 0 || cpu > num_possible_cpus())
1153                         return ERR_PTR(-EINVAL);
1154
1155                 /*
1156                  * We could be clever and allow to attach a counter to an
1157                  * offline CPU and activate it when the CPU comes up, but
1158                  * that's for later.
1159                  */
1160                 if (!cpu_isset(cpu, cpu_online_map))
1161                         return ERR_PTR(-ENODEV);
1162
1163                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1164                 ctx = &cpuctx->ctx;
1165
1166                 return ctx;
1167         }
1168
1169         rcu_read_lock();
1170         if (!pid)
1171                 task = current;
1172         else
1173                 task = find_task_by_vpid(pid);
1174         if (task)
1175                 get_task_struct(task);
1176         rcu_read_unlock();
1177
1178         if (!task)
1179                 return ERR_PTR(-ESRCH);
1180
1181         ctx = &task->perf_counter_ctx;
1182         ctx->task = task;
1183
1184         /* Reuse ptrace permission checks for now. */
1185         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1186                 put_context(ctx);
1187                 return ERR_PTR(-EACCES);
1188         }
1189
1190         return ctx;
1191 }
1192
1193 static void free_counter_rcu(struct rcu_head *head)
1194 {
1195         struct perf_counter *counter;
1196
1197         counter = container_of(head, struct perf_counter, rcu_head);
1198         kfree(counter);
1199 }
1200
1201 static void perf_pending_sync(struct perf_counter *counter);
1202
1203 static void free_counter(struct perf_counter *counter)
1204 {
1205         perf_pending_sync(counter);
1206
1207         if (counter->destroy)
1208                 counter->destroy(counter);
1209
1210         call_rcu(&counter->rcu_head, free_counter_rcu);
1211 }
1212
1213 /*
1214  * Called when the last reference to the file is gone.
1215  */
1216 static int perf_release(struct inode *inode, struct file *file)
1217 {
1218         struct perf_counter *counter = file->private_data;
1219         struct perf_counter_context *ctx = counter->ctx;
1220
1221         file->private_data = NULL;
1222
1223         mutex_lock(&ctx->mutex);
1224         mutex_lock(&counter->mutex);
1225
1226         perf_counter_remove_from_context(counter);
1227
1228         mutex_unlock(&counter->mutex);
1229         mutex_unlock(&ctx->mutex);
1230
1231         free_counter(counter);
1232         put_context(ctx);
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * Read the performance counter - simple non blocking version for now
1239  */
1240 static ssize_t
1241 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1242 {
1243         u64 values[3];
1244         int n;
1245
1246         /*
1247          * Return end-of-file for a read on a counter that is in
1248          * error state (i.e. because it was pinned but it couldn't be
1249          * scheduled on to the CPU at some point).
1250          */
1251         if (counter->state == PERF_COUNTER_STATE_ERROR)
1252                 return 0;
1253
1254         mutex_lock(&counter->mutex);
1255         values[0] = perf_counter_read(counter);
1256         n = 1;
1257         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1258                 values[n++] = counter->total_time_enabled +
1259                         atomic64_read(&counter->child_total_time_enabled);
1260         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1261                 values[n++] = counter->total_time_running +
1262                         atomic64_read(&counter->child_total_time_running);
1263         mutex_unlock(&counter->mutex);
1264
1265         if (count < n * sizeof(u64))
1266                 return -EINVAL;
1267         count = n * sizeof(u64);
1268
1269         if (copy_to_user(buf, values, count))
1270                 return -EFAULT;
1271
1272         return count;
1273 }
1274
1275 static ssize_t
1276 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1277 {
1278         struct perf_counter *counter = file->private_data;
1279
1280         return perf_read_hw(counter, buf, count);
1281 }
1282
1283 static unsigned int perf_poll(struct file *file, poll_table *wait)
1284 {
1285         struct perf_counter *counter = file->private_data;
1286         struct perf_mmap_data *data;
1287         unsigned int events;
1288
1289         rcu_read_lock();
1290         data = rcu_dereference(counter->data);
1291         if (data)
1292                 events = atomic_xchg(&data->wakeup, 0);
1293         else
1294                 events = POLL_HUP;
1295         rcu_read_unlock();
1296
1297         poll_wait(file, &counter->waitq, wait);
1298
1299         return events;
1300 }
1301
1302 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1303 {
1304         struct perf_counter *counter = file->private_data;
1305         int err = 0;
1306
1307         switch (cmd) {
1308         case PERF_COUNTER_IOC_ENABLE:
1309                 perf_counter_enable_family(counter);
1310                 break;
1311         case PERF_COUNTER_IOC_DISABLE:
1312                 perf_counter_disable_family(counter);
1313                 break;
1314         default:
1315                 err = -ENOTTY;
1316         }
1317         return err;
1318 }
1319
1320 /*
1321  * Callers need to ensure there can be no nesting of this function, otherwise
1322  * the seqlock logic goes bad. We can not serialize this because the arch
1323  * code calls this from NMI context.
1324  */
1325 void perf_counter_update_userpage(struct perf_counter *counter)
1326 {
1327         struct perf_mmap_data *data;
1328         struct perf_counter_mmap_page *userpg;
1329
1330         rcu_read_lock();
1331         data = rcu_dereference(counter->data);
1332         if (!data)
1333                 goto unlock;
1334
1335         userpg = data->user_page;
1336
1337         /*
1338          * Disable preemption so as to not let the corresponding user-space
1339          * spin too long if we get preempted.
