perf_counter: Add unique counter id
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52  * Lock for (sysadmin-configurable) counter reservations:
53  */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57  * Architecture provided APIs - weak aliases:
58  */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61         return NULL;
62 }
63
64 void __weak hw_perf_disable(void)               { barrier(); }
65 void __weak hw_perf_enable(void)                { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
68
69 int __weak
70 hw_perf_group_sched_in(struct perf_counter *group_leader,
71                struct perf_cpu_context *cpuctx,
72                struct perf_counter_context *ctx, int cpu)
73 {
74         return 0;
75 }
76
77 void __weak perf_counter_print_debug(void)      { }
78
79 static DEFINE_PER_CPU(int, disable_count);
80
81 void __perf_disable(void)
82 {
83         __get_cpu_var(disable_count)++;
84 }
85
86 bool __perf_enable(void)
87 {
88         return !--__get_cpu_var(disable_count);
89 }
90
91 void perf_disable(void)
92 {
93         __perf_disable();
94         hw_perf_disable();
95 }
96
97 void perf_enable(void)
98 {
99         if (__perf_enable())
100                 hw_perf_enable();
101 }
102
103 static void get_ctx(struct perf_counter_context *ctx)
104 {
105         atomic_inc(&ctx->refcount);
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_counter_context *ctx;
111
112         ctx = container_of(head, struct perf_counter_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_counter_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 /*
128  * Get the perf_counter_context for a task and lock it.
129  * This has to cope with with the fact that until it is locked,
130  * the context could get moved to another task.
131  */
132 static struct perf_counter_context *
133 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134 {
135         struct perf_counter_context *ctx;
136
137         rcu_read_lock();
138  retry:
139         ctx = rcu_dereference(task->perf_counter_ctxp);
140         if (ctx) {
141                 /*
142                  * If this context is a clone of another, it might
143                  * get swapped for another underneath us by
144                  * perf_counter_task_sched_out, though the
145                  * rcu_read_lock() protects us from any context
146                  * getting freed.  Lock the context and check if it
147                  * got swapped before we could get the lock, and retry
148                  * if so.  If we locked the right context, then it
149                  * can't get swapped on us any more.
150                  */
151                 spin_lock_irqsave(&ctx->lock, *flags);
152                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
153                         spin_unlock_irqrestore(&ctx->lock, *flags);
154                         goto retry;
155                 }
156         }
157         rcu_read_unlock();
158         return ctx;
159 }
160
161 /*
162  * Get the context for a task and increment its pin_count so it
163  * can't get swapped to another task.  This also increments its
164  * reference count so that the context can't get freed.
165  */
166 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
167 {
168         struct perf_counter_context *ctx;
169         unsigned long flags;
170
171         ctx = perf_lock_task_context(task, &flags);
172         if (ctx) {
173                 ++ctx->pin_count;
174                 get_ctx(ctx);
175                 spin_unlock_irqrestore(&ctx->lock, flags);
176         }
177         return ctx;
178 }
179
180 static void perf_unpin_context(struct perf_counter_context *ctx)
181 {
182         unsigned long flags;
183
184         spin_lock_irqsave(&ctx->lock, flags);
185         --ctx->pin_count;
186         spin_unlock_irqrestore(&ctx->lock, flags);
187         put_ctx(ctx);
188 }
189
190 /*
191  * Add a counter from the lists for its context.
192  * Must be called with ctx->mutex and ctx->lock held.
193  */
194 static void
195 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
196 {
197         struct perf_counter *group_leader = counter->group_leader;
198
199         /*
200          * Depending on whether it is a standalone or sibling counter,
201          * add it straight to the context's counter list, or to the group
202          * leader's sibling list:
203          */
204         if (group_leader == counter)
205                 list_add_tail(&counter->list_entry, &ctx->counter_list);
206         else {
207                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
208                 group_leader->nr_siblings++;
209         }
210
211         list_add_rcu(&counter->event_entry, &ctx->event_list);
212         ctx->nr_counters++;
213 }
214
215 /*
216  * Remove a counter from the lists for its context.
217  * Must be called with ctx->mutex and ctx->lock held.
218  */
219 static void
220 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
221 {
222         struct perf_counter *sibling, *tmp;
223
224         if (list_empty(&counter->list_entry))
225                 return;
226         ctx->nr_counters--;
227
228         list_del_init(&counter->list_entry);
229         list_del_rcu(&counter->event_entry);
230
231         if (counter->group_leader != counter)
232                 counter->group_leader->nr_siblings--;
233
234         /*
235          * If this was a group counter with sibling counters then
236          * upgrade the siblings to singleton counters by adding them
237          * to the context list directly:
238          */
239         list_for_each_entry_safe(sibling, tmp,
240                                  &counter->sibling_list, list_entry) {
241
242                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
243                 sibling->group_leader = sibling;
244         }
245 }
246
247 static void
248 counter_sched_out(struct perf_counter *counter,
249                   struct perf_cpu_context *cpuctx,
250                   struct perf_counter_context *ctx)
251 {
252         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
253                 return;
254
255         counter->state = PERF_COUNTER_STATE_INACTIVE;
256         counter->tstamp_stopped = ctx->time;
257         counter->pmu->disable(counter);
258         counter->oncpu = -1;
259
260         if (!is_software_counter(counter))
261                 cpuctx->active_oncpu--;
262         ctx->nr_active--;
263         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
264                 cpuctx->exclusive = 0;
265 }
266
267 static void
268 group_sched_out(struct perf_counter *group_counter,
269                 struct perf_cpu_context *cpuctx,
270                 struct perf_counter_context *ctx)
271 {
272         struct perf_counter *counter;
273
274         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
275                 return;
276
277         counter_sched_out(group_counter, cpuctx, ctx);
278
279         /*
280          * Schedule out siblings (if any):
281          */
282         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
283                 counter_sched_out(counter, cpuctx, ctx);
284
285         if (group_counter->hw_event.exclusive)
286                 cpuctx->exclusive = 0;
287 }
288
289 /*
290  * Cross CPU call to remove a performance counter
291  *
292  * We disable the counter on the hardware level first. After that we
293  * remove it from the context list.
294  */
295 static void __perf_counter_remove_from_context(void *info)
296 {
297         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
298         struct perf_counter *counter = info;
299         struct perf_counter_context *ctx = counter->ctx;
300
301         /*
302          * If this is a task context, we need to check whether it is
303          * the current task context of this cpu. If not it has been
304          * scheduled out before the smp call arrived.
305          */
306         if (ctx->task && cpuctx->task_ctx != ctx)
307                 return;
308
309         spin_lock(&ctx->lock);
310         /*
311          * Protect the list operation against NMI by disabling the
312          * counters on a global level.
313          */
314         perf_disable();
315
316         counter_sched_out(counter, cpuctx, ctx);
317
318         list_del_counter(counter, ctx);
319
320         if (!ctx->task) {
321                 /*
322                  * Allow more per task counters with respect to the
323                  * reservation:
324                  */
325                 cpuctx->max_pertask =
326                         min(perf_max_counters - ctx->nr_counters,
327                             perf_max_counters - perf_reserved_percpu);
328         }
329
330         perf_enable();
331         spin_unlock(&ctx->lock);
332 }
333
334
335 /*
336  * Remove the counter from a task's (or a CPU's) list of counters.
337  *
338  * Must be called with ctx->mutex held.
339  *
340  * CPU counters are removed with a smp call. For task counters we only
341  * call when the task is on a CPU.
342  *
343  * If counter->ctx is a cloned context, callers must make sure that
344  * every task struct that counter->ctx->task could possibly point to
345  * remains valid.  This is OK when called from perf_release since
346  * that only calls us on the top-level context, which can't be a clone.
347  * When called from perf_counter_exit_task, it's OK because the
348  * context has been detached from its task.
349  */
350 static void perf_counter_remove_from_context(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Per cpu counters are removed via an smp call and
358                  * the removal is always sucessful.
359                  */
360                 smp_call_function_single(counter->cpu,
361                                          __perf_counter_remove_from_context,
362                                          counter, 1);
363                 return;
364         }
365
366 retry:
367         task_oncpu_function_call(task, __perf_counter_remove_from_context,
368                                  counter);
369
370         spin_lock_irq(&ctx->lock);
371         /*
372          * If the context is active we need to retry the smp call.
373          */
374         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
375                 spin_unlock_irq(&ctx->lock);
376                 goto retry;
377         }
378
379         /*
380          * The lock prevents that this context is scheduled in so we
381          * can remove the counter safely, if the call above did not
382          * succeed.
383          */
384         if (!list_empty(&counter->list_entry)) {
385                 list_del_counter(counter, ctx);
386         }
387         spin_unlock_irq(&ctx->lock);
388 }
389
390 static inline u64 perf_clock(void)
391 {
392         return cpu_clock(smp_processor_id());
393 }
394
395 /*
396  * Update the record of the current time in a context.
397  */
398 static void update_context_time(struct perf_counter_context *ctx)
399 {
400         u64 now = perf_clock();
401
402         ctx->time += now - ctx->timestamp;
403         ctx->timestamp = now;
404 }
405
406 /*
407  * Update the total_time_enabled and total_time_running fields for a counter.
408  */
409 static void update_counter_times(struct perf_counter *counter)
410 {
411         struct perf_counter_context *ctx = counter->ctx;
412         u64 run_end;
413
414         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
415                 return;
416
417         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
418
419         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
420                 run_end = counter->tstamp_stopped;
421         else
422                 run_end = ctx->time;
423
424         counter->total_time_running = run_end - counter->tstamp_running;
425 }
426
427 /*
428  * Update total_time_enabled and total_time_running for all counters in a group.
429  */
430 static void update_group_times(struct perf_counter *leader)
431 {
432         struct perf_counter *counter;
433
434         update_counter_times(leader);
435         list_for_each_entry(counter, &leader->sibling_list, list_entry)
436                 update_counter_times(counter);
437 }
438
439 /*
440  * Cross CPU call to disable a performance counter
441  */
442 static void __perf_counter_disable(void *info)
443 {
444         struct perf_counter *counter = info;
445         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
446         struct perf_counter_context *ctx = counter->ctx;
447
448         /*
449          * If this is a per-task counter, need to check whether this
450          * counter's task is the current task on this cpu.
451          */
452         if (ctx->task && cpuctx->task_ctx != ctx)
453                 return;
454
455         spin_lock(&ctx->lock);
456
457         /*
458          * If the counter is on, turn it off.
459          * If it is in error state, leave it in error state.
460          */
461         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
462                 update_context_time(ctx);
463                 update_counter_times(counter);
464                 if (counter == counter->group_leader)
465                         group_sched_out(counter, cpuctx, ctx);
466                 else
467                         counter_sched_out(counter, cpuctx, ctx);
468                 counter->state = PERF_COUNTER_STATE_OFF;
469         }
470
471         spin_unlock(&ctx->lock);
472 }
473
474 /*
475  * Disable a counter.
476  *
477  * If counter->ctx is a cloned context, callers must make sure that
478  * every task struct that counter->ctx->task could possibly point to
479  * remains valid.  This condition is satisifed when called through
480  * perf_counter_for_each_child or perf_counter_for_each because they
481  * hold the top-level counter's child_mutex, so any descendant that
482  * goes to exit will block in sync_child_counter.
483  * When called from perf_pending_counter it's OK because counter->ctx
484  * is the current context on this CPU and preemption is disabled,
485  * hence we can't get into perf_counter_task_sched_out for this context.
486  */
487 static void perf_counter_disable(struct perf_counter *counter)
488 {
489         struct perf_counter_context *ctx = counter->ctx;
490         struct task_struct *task = ctx->task;
491
492         if (!task) {
493                 /*
494                  * Disable the counter on the cpu that it's on
495                  */
496                 smp_call_function_single(counter->cpu, __perf_counter_disable,
497                                          counter, 1);
498                 return;
499         }
500
501  retry:
502         task_oncpu_function_call(task, __perf_counter_disable, counter);
503
504         spin_lock_irq(&ctx->lock);
505         /*
506          * If the counter is still active, we need to retry the cross-call.
507          */
508         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
509                 spin_unlock_irq(&ctx->lock);
510                 goto retry;
511         }
512
513         /*
514          * Since we have the lock this context can't be scheduled
515          * in, so we can change the state safely.