1340          */
1341         preempt_disable();
1342         ++userpg->lock;
1343         barrier();
1344         userpg->index = counter->hw.idx;
1345         userpg->offset = atomic64_read(&counter->count);
1346         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1347                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1348
1349         barrier();
1350         ++userpg->lock;
1351         preempt_enable();
1352 unlock:
1353         rcu_read_unlock();
1354 }
1355
1356 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1357 {
1358         struct perf_counter *counter = vma->vm_file->private_data;
1359         struct perf_mmap_data *data;
1360         int ret = VM_FAULT_SIGBUS;
1361
1362         rcu_read_lock();
1363         data = rcu_dereference(counter->data);
1364         if (!data)
1365                 goto unlock;
1366
1367         if (vmf->pgoff == 0) {
1368                 vmf->page = virt_to_page(data->user_page);
1369         } else {
1370                 int nr = vmf->pgoff - 1;
1371
1372                 if ((unsigned)nr > data->nr_pages)
1373                         goto unlock;
1374
1375                 vmf->page = virt_to_page(data->data_pages[nr]);
1376         }
1377         get_page(vmf->page);
1378         ret = 0;
1379 unlock:
1380         rcu_read_unlock();
1381
1382         return ret;
1383 }
1384
1385 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1386 {
1387         struct perf_mmap_data *data;
1388         unsigned long size;
1389         int i;
1390
1391         WARN_ON(atomic_read(&counter->mmap_count));
1392
1393         size = sizeof(struct perf_mmap_data);
1394         size += nr_pages * sizeof(void *);
1395
1396         data = kzalloc(size, GFP_KERNEL);
1397         if (!data)
1398                 goto fail;
1399
1400         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1401         if (!data->user_page)
1402                 goto fail_user_page;
1403
1404         for (i = 0; i < nr_pages; i++) {
1405                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1406                 if (!data->data_pages[i])
1407                         goto fail_data_pages;
1408         }
1409
1410         data->nr_pages = nr_pages;
1411
1412         rcu_assign_pointer(counter->data, data);
1413
1414         return 0;
1415
1416 fail_data_pages:
1417         for (i--; i >= 0; i--)
1418                 free_page((unsigned long)data->data_pages[i]);
1419
1420         free_page((unsigned long)data->user_page);
1421
1422 fail_user_page:
1423         kfree(data);
1424
1425 fail:
1426         return -ENOMEM;
1427 }
1428
1429 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1430 {
1431         struct perf_mmap_data *data = container_of(rcu_head,
1432                         struct perf_mmap_data, rcu_head);
1433         int i;
1434
1435         free_page((unsigned long)data->user_page);
1436         for (i = 0; i < data->nr_pages; i++)
1437                 free_page((unsigned long)data->data_pages[i]);
1438         kfree(data);
1439 }
1440
1441 static void perf_mmap_data_free(struct perf_counter *counter)
1442 {
1443         struct perf_mmap_data *data = counter->data;
1444
1445         WARN_ON(atomic_read(&counter->mmap_count));
1446
1447         rcu_assign_pointer(counter->data, NULL);
1448         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1449 }
1450
1451 static void perf_mmap_open(struct vm_area_struct *vma)
1452 {
1453         struct perf_counter *counter = vma->vm_file->private_data;
1454
1455         atomic_inc(&counter->mmap_count);
1456 }
1457
1458 static void perf_mmap_close(struct vm_area_struct *vma)
1459 {
1460         struct perf_counter *counter = vma->vm_file->private_data;
1461
1462         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1463                                       &counter->mmap_mutex)) {
1464                 perf_mmap_data_free(counter);
1465                 mutex_unlock(&counter->mmap_mutex);
1466         }
1467 }
1468
1469 static struct vm_operations_struct perf_mmap_vmops = {
1470         .open = perf_mmap_open,
1471         .close = perf_mmap_close,
1472         .fault = perf_mmap_fault,
1473 };
1474
1475 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1476 {
1477         struct perf_counter *counter = file->private_data;
1478         unsigned long vma_size;
1479         unsigned long nr_pages;
1480         unsigned long locked, lock_limit;
1481         int ret = 0;
1482
1483         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1484                 return -EINVAL;
1485
1486         vma_size = vma->vm_end - vma->vm_start;
1487         nr_pages = (vma_size / PAGE_SIZE) - 1;
1488
1489         /*
1490          * If we have data pages ensure they're a power-of-two number, so we
1491          * can do bitmasks instead of modulo.
1492          */
1493         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1494                 return -EINVAL;
1495
1496         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1497                 return -EINVAL;
1498
1499         if (vma->vm_pgoff != 0)
1500                 return -EINVAL;
1501
1502         locked = vma_size >>  PAGE_SHIFT;
1503         locked += vma->vm_mm->locked_vm;
1504
1505         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1506         lock_limit >>= PAGE_SHIFT;
1507
1508         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1509                 return -EPERM;
1510
1511         mutex_lock(&counter->mmap_mutex);
1512         if (atomic_inc_not_zero(&counter->mmap_count))
1513                 goto out;
1514
1515         WARN_ON(counter->data);
1516         ret = perf_mmap_data_alloc(counter, nr_pages);
1517         if (!ret)
1518                 atomic_set(&counter->mmap_count, 1);
1519 out:
1520         mutex_unlock(&counter->mmap_mutex);
1521
1522         vma->vm_flags &= ~VM_MAYWRITE;
1523         vma->vm_flags |= VM_RESERVED;
1524         vma->vm_ops = &perf_mmap_vmops;
1525
1526         return ret;
1527 }
1528
1529 static const struct file_operations perf_fops = {
1530         .release                = perf_release,
1531         .read                   = perf_read,
1532         .poll                   = perf_poll,
1533         .unlocked_ioctl         = perf_ioctl,
1534         .compat_ioctl           = perf_ioctl,
1535         .mmap                   = perf_mmap,
1536 };
1537
1538 /*
1539  * Perf counter wakeup
1540  *
1541  * If there's data, ensure we set the poll() state and publish everything
1542  * to user-space before waking everybody up.
1543  */
1544
1545 void perf_counter_wakeup(struct perf_counter *counter)
1546 {
1547         struct perf_mmap_data *data;
1548
1549         rcu_read_lock();
1550         data = rcu_dereference(counter->data);
1551         if (data) {
1552                 (void)atomic_xchg(&data->wakeup, POLL_IN);
1553                 /*
1554                  * Ensure all data writes are issued before updating the
1555                  * user-space data head information. The matching rmb()
1556                  * will be in userspace after reading this value.
1557                  */
1558                 smp_wmb();
1559                 data->user_page->data_head = atomic_read(&data->head);
1560         }
1561         rcu_read_unlock();
1562
1563         wake_up_all(&counter->waitq);
1564 }
1565
1566 /*
1567  * Pending wakeups
1568  *
1569  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1570  *
1571  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1572  * single linked list and use cmpxchg() to add entries lockless.
1573  */
1574
1575 #define PENDING_TAIL ((struct perf_wakeup_entry *)-1UL)
1576
1577 static DEFINE_PER_CPU(struct perf_wakeup_entry *, perf_wakeup_head) = {
1578         PENDING_TAIL,
1579 };
1580
1581 static void perf_pending_queue(struct perf_counter *counter)
1582 {
1583         struct perf_wakeup_entry **head;
1584         struct perf_wakeup_entry *prev, *next;
1585
1586         if (cmpxchg(&counter->wakeup.next, NULL, PENDING_TAIL) != NULL)
1587                 return;
1588
1589         head = &get_cpu_var(perf_wakeup_head);
1590
1591         do {
1592                 prev = counter->wakeup.next = *head;
1593                 next = &counter->wakeup;
1594         } while (cmpxchg(head, prev, next) != prev);
1595
1596         set_perf_counter_pending();
1597
1598         put_cpu_var(perf_wakeup_head);
1599 }
1600
1601 static int __perf_pending_run(void)
1602 {
1603         struct perf_wakeup_entry *list;
1604         int nr = 0;
1605
1606         list = xchg(&__get_cpu_var(perf_wakeup_head), PENDING_TAIL);
1607         while (list != PENDING_TAIL) {
1608                 struct perf_counter *counter = container_of(list,
1609                                 struct perf_counter, wakeup);
1610
1611                 list = list->next;
1612
1613                 counter->wakeup.next = NULL;
1614                 /*
1615                  * Ensure we observe the unqueue before we issue the wakeup,
1616                  * so that we won't be waiting forever.
1617                  * -- see perf_not_pending().
1618                  */
1619                 smp_wmb();
1620
1621                 perf_counter_wakeup(counter);
1622                 nr++;
1623         }
1624
1625         return nr;
1626 }
1627
1628 static inline int perf_not_pending(struct perf_counter *counter)
1629 {
1630         /*
1631          * If we flush on whatever cpu we run, there is a chance we don't
1632          * need to wait.