516          */
517         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
518                 update_counter_times(counter);
519                 counter->state = PERF_COUNTER_STATE_OFF;
520         }
521
522         spin_unlock_irq(&ctx->lock);
523 }
524
525 static int
526 counter_sched_in(struct perf_counter *counter,
527                  struct perf_cpu_context *cpuctx,
528                  struct perf_counter_context *ctx,
529                  int cpu)
530 {
531         if (counter->state <= PERF_COUNTER_STATE_OFF)
532                 return 0;
533
534         counter->state = PERF_COUNTER_STATE_ACTIVE;
535         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
536         /*
537          * The new state must be visible before we turn it on in the hardware:
538          */
539         smp_wmb();
540
541         if (counter->pmu->enable(counter)) {
542                 counter->state = PERF_COUNTER_STATE_INACTIVE;
543                 counter->oncpu = -1;
544                 return -EAGAIN;
545         }
546
547         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
548
549         if (!is_software_counter(counter))
550                 cpuctx->active_oncpu++;
551         ctx->nr_active++;
552
553         if (counter->hw_event.exclusive)
554                 cpuctx->exclusive = 1;
555
556         return 0;
557 }
558
559 static int
560 group_sched_in(struct perf_counter *group_counter,
561                struct perf_cpu_context *cpuctx,
562                struct perf_counter_context *ctx,
563                int cpu)
564 {
565         struct perf_counter *counter, *partial_group;
566         int ret;
567
568         if (group_counter->state == PERF_COUNTER_STATE_OFF)
569                 return 0;
570
571         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
572         if (ret)
573                 return ret < 0 ? ret : 0;
574
575         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
576                 return -EAGAIN;
577
578         /*
579          * Schedule in siblings as one group (if any):
580          */
581         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
582                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
583                         partial_group = counter;
584                         goto group_error;
585                 }
586         }
587
588         return 0;
589
590 group_error:
591         /*
592          * Groups can be scheduled in as one unit only, so undo any
593          * partial group before returning:
594          */
595         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
596                 if (counter == partial_group)
597                         break;
598                 counter_sched_out(counter, cpuctx, ctx);
599         }
600         counter_sched_out(group_counter, cpuctx, ctx);
601
602         return -EAGAIN;
603 }
604
605 /*
606  * Return 1 for a group consisting entirely of software counters,
607  * 0 if the group contains any hardware counters.
608  */
609 static int is_software_only_group(struct perf_counter *leader)
610 {
611         struct perf_counter *counter;
612
613         if (!is_software_counter(leader))
614                 return 0;
615
616         list_for_each_entry(counter, &leader->sibling_list, list_entry)
617                 if (!is_software_counter(counter))
618                         return 0;
619
620         return 1;
621 }
622
623 /*
624  * Work out whether we can put this counter group on the CPU now.
625  */
626 static int group_can_go_on(struct perf_counter *counter,
627                            struct perf_cpu_context *cpuctx,
628                            int can_add_hw)
629 {
630         /*
631          * Groups consisting entirely of software counters can always go on.
632          */
633         if (is_software_only_group(counter))
634                 return 1;
635         /*
636          * If an exclusive group is already on, no other hardware
637          * counters can go on.
638          */
639         if (cpuctx->exclusive)
640                 return 0;
641         /*
642          * If this group is exclusive and there are already
643          * counters on the CPU, it can't go on.
644          */
645         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
646                 return 0;
647         /*
648          * Otherwise, try to add it if all previous groups were able
649          * to go on.
650          */
651         return can_add_hw;
652 }
653
654 static void add_counter_to_ctx(struct perf_counter *counter,
655                                struct perf_counter_context *ctx)
656 {
657         list_add_counter(counter, ctx);
658         counter->tstamp_enabled = ctx->time;
659         counter->tstamp_running = ctx->time;
660         counter->tstamp_stopped = ctx->time;
661 }
662
663 /*
664  * Cross CPU call to install and enable a performance counter
665  *
666  * Must be called with ctx->mutex held
667  */
668 static void __perf_install_in_context(void *info)
669 {
670         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
671         struct perf_counter *counter = info;
672         struct perf_counter_context *ctx = counter->ctx;
673         struct perf_counter *leader = counter->group_leader;
674         int cpu = smp_processor_id();
675         int err;
676
677         /*
678          * If this is a task context, we need to check whether it is
679          * the current task context of this cpu. If not it has been
680          * scheduled out before the smp call arrived.
681          * Or possibly this is the right context but it isn't
682          * on this cpu because it had no counters.
683          */
684         if (ctx->task && cpuctx->task_ctx != ctx) {
685                 if (cpuctx->task_ctx || ctx->task != current)
686                         return;
687                 cpuctx->task_ctx = ctx;
688         }
689
690         spin_lock(&ctx->lock);
691         ctx->is_active = 1;
692         update_context_time(ctx);
693
694         /*
695          * Protect the list operation against NMI by disabling the
696          * counters on a global level. NOP for non NMI based counters.
697          */
698         perf_disable();
699
700         add_counter_to_ctx(counter, ctx);
701
702         /*
703          * Don't put the counter on if it is disabled or if
704          * it is in a group and the group isn't on.
705          */
706         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
707             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
708                 goto unlock;
709
710         /*
711          * An exclusive counter can't go on if there are already active
712          * hardware counters, and no hardware counter can go on if there
713          * is already an exclusive counter on.
714          */
715         if (!group_can_go_on(counter, cpuctx, 1))
716                 err = -EEXIST;
717         else
718                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
719
720         if (err) {
721                 /*
722                  * This counter couldn't go on.  If it is in a group
723                  * then we have to pull the whole group off.
724                  * If the counter group is pinned then put it in error state.
725                  */
726                 if (leader != counter)
727                         group_sched_out(leader, cpuctx, ctx);
728                 if (leader->hw_event.pinned) {
729                         update_group_times(leader);
730                         leader->state = PERF_COUNTER_STATE_ERROR;
731                 }
732         }
733
734         if (!err && !ctx->task && cpuctx->max_pertask)
735                 cpuctx->max_pertask--;
736
737  unlock:
738         perf_enable();
739
740         spin_unlock(&ctx->lock);
741 }
742
743 /*
744  * Attach a performance counter to a context
745  *
746  * First we add the counter to the list with the hardware enable bit
747  * in counter->hw_config cleared.
748  *
749  * If the counter is attached to a task which is on a CPU we use a smp
750  * call to enable it in the task context. The task might have been
751  * scheduled away, but we check this in the smp call again.
752  *
753  * Must be called with ctx->mutex held.
754  */
755 static void
756 perf_install_in_context(struct perf_counter_context *ctx,
757                         struct perf_counter *counter,
758                         int cpu)
759 {
760         struct task_struct *task = ctx->task;
761
762         if (!task) {
763                 /*
764                  * Per cpu counters are installed via an smp call and
765                  * the install is always sucessful.
766                  */
767                 smp_call_function_single(cpu, __perf_install_in_context,
768                                          counter, 1);
769                 return;
770         }
771
772 retry:
773         task_oncpu_function_call(task, __perf_install_in_context,
774                                  counter);
775
776         spin_lock_irq(&ctx->lock);
777         /*
778          * we need to retry the smp call.
779          */
780         if (ctx->is_active && list_empty(&counter->list_entry)) {
781                 spin_unlock_irq(&ctx->lock);
782                 goto retry;
783         }
784
785         /*
786          * The lock prevents that this context is scheduled in so we
787          * can add the counter safely, if it the call above did not
788          * succeed.
789          */
790         if (list_empty(&counter->list_entry))
791                 add_counter_to_ctx(counter, ctx);
792         spin_unlock_irq(&ctx->lock);
793 }
794
795 /*
796  * Cross CPU call to enable a performance counter
797  */
798 static void __perf_counter_enable(void *info)
799 {
800         struct perf_counter *counter = info;
801         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
802         struct perf_counter_context *ctx = counter->ctx;
803         struct perf_counter *leader = counter->group_leader;
804         int err;
805
806         /*
807          * If this is a per-task counter, need to check whether this
808          * counter's task is the current task on this cpu.
809          */
810         if (ctx->task && cpuctx->task_ctx != ctx) {
811                 if (cpuctx->task_ctx || ctx->task != current)
812                         return;
813                 cpuctx->task_ctx = ctx;
814         }
815
816         spin_lock(&ctx->lock);
817         ctx->is_active = 1;
818         update_context_time(ctx);
819
820         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
821                 goto unlock;
822         counter->state = PERF_COUNTER_STATE_INACTIVE;
823         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
824
825         /*
826          * If the counter is in a group and isn't the group leader,
827          * then don't put it on unless the group is on.
828          */
829         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
830                 goto unlock;
831
832         if (!group_can_go_on(counter, cpuctx, 1)) {
833                 err = -EEXIST;
834         } else {
835                 perf_disable();
836                 if (counter == leader)
837                         err = group_sched_in(counter, cpuctx, ctx,
838                                              smp_processor_id());
839                 else
840                         err = counter_sched_in(counter, cpuctx, ctx,
841                                                smp_processor_id());
842                 perf_enable();
843         }
844
845         if (err) {
846                 /*
847                  * If this counter can't go on and it's part of a
848                  * group, then the whole group has to come off.
849                  */
850                 if (leader != counter)
851                         group_sched_out(leader, cpuctx, ctx);
852                 if (leader->hw_event.pinned) {
853                         update_group_times(leader);
854                         leader->state = PERF_COUNTER_STATE_ERROR;
855                 }
856         }
857
858  unlock:
859         spin_unlock(&ctx->lock);
860 }
861
862 /*
863  * Enable a counter.
864  *
865  * If counter->ctx is a cloned context, callers must make sure that
866  * every task struct that counter->ctx->task could possibly point to
867  * remains valid.  This condition is satisfied when called through
868  * perf_counter_for_each_child or perf_counter_for_each as described
869  * for perf_counter_disable.
870  */
871 static void perf_counter_enable(struct perf_counter *counter)
872 {
873         struct perf_counter_context *ctx = counter->ctx;
874         struct task_struct *task = ctx->task;
875
876         if (!task) {
877                 /*
878                  * Enable the counter on the cpu that it's on
879                  */
880                 smp_call_function_single(counter->cpu, __perf_counter_enable,
881                                          counter, 1);
882                 return;
883         }
884
885         spin_lock_irq(&ctx->lock);
886         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
887                 goto out;
888
889         /*
890          * If the counter is in error state, clear that first.
891          * That way, if we see the counter in error state below, we
892          * know that it has gone back into error state, as distinct
893          * from the task having been scheduled away before the
894          * cross-call arrived.
895          */
896         if (counter->state == PERF_COUNTER_STATE_ERROR)
897                 counter->state = PERF_COUNTER_STATE_OFF;
898
899  retry:
900         spin_unlock_irq(&ctx->lock);
901         task_oncpu_function_call(task, __perf_counter_enable, counter);
902
903         spin_lock_irq(&ctx->lock);
904
905         /*
906          * If the context is active and the counter is still off,
907          * we need to retry the cross-call.
908          */
909         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
910                 goto retry;
911
912         /*
913          * Since we have the lock this context can't be scheduled
914          * in, so we can change the state safely.
915          */
916         if (counter->state == PERF_COUNTER_STATE_OFF) {
917                 counter->state = PERF_COUNTER_STATE_INACTIVE;
918                 counter->tstamp_enabled =
919                         ctx->time - counter->total_time_enabled;
920         }
921  out:
922         spin_unlock_irq(&ctx->lock);
923 }
924
925 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
926 {
927         /*
928          * not supported on inherited counters
929          */
930         if (counter->hw_event.inherit)
931                 return -EINVAL;
932
933         atomic_add(refresh, &counter->event_limit);
934         perf_counter_enable(counter);
935
936         return 0;
937 }
938
939 void __perf_counter_sched_out(struct perf_counter_context *ctx,
940                               struct perf_cpu_context *cpuctx)
941 {
942         struct perf_counter *counter;
943
944         spin_lock(&ctx->lock);
945         ctx->is_active = 0;
946         if (likely(!ctx->nr_counters))
947                 goto out;
948         update_context_time(ctx);
949
950         perf_disable();
951         if (ctx->nr_active) {
952                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
953                         if (counter != counter->group_leader)
954                                 counter_sched_out(counter, cpuctx, ctx);
955                         else
956                                 group_sched_out(counter, cpuctx, ctx);
957                 }
958         }
959         perf_enable();
960  out:
961         spin_unlock(&ctx->lock);
962 }
963
964 /*
965  * Test whether two contexts are equivalent, i.e. whether they
966  * have both been cloned from the same version of the same context
967  * and they both have the same number of enabled counters.
968  * If the number of enabled counters is the same, then the set
969  * of enabled counters should be the same, because these are both
970  * inherited contexts, therefore we can't access individual counters
971  * in them directly with an fd; we can only enable/disable all
972  * counters via prctl, or enable/disable all counters in a family
973  * via ioctl, which will have the same effect on both contexts.
974  */
975 static int context_equiv(struct perf_counter_context *ctx1,
976                          struct perf_counter_context *ctx2)
977 {
978         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
979                 && ctx1->parent_gen == ctx2->parent_gen
980                 && !ctx1->pin_count && !ctx2->pin_count;
981 }
982
983 /*
984  * Called from scheduler to remove the counters of the current task,
985  * with interrupts disabled.
986  *
987  * We stop each counter and update the counter value in counter->count.
988  *
989  * This does not protect us against NMI, but disable()
990  * sets the disabled bit in the control field of counter _before_
991  * accessing the counter control register. If a NMI hits, then it will
992  * not restart the counter.