1633          */
1634         get_cpu();
1635         __perf_pending_run();
1636         put_cpu();
1637
1638         /*
1639          * Ensure we see the proper queue state before going to sleep
1640          * so that we do not miss the wakeup. -- see perf_pending_handle()
1641          */
1642         smp_rmb();
1643         return counter->wakeup.next == NULL;
1644 }
1645
1646 static void perf_pending_sync(struct perf_counter *counter)
1647 {
1648         wait_event(counter->waitq, perf_not_pending(counter));
1649 }
1650
1651 void perf_counter_do_pending(void)
1652 {
1653         __perf_pending_run();
1654 }
1655
1656 /*
1657  * Callchain support -- arch specific
1658  */
1659
1660 struct perf_callchain_entry *
1661 __attribute__((weak))
1662 perf_callchain(struct pt_regs *regs)
1663 {
1664         return NULL;
1665 }
1666
1667 /*
1668  * Output
1669  */
1670
1671 struct perf_output_handle {
1672         struct perf_counter     *counter;
1673         struct perf_mmap_data   *data;
1674         unsigned int            offset;
1675         unsigned int            head;
1676         int                     wakeup;
1677         int                     nmi;
1678 };
1679
1680 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1681 {
1682         if (handle->nmi)
1683                 perf_pending_queue(handle->counter);
1684         else
1685                 perf_counter_wakeup(handle->counter);
1686 }
1687
1688 static int perf_output_begin(struct perf_output_handle *handle,
1689                              struct perf_counter *counter, unsigned int size,
1690                              int nmi)
1691 {
1692         struct perf_mmap_data *data;
1693         unsigned int offset, head;
1694
1695         rcu_read_lock();
1696         data = rcu_dereference(counter->data);
1697         if (!data)
1698                 goto out;
1699
1700         handle->counter = counter;
1701         handle->nmi     = nmi;
1702
1703         if (!data->nr_pages)
1704                 goto fail;
1705
1706         do {
1707                 offset = head = atomic_read(&data->head);
1708                 head += size;
1709         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1710
1711         handle->data    = data;
1712         handle->offset  = offset;
1713         handle->head    = head;
1714         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1715
1716         return 0;
1717
1718 fail:
1719         __perf_output_wakeup(handle);
1720 out:
1721         rcu_read_unlock();
1722
1723         return -ENOSPC;
1724 }
1725
1726 static void perf_output_copy(struct perf_output_handle *handle,
1727                              void *buf, unsigned int len)
1728 {
1729         unsigned int pages_mask;
1730         unsigned int offset;
1731         unsigned int size;
1732         void **pages;
1733
1734         offset          = handle->offset;
1735         pages_mask      = handle->data->nr_pages - 1;
1736         pages           = handle->data->data_pages;
1737
1738         do {
1739                 unsigned int page_offset;
1740                 int nr;
1741
1742                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1743                 page_offset = offset & (PAGE_SIZE - 1);
1744                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1745
1746                 memcpy(pages[nr] + page_offset, buf, size);
1747
1748                 len         -= size;
1749                 buf         += size;
1750                 offset      += size;
1751         } while (len);
1752
1753         handle->offset = offset;
1754
1755         WARN_ON_ONCE(handle->offset > handle->head);
1756 }
1757
1758 #define perf_output_put(handle, x) \
1759         perf_output_copy((handle), &(x), sizeof(x))
1760
1761 static void perf_output_end(struct perf_output_handle *handle)
1762 {
1763         int wakeup_events = handle->counter->hw_event.wakeup_events;
1764
1765         if (wakeup_events) {
1766                 int events = atomic_inc_return(&handle->data->events);
1767                 if (events >= wakeup_events) {
1768                         atomic_sub(wakeup_events, &handle->data->events);
1769                         __perf_output_wakeup(handle);
1770                 }
1771         } else if (handle->wakeup)
1772                 __perf_output_wakeup(handle);
1773         rcu_read_unlock();
1774 }
1775
1776 void perf_counter_output(struct perf_counter *counter,
1777                          int nmi, struct pt_regs *regs)
1778 {
1779         int ret;
1780         u64 record_type = counter->hw_event.record_type;
1781         struct perf_output_handle handle;
1782         struct perf_event_header header;
1783         u64 ip;
1784         struct {
1785                 u32 pid, tid;
1786         } tid_entry;
1787         struct {
1788                 u64 event;
1789                 u64 counter;
1790         } group_entry;
1791         struct perf_callchain_entry *callchain = NULL;
1792         int callchain_size = 0;
1793
1794         header.type = PERF_EVENT_COUNTER_OVERFLOW;
1795         header.size = sizeof(header);
1796
1797         if (record_type & PERF_RECORD_IP) {
1798                 ip = instruction_pointer(regs);
1799                 header.type |= __PERF_EVENT_IP;
1800                 header.size += sizeof(ip);
1801         }
1802
1803         if (record_type & PERF_RECORD_TID) {
1804                 /* namespace issues */
1805                 tid_entry.pid = current->group_leader->pid;
1806                 tid_entry.tid = current->pid;
1807
1808                 header.type |= __PERF_EVENT_TID;
1809                 header.size += sizeof(tid_entry);
1810         }
1811
1812         if (record_type & PERF_RECORD_GROUP) {
1813                 header.type |= __PERF_EVENT_GROUP;
1814                 header.size += sizeof(u64) +
1815                         counter->nr_siblings * sizeof(group_entry);
1816         }
1817
1818         if (record_type & PERF_RECORD_CALLCHAIN) {
1819                 callchain = perf_callchain(regs);
1820
1821                 if (callchain) {
1822                         callchain_size = (2 + callchain->nr) * sizeof(u64);
1823
1824                         header.type |= __PERF_EVENT_CALLCHAIN;
1825                         header.size += callchain_size;
1826                 }
1827         }
1828
1829         ret = perf_output_begin(&handle, counter, header.size, nmi);
1830         if (ret)
1831                 return;
1832
1833         perf_output_put(&handle, header);
1834
1835         if (record_type & PERF_RECORD_IP)
1836                 perf_output_put(&handle, ip);
1837
1838         if (record_type & PERF_RECORD_TID)
1839                 perf_output_put(&handle, tid_entry);
1840
1841         if (record_type & PERF_RECORD_GROUP) {
1842                 struct perf_counter *leader, *sub;
1843                 u64 nr = counter->nr_siblings;
1844
1845                 perf_output_put(&handle, nr);
1846
1847                 leader = counter->group_leader;
1848                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1849                         if (sub != counter)
1850                                 sub->hw_ops->read(sub);
1851
1852                         group_entry.event = sub->hw_event.config;