993  */
994 void perf_counter_task_sched_out(struct task_struct *task,
995                                  struct task_struct *next, int cpu)
996 {
997         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
998         struct perf_counter_context *ctx = task->perf_counter_ctxp;
999         struct perf_counter_context *next_ctx;
1000         struct perf_counter_context *parent;
1001         struct pt_regs *regs;
1002         int do_switch = 1;
1003
1004         regs = task_pt_regs(task);
1005         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1006
1007         if (likely(!ctx || !cpuctx->task_ctx))
1008                 return;
1009
1010         update_context_time(ctx);
1011
1012         rcu_read_lock();
1013         parent = rcu_dereference(ctx->parent_ctx);
1014         next_ctx = next->perf_counter_ctxp;
1015         if (parent && next_ctx &&
1016             rcu_dereference(next_ctx->parent_ctx) == parent) {
1017                 /*
1018                  * Looks like the two contexts are clones, so we might be
1019                  * able to optimize the context switch.  We lock both
1020                  * contexts and check that they are clones under the
1021                  * lock (including re-checking that neither has been
1022                  * uncloned in the meantime).  It doesn't matter which
1023                  * order we take the locks because no other cpu could
1024                  * be trying to lock both of these tasks.
1025                  */
1026                 spin_lock(&ctx->lock);
1027                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1028                 if (context_equiv(ctx, next_ctx)) {
1029                         /*
1030                          * XXX do we need a memory barrier of sorts
1031                          * wrt to rcu_dereference() of perf_counter_ctxp
1032                          */
1033                         task->perf_counter_ctxp = next_ctx;
1034                         next->perf_counter_ctxp = ctx;
1035                         ctx->task = next;
1036                         next_ctx->task = task;
1037                         do_switch = 0;
1038                 }
1039                 spin_unlock(&next_ctx->lock);
1040                 spin_unlock(&ctx->lock);
1041         }
1042         rcu_read_unlock();
1043
1044         if (do_switch) {
1045                 __perf_counter_sched_out(ctx, cpuctx);
1046                 cpuctx->task_ctx = NULL;
1047         }
1048 }
1049
1050 /*
1051  * Called with IRQs disabled
1052  */
1053 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1054 {
1055         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1056
1057         if (!cpuctx->task_ctx)
1058                 return;
1059
1060         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1061                 return;
1062
1063         __perf_counter_sched_out(ctx, cpuctx);
1064         cpuctx->task_ctx = NULL;
1065 }
1066
1067 /*
1068  * Called with IRQs disabled
1069  */
1070 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1071 {
1072         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1073 }
1074
1075 static void
1076 __perf_counter_sched_in(struct perf_counter_context *ctx,
1077                         struct perf_cpu_context *cpuctx, int cpu)
1078 {
1079         struct perf_counter *counter;
1080         int can_add_hw = 1;
1081
1082         spin_lock(&ctx->lock);
1083         ctx->is_active = 1;
1084         if (likely(!ctx->nr_counters))
1085                 goto out;
1086
1087         ctx->timestamp = perf_clock();
1088
1089         perf_disable();
1090
1091         /*
1092          * First go through the list and put on any pinned groups
1093          * in order to give them the best chance of going on.
1094          */
1095         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1096                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1097                     !counter->hw_event.pinned)
1098                         continue;
1099                 if (counter->cpu != -1 && counter->cpu != cpu)
1100                         continue;
1101
1102                 if (counter != counter->group_leader)
1103                         counter_sched_in(counter, cpuctx, ctx, cpu);
1104                 else {
1105                         if (group_can_go_on(counter, cpuctx, 1))
1106                                 group_sched_in(counter, cpuctx, ctx, cpu);
1107                 }
1108
1109                 /*
1110                  * If this pinned group hasn't been scheduled,
1111                  * put it in error state.
1112                  */
1113                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114                         update_group_times(counter);
1115                         counter->state = PERF_COUNTER_STATE_ERROR;
1116                 }
1117         }
1118
1119         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1120                 /*
1121                  * Ignore counters in OFF or ERROR state, and
1122                  * ignore pinned counters since we did them already.
1123                  */
1124                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1125                     counter->hw_event.pinned)
1126                         continue;
1127
1128                 /*
1129                  * Listen to the 'cpu' scheduling filter constraint
1130                  * of counters:
1131                  */
1132                 if (counter->cpu != -1 && counter->cpu != cpu)
1133                         continue;
1134
1135                 if (counter != counter->group_leader) {
1136                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1137                                 can_add_hw = 0;
1138                 } else {
1139                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1140                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1141                                         can_add_hw = 0;
1142                         }
1143                 }
1144         }
1145         perf_enable();
1146  out:
1147         spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151  * Called from scheduler to add the counters of the current task
1152  * with interrupts disabled.
1153  *
1154  * We restore the counter value and then enable it.
1155  *
1156  * This does not protect us against NMI, but enable()
1157  * sets the enabled bit in the control field of counter _before_
1158  * accessing the counter control register. If a NMI hits, then it will
1159  * keep the counter running.
1160  */
1161 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1162 {
1163         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1164         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1165
1166         if (likely(!ctx))
1167                 return;
1168         if (cpuctx->task_ctx == ctx)
1169                 return;
1170         __perf_counter_sched_in(ctx, cpuctx, cpu);
1171         cpuctx->task_ctx = ctx;
1172 }
1173
1174 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1175 {
1176         struct perf_counter_context *ctx = &cpuctx->ctx;
1177
1178         __perf_counter_sched_in(ctx, cpuctx, cpu);
1179 }
1180
1181 #define MAX_INTERRUPTS (~0ULL)
1182
1183 static void perf_log_throttle(struct perf_counter *counter, int enable);
1184 static void perf_log_period(struct perf_counter *counter, u64 period);
1185
1186 static void perf_adjust_freq(struct perf_counter_context *ctx)
1187 {
1188         struct perf_counter *counter;
1189         u64 interrupts, irq_period;
1190         u64 events, period;
1191         s64 delta;
1192
1193         spin_lock(&ctx->lock);
1194         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1195                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1196                         continue;
1197
1198                 interrupts = counter->hw.interrupts;
1199                 counter->hw.interrupts = 0;
1200
1201                 if (interrupts == MAX_INTERRUPTS) {
1202                         perf_log_throttle(counter, 1);
1203                         counter->pmu->unthrottle(counter);
1204                         interrupts = 2*sysctl_perf_counter_limit/HZ;
1205                 }
1206
1207                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1208                         continue;
1209
1210                 events = HZ * interrupts * counter->hw.irq_period;
1211                 period = div64_u64(events, counter->hw_event.irq_freq);
1212
1213                 delta = (s64)(1 + period - counter->hw.irq_period);
1214                 delta >>= 1;
1215
1216                 irq_period = counter->hw.irq_period + delta;
1217
1218                 if (!irq_period)
1219                         irq_period = 1;
1220
1221                 perf_log_period(counter, irq_period);
1222
1223                 counter->hw.irq_period = irq_period;
1224         }
1225         spin_unlock(&ctx->lock);
1226 }
1227
1228 /*
1229  * Round-robin a context's counters:
1230  */
1231 static void rotate_ctx(struct perf_counter_context *ctx)
1232 {
1233         struct perf_counter *counter;
1234
1235         if (!ctx->nr_counters)
1236                 return;
1237
1238         spin_lock(&ctx->lock);
1239         /*
1240          * Rotate the first entry last (works just fine for group counters too):
1241          */
1242         perf_disable();
1243         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1244                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1245                 break;
1246         }
1247         perf_enable();
1248
1249         spin_unlock(&ctx->lock);
1250 }
1251
1252 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1253 {
1254         struct perf_cpu_context *cpuctx;
1255         struct perf_counter_context *ctx;
1256
1257         if (!atomic_read(&nr_counters))
1258                 return;
1259
1260         cpuctx = &per_cpu(perf_cpu_context, cpu);
1261         ctx = curr->perf_counter_ctxp;
1262
1263         perf_adjust_freq(&cpuctx->ctx);
1264         if (ctx)
1265                 perf_adjust_freq(ctx);
1266
1267         perf_counter_cpu_sched_out(cpuctx);
1268         if (ctx)
1269                 __perf_counter_task_sched_out(ctx);
1270
1271         rotate_ctx(&cpuctx->ctx);
1272         if (ctx)
1273                 rotate_ctx(ctx);
1274
1275         perf_counter_cpu_sched_in(cpuctx, cpu);
1276         if (ctx)
1277                 perf_counter_task_sched_in(curr, cpu);
1278 }
1279
1280 /*
1281  * Cross CPU call to read the hardware counter
1282  */
1283 static void __read(void *info)
1284 {
1285         struct perf_counter *counter = info;
1286         struct perf_counter_context *ctx = counter->ctx;
1287         unsigned long flags;
1288
1289         local_irq_save(flags);
1290         if (ctx->is_active)
1291                 update_context_time(ctx);
1292         counter->pmu->read(counter);
1293         update_counter_times(counter);
1294         local_irq_restore(flags);
1295 }
1296
1297 static u64 perf_counter_read(struct perf_counter *counter)
1298 {
1299         /*
1300          * If counter is enabled and currently active on a CPU, update the
1301          * value in the counter structure:
1302          */
1303         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1304                 smp_call_function_single(counter->oncpu,
1305                                          __read, counter, 1);
1306         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1307                 update_counter_times(counter);
1308         }
1309
1310         return atomic64_read(&counter->count);
1311 }
1312
1313 /*
1314  * Initialize the perf_counter context in a task_struct:
1315  */
1316 static void
1317 __perf_counter_init_context(struct perf_counter_context *ctx,
1318                             struct task_struct *task)
1319 {
1320         memset(ctx, 0, sizeof(*ctx));
1321         spin_lock_init(&ctx->lock);
1322         mutex_init(&ctx->mutex);
1323         INIT_LIST_HEAD(&ctx->counter_list);
1324         INIT_LIST_HEAD(&ctx->event_list);
1325         atomic_set(&ctx->refcount, 1);
1326         ctx->task = task;
1327 }
1328
1329 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1330 {
1331         struct perf_counter_context *parent_ctx;
1332         struct perf_counter_context *ctx;
1333         struct perf_cpu_context *cpuctx;
1334         struct task_struct *task;
1335         unsigned long flags;
1336         int err;
1337
1338         /*
1339          * If cpu is not a wildcard then this is a percpu counter:
1340          */
1341         if (cpu != -1) {
1342                 /* Must be root to operate on a CPU counter: */
1343                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1344                         return ERR_PTR(-EACCES);
1345
1346                 if (cpu < 0 || cpu > num_possible_cpus())
1347                         return ERR_PTR(-EINVAL);
1348
1349                 /*
1350                  * We could be clever and allow to attach a counter to an
1351                  * offline CPU and activate it when the CPU comes up, but
1352                  * that's for later.
1353                  */
1354                 if (!cpu_isset(cpu, cpu_online_map))
1355                         return ERR_PTR(-ENODEV);
1356
1357                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1358                 ctx = &cpuctx->ctx;
1359                 get_ctx(ctx);
1360
1361                 return ctx;
1362         }
1363
1364         rcu_read_lock();
1365         if (!pid)
1366                 task = current;
1367         else
1368                 task = find_task_by_vpid(pid);
1369         if (task)
1370                 get_task_struct(task);
1371         rcu_read_unlock();
1372
1373         if (!task)
1374                 return ERR_PTR(-ESRCH);
1375
1376         /*
1377          * Can't attach counters to a dying task.
1378          */
1379         err = -ESRCH;
1380         if (task->flags & PF_EXITING)
1381                 goto errout;
1382
1383         /* Reuse ptrace permission checks for now. */
1384         err = -EACCES;
1385         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1386                 goto errout;
1387
1388  retry:
1389         ctx = perf_lock_task_context(task, &flags);
1390         if (ctx) {
1391                 parent_ctx = ctx->parent_ctx;
1392                 if (parent_ctx) {
1393                         put_ctx(parent_ctx);
1394                         ctx->parent_ctx = NULL;         /* no longer a clone */
1395                 }
1396                 /*
1397                  * Get an extra reference before dropping the lock so that
1398                  * this context won't get freed if the task exits.
1399                  */
1400                 get_ctx(ctx);
1401                 spin_unlock_irqrestore(&ctx->lock, flags);
1402         }
1403
1404         if (!ctx) {
1405                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1406                 err = -ENOMEM;
1407                 if (!ctx)
1408                         goto errout;
1409                 __perf_counter_init_context(ctx, task);
1410                 get_ctx(ctx);
1411                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1412                         /*
1413                          * We raced with some other task; use
1414                          * the context they set.