1853                         group_entry.counter = atomic64_read(&sub->count);
1854
1855                         perf_output_put(&handle, group_entry);
1856                 }
1857         }
1858
1859         if (callchain)
1860                 perf_output_copy(&handle, callchain, callchain_size);
1861
1862         perf_output_end(&handle);
1863 }
1864
1865 /*
1866  * mmap tracking
1867  */
1868
1869 struct perf_mmap_event {
1870         struct file     *file;
1871         char            *file_name;
1872         int             file_size;
1873
1874         struct {
1875                 struct perf_event_header        header;
1876
1877                 u32                             pid;
1878                 u32                             tid;
1879                 u64                             start;
1880                 u64                             len;
1881                 u64                             pgoff;
1882         } event;
1883 };
1884
1885 static void perf_counter_mmap_output(struct perf_counter *counter,
1886                                      struct perf_mmap_event *mmap_event)
1887 {
1888         struct perf_output_handle handle;
1889         int size = mmap_event->event.header.size;
1890         int ret = perf_output_begin(&handle, counter, size, 0);
1891
1892         if (ret)
1893                 return;
1894
1895         perf_output_put(&handle, mmap_event->event);
1896         perf_output_copy(&handle, mmap_event->file_name,
1897                                    mmap_event->file_size);
1898         perf_output_end(&handle);
1899 }
1900
1901 static int perf_counter_mmap_match(struct perf_counter *counter,
1902                                    struct perf_mmap_event *mmap_event)
1903 {
1904         if (counter->hw_event.mmap &&
1905             mmap_event->event.header.type == PERF_EVENT_MMAP)
1906                 return 1;
1907
1908         if (counter->hw_event.munmap &&
1909             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
1910                 return 1;
1911
1912         return 0;
1913 }
1914
1915 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
1916                                   struct perf_mmap_event *mmap_event)
1917 {
1918         struct perf_counter *counter;
1919
1920         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1921                 return;
1922
1923         rcu_read_lock();
1924         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1925                 if (perf_counter_mmap_match(counter, mmap_event))
1926                         perf_counter_mmap_output(counter, mmap_event);
1927         }
1928         rcu_read_unlock();
1929 }
1930
1931 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
1932 {
1933         struct perf_cpu_context *cpuctx;
1934         struct file *file = mmap_event->file;
1935         unsigned int size;
1936         char tmp[16];
1937         char *buf = NULL;
1938         char *name;
1939
1940         if (file) {
1941                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
1942                 if (!buf) {
1943                         name = strncpy(tmp, "//enomem", sizeof(tmp));
1944                         goto got_name;
1945                 }
1946                 name = dentry_path(file->f_dentry, buf, PATH_MAX);
1947                 if (IS_ERR(name)) {
1948                         name = strncpy(tmp, "//toolong", sizeof(tmp));
1949                         goto got_name;
1950                 }
1951         } else {
1952                 name = strncpy(tmp, "//anon", sizeof(tmp));
1953                 goto got_name;
1954         }
1955
1956 got_name:
1957         size = ALIGN(strlen(name), sizeof(u64));
1958
1959         mmap_event->file_name = name;
1960         mmap_event->file_size = size;
1961
1962         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
1963
1964         cpuctx = &get_cpu_var(perf_cpu_context);
1965         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
1966         put_cpu_var(perf_cpu_context);
1967
1968         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
1969
1970         kfree(buf);
1971 }
1972
1973 void perf_counter_mmap(unsigned long addr, unsigned long len,
1974                        unsigned long pgoff, struct file *file)
1975 {
1976         struct perf_mmap_event mmap_event = {
1977                 .file   = file,
1978                 .event  = {
1979                         .header = { .type = PERF_EVENT_MMAP, },
1980                         .pid    = current->group_leader->pid,
1981                         .tid    = current->pid,
1982                         .start  = addr,
1983                         .len    = len,
1984                         .pgoff  = pgoff,
1985                 },
1986         };
1987
1988         perf_counter_mmap_event(&mmap_event);
1989 }
1990
1991 void perf_counter_munmap(unsigned long addr, unsigned long len,
1992                          unsigned long pgoff, struct file *file)
1993 {
1994         struct perf_mmap_event mmap_event = {
1995                 .file   = file,
1996                 .event  = {
1997                         .header = { .type = PERF_EVENT_MUNMAP, },
1998                         .pid    = current->group_leader->pid,
1999                         .tid    = current->pid,
2000                         .start  = addr,
2001                         .len    = len,
2002                         .pgoff  = pgoff,
2003                 },
2004         };
2005
2006         perf_counter_mmap_event(&mmap_event);
2007 }
2008
2009 /*
2010  * Generic software counter infrastructure
2011  */
2012
2013 static void perf_swcounter_update(struct perf_counter *counter)
2014 {
2015         struct hw_perf_counter *hwc = &counter->hw;
2016         u64 prev, now;
2017         s64 delta;
2018
2019 again:
2020         prev = atomic64_read(&hwc->prev_count);
2021         now = atomic64_read(&hwc->count);
2022         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2023                 goto again;
2024
2025         delta = now - prev;
2026
2027         atomic64_add(delta, &counter->count);
2028         atomic64_sub(delta, &hwc->period_left);
2029 }
2030
2031 static void perf_swcounter_set_period(struct perf_counter *counter)
2032 {
2033         struct hw_perf_counter *hwc = &counter->hw;
2034         s64 left = atomic64_read(&hwc->period_left);
2035         s64 period = hwc->irq_period;
2036
2037         if (unlikely(left <= -period)) {
2038                 left = period;
2039                 atomic64_set(&hwc->period_left, left);
2040         }
2041
2042         if (unlikely(left <= 0)) {
2043                 left += period;
2044                 atomic64_add(period, &hwc->period_left);
2045         }
2046
2047         atomic64_set(&hwc->prev_count, -left);
2048         atomic64_set(&hwc->count, -left);
2049 }
2050
2051 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2052 {
2053         struct perf_counter *counter;
2054         struct pt_regs *regs;
2055
2056         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2057         counter->hw_ops->read(counter);
2058
2059         regs = get_irq_regs();
2060         /*
2061          * In case we exclude kernel IPs or are somehow not in interrupt
2062          * context, provide the next best thing, the user IP.