1415                          */
1416                         kfree(ctx);
1417                         goto retry;
1418                 }
1419                 get_task_struct(task);
1420         }
1421
1422         put_task_struct(task);
1423         return ctx;
1424
1425  errout:
1426         put_task_struct(task);
1427         return ERR_PTR(err);
1428 }
1429
1430 static void free_counter_rcu(struct rcu_head *head)
1431 {
1432         struct perf_counter *counter;
1433
1434         counter = container_of(head, struct perf_counter, rcu_head);
1435         if (counter->ns)
1436                 put_pid_ns(counter->ns);
1437         kfree(counter);
1438 }
1439
1440 static void perf_pending_sync(struct perf_counter *counter);
1441
1442 static void free_counter(struct perf_counter *counter)
1443 {
1444         perf_pending_sync(counter);
1445
1446         atomic_dec(&nr_counters);
1447         if (counter->hw_event.mmap)
1448                 atomic_dec(&nr_mmap_tracking);
1449         if (counter->hw_event.munmap)
1450                 atomic_dec(&nr_munmap_tracking);
1451         if (counter->hw_event.comm)
1452                 atomic_dec(&nr_comm_tracking);
1453
1454         if (counter->destroy)
1455                 counter->destroy(counter);
1456
1457         put_ctx(counter->ctx);
1458         call_rcu(&counter->rcu_head, free_counter_rcu);
1459 }
1460
1461 /*
1462  * Called when the last reference to the file is gone.
1463  */
1464 static int perf_release(struct inode *inode, struct file *file)
1465 {
1466         struct perf_counter *counter = file->private_data;
1467         struct perf_counter_context *ctx = counter->ctx;
1468
1469         file->private_data = NULL;
1470
1471         WARN_ON_ONCE(ctx->parent_ctx);
1472         mutex_lock(&ctx->mutex);
1473         perf_counter_remove_from_context(counter);
1474         mutex_unlock(&ctx->mutex);
1475
1476         mutex_lock(&counter->owner->perf_counter_mutex);
1477         list_del_init(&counter->owner_entry);
1478         mutex_unlock(&counter->owner->perf_counter_mutex);
1479         put_task_struct(counter->owner);
1480
1481         free_counter(counter);
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * Read the performance counter - simple non blocking version for now
1488  */
1489 static ssize_t
1490 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1491 {
1492         u64 values[3];
1493         int n;
1494
1495         /*
1496          * Return end-of-file for a read on a counter that is in
1497          * error state (i.e. because it was pinned but it couldn't be
1498          * scheduled on to the CPU at some point).
1499          */
1500         if (counter->state == PERF_COUNTER_STATE_ERROR)
1501                 return 0;
1502
1503         WARN_ON_ONCE(counter->ctx->parent_ctx);
1504         mutex_lock(&counter->child_mutex);
1505         values[0] = perf_counter_read(counter);
1506         n = 1;
1507         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508                 values[n++] = counter->total_time_enabled +
1509                         atomic64_read(&counter->child_total_time_enabled);
1510         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1511                 values[n++] = counter->total_time_running +
1512                         atomic64_read(&counter->child_total_time_running);
1513         if (counter->hw_event.read_format & PERF_FORMAT_ID)
1514                 values[n++] = counter->id;
1515         mutex_unlock(&counter->child_mutex);
1516
1517         if (count < n * sizeof(u64))
1518                 return -EINVAL;
1519         count = n * sizeof(u64);
1520
1521         if (copy_to_user(buf, values, count))
1522                 return -EFAULT;
1523
1524         return count;
1525 }
1526
1527 static ssize_t
1528 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1529 {
1530         struct perf_counter *counter = file->private_data;
1531
1532         return perf_read_hw(counter, buf, count);
1533 }
1534
1535 static unsigned int perf_poll(struct file *file, poll_table *wait)
1536 {
1537         struct perf_counter *counter = file->private_data;
1538         struct perf_mmap_data *data;
1539         unsigned int events = POLL_HUP;
1540
1541         rcu_read_lock();
1542         data = rcu_dereference(counter->data);
1543         if (data)
1544                 events = atomic_xchg(&data->poll, 0);
1545         rcu_read_unlock();
1546
1547         poll_wait(file, &counter->waitq, wait);
1548
1549         return events;
1550 }
1551
1552 static void perf_counter_reset(struct perf_counter *counter)
1553 {
1554         (void)perf_counter_read(counter);
1555         atomic64_set(&counter->count, 0);
1556         perf_counter_update_userpage(counter);
1557 }
1558
1559 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1560                                           void (*func)(struct perf_counter *))
1561 {
1562         struct perf_counter_context *ctx = counter->ctx;
1563         struct perf_counter *sibling;
1564
1565         WARN_ON_ONCE(ctx->parent_ctx);
1566         mutex_lock(&ctx->mutex);
1567         counter = counter->group_leader;
1568
1569         func(counter);
1570         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1571                 func(sibling);
1572         mutex_unlock(&ctx->mutex);
1573 }
1574
1575 /*
1576  * Holding the top-level counter's child_mutex means that any
1577  * descendant process that has inherited this counter will block
1578  * in sync_child_counter if it goes to exit, thus satisfying the
1579  * task existence requirements of perf_counter_enable/disable.
1580  */
1581 static void perf_counter_for_each_child(struct perf_counter *counter,
1582                                         void (*func)(struct perf_counter *))
1583 {
1584         struct perf_counter *child;
1585
1586         WARN_ON_ONCE(counter->ctx->parent_ctx);
1587         mutex_lock(&counter->child_mutex);
1588         func(counter);
1589         list_for_each_entry(child, &counter->child_list, child_list)
1590                 func(child);
1591         mutex_unlock(&counter->child_mutex);
1592 }
1593
1594 static void perf_counter_for_each(struct perf_counter *counter,
1595                                   void (*func)(struct perf_counter *))
1596 {
1597         struct perf_counter *child;
1598
1599         WARN_ON_ONCE(counter->ctx->parent_ctx);
1600         mutex_lock(&counter->child_mutex);
1601         perf_counter_for_each_sibling(counter, func);
1602         list_for_each_entry(child, &counter->child_list, child_list)
1603                 perf_counter_for_each_sibling(child, func);
1604         mutex_unlock(&counter->child_mutex);
1605 }
1606
1607 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1608 {
1609         struct perf_counter *counter = file->private_data;
1610         void (*func)(struct perf_counter *);
1611         u32 flags = arg;
1612
1613         switch (cmd) {
1614         case PERF_COUNTER_IOC_ENABLE:
1615                 func = perf_counter_enable;
1616                 break;
1617         case PERF_COUNTER_IOC_DISABLE:
1618                 func = perf_counter_disable;
1619                 break;
1620         case PERF_COUNTER_IOC_RESET:
1621                 func = perf_counter_reset;
1622                 break;
1623
1624         case PERF_COUNTER_IOC_REFRESH:
1625                 return perf_counter_refresh(counter, arg);
1626         default:
1627                 return -ENOTTY;
1628         }
1629
1630         if (flags & PERF_IOC_FLAG_GROUP)
1631                 perf_counter_for_each(counter, func);
1632         else
1633                 perf_counter_for_each_child(counter, func);
1634
1635         return 0;
1636 }
1637
1638 int perf_counter_task_enable(void)
1639 {
1640         struct perf_counter *counter;
1641
1642         mutex_lock(&current->perf_counter_mutex);
1643         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1644                 perf_counter_for_each_child(counter, perf_counter_enable);
1645         mutex_unlock(&current->perf_counter_mutex);
1646
1647         return 0;
1648 }
1649
1650 int perf_counter_task_disable(void)
1651 {
1652         struct perf_counter *counter;
1653
1654         mutex_lock(&current->perf_counter_mutex);
1655         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1656                 perf_counter_for_each_child(counter, perf_counter_disable);
1657         mutex_unlock(&current->perf_counter_mutex);
1658
1659         return 0;
1660 }
1661
1662 /*
1663  * Callers need to ensure there can be no nesting of this function, otherwise
1664  * the seqlock logic goes bad. We can not serialize this because the arch
1665  * code calls this from NMI context.
1666  */
1667 void perf_counter_update_userpage(struct perf_counter *counter)
1668 {
1669         struct perf_counter_mmap_page *userpg;
1670         struct perf_mmap_data *data;
1671
1672         rcu_read_lock();
1673         data = rcu_dereference(counter->data);
1674         if (!data)
1675                 goto unlock;
1676
1677         userpg = data->user_page;
1678
1679         /*
1680          * Disable preemption so as to not let the corresponding user-space
1681          * spin too long if we get preempted.
1682          */
1683         preempt_disable();
1684         ++userpg->lock;
1685         barrier();
1686         userpg->index = counter->hw.idx;
1687         userpg->offset = atomic64_read(&counter->count);
1688         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1689                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1690
1691         barrier();
1692         ++userpg->lock;
1693         preempt_enable();
1694 unlock:
1695         rcu_read_unlock();
1696 }
1697
1698 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1699 {
1700         struct perf_counter *counter = vma->vm_file->private_data;
1701         struct perf_mmap_data *data;
1702         int ret = VM_FAULT_SIGBUS;
1703
1704         rcu_read_lock();
1705         data = rcu_dereference(counter->data);
1706         if (!data)
1707                 goto unlock;
1708
1709         if (vmf->pgoff == 0) {
1710                 vmf->page = virt_to_page(data->user_page);
1711         } else {
1712                 int nr = vmf->pgoff - 1;
1713
1714                 if ((unsigned)nr > data->nr_pages)
1715                         goto unlock;
1716
1717                 vmf->page = virt_to_page(data->data_pages[nr]);
1718         }
1719         get_page(vmf->page);
1720         ret = 0;
1721 unlock:
1722         rcu_read_unlock();
1723
1724         return ret;
1725 }
1726
1727 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1728 {
1729         struct perf_mmap_data *data;
1730         unsigned long size;
1731         int i;
1732
1733         WARN_ON(atomic_read(&counter->mmap_count));
1734
1735         size = sizeof(struct perf_mmap_data);
1736         size += nr_pages * sizeof(void *);
1737
1738         data = kzalloc(size, GFP_KERNEL);
1739         if (!data)
1740                 goto fail;
1741
1742         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1743         if (!data->user_page)
1744                 goto fail_user_page;
1745
1746         for (i = 0; i < nr_pages; i++) {
1747                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1748                 if (!data->data_pages[i])
1749                         goto fail_data_pages;
1750         }
1751
1752         data->nr_pages = nr_pages;
1753         atomic_set(&data->lock, -1);
1754
1755         rcu_assign_pointer(counter->data, data);
1756
1757         return 0;
1758
1759 fail_data_pages:
1760         for (i--; i >= 0; i--)
1761                 free_page((unsigned long)data->data_pages[i]);
1762
1763         free_page((unsigned long)data->user_page);
1764
1765 fail_user_page:
1766         kfree(data);
1767
1768 fail:
1769         return -ENOMEM;
1770 }
1771
1772 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1773 {
1774         struct perf_mmap_data *data;
1775         int i;
1776
1777         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1778
1779         free_page((unsigned long)data->user_page);
1780         for (i = 0; i < data->nr_pages; i++)
1781                 free_page((unsigned long)data->data_pages[i]);
1782         kfree(data);
1783 }
1784
1785 static void perf_mmap_data_free(struct perf_counter *counter)
1786 {
1787         struct perf_mmap_data *data = counter->data;
1788
1789         WARN_ON(atomic_read(&counter->mmap_count));
1790
1791         rcu_assign_pointer(counter->data, NULL);
1792         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1793 }
1794
1795 static void perf_mmap_open(struct vm_area_struct *vma)
1796 {
1797         struct perf_counter *counter = vma->vm_file->private_data;
1798
1799         atomic_inc(&counter->mmap_count);
1800 }
1801
1802 static void perf_mmap_close(struct vm_area_struct *vma)
1803 {
1804         struct perf_counter *counter = vma->vm_file->private_data;
1805
1806         WARN_ON_ONCE(counter->ctx->parent_ctx);
1807         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1808                 struct user_struct *user = current_user();
1809
1810                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1811                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1812                 perf_mmap_data_free(counter);
1813                 mutex_unlock(&counter->mmap_mutex);
1814         }
1815 }
1816
1817 static struct vm_operations_struct perf_mmap_vmops = {
1818         .open  = perf_mmap_open,
1819         .close = perf_mmap_close,
1820         .fault = perf_mmap_fault,
1821 };
1822
1823 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1824 {
1825         struct perf_counter *counter = file->private_data;
1826         unsigned long user_locked, user_lock_limit;
1827         struct user_struct *user = current_user();
1828         unsigned long locked, lock_limit;
1829         unsigned long vma_size;
1830         unsigned long nr_pages;
1831         long user_extra, extra;
1832         int ret = 0;
1833
1834         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1835                 return -EINVAL;
1836
1837         vma_size = vma->vm_end - vma->vm_start;
1838         nr_pages = (vma_size / PAGE_SIZE) - 1;
1839
1840         /*
1841          * If we have data pages ensure they're a power-of-two number, so we
1842          * can do bitmasks instead of modulo.