2063          */
2064         if ((counter->hw_event.exclude_kernel || !regs) &&
2065                         !counter->hw_event.exclude_user)
2066                 regs = task_pt_regs(current);
2067
2068         if (regs)
2069                 perf_counter_output(counter, 0, regs);
2070
2071         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2072
2073         return HRTIMER_RESTART;
2074 }
2075
2076 static void perf_swcounter_overflow(struct perf_counter *counter,
2077                                     int nmi, struct pt_regs *regs)
2078 {
2079         perf_swcounter_update(counter);
2080         perf_swcounter_set_period(counter);
2081         perf_counter_output(counter, nmi, regs);
2082 }
2083
2084 static int perf_swcounter_match(struct perf_counter *counter,
2085                                 enum perf_event_types type,
2086                                 u32 event, struct pt_regs *regs)
2087 {
2088         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2089                 return 0;
2090
2091         if (perf_event_raw(&counter->hw_event))
2092                 return 0;
2093
2094         if (perf_event_type(&counter->hw_event) != type)
2095                 return 0;
2096
2097         if (perf_event_id(&counter->hw_event) != event)
2098                 return 0;
2099
2100         if (counter->hw_event.exclude_user && user_mode(regs))
2101                 return 0;
2102
2103         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2104                 return 0;
2105
2106         return 1;
2107 }
2108
2109 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2110                                int nmi, struct pt_regs *regs)
2111 {
2112         int neg = atomic64_add_negative(nr, &counter->hw.count);
2113         if (counter->hw.irq_period && !neg)
2114                 perf_swcounter_overflow(counter, nmi, regs);
2115 }
2116
2117 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2118                                      enum perf_event_types type, u32 event,
2119                                      u64 nr, int nmi, struct pt_regs *regs)
2120 {
2121         struct perf_counter *counter;
2122
2123         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2124                 return;
2125
2126         rcu_read_lock();
2127         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2128                 if (perf_swcounter_match(counter, type, event, regs))
2129                         perf_swcounter_add(counter, nr, nmi, regs);
2130         }
2131         rcu_read_unlock();
2132 }
2133
2134 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2135 {
2136         if (in_nmi())
2137                 return &cpuctx->recursion[3];
2138
2139         if (in_irq())
2140                 return &cpuctx->recursion[2];
2141
2142         if (in_softirq())
2143                 return &cpuctx->recursion[1];
2144
2145         return &cpuctx->recursion[0];
2146 }
2147
2148 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2149                                    u64 nr, int nmi, struct pt_regs *regs)
2150 {
2151         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2152         int *recursion = perf_swcounter_recursion_context(cpuctx);
2153
2154         if (*recursion)
2155                 goto out;
2156
2157         (*recursion)++;
2158         barrier();
2159
2160         perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
2161         if (cpuctx->task_ctx) {
2162                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2163                                 nr, nmi, regs);
2164         }
2165
2166         barrier();
2167         (*recursion)--;
2168
2169 out:
2170         put_cpu_var(perf_cpu_context);
2171 }
2172
2173 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2174 {
2175         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2176 }
2177
2178 static void perf_swcounter_read(struct perf_counter *counter)
2179 {
2180         perf_swcounter_update(counter);
2181 }
2182
2183 static int perf_swcounter_enable(struct perf_counter *counter)
2184 {
2185         perf_swcounter_set_period(counter);
2186         return 0;
2187 }
2188
2189 static void perf_swcounter_disable(struct perf_counter *counter)
2190 {
2191         perf_swcounter_update(counter);
2192 }
2193
2194 static const struct hw_perf_counter_ops perf_ops_generic = {
2195         .enable         = perf_swcounter_enable,
2196         .disable        = perf_swcounter_disable,
2197         .read           = perf_swcounter_read,
2198 };
2199
2200 /*
2201  * Software counter: cpu wall time clock
2202  */
2203
2204 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2205 {
2206         int cpu = raw_smp_processor_id();
2207         s64 prev;
2208         u64 now;
2209
2210         now = cpu_clock(cpu);
2211         prev = atomic64_read(&counter->hw.prev_count);
2212         atomic64_set(&counter->hw.prev_count, now);
2213         atomic64_add(now - prev, &counter->count);
2214 }
2215
2216 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2217 {
2218         struct hw_perf_counter *hwc = &counter->hw;
2219         int cpu = raw_smp_processor_id();
2220
2221         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2222         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2223         hwc->hrtimer.function = perf_swcounter_hrtimer;
2224         if (hwc->irq_period) {
2225                 __hrtimer_start_range_ns(&hwc->hrtimer,
2226                                 ns_to_ktime(hwc->irq_period), 0,
2227                                 HRTIMER_MODE_REL, 0);
2228         }
2229
2230         return 0;
2231 }
2232
2233 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2234 {
2235         hrtimer_cancel(&counter->hw.hrtimer);
2236         cpu_clock_perf_counter_update(counter);
2237 }
2238
2239 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2240 {
2241         cpu_clock_perf_counter_update(counter);
2242 }
2243
2244 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2245         .enable         = cpu_clock_perf_counter_enable,
2246         .disable        = cpu_clock_perf_counter_disable,
2247         .read           = cpu_clock_perf_counter_read,
2248 };
2249
2250 /*
2251  * Software counter: task time clock
2252  */
2253
2254 /*
2255  * Called from within the scheduler:
2256  */
2257 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2258 {
2259         struct task_struct *curr = counter->task;
2260         u64 delta;
2261
2262         delta = __task_delta_exec(curr, update);
2263
2264         return curr->se.sum_exec_runtime + delta;
2265 }
2266
2267 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2268 {
2269         u64 prev;
2270         s64 delta;
2271
2272         prev = atomic64_read(&counter->hw.prev_count);
2273
2274         atomic64_set(&counter->hw.prev_count, now);
2275
2276         delta = now - prev;
2277
2278         atomic64_add(delta, &counter->count);
2279 }
2280
2281 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2282 {
2283         struct hw_perf_counter *hwc = &counter->hw;
2284
2285         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2286         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2287         hwc->hrtimer.function = perf_swcounter_hrtimer;
2288         if (hwc->irq_period) {
2289                 __hrtimer_start_range_ns(&hwc->hrtimer,
2290                                 ns_to_ktime(hwc->irq_period), 0,
2291                                 HRTIMER_MODE_REL, 0);
2292         }
2293
2294         return 0;
2295 }
2296
2297 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2298 {
2299         hrtimer_cancel(&counter->hw.hrtimer);
2300         task_clock_perf_counter_update(counter,
2301                         task_clock_perf_counter_val(counter, 0));
2302 }
2303
2304 static void task_clock_perf_counter_read(struct perf_counter *counter)
2305 {
2306         task_clock_perf_counter_update(counter,
2307                         task_clock_perf_counter_val(counter, 1));
2308 }
2309
2310 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2311         .enable         = task_clock_perf_counter_enable,
2312         .disable        = task_clock_perf_counter_disable,
2313         .read           = task_clock_perf_counter_read,
2314 };
2315
2316 /*
2317  * Software counter: cpu migrations
2318  */
2319
2320 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2321 {
2322         struct task_struct *curr = counter->ctx->task;
2323
2324         if (curr)
2325                 return curr->se.nr_migrations;
2326         return cpu_nr_migrations(smp_processor_id());
2327 }
2328
2329 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2330 {
2331         u64 prev, now;
2332         s64 delta;
2333
2334         prev = atomic64_read(&counter->hw.prev_count);
2335         now = get_cpu_migrations(counter);
2336
2337         atomic64_set(&counter->hw.prev_count, now);
2338
2339         delta = now - prev;
2340
2341         atomic64_add(delta, &counter->count);
2342 }
2343
2344 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2345 {
2346         cpu_migrations_perf_counter_update(counter);
2347 }
2348
2349 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2350 {
2351         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2352                 atomic64_set(&counter->hw.prev_count,
2353                              get_cpu_migrations(counter));
2354         return 0;
2355 }
2356
2357 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2358 {
2359         cpu_migrations_perf_counter_update(counter);
2360 }
2361
2362 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2363         .enable         = cpu_migrations_perf_counter_enable,
2364         .disable        = cpu_migrations_perf_counter_disable,
2365         .read           = cpu_migrations_perf_counter_read,
2366 };
2367
2368 #ifdef CONFIG_EVENT_PROFILE
2369 void perf_tpcounter_event(int event_id)
2370 {
2371         struct pt_regs *regs = get_irq_regs();
2372
2373         if (!regs)
2374                 regs = task_pt_regs(current);
2375
2376         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2377 }
2378
2379 extern int ftrace_profile_enable(int);
2380 extern void ftrace_profile_disable(int);
2381
2382 static void tp_perf_counter_destroy(struct perf_counter *counter)
2383 {
2384         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2385 }
2386
2387 static const struct hw_perf_counter_ops *
2388 tp_perf_counter_init(struct perf_counter *counter)
2389 {
2390         int event_id = perf_event_id(&counter->hw_event);
2391         int ret;
2392
2393         ret = ftrace_profile_enable(event_id);
2394         if (ret)
2395                 return NULL;
2396
2397         counter->destroy = tp_perf_counter_destroy;
2398         counter->hw.irq_period = counter->hw_event.irq_period;
2399
2400         return &perf_ops_generic;
2401 }
2402 #else
2403 static const struct hw_perf_counter_ops *
2404 tp_perf_counter_init(struct perf_counter *counter)
2405 {
2406         return NULL;
2407 }
2408 #endif
2409
2410 static const struct hw_perf_counter_ops *
2411 sw_perf_counter_init(struct perf_counter *counter)
2412 {
2413         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2414         const struct hw_perf_counter_ops *hw_ops = NULL;
2415         struct hw_perf_counter *hwc = &counter->hw;
2416
2417         /*
2418          * Software counters (currently) can't in general distinguish
2419          * between user, kernel and hypervisor events.
2420          * However, context switches and cpu migrations are considered
2421          * to be kernel events, and page faults are never hypervisor
2422          * events.
2423          */
2424         switch (perf_event_id(&counter->hw_event)) {
2425         case PERF_COUNT_CPU_CLOCK:
2426                 hw_ops = &perf_ops_cpu_clock;
2427
2428                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2429                         hw_event->irq_period = 10000;
2430                 break;
2431         case PERF_COUNT_TASK_CLOCK:
2432                 /*
2433                  * If the user instantiates this as a per-cpu counter,
2434                  * use the cpu_clock counter instead.
2435                  */
2436                 if (counter->ctx->task)
2437                         hw_ops = &perf_ops_task_clock;
2438                 else
2439                         hw_ops = &perf_ops_cpu_clock;
2440
2441                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2442                         hw_event->irq_period = 10000;
2443                 break;
2444         case PERF_COUNT_PAGE_FAULTS:
2445         case PERF_COUNT_PAGE_FAULTS_MIN:
2446         case PERF_COUNT_PAGE_FAULTS_MAJ:
2447         case PERF_COUNT_CONTEXT_SWITCHES:
2448                 hw_ops = &perf_ops_generic;
2449                 break;
2450         case PERF_COUNT_CPU_MIGRATIONS:
2451                 if (!counter->hw_event.exclude_kernel)
2452                         hw_ops = &perf_ops_cpu_migrations;
2453                 break;
2454         }
2455
2456         if (hw_ops)
2457                 hwc->irq_period = hw_event->irq_period;
2458
2459         return hw_ops;
2460 }
2461
2462 /*
2463  * Allocate and initialize a counter structure
2464  */
2465 static struct perf_counter *
2466 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2467                    int cpu,
2468                    struct perf_counter_context *ctx,
2469                    struct perf_counter *group_leader,
2470                    gfp_t gfpflags)
2471 {
2472         const struct hw_perf_counter_ops *hw_ops;
2473         struct perf_counter *counter;
2474         long err;
2475
2476         counter = kzalloc(sizeof(*counter), gfpflags);
2477         if (!counter)
2478                 return ERR_PTR(-ENOMEM);
2479
2480         /*
2481          * Single counters are their own group leaders, with an
2482          * empty sibling list:
2483          */
2484         if (!group_leader)
2485                 group_leader = counter;
2486
2487         mutex_init(&counter->mutex);
2488         INIT_LIST_HEAD(&counter->list_entry);
2489         INIT_LIST_HEAD(&counter->event_entry);
2490         INIT_LIST_HEAD(&counter->sibling_list);
2491         init_waitqueue_head(&counter->waitq);
2492
2493         mutex_init(&counter->mmap_mutex);
2494
2495         INIT_LIST_HEAD(&counter->child_list);
2496
2497         counter->cpu                    = cpu;
2498         counter->hw_event               = *hw_event;
2499         counter->group_leader           = group_leader;
2500         counter->hw_ops                 = NULL;
2501         counter->ctx                    = ctx;
2502
2503         counter->state = PERF_COUNTER_STATE_INACTIVE;
2504         if (hw_event->disabled)
2505                 counter->state = PERF_COUNTER_STATE_OFF;
2506
2507         hw_ops = NULL;
2508
2509         if (perf_event_raw(hw_event)) {
2510                 hw_ops = hw_perf_counter_init(counter);
2511                 goto done;
2512         }
2513
2514         switch (perf_event_type(hw_event)) {
2515         case PERF_TYPE_HARDWARE:
2516                 hw_ops = hw_perf_counter_init(counter);
2517                 break;
2518
2519         case PERF_TYPE_SOFTWARE:
2520                 hw_ops = sw_perf_counter_init(counter);
2521                 break;
2522
2523         case PERF_TYPE_TRACEPOINT:
2524                 hw_ops = tp_perf_counter_init(counter);
2525                 break;
2526         }
2527 done:
2528         err = 0;
2529         if (!hw_ops)
2530                 err = -EINVAL;
2531         else if (IS_ERR(hw_ops))
2532                 err = PTR_ERR(hw_ops);
2533
2534         if (err) {
2535                 kfree(counter);
2536                 return ERR_PTR(err);
2537         }
2538
2539         counter->hw_ops = hw_ops;
2540
2541         return counter;
2542 }
2543
2544 /**
2545  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2546  *
2547  * @hw_event_uptr:      event type attributes for monitoring/sampling
2548  * @pid:                target pid
2549  * @cpu:                target cpu
2550  * @group_fd:           group leader counter fd
2551  */
2552 SYSCALL_DEFINE5(perf_counter_open,
2553                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2554                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2555 {
2556         struct perf_counter *counter, *group_leader;
2557         struct perf_counter_hw_event hw_event;
2558         struct perf_counter_context *ctx;
2559         struct file *counter_file = NULL;
2560         struct file *group_file = NULL;
2561         int fput_needed = 0;
2562         int fput_needed2 = 0;
2563         int ret;
2564
2565         /* for future expandability... */
2566         if (flags)
2567                 return -EINVAL;
2568
2569         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2570                 return -EFAULT;
2571
2572         /*
2573          * Get the target context (task or percpu):
2574          */
2575         ctx = find_get_context(pid, cpu);
2576         if (IS_ERR(ctx))
2577                 return PTR_ERR(ctx);
2578
2579         /*
2580          * Look up the group leader (we will attach this counter to it):
2581          */
2582         group_leader = NULL;
2583         if (group_fd != -1) {
2584                 ret = -EINVAL;
2585                 group_file = fget_light(group_fd, &fput_needed);
2586                 if (!group_file)
2587                         goto err_put_context;
2588                 if (group_file->f_op != &perf_fops)
2589                         goto err_put_context;
2590
2591                 group_leader = group_file->private_data;
2592                 /*
2593                  * Do not allow a recursive hierarchy (this new sibling
2594                  * becoming part of another group-sibling):
2595                  */
2596                 if (group_leader->group_leader != group_leader)
2597                         goto err_put_context;
2598                 /*
2599                  * Do not allow to attach to a group in a different
2600                  * task or CPU context:
2601                  */
2602                 if (group_leader->ctx != ctx)
2603                         goto err_put_context;
2604                 /*
2605                  * Only a group leader can be exclusive or pinned
2606                  */
2607                 if (hw_event.exclusive || hw_event.pinned)
2608                         goto err_put_context;
2609         }
2610
2611         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2612                                      GFP_KERNEL);
2613         ret = PTR_ERR(counter);
2614         if (IS_ERR(counter))
2615                 goto err_put_context;
2616
2617         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2618         if (ret < 0)
2619                 goto err_free_put_context;
2620
2621         counter_file = fget_light(ret, &fput_needed2);
2622         if (!counter_file)
2623                 goto err_free_put_context;
2624
2625         counter->filp = counter_file;
2626         mutex_lock(&ctx->mutex);
2627         perf_install_in_context(ctx, counter, cpu);
2628         mutex_unlock(&ctx->mutex);
2629
2630         fput_light(counter_file, fput_needed2);
2631
2632 out_fput:
2633         fput_light(group_file, fput_needed);