1843          */
1844         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1845                 return -EINVAL;
1846
1847         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1848                 return -EINVAL;
1849
1850         if (vma->vm_pgoff != 0)
1851                 return -EINVAL;
1852
1853         WARN_ON_ONCE(counter->ctx->parent_ctx);
1854         mutex_lock(&counter->mmap_mutex);
1855         if (atomic_inc_not_zero(&counter->mmap_count)) {
1856                 if (nr_pages != counter->data->nr_pages)
1857                         ret = -EINVAL;
1858                 goto unlock;
1859         }
1860
1861         user_extra = nr_pages + 1;
1862         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1863
1864         /*
1865          * Increase the limit linearly with more CPUs:
1866          */
1867         user_lock_limit *= num_online_cpus();
1868
1869         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1870
1871         extra = 0;
1872         if (user_locked > user_lock_limit)
1873                 extra = user_locked - user_lock_limit;
1874
1875         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1876         lock_limit >>= PAGE_SHIFT;
1877         locked = vma->vm_mm->locked_vm + extra;
1878
1879         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1880                 ret = -EPERM;
1881                 goto unlock;
1882         }
1883
1884         WARN_ON(counter->data);
1885         ret = perf_mmap_data_alloc(counter, nr_pages);
1886         if (ret)
1887                 goto unlock;
1888
1889         atomic_set(&counter->mmap_count, 1);
1890         atomic_long_add(user_extra, &user->locked_vm);
1891         vma->vm_mm->locked_vm += extra;
1892         counter->data->nr_locked = extra;
1893 unlock:
1894         mutex_unlock(&counter->mmap_mutex);
1895
1896         vma->vm_flags &= ~VM_MAYWRITE;
1897         vma->vm_flags |= VM_RESERVED;
1898         vma->vm_ops = &perf_mmap_vmops;
1899
1900         return ret;
1901 }
1902
1903 static int perf_fasync(int fd, struct file *filp, int on)
1904 {
1905         struct inode *inode = filp->f_path.dentry->d_inode;
1906         struct perf_counter *counter = filp->private_data;
1907         int retval;
1908
1909         mutex_lock(&inode->i_mutex);
1910         retval = fasync_helper(fd, filp, on, &counter->fasync);
1911         mutex_unlock(&inode->i_mutex);
1912
1913         if (retval < 0)
1914                 return retval;
1915
1916         return 0;
1917 }
1918
1919 static const struct file_operations perf_fops = {
1920         .release                = perf_release,
1921         .read                   = perf_read,
1922         .poll                   = perf_poll,
1923         .unlocked_ioctl         = perf_ioctl,
1924         .compat_ioctl           = perf_ioctl,
1925         .mmap                   = perf_mmap,
1926         .fasync                 = perf_fasync,
1927 };
1928
1929 /*
1930  * Perf counter wakeup
1931  *
1932  * If there's data, ensure we set the poll() state and publish everything
1933  * to user-space before waking everybody up.
1934  */
1935
1936 void perf_counter_wakeup(struct perf_counter *counter)
1937 {
1938         wake_up_all(&counter->waitq);
1939
1940         if (counter->pending_kill) {
1941                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1942                 counter->pending_kill = 0;
1943         }
1944 }
1945
1946 /*
1947  * Pending wakeups
1948  *
1949  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1950  *
1951  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1952  * single linked list and use cmpxchg() to add entries lockless.
1953  */
1954
1955 static void perf_pending_counter(struct perf_pending_entry *entry)
1956 {
1957         struct perf_counter *counter = container_of(entry,
1958                         struct perf_counter, pending);
1959
1960         if (counter->pending_disable) {
1961                 counter->pending_disable = 0;
1962                 perf_counter_disable(counter);
1963         }
1964
1965         if (counter->pending_wakeup) {
1966                 counter->pending_wakeup = 0;
1967                 perf_counter_wakeup(counter);
1968         }
1969 }
1970
1971 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1972
1973 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1974         PENDING_TAIL,
1975 };
1976
1977 static void perf_pending_queue(struct perf_pending_entry *entry,
1978                                void (*func)(struct perf_pending_entry *))
1979 {
1980         struct perf_pending_entry **head;
1981
1982         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1983                 return;
1984
1985         entry->func = func;
1986
1987         head = &get_cpu_var(perf_pending_head);
1988
1989         do {
1990                 entry->next = *head;
1991         } while (cmpxchg(head, entry->next, entry) != entry->next);
1992
1993         set_perf_counter_pending();
1994
1995         put_cpu_var(perf_pending_head);
1996 }
1997
1998 static int __perf_pending_run(void)
1999 {
2000         struct perf_pending_entry *list;
2001         int nr = 0;
2002
2003         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2004         while (list != PENDING_TAIL) {
2005                 void (*func)(struct perf_pending_entry *);
2006                 struct perf_pending_entry *entry = list;
2007
2008                 list = list->next;
2009
2010                 func = entry->func;
2011                 entry->next = NULL;
2012                 /*
2013                  * Ensure we observe the unqueue before we issue the wakeup,
2014                  * so that we won't be waiting forever.
2015                  * -- see perf_not_pending().
2016                  */
2017                 smp_wmb();
2018
2019                 func(entry);
2020                 nr++;
2021         }
2022
2023         return nr;
2024 }
2025
2026 static inline int perf_not_pending(struct perf_counter *counter)
2027 {
2028         /*
2029          * If we flush on whatever cpu we run, there is a chance we don't
2030          * need to wait.
2031          */
2032         get_cpu();
2033         __perf_pending_run();
2034         put_cpu();
2035
2036         /*
2037          * Ensure we see the proper queue state before going to sleep
2038          * so that we do not miss the wakeup. -- see perf_pending_handle()
2039          */
2040         smp_rmb();
2041         return counter->pending.next == NULL;
2042 }
2043
2044 static void perf_pending_sync(struct perf_counter *counter)
2045 {
2046         wait_event(counter->waitq, perf_not_pending(counter));
2047 }
2048
2049 void perf_counter_do_pending(void)
2050 {
2051         __perf_pending_run();
2052 }
2053
2054 /*
2055  * Callchain support -- arch specific
2056  */
2057
2058 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2059 {
2060         return NULL;
2061 }
2062
2063 /*
2064  * Output
2065  */
2066
2067 struct perf_output_handle {
2068         struct perf_counter     *counter;
2069         struct perf_mmap_data   *data;
2070         unsigned int            offset;
2071         unsigned int            head;
2072         int                     nmi;
2073         int                     overflow;
2074         int                     locked;
2075         unsigned long           flags;
2076 };
2077
2078 static void perf_output_wakeup(struct perf_output_handle *handle)
2079 {
2080         atomic_set(&handle->data->poll, POLL_IN);
2081
2082         if (handle->nmi) {
2083                 handle->counter->pending_wakeup = 1;
2084                 perf_pending_queue(&handle->counter->pending,
2085                                    perf_pending_counter);
2086         } else
2087                 perf_counter_wakeup(handle->counter);
2088 }
2089
2090 /*
2091  * Curious locking construct.
2092  *
2093  * We need to ensure a later event doesn't publish a head when a former
2094  * event isn't done writing. However since we need to deal with NMIs we
2095  * cannot fully serialize things.
2096  *
2097  * What we do is serialize between CPUs so we only have to deal with NMI
2098  * nesting on a single CPU.
2099  *
2100  * We only publish the head (and generate a wakeup) when the outer-most
2101  * event completes.
2102  */
2103 static void perf_output_lock(struct perf_output_handle *handle)
2104 {
2105         struct perf_mmap_data *data = handle->data;
2106         int cpu;
2107
2108         handle->locked = 0;
2109
2110         local_irq_save(handle->flags);
2111         cpu = smp_processor_id();
2112
2113         if (in_nmi() && atomic_read(&data->lock) == cpu)
2114                 return;
2115
2116         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2117                 cpu_relax();
2118
2119         handle->locked = 1;
2120 }
2121
2122 static void perf_output_unlock(struct perf_output_handle *handle)
2123 {
2124         struct perf_mmap_data *data = handle->data;
2125         int head, cpu;
2126
2127         data->done_head = data->head;
2128
2129         if (!handle->locked)
2130                 goto out;
2131
2132 again:
2133         /*
2134          * The xchg implies a full barrier that ensures all writes are done
2135          * before we publish the new head, matched by a rmb() in userspace when
2136          * reading this position.
2137          */
2138         while ((head = atomic_xchg(&data->done_head, 0)))
2139                 data->user_page->data_head = head;
2140
2141         /*
2142          * NMI can happen here, which means we can miss a done_head update.
2143          */
2144
2145         cpu = atomic_xchg(&data->lock, -1);
2146         WARN_ON_ONCE(cpu != smp_processor_id());
2147
2148         /*
2149          * Therefore we have to validate we did not indeed do so.
2150          */
2151         if (unlikely(atomic_read(&data->done_head))) {
2152                 /*
2153                  * Since we had it locked, we can lock it again.
2154                  */
2155                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2156                         cpu_relax();
2157
2158                 goto again;
2159         }
2160
2161         if (atomic_xchg(&data->wakeup, 0))
2162                 perf_output_wakeup(handle);
2163 out:
2164         local_irq_restore(handle->flags);
2165 }
2166
2167 static int perf_output_begin(struct perf_output_handle *handle,
2168                              struct perf_counter *counter, unsigned int size,
2169                              int nmi, int overflow)
2170 {
2171         struct perf_mmap_data *data;
2172         unsigned int offset, head;
2173
2174         /*
2175          * For inherited counters we send all the output towards the parent.
2176          */
2177         if (counter->parent)
2178                 counter = counter->parent;
2179
2180         rcu_read_lock();
2181         data = rcu_dereference(counter->data);
2182         if (!data)
2183                 goto out;
2184
2185         handle->data     = data;
2186         handle->counter  = counter;
2187         handle->nmi      = nmi;
2188         handle->overflow = overflow;
2189
2190         if (!data->nr_pages)
2191                 goto fail;
2192
2193         perf_output_lock(handle);
2194
2195         do {
2196                 offset = head = atomic_read(&data->head);
2197                 head += size;
2198         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2199
2200         handle->offset  = offset;
2201         handle->head    = head;
2202
2203         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2204                 atomic_set(&data->wakeup, 1);
2205
2206         return 0;
2207
2208 fail:
2209         perf_output_wakeup(handle);
2210 out:
2211         rcu_read_unlock();
2212
2213         return -ENOSPC;
2214 }
2215
2216 static void perf_output_copy(struct perf_output_handle *handle,
2217                              void *buf, unsigned int len)
2218 {
2219         unsigned int pages_mask;
2220         unsigned int offset;
2221         unsigned int size;
2222         void **pages;
2223
2224         offset          = handle->offset;
2225         pages_mask      = handle->data->nr_pages - 1;
2226         pages           = handle->data->data_pages;
2227
2228         do {
2229                 unsigned int page_offset;
2230                 int nr;
2231
2232                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2233                 page_offset = offset & (PAGE_SIZE - 1);
2234                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2235
2236                 memcpy(pages[nr] + page_offset, buf, size);
2237
2238                 len         -= size;
2239                 buf         += size;
2240                 offset      += size;
2241         } while (len);
2242
2243         handle->offset = offset;
2244
2245         /*
2246          * Check we didn't copy past our reservation window, taking the
2247          * possible unsigned int wrap into account.