2634
2635         return ret;
2636
2637 err_free_put_context:
2638         kfree(counter);
2639
2640 err_put_context:
2641         put_context(ctx);
2642
2643         goto out_fput;
2644 }
2645
2646 /*
2647  * Initialize the perf_counter context in a task_struct:
2648  */
2649 static void
2650 __perf_counter_init_context(struct perf_counter_context *ctx,
2651                             struct task_struct *task)
2652 {
2653         memset(ctx, 0, sizeof(*ctx));
2654         spin_lock_init(&ctx->lock);
2655         mutex_init(&ctx->mutex);
2656         INIT_LIST_HEAD(&ctx->counter_list);
2657         INIT_LIST_HEAD(&ctx->event_list);
2658         ctx->task = task;
2659 }
2660
2661 /*
2662  * inherit a counter from parent task to child task:
2663  */
2664 static struct perf_counter *
2665 inherit_counter(struct perf_counter *parent_counter,
2666               struct task_struct *parent,
2667               struct perf_counter_context *parent_ctx,
2668               struct task_struct *child,
2669               struct perf_counter *group_leader,
2670               struct perf_counter_context *child_ctx)
2671 {
2672         struct perf_counter *child_counter;
2673
2674         /*
2675          * Instead of creating recursive hierarchies of counters,
2676          * we link inherited counters back to the original parent,
2677          * which has a filp for sure, which we use as the reference
2678          * count:
2679          */
2680         if (parent_counter->parent)
2681                 parent_counter = parent_counter->parent;
2682
2683         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2684                                            parent_counter->cpu, child_ctx,
2685                                            group_leader, GFP_KERNEL);
2686         if (IS_ERR(child_counter))
2687                 return child_counter;
2688
2689         /*
2690          * Link it up in the child's context:
2691          */
2692         child_counter->task = child;
2693         add_counter_to_ctx(child_counter, child_ctx);
2694
2695         child_counter->parent = parent_counter;
2696         /*
2697          * inherit into child's child as well:
2698          */
2699         child_counter->hw_event.inherit = 1;
2700
2701         /*
2702          * Get a reference to the parent filp - we will fput it
2703          * when the child counter exits. This is safe to do because
2704          * we are in the parent and we know that the filp still
2705          * exists and has a nonzero count:
2706          */
2707         atomic_long_inc(&parent_counter->filp->f_count);
2708
2709         /*
2710          * Link this into the parent counter's child list
2711          */
2712         mutex_lock(&parent_counter->mutex);
2713         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2714
2715         /*
2716          * Make the child state follow the state of the parent counter,
2717          * not its hw_event.disabled bit.  We hold the parent's mutex,
2718          * so we won't race with perf_counter_{en,dis}able_family.
2719          */
2720         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2721                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2722         else
2723                 child_counter->state = PERF_COUNTER_STATE_OFF;
2724
2725         mutex_unlock(&parent_counter->mutex);
2726
2727         return child_counter;
2728 }
2729
2730 static int inherit_group(struct perf_counter *parent_counter,
2731               struct task_struct *parent,
2732               struct perf_counter_context *parent_ctx,
2733               struct task_struct *child,
2734               struct perf_counter_context *child_ctx)
2735 {
2736         struct perf_counter *leader;
2737         struct perf_counter *sub;
2738         struct perf_counter *child_ctr;
2739
2740         leader = inherit_counter(parent_counter, parent, parent_ctx,
2741                                  child, NULL, child_ctx);
2742         if (IS_ERR(leader))
2743                 return PTR_ERR(leader);
2744         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2745                 child_ctr = inherit_counter(sub, parent, parent_ctx,
2746                                             child, leader, child_ctx);
2747                 if (IS_ERR(child_ctr))
2748                         return PTR_ERR(child_ctr);
2749         }
2750         return 0;
2751 }
2752
2753 static void sync_child_counter(struct perf_counter *child_counter,
2754                                struct perf_counter *parent_counter)
2755 {
2756         u64 parent_val, child_val;
2757
2758         parent_val = atomic64_read(&parent_counter->count);
2759         child_val = atomic64_read(&child_counter->count);
2760
2761         /*
2762          * Add back the child's count to the parent's count:
2763          */
2764         atomic64_add(child_val, &parent_counter->count);
2765         atomic64_add(child_counter->total_time_enabled,
2766                      &parent_counter->child_total_time_enabled);
2767         atomic64_add(child_counter->total_time_running,
2768                      &parent_counter->child_total_time_running);
2769
2770         /*
2771          * Remove this counter from the parent's list
2772          */
2773         mutex_lock(&parent_counter->mutex);
2774         list_del_init(&child_counter->child_list);
2775         mutex_unlock(&parent_counter->mutex);
2776
2777         /*
2778          * Release the parent counter, if this was the last
2779          * reference to it.
2780          */
2781         fput(parent_counter->filp);
2782 }
2783
2784 static void
2785 __perf_counter_exit_task(struct task_struct *child,
2786                          struct perf_counter *child_counter,
2787                          struct perf_counter_context *child_ctx)
2788 {
2789         struct perf_counter *parent_counter;
2790         struct perf_counter *sub, *tmp;
2791
2792         /*
2793          * If we do not self-reap then we have to wait for the
2794          * child task to unschedule (it will happen for sure),
2795          * so that its counter is at its final count. (This
2796          * condition triggers rarely - child tasks usually get
2797          * off their CPU before the parent has a chance to
2798          * get this far into the reaping action)
2799          */
2800         if (child != current) {
2801                 wait_task_inactive(child, 0);
2802                 list_del_init(&child_counter->list_entry);
2803                 update_counter_times(child_counter);
2804         } else {
2805                 struct perf_cpu_context *cpuctx;
2806                 unsigned long flags;
2807                 u64 perf_flags;
2808
2809                 /*
2810                  * Disable and unlink this counter.
2811                  *
2812                  * Be careful about zapping the list - IRQ/NMI context
2813                  * could still be processing it:
2814                  */
2815                 curr_rq_lock_irq_save(&flags);
2816                 perf_flags = hw_perf_save_disable();
2817
2818                 cpuctx = &__get_cpu_var(perf_cpu_context);
2819
2820                 group_sched_out(child_counter, cpuctx, child_ctx);
2821                 update_counter_times(child_counter);
2822
2823                 list_del_init(&child_counter->list_entry);
2824
2825                 child_ctx->nr_counters--;
2826
2827                 hw_perf_restore(perf_flags);
2828                 curr_rq_unlock_irq_restore(&flags);
2829         }
2830
2831         parent_counter = child_counter->parent;
2832         /*
2833          * It can happen that parent exits first, and has counters
2834          * that are still around due to the child reference. These
2835          * counters need to be zapped - but otherwise linger.