2248          */
2249         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2250 }
2251
2252 #define perf_output_put(handle, x) \
2253         perf_output_copy((handle), &(x), sizeof(x))
2254
2255 static void perf_output_end(struct perf_output_handle *handle)
2256 {
2257         struct perf_counter *counter = handle->counter;
2258         struct perf_mmap_data *data = handle->data;
2259
2260         int wakeup_events = counter->hw_event.wakeup_events;
2261
2262         if (handle->overflow && wakeup_events) {
2263                 int events = atomic_inc_return(&data->events);
2264                 if (events >= wakeup_events) {
2265                         atomic_sub(wakeup_events, &data->events);
2266                         atomic_set(&data->wakeup, 1);
2267                 }
2268         }
2269
2270         perf_output_unlock(handle);
2271         rcu_read_unlock();
2272 }
2273
2274 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2275 {
2276         /*
2277          * only top level counters have the pid namespace they were created in
2278          */
2279         if (counter->parent)
2280                 counter = counter->parent;
2281
2282         return task_tgid_nr_ns(p, counter->ns);
2283 }
2284
2285 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2286 {
2287         /*
2288          * only top level counters have the pid namespace they were created in
2289          */
2290         if (counter->parent)
2291                 counter = counter->parent;
2292
2293         return task_pid_nr_ns(p, counter->ns);
2294 }
2295
2296 static void perf_counter_output(struct perf_counter *counter,
2297                                 int nmi, struct pt_regs *regs, u64 addr)
2298 {
2299         int ret;
2300         u64 record_type = counter->hw_event.record_type;
2301         struct perf_output_handle handle;
2302         struct perf_event_header header;
2303         u64 ip;
2304         struct {
2305                 u32 pid, tid;
2306         } tid_entry;
2307         struct {
2308                 u64 id;
2309                 u64 counter;
2310         } group_entry;
2311         struct perf_callchain_entry *callchain = NULL;
2312         int callchain_size = 0;
2313         u64 time;
2314         struct {
2315                 u32 cpu, reserved;
2316         } cpu_entry;
2317
2318         header.type = 0;
2319         header.size = sizeof(header);
2320
2321         header.misc = PERF_EVENT_MISC_OVERFLOW;
2322         header.misc |= perf_misc_flags(regs);
2323
2324         if (record_type & PERF_RECORD_IP) {
2325                 ip = perf_instruction_pointer(regs);
2326                 header.type |= PERF_RECORD_IP;
2327                 header.size += sizeof(ip);
2328         }
2329
2330         if (record_type & PERF_RECORD_TID) {
2331                 /* namespace issues */
2332                 tid_entry.pid = perf_counter_pid(counter, current);
2333                 tid_entry.tid = perf_counter_tid(counter, current);
2334
2335                 header.type |= PERF_RECORD_TID;
2336                 header.size += sizeof(tid_entry);
2337         }
2338
2339         if (record_type & PERF_RECORD_TIME) {
2340                 /*
2341                  * Maybe do better on x86 and provide cpu_clock_nmi()
2342                  */
2343                 time = sched_clock();
2344
2345                 header.type |= PERF_RECORD_TIME;
2346                 header.size += sizeof(u64);
2347         }
2348
2349         if (record_type & PERF_RECORD_ADDR) {
2350                 header.type |= PERF_RECORD_ADDR;
2351                 header.size += sizeof(u64);
2352         }
2353
2354         if (record_type & PERF_RECORD_CONFIG) {
2355                 header.type |= PERF_RECORD_CONFIG;
2356                 header.size += sizeof(u64);
2357         }
2358
2359         if (record_type & PERF_RECORD_CPU) {
2360                 header.type |= PERF_RECORD_CPU;
2361                 header.size += sizeof(cpu_entry);
2362
2363                 cpu_entry.cpu = raw_smp_processor_id();
2364         }
2365
2366         if (record_type & PERF_RECORD_GROUP) {
2367                 header.type |= PERF_RECORD_GROUP;
2368                 header.size += sizeof(u64) +
2369                         counter->nr_siblings * sizeof(group_entry);
2370         }
2371
2372         if (record_type & PERF_RECORD_CALLCHAIN) {
2373                 callchain = perf_callchain(regs);
2374
2375                 if (callchain) {
2376                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2377
2378                         header.type |= PERF_RECORD_CALLCHAIN;
2379                         header.size += callchain_size;
2380                 }
2381         }
2382
2383         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2384         if (ret)
2385                 return;
2386
2387         perf_output_put(&handle, header);
2388
2389         if (record_type & PERF_RECORD_IP)
2390                 perf_output_put(&handle, ip);
2391
2392         if (record_type & PERF_RECORD_TID)
2393                 perf_output_put(&handle, tid_entry);
2394
2395         if (record_type & PERF_RECORD_TIME)
2396                 perf_output_put(&handle, time);
2397
2398         if (record_type & PERF_RECORD_ADDR)
2399                 perf_output_put(&handle, addr);
2400
2401         if (record_type & PERF_RECORD_CONFIG)
2402                 perf_output_put(&handle, counter->hw_event.config);
2403
2404         if (record_type & PERF_RECORD_CPU)
2405                 perf_output_put(&handle, cpu_entry);
2406
2407         /*
2408          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2409          */
2410         if (record_type & PERF_RECORD_GROUP) {
2411                 struct perf_counter *leader, *sub;
2412                 u64 nr = counter->nr_siblings;
2413
2414                 perf_output_put(&handle, nr);
2415
2416                 leader = counter->group_leader;
2417                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2418                         if (sub != counter)
2419                                 sub->pmu->read(sub);
2420
2421                         group_entry.id = sub->id;
2422                         group_entry.counter = atomic64_read(&sub->count);
2423
2424                         perf_output_put(&handle, group_entry);
2425                 }
2426         }
2427
2428         if (callchain)
2429                 perf_output_copy(&handle, callchain, callchain_size);
2430
2431         perf_output_end(&handle);
2432 }
2433
2434 /*
2435  * comm tracking
2436  */
2437
2438 struct perf_comm_event {
2439         struct task_struct      *task;
2440         char                    *comm;
2441         int                     comm_size;
2442
2443         struct {
2444                 struct perf_event_header        header;
2445
2446                 u32                             pid;
2447                 u32                             tid;
2448         } event;
2449 };
2450
2451 static void perf_counter_comm_output(struct perf_counter *counter,
2452                                      struct perf_comm_event *comm_event)
2453 {
2454         struct perf_output_handle handle;
2455         int size = comm_event->event.header.size;
2456         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2457
2458         if (ret)
2459                 return;
2460
2461         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2462         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2463
2464         perf_output_put(&handle, comm_event->event);
2465         perf_output_copy(&handle, comm_event->comm,
2466                                    comm_event->comm_size);
2467         perf_output_end(&handle);
2468 }
2469
2470 static int perf_counter_comm_match(struct perf_counter *counter,
2471                                    struct perf_comm_event *comm_event)
2472 {
2473         if (counter->hw_event.comm &&
2474             comm_event->event.header.type == PERF_EVENT_COMM)
2475                 return 1;
2476
2477         return 0;
2478 }
2479
2480 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2481                                   struct perf_comm_event *comm_event)
2482 {
2483         struct perf_counter *counter;
2484
2485         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2486                 return;
2487
2488         rcu_read_lock();
2489         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2490                 if (perf_counter_comm_match(counter, comm_event))
2491                         perf_counter_comm_output(counter, comm_event);
2492         }
2493         rcu_read_unlock();
2494 }
2495
2496 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2497 {
2498         struct perf_cpu_context *cpuctx;
2499         struct perf_counter_context *ctx;
2500         unsigned int size;
2501         char *comm = comm_event->task->comm;
2502
2503         size = ALIGN(strlen(comm)+1, sizeof(u64));
2504
2505         comm_event->comm = comm;
2506         comm_event->comm_size = size;
2507
2508         comm_event->event.header.size = sizeof(comm_event->event) + size;
2509
2510         cpuctx = &get_cpu_var(perf_cpu_context);
2511         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2512         put_cpu_var(perf_cpu_context);
2513
2514         rcu_read_lock();
2515         /*
2516          * doesn't really matter which of the child contexts the
2517          * events ends up in.
2518          */
2519         ctx = rcu_dereference(current->perf_counter_ctxp);
2520         if (ctx)
2521                 perf_counter_comm_ctx(ctx, comm_event);
2522         rcu_read_unlock();
2523 }
2524
2525 void perf_counter_comm(struct task_struct *task)
2526 {
2527         struct perf_comm_event comm_event;
2528
2529         if (!atomic_read(&nr_comm_tracking))
2530                 return;
2531
2532         comm_event = (struct perf_comm_event){
2533                 .task   = task,
2534                 .event  = {
2535                         .header = { .type = PERF_EVENT_COMM, },
2536                 },
2537         };
2538
2539         perf_counter_comm_event(&comm_event);
2540 }
2541
2542 /*
2543  * mmap tracking
2544  */
2545
2546 struct perf_mmap_event {
2547         struct file     *file;
2548         char            *file_name;
2549         int             file_size;
2550
2551         struct {
2552                 struct perf_event_header        header;
2553
2554                 u32                             pid;
2555                 u32                             tid;
2556                 u64                             start;
2557                 u64                             len;
2558                 u64                             pgoff;
2559         } event;
2560 };
2561
2562 static void perf_counter_mmap_output(struct perf_counter *counter,
2563                                      struct perf_mmap_event *mmap_event)
2564 {
2565         struct perf_output_handle handle;
2566         int size = mmap_event->event.header.size;
2567         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2568
2569         if (ret)
2570                 return;
2571
2572         mmap_event->event.pid = perf_counter_pid(counter, current);
2573         mmap_event->event.tid = perf_counter_tid(counter, current);
2574
2575         perf_output_put(&handle, mmap_event->event);
2576         perf_output_copy(&handle, mmap_event->file_name,
2577                                    mmap_event->file_size);
2578         perf_output_end(&handle);
2579 }
2580
2581 static int perf_counter_mmap_match(struct perf_counter *counter,
2582                                    struct perf_mmap_event *mmap_event)
2583 {
2584         if (counter->hw_event.mmap &&
2585             mmap_event->event.header.type == PERF_EVENT_MMAP)
2586                 return 1;
2587
2588         if (counter->hw_event.munmap &&
2589             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2590                 return 1;
2591
2592         return 0;
2593 }
2594
2595 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2596                                   struct perf_mmap_event *mmap_event)
2597 {
2598         struct perf_counter *counter;
2599
2600         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2601                 return;
2602
2603         rcu_read_lock();
2604         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2605                 if (perf_counter_mmap_match(counter, mmap_event))
2606                         perf_counter_mmap_output(counter, mmap_event);
2607         }
2608         rcu_read_unlock();
2609 }
2610
2611 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2612 {
2613         struct perf_cpu_context *cpuctx;
2614         struct perf_counter_context *ctx;
2615         struct file *file = mmap_event->file;
2616         unsigned int size;
2617         char tmp[16];
2618         char *buf = NULL;
2619         char *name;
2620
2621         if (file) {
2622                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2623                 if (!buf) {
2624                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2625                         goto got_name;
2626                 }
2627                 name = d_path(&file->f_path, buf, PATH_MAX);
2628                 if (IS_ERR(name)) {
2629                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2630                         goto got_name;
2631                 }
2632         } else {
2633                 name = strncpy(tmp, "//anon", sizeof(tmp));
2634                 goto got_name;
2635         }
2636
2637 got_name:
2638         size = ALIGN(strlen(name)+1, sizeof(u64));
2639
2640         mmap_event->file_name = name;
2641         mmap_event->file_size = size;
2642
2643         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2644
2645         cpuctx = &get_cpu_var(perf_cpu_context);
2646         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2647         put_cpu_var(perf_cpu_context);
2648
2649         rcu_read_lock();
2650         /*
2651          * doesn't really matter which of the child contexts the
2652          * events ends up in.
2653          */
2654         ctx = rcu_dereference(current->perf_counter_ctxp);
2655         if (ctx)
2656                 perf_counter_mmap_ctx(ctx, mmap_event);
2657         rcu_read_unlock();
2658
2659         kfree(buf);
2660 }
2661
2662 void perf_counter_mmap(unsigned long addr, unsigned long len,
2663                        unsigned long pgoff, struct file *file)
2664 {
2665         struct perf_mmap_event mmap_event;
2666
2667         if (!atomic_read(&nr_mmap_tracking))
2668                 return;
2669
2670         mmap_event = (struct perf_mmap_event){
2671                 .file   = file,
2672                 .event  = {
2673                         .header = { .type = PERF_EVENT_MMAP, },
2674                         .start  = addr,
2675                         .len    = len,
2676                         .pgoff  = pgoff,
2677                 },
2678         };
2679
2680         perf_counter_mmap_event(&mmap_event);
2681 }
2682
2683 void perf_counter_munmap(unsigned long addr, unsigned long len,
2684                          unsigned long pgoff, struct file *file)
2685 {
2686         struct perf_mmap_event mmap_event;
2687
2688         if (!atomic_read(&nr_munmap_tracking))
2689                 return;
2690
2691         mmap_event = (struct perf_mmap_event){
2692                 .file   = file,
2693                 .event  = {
2694                         .header = { .type = PERF_EVENT_MUNMAP, },
2695                         .start  = addr,
2696                         .len    = len,
2697                         .pgoff  = pgoff,
2698                 },
2699         };
2700
2701         perf_counter_mmap_event(&mmap_event);
2702 }
2703
2704 /*
2705  * Log irq_period changes so that analyzing tools can re-normalize the
2706  * event flow.
2707  */
2708
2709 static void perf_log_period(struct perf_counter *counter, u64 period)
2710 {
2711         struct perf_output_handle handle;
2712         int ret;
2713
2714         struct {
2715                 struct perf_event_header        header;
2716                 u64                             time;
2717                 u64                             period;
2718         } freq_event = {
2719                 .header = {
2720                         .type = PERF_EVENT_PERIOD,
2721                         .misc = 0,
2722                         .size = sizeof(freq_event),
2723                 },
2724                 .time = sched_clock(),
2725                 .period = period,
2726         };
2727
2728         if (counter->hw.irq_period == period)
2729                 return;
2730
2731         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2732         if (ret)
2733                 return;
2734
2735         perf_output_put(&handle, freq_event);
2736         perf_output_end(&handle);
2737 }
2738
2739 /*
2740  * IRQ throttle logging
2741  */
2742
2743 static void perf_log_throttle(struct perf_counter *counter, int enable)
2744 {
2745         struct perf_output_handle handle;
2746         int ret;
2747
2748         struct {
2749                 struct perf_event_header        header;
2750                 u64                             time;
2751         } throttle_event = {
2752                 .header = {
2753                         .type = PERF_EVENT_THROTTLE + 1,
2754                         .misc = 0,
2755                         .size = sizeof(throttle_event),
2756                 },
2757                 .time = sched_clock(),
2758         };
2759
2760         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2761         if (ret)
2762                 return;
2763
2764         perf_output_put(&handle, throttle_event);
2765         perf_output_end(&handle);
2766 }
2767
2768 /*
2769  * Generic counter overflow handling.
2770  */
2771
2772 int perf_counter_overflow(struct perf_counter *counter,
2773                           int nmi, struct pt_regs *regs, u64 addr)
2774 {
2775         int events = atomic_read(&counter->event_limit);
2776         int throttle = counter->pmu->unthrottle != NULL;
2777         int ret = 0;
2778
2779         if (!throttle) {
2780                 counter->hw.interrupts++;
2781         } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2782                 counter->hw.interrupts++;
2783                 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2784                         counter->hw.interrupts = MAX_INTERRUPTS;
2785                         perf_log_throttle(counter, 0);
2786                         ret = 1;
2787                 }
2788         }
2789
2790         /*
2791          * XXX event_limit might not quite work as expected on inherited
2792          * counters
2793          */
2794
2795         counter->pending_kill = POLL_IN;
2796         if (events && atomic_dec_and_test(&counter->event_limit)) {
2797                 ret = 1;
2798                 counter->pending_kill = POLL_HUP;
2799                 if (nmi) {
2800                         counter->pending_disable = 1;
2801                         perf_pending_queue(&counter->pending,
2802                                            perf_pending_counter);
2803                 } else
2804                         perf_counter_disable(counter);
2805         }
2806
2807         perf_counter_output(counter, nmi, regs, addr);
2808         return ret;
2809 }
2810
2811 /*
2812  * Generic software counter infrastructure
2813  */
2814
2815 static void perf_swcounter_update(struct perf_counter *counter)
2816 {
2817         struct hw_perf_counter *hwc = &counter->hw;
2818         u64 prev, now;
2819         s64 delta;
2820
2821 again:
2822         prev = atomic64_read(&hwc->prev_count);
2823         now = atomic64_read(&hwc->count);
2824         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2825                 goto again;
2826
2827         delta = now - prev;
2828
2829         atomic64_add(delta, &counter->count);
2830         atomic64_sub(delta, &hwc->period_left);
2831 }
2832
2833 static void perf_swcounter_set_period(struct perf_counter *counter)
2834 {
2835         struct hw_perf_counter *hwc = &counter->hw;
2836         s64 left = atomic64_read(&hwc->period_left);
2837         s64 period = hwc->irq_period;
2838
2839         if (unlikely(left <= -period)) {
2840                 left = period;
2841                 atomic64_set(&hwc->period_left, left);
2842         }
2843
2844         if (unlikely(left <= 0)) {
2845                 left += period;
2846                 atomic64_add(period, &hwc->period_left);
2847         }
2848
2849         atomic64_set(&hwc->prev_count, -left);
2850         atomic64_set(&hwc->count, -left);
2851 }
2852
2853 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2854 {
2855         enum hrtimer_restart ret = HRTIMER_RESTART;
2856         struct perf_counter *counter;
2857         struct pt_regs *regs;
2858         u64 period;
2859
2860         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2861         counter->pmu->read(counter);
2862
2863         regs = get_irq_regs();
2864         /*
2865          * In case we exclude kernel IPs or are somehow not in interrupt
2866          * context, provide the next best thing, the user IP.
2867          */
2868         if ((counter->hw_event.exclude_kernel || !regs) &&
2869                         !counter->hw_event.exclude_user)
2870                 regs = task_pt_regs(current);
2871
2872         if (regs) {
2873                 if (perf_counter_overflow(counter, 0, regs, 0))
2874                         ret = HRTIMER_NORESTART;
2875         }
2876
2877         period = max_t(u64, 10000, counter->hw.irq_period);
2878         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2879
2880         return ret;
2881 }
2882
2883 static void perf_swcounter_overflow(struct perf_counter *counter,
2884                                     int nmi, struct pt_regs *regs, u64 addr)
2885 {
2886         perf_swcounter_update(counter);
2887         perf_swcounter_set_period(counter);
2888         if (perf_counter_overflow(counter, nmi, regs, addr))
2889                 /* soft-disable the counter */
2890                 ;
2891
2892 }
2893
2894 static int perf_swcounter_is_counting(struct perf_counter *counter)
2895 {
2896         struct perf_counter_context *ctx;
2897         unsigned long flags;
2898         int count;
2899
2900         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2901                 return 1;
2902
2903         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
2904                 return 0;
2905
2906         /*
2907          * If the counter is inactive, it could be just because
2908          * its task is scheduled out, or because it's in a group
2909          * which could not go on the PMU.  We want to count in
2910          * the first case but not the second.  If the context is
2911          * currently active then an inactive software counter must
2912          * be the second case.  If it's not currently active then
2913          * we need to know whether the counter was active when the
2914          * context was last active, which we can determine by
2915          * comparing counter->tstamp_stopped with ctx->time.
2916          *
2917          * We are within an RCU read-side critical section,
2918          * which protects the existence of *ctx.
2919          */
2920         ctx = counter->ctx;
2921         spin_lock_irqsave(&ctx->lock, flags);
2922         count = 1;
2923         /* Re-check state now we have the lock */
2924         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
2925             counter->ctx->is_active ||
2926             counter->tstamp_stopped < ctx->time)
2927                 count = 0;
2928         spin_unlock_irqrestore(&ctx->lock, flags);
2929         return count;
2930 }
2931
2932 static int perf_swcounter_match(struct perf_counter *counter,
2933                                 enum perf_event_types type,
2934                                 u32 event, struct pt_regs *regs)
2935 {
2936         u64 event_config;
2937
2938         event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2939
2940         if (!perf_swcounter_is_counting(counter))
2941                 return 0;
2942
2943         if (counter->hw_event.config != event_config)
2944                 return 0;
2945
2946         if (regs) {
2947                 if (counter->hw_event.exclude_user && user_mode(regs))
2948                         return 0;
2949
2950                 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2951                         return 0;
2952         }
2953
2954         return 1;
2955 }
2956
2957 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2958                                int nmi, struct pt_regs *regs, u64 addr)
2959 {
2960         int neg = atomic64_add_negative(nr, &counter->hw.count);
2961
2962         if (counter->hw.irq_period && !neg && regs)
2963                 perf_swcounter_overflow(counter, nmi, regs, addr);
2964 }
2965
2966 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2967                                      enum perf_event_types type, u32 event,
2968                                      u64 nr, int nmi, struct pt_regs *regs,
2969                                      u64 addr)
2970 {
2971         struct perf_counter *counter;
2972
2973         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2974                 return;
2975
2976         rcu_read_lock();
2977         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2978                 if (perf_swcounter_match(counter, type, event, regs))
2979                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2980         }
2981         rcu_read_unlock();
2982 }
2983
2984 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2985 {
2986         if (in_nmi())
2987                 return &cpuctx->recursion[3];
2988
2989         if (in_irq())
2990                 return &cpuctx->recursion[2];
2991
2992         if (in_softirq())
2993                 return &cpuctx->recursion[1];
2994
2995         return &cpuctx->recursion[0];
2996 }
2997
2998 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2999                                    u64 nr, int nmi, struct pt_regs *regs,
3000                                    u64 addr)
3001 {
3002         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3003         int *recursion = perf_swcounter_recursion_context(cpuctx);
3004         struct perf_counter_context *ctx;
3005
3006         if (*recursion)
3007                 goto out;
3008
3009         (*recursion)++;
3010         barrier();
3011
3012         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3013                                  nr, nmi, regs, addr);
3014         rcu_read_lock();
3015         /*
3016          * doesn't really matter which of the child contexts the
3017          * events ends up in.
3018          */
3019         ctx = rcu_dereference(current->perf_counter_ctxp);
3020         if (ctx)
3021                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3022         rcu_read_unlock();
3023
3024         barrier();
3025         (*recursion)--;
3026
3027 out:
3028         put_cpu_var(perf_cpu_context);
3029 }
3030
3031 void
3032 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3033 {
3034         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3035 }
3036
3037 static void perf_swcounter_read(struct perf_counter *counter)
3038 {
3039         perf_swcounter_update(counter);
3040 }
3041
3042 static int perf_swcounter_enable(struct perf_counter *counter)
3043 {
3044         perf_swcounter_set_period(counter);
3045         return 0;
3046 }
3047
3048 static void perf_swcounter_disable(struct perf_counter *counter)
3049 {
3050         perf_swcounter_update(counter);
3051 }
3052
3053 static const struct pmu perf_ops_generic = {
3054         .enable         = perf_swcounter_enable,
3055         .disable        = perf_swcounter_disable,
3056         .read           = perf_swcounter_read,
3057 };
3058
3059 /*
3060  * Software counter: cpu wall time clock
3061  */
3062
3063 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3064 {
3065         int cpu = raw_smp_processor_id();
3066         s64 prev;
3067         u64 now;
3068
3069         now = cpu_clock(cpu);
3070         prev = atomic64_read(&counter->hw.prev_count);
3071         atomic64_set(&counter->hw.prev_count, now);
3072         atomic64_add(now - prev, &counter->count);
3073 }
3074
3075 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3076 {
3077         struct hw_perf_counter *hwc = &counter->hw;
3078         int cpu = raw_smp_processor_id();
3079
3080         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3081         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3082         hwc->hrtimer.function = perf_swcounter_hrtimer;
3083         if (hwc->irq_period) {
3084                 u64 period = max_t(u64, 10000, hwc->irq_period);
3085                 __hrtimer_start_range_ns(&hwc->hrtimer,
3086                                 ns_to_ktime(period), 0,
3087                                 HRTIMER_MODE_REL, 0);
3088         }
3089
3090         return 0;
3091 }
3092
3093 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3094 {
3095         if (counter->hw.irq_period)
3096                 hrtimer_cancel(&counter->hw.hrtimer);
3097         cpu_clock_perf_counter_update(counter);
3098 }
3099
3100 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3101 {
3102         cpu_clock_perf_counter_update(counter);
3103 }
3104
3105 static const struct pmu perf_ops_cpu_clock = {
3106         .enable         = cpu_clock_perf_counter_enable,
3107         .disable        = cpu_clock_perf_counter_disable,
3108         .read           = cpu_clock_perf_counter_read,
3109 };
3110
3111 /*
3112  * Software counter: task time clock
3113  */
3114
3115 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3116 {
3117         u64 prev;
3118         s64 delta;
3119
3120         prev = atomic64_xchg(&counter->hw.prev_count, now);
3121         delta = now - prev;
3122         atomic64_add(delta, &counter->count);
3123 }
3124
3125 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3126 {
3127         struct hw_perf_counter *hwc = &counter->hw;
3128         u64 now;
3129
3130         now = counter->ctx->time;
3131
3132         atomic64_set(&hwc->prev_count, now);
3133         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3134         hwc->hrtimer.function = perf_swcounter_hrtimer;
3135         if (hwc->irq_period) {
3136                 u64 period = max_t(u64, 10000, hwc->irq_period);
3137                 __hrtimer_start_range_ns(&hwc->hrtimer,
3138                                 ns_to_ktime(period), 0,
3139                                 HRTIMER_MODE_REL, 0);
3140         }
3141
3142         return 0;
3143 }
3144
3145 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3146 {
3147         if (counter->hw.irq_period)
3148                 hrtimer_cancel(&counter->hw.hrtimer);
3149         task_clock_perf_counter_update(counter, counter->ctx->time);
3150
3151 }
3152
3153 static void task_clock_perf_counter_read(struct perf_counter *counter)
3154 {
3155         u64 time;
3156
3157         if (!in_nmi()) {
3158                 update_context_time(counter->ctx);
3159                 time = counter->ctx->time;
3160         } else {
3161                 u64 now = perf_clock();
3162                 u64 delta = now - counter->ctx->timestamp;
3163                 time = counter->ctx->time + delta;
3164         }
3165
3166         task_clock_perf_counter_update(counter, time);
3167 }
3168
3169 static const struct pmu perf_ops_task_clock = {
3170         .enable         = task_clock_perf_counter_enable,
3171         .disable        = task_clock_perf_counter_disable,
3172         .read           = task_clock_perf_counter_read,
3173 };
3174
3175 /*
3176  * Software counter: cpu migrations
3177  */
3178 void perf_counter_task_migration(struct task_struct *task, int cpu)
3179 {
3180         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3181         struct perf_counter_context *ctx;
3182
3183         perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3184                                  PERF_COUNT_CPU_MIGRATIONS,
3185                                  1, 1, NULL, 0);
3186
3187         ctx = perf_pin_task_context(task);
3188         if (ctx) {
3189                 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3190                                          PERF_COUNT_CPU_MIGRATIONS,
3191                                          1, 1, NULL, 0);
3192                 perf_unpin_context(ctx);
3193         }
3194 }
3195
3196 #ifdef CONFIG_EVENT_PROFILE
3197 void perf_tpcounter_event(int event_id)
3198 {
3199         struct pt_regs *regs = get_irq_regs();
3200
3201         if (!regs)
3202                 regs = task_pt_regs(current);
3203
3204         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3205 }
3206 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3207
3208 extern int ftrace_profile_enable(int);
3209 extern void ftrace_profile_disable(int);
3210
3211 static void tp_perf_counter_destroy(struct perf_counter *counter)
3212 {
3213         ftrace_profile_disable(perf_event_id(&counter->hw_event));
3214 }
3215
3216 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3217 {
3218         int event_id = perf_event_id(&counter->hw_event);
3219         int ret;
3220
3221         ret = ftrace_profile_enable(event_id);
3222         if (ret)
3223                 return NULL;
3224
3225         counter->destroy = tp_perf_counter_destroy;
3226         counter->hw.irq_period = counter->hw_event.irq_period;
3227
3228         return &perf_ops_generic;
3229 }
3230 #else
3231 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3232 {
3233         return NULL;
3234 }
3235 #endif
3236
3237 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3238 {
3239         const struct pmu *pmu = NULL;
3240
3241         /*
3242          * Software counters (currently) can't in general distinguish
3243          * between user, kernel and hypervisor events.