2836          */
2837         if (parent_counter) {
2838                 sync_child_counter(child_counter, parent_counter);
2839                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2840                                          list_entry) {
2841                         if (sub->parent) {
2842                                 sync_child_counter(sub, sub->parent);
2843                                 free_counter(sub);
2844                         }
2845                 }
2846                 free_counter(child_counter);
2847         }
2848 }
2849
2850 /*
2851  * When a child task exits, feed back counter values to parent counters.
2852  *
2853  * Note: we may be running in child context, but the PID is not hashed
2854  * anymore so new counters will not be added.
2855  */
2856 void perf_counter_exit_task(struct task_struct *child)
2857 {
2858         struct perf_counter *child_counter, *tmp;
2859         struct perf_counter_context *child_ctx;
2860
2861         child_ctx = &child->perf_counter_ctx;
2862
2863         if (likely(!child_ctx->nr_counters))
2864                 return;
2865
2866         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2867                                  list_entry)
2868                 __perf_counter_exit_task(child, child_counter, child_ctx);
2869 }
2870
2871 /*
2872  * Initialize the perf_counter context in task_struct
2873  */
2874 void perf_counter_init_task(struct task_struct *child)
2875 {
2876         struct perf_counter_context *child_ctx, *parent_ctx;
2877         struct perf_counter *counter;
2878         struct task_struct *parent = current;
2879
2880         child_ctx  =  &child->perf_counter_ctx;
2881         parent_ctx = &parent->perf_counter_ctx;
2882
2883         __perf_counter_init_context(child_ctx, child);
2884
2885         /*
2886          * This is executed from the parent task context, so inherit
2887          * counters that have been marked for cloning:
2888          */
2889
2890         if (likely(!parent_ctx->nr_counters))
2891                 return;
2892
2893         /*
2894          * Lock the parent list. No need to lock the child - not PID
2895          * hashed yet and not running, so nobody can access it.
2896          */
2897         mutex_lock(&parent_ctx->mutex);
2898
2899         /*
2900          * We dont have to disable NMIs - we are only looking at
2901          * the list, not manipulating it:
2902          */
2903         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2904                 if (!counter->hw_event.inherit)
2905                         continue;
2906
2907                 if (inherit_group(counter, parent,
2908                                   parent_ctx, child, child_ctx))
2909                         break;
2910         }
2911
2912         mutex_unlock(&parent_ctx->mutex);
2913 }
2914
2915 static void __cpuinit perf_counter_init_cpu(int cpu)
2916 {
2917         struct perf_cpu_context *cpuctx;
2918
2919         cpuctx = &per_cpu(perf_cpu_context, cpu);
2920         __perf_counter_init_context(&cpuctx->ctx, NULL);
2921
2922         mutex_lock(&perf_resource_mutex);
2923         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2924         mutex_unlock(&perf_resource_mutex);
2925
2926         hw_perf_counter_setup(cpu);
2927 }
2928
2929 #ifdef CONFIG_HOTPLUG_CPU
2930 static void __perf_counter_exit_cpu(void *info)
2931 {
2932         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2933         struct perf_counter_context *ctx = &cpuctx->ctx;
2934         struct perf_counter *counter, *tmp;
2935
2936         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2937                 __perf_counter_remove_from_context(counter);
2938 }
2939 static void perf_counter_exit_cpu(int cpu)
2940 {
2941         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2942         struct perf_counter_context *ctx = &cpuctx->ctx;
2943
2944         mutex_lock(&ctx->mutex);
2945         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2946         mutex_unlock(&ctx->mutex);
2947 }
2948 #else
2949 static inline void perf_counter_exit_cpu(int cpu) { }
2950 #endif
2951
2952 static int __cpuinit
2953 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2954 {
2955         unsigned int cpu = (long)hcpu;
2956
2957         switch (action) {
2958
2959         case CPU_UP_PREPARE:
2960         case CPU_UP_PREPARE_FROZEN:
2961                 perf_counter_init_cpu(cpu);
2962                 break;
2963
2964         case CPU_DOWN_PREPARE:
2965         case CPU_DOWN_PREPARE_FROZEN:
2966                 perf_counter_exit_cpu(cpu);
2967                 break;
2968
2969         default:
2970                 break;
2971         }
2972
2973         return NOTIFY_OK;
2974 }
2975
2976 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2977         .notifier_call          = perf_cpu_notify,
2978 };
2979
2980 static int __init perf_counter_init(void)
2981 {
2982         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2983                         (void *)(long)smp_processor_id());
2984         register_cpu_notifier(&perf_cpu_nb);
2985
2986         return 0;
2987 }
2988 early_initcall(perf_counter_init);
2989
2990 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2991 {
2992         return sprintf(buf, "%d\n", perf_reserved_percpu);
2993 }
2994
2995 static ssize_t
2996 perf_set_reserve_percpu(struct sysdev_class *class,
2997                         const char *buf,
2998                         size_t count)
2999 {
3000         struct perf_cpu_context *cpuctx;
3001         unsigned long val;
3002         int err, cpu, mpt;
3003
3004         err = strict_strtoul(buf, 10, &val);
3005         if (err)
3006                 return err;
3007         if (val > perf_max_counters)
3008                 return -EINVAL;
3009
3010         mutex_lock(&perf_resource_mutex);
3011         perf_reserved_percpu = val;
3012         for_each_online_cpu(cpu) {
3013                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3014                 spin_lock_irq(&cpuctx->ctx.lock);
3015                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3016                           perf_max_counters - perf_reserved_percpu);
3017                 cpuctx->max_pertask = mpt;
3018                 spin_unlock_irq(&cpuctx->ctx.lock);
3019         }
3020         mutex_unlock(&perf_resource_mutex);
3021
3022         return count;
3023 }
3024
3025 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3026 {
3027         return sprintf(buf, "%d\n", perf_overcommit);
3028 }
3029
3030 static ssize_t
3031 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3032 {
3033         unsigned long val;
3034         int err;
3035
3036         err = strict_strtoul(buf, 10, &val);
3037         if (err)
3038                 return err;
3039         if (val > 1)
3040                 return -EINVAL;
3041
3042         mutex_lock(&perf_resource_mutex);
3043         perf_overcommit = val;
3044         mutex_unlock(&perf_resource_mutex);
3045
3046         return count;
3047 }
3048
3049 static SYSDEV_CLASS_ATTR(
3050                                 reserve_percpu,
3051                                 0644,
3052                                 perf_show_reserve_percpu,
3053                                 perf_set_reserve_percpu
3054                         );
3055
3056 static SYSDEV_CLASS_ATTR(
3057                                 overcommit,
3058                                 0644,
3059                                 perf_show_overcommit,
3060                                 perf_set_overcommit
3061                         );
3062
3063 static struct attribute *perfclass_attrs[] = {
3064         &attr_reserve_percpu.attr,
3065         &attr_overcommit.attr,
3066         NULL
3067 };
3068
3069 static struct attribute_group perfclass_attr_group = {
3070         .attrs                  = perfclass_attrs,
3071         .name                   = "perf_counters",
3072 };
3073
3074 static int __init perf_counter_sysfs_init(void)
3075 {
3076         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3077                                   &perfclass_attr_group);
3078 }
3079 device_initcall(perf_counter_sysfs_init);