3244          * However, context switches and cpu migrations are considered
3245          * to be kernel events, and page faults are never hypervisor
3246          * events.
3247          */
3248         switch (perf_event_id(&counter->hw_event)) {
3249         case PERF_COUNT_CPU_CLOCK:
3250                 pmu = &perf_ops_cpu_clock;
3251
3252                 break;
3253         case PERF_COUNT_TASK_CLOCK:
3254                 /*
3255                  * If the user instantiates this as a per-cpu counter,
3256                  * use the cpu_clock counter instead.
3257                  */
3258                 if (counter->ctx->task)
3259                         pmu = &perf_ops_task_clock;
3260                 else
3261                         pmu = &perf_ops_cpu_clock;
3262
3263                 break;
3264         case PERF_COUNT_PAGE_FAULTS:
3265         case PERF_COUNT_PAGE_FAULTS_MIN:
3266         case PERF_COUNT_PAGE_FAULTS_MAJ:
3267         case PERF_COUNT_CONTEXT_SWITCHES:
3268         case PERF_COUNT_CPU_MIGRATIONS:
3269                 pmu = &perf_ops_generic;
3270                 break;
3271         }
3272
3273         return pmu;
3274 }
3275
3276 /*
3277  * Allocate and initialize a counter structure
3278  */
3279 static struct perf_counter *
3280 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3281                    int cpu,
3282                    struct perf_counter_context *ctx,
3283                    struct perf_counter *group_leader,
3284                    gfp_t gfpflags)
3285 {
3286         const struct pmu *pmu;
3287         struct perf_counter *counter;
3288         struct hw_perf_counter *hwc;
3289         long err;
3290
3291         counter = kzalloc(sizeof(*counter), gfpflags);
3292         if (!counter)
3293                 return ERR_PTR(-ENOMEM);
3294
3295         /*
3296          * Single counters are their own group leaders, with an
3297          * empty sibling list:
3298          */
3299         if (!group_leader)
3300                 group_leader = counter;
3301
3302         mutex_init(&counter->child_mutex);
3303         INIT_LIST_HEAD(&counter->child_list);
3304
3305         INIT_LIST_HEAD(&counter->list_entry);
3306         INIT_LIST_HEAD(&counter->event_entry);
3307         INIT_LIST_HEAD(&counter->sibling_list);
3308         init_waitqueue_head(&counter->waitq);
3309
3310         mutex_init(&counter->mmap_mutex);
3311
3312         counter->cpu                    = cpu;
3313         counter->hw_event               = *hw_event;
3314         counter->group_leader           = group_leader;
3315         counter->pmu                    = NULL;
3316         counter->ctx                    = ctx;
3317         counter->oncpu                  = -1;
3318
3319         counter->state = PERF_COUNTER_STATE_INACTIVE;
3320         if (hw_event->disabled)
3321                 counter->state = PERF_COUNTER_STATE_OFF;
3322
3323         pmu = NULL;
3324
3325         hwc = &counter->hw;
3326         if (hw_event->freq && hw_event->irq_freq)
3327                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3328         else
3329                 hwc->irq_period = hw_event->irq_period;
3330
3331         /*
3332          * we currently do not support PERF_RECORD_GROUP on inherited counters
3333          */
3334         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3335                 goto done;
3336
3337         if (perf_event_raw(hw_event)) {
3338                 pmu = hw_perf_counter_init(counter);
3339                 goto done;
3340         }
3341
3342         switch (perf_event_type(hw_event)) {
3343         case PERF_TYPE_HARDWARE:
3344                 pmu = hw_perf_counter_init(counter);
3345                 break;
3346
3347         case PERF_TYPE_SOFTWARE:
3348                 pmu = sw_perf_counter_init(counter);
3349                 break;
3350
3351         case PERF_TYPE_TRACEPOINT:
3352                 pmu = tp_perf_counter_init(counter);
3353                 break;
3354         }
3355 done:
3356         err = 0;
3357         if (!pmu)
3358                 err = -EINVAL;
3359         else if (IS_ERR(pmu))
3360                 err = PTR_ERR(pmu);
3361
3362         if (err) {
3363                 kfree(counter);
3364                 return ERR_PTR(err);
3365         }
3366
3367         counter->pmu = pmu;
3368
3369         atomic_inc(&nr_counters);
3370         if (counter->hw_event.mmap)
3371                 atomic_inc(&nr_mmap_tracking);
3372         if (counter->hw_event.munmap)
3373                 atomic_inc(&nr_munmap_tracking);
3374         if (counter->hw_event.comm)
3375                 atomic_inc(&nr_comm_tracking);
3376
3377         return counter;
3378 }
3379
3380 static atomic64_t perf_counter_id;
3381
3382 /**
3383  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3384  *
3385  * @hw_event_uptr:      event type attributes for monitoring/sampling
3386  * @pid:                target pid
3387  * @cpu:                target cpu
3388  * @group_fd:           group leader counter fd
3389  */
3390 SYSCALL_DEFINE5(perf_counter_open,
3391                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3392                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3393 {
3394         struct perf_counter *counter, *group_leader;
3395         struct perf_counter_hw_event hw_event;
3396         struct perf_counter_context *ctx;
3397         struct file *counter_file = NULL;
3398         struct file *group_file = NULL;
3399         int fput_needed = 0;
3400         int fput_needed2 = 0;
3401         int ret;
3402
3403         /* for future expandability... */
3404         if (flags)
3405                 return -EINVAL;
3406
3407         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3408                 return -EFAULT;
3409
3410         /*
3411          * Get the target context (task or percpu):
3412          */
3413         ctx = find_get_context(pid, cpu);
3414         if (IS_ERR(ctx))
3415                 return PTR_ERR(ctx);
3416
3417         /*
3418          * Look up the group leader (we will attach this counter to it):
3419          */
3420         group_leader = NULL;
3421         if (group_fd != -1) {
3422                 ret = -EINVAL;
3423                 group_file = fget_light(group_fd, &fput_needed);
3424                 if (!group_file)
3425                         goto err_put_context;
3426                 if (group_file->f_op != &perf_fops)
3427                         goto err_put_context;
3428
3429                 group_leader = group_file->private_data;
3430                 /*
3431                  * Do not allow a recursive hierarchy (this new sibling
3432                  * becoming part of another group-sibling):
3433                  */
3434                 if (group_leader->group_leader != group_leader)
3435                         goto err_put_context;
3436                 /*
3437                  * Do not allow to attach to a group in a different
3438                  * task or CPU context:
3439                  */
3440                 if (group_leader->ctx != ctx)
3441                         goto err_put_context;
3442                 /*
3443                  * Only a group leader can be exclusive or pinned
3444                  */
3445                 if (hw_event.exclusive || hw_event.pinned)
3446                         goto err_put_context;
3447         }
3448
3449         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3450                                      GFP_KERNEL);
3451         ret = PTR_ERR(counter);
3452         if (IS_ERR(counter))
3453                 goto err_put_context;
3454
3455         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3456         if (ret < 0)
3457                 goto err_free_put_context;
3458
3459         counter_file = fget_light(ret, &fput_needed2);
3460         if (!counter_file)
3461                 goto err_free_put_context;
3462
3463         counter->filp = counter_file;
3464         WARN_ON_ONCE(ctx->parent_ctx);
3465         mutex_lock(&ctx->mutex);
3466         perf_install_in_context(ctx, counter, cpu);
3467         ++ctx->generation;
3468         mutex_unlock(&ctx->mutex);
3469
3470         counter->owner = current;
3471         get_task_struct(current);
3472         mutex_lock(&current->perf_counter_mutex);
3473         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3474         mutex_unlock(&current->perf_counter_mutex);
3475
3476         counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3477         counter->id = atomic64_inc_return(&perf_counter_id);
3478
3479         fput_light(counter_file, fput_needed2);
3480
3481 out_fput:
3482         fput_light(group_file, fput_needed);
3483
3484         return ret;
3485
3486 err_free_put_context:
3487         kfree(counter);
3488
3489 err_put_context:
3490         put_ctx(ctx);
3491
3492         goto out_fput;
3493 }
3494
3495 /*
3496  * inherit a counter from parent task to child task:
3497  */
3498 static struct perf_counter *
3499 inherit_counter(struct perf_counter *parent_counter,
3500               struct task_struct *parent,
3501               struct perf_counter_context *parent_ctx,
3502               struct task_struct *child,
3503               struct perf_counter *group_leader,
3504               struct perf_counter_context *child_ctx)
3505 {
3506         struct perf_counter *child_counter;
3507
3508         /*
3509          * Instead of creating recursive hierarchies of counters,
3510          * we link inherited counters back to the original parent,
3511          * which has a filp for sure, which we use as the reference
3512          * count:
3513          */
3514         if (parent_counter->parent)
3515                 parent_counter = parent_counter->parent;
3516
3517         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3518                                            parent_counter->cpu, child_ctx,
3519                                            group_leader, GFP_KERNEL);
3520         if (IS_ERR(child_counter))
3521                 return child_counter;
3522         get_ctx(child_ctx);
3523
3524         /*
3525          * Make the child state follow the state of the parent counter,
3526          * not its hw_event.disabled bit.  We hold the parent's mutex,
3527          * so we won't race with perf_counter_{en, dis}able_family.
3528          */
3529         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3530                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3531         else
3532                 child_counter->state = PERF_COUNTER_STATE_OFF;
3533
3534         /*
3535          * Link it up in the child's context:
3536          */
3537         add_counter_to_ctx(child_counter, child_ctx);
3538
3539         child_counter->parent = parent_counter;
3540         /*
3541          * inherit into child's child as well:
3542          */
3543         child_counter->hw_event.inherit = 1;
3544
3545         /*
3546          * Get a reference to the parent filp - we will fput it
3547          * when the child counter exits. This is safe to do because
3548          * we are in the parent and we know that the filp still
3549          * exists and has a nonzero count:
3550          */
3551         atomic_long_inc(&parent_counter->filp->f_count);
3552
3553         /*
3554          * Link this into the parent counter's child list
3555          */
3556         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3557         mutex_lock(&parent_counter->child_mutex);
3558         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3559         mutex_unlock(&parent_counter->child_mutex);
3560
3561         return child_counter;
3562 }
3563
3564 static int inherit_group(struct perf_counter *parent_counter,
3565               struct task_struct *parent,
3566               struct perf_counter_context *parent_ctx,
3567               struct task_struct *child,
3568               struct perf_counter_context *child_ctx)
3569 {
3570         struct perf_counter *leader;
3571         struct perf_counter *sub;
3572         struct perf_counter *child_ctr;
3573
3574         leader = inherit_counter(parent_counter, parent, parent_ctx,
3575                                  child, NULL, child_ctx);
3576         if (IS_ERR(leader))
3577                 return PTR_ERR(leader);
3578         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3579                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3580                                             child, leader, child_ctx);
3581                 if (IS_ERR(child_ctr))
3582                         return PTR_ERR(child_ctr);
3583         }
3584         return 0;
3585 }
3586
3587 static void sync_child_counter(struct perf_counter *child_counter,
3588                                struct perf_counter *parent_counter)
3589 {
3590         u64 child_val;
3591
3592         child_val = atomic64_read(&child_counter->count);
3593
3594         /*
3595          * Add back the child's count to the parent's count:
3596          */
3597         atomic64_add(child_val, &parent_counter->count);
3598         atomic64_add(child_counter->total_time_enabled,
3599                      &parent_counter->child_total_time_enabled);
3600         atomic64_add(child_counter->total_time_running,
3601                      &parent_counter->child_total_time_running);
3602
3603         /*
3604          * Remove this counter from the parent's list
3605          */
3606         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3607         mutex_lock(&parent_counter->child_mutex);
3608         list_del_init(&child_counter->child_list);
3609         mutex_unlock(&parent_counter->child_mutex);
3610
3611         /*
3612          * Release the parent counter, if this was the last
3613          * reference to it.
3614          */
3615         fput(parent_counter->filp);
3616 }
3617
3618 static void
3619 __perf_counter_exit_task(struct perf_counter *child_counter,
3620                          struct perf_counter_context *child_ctx)
3621 {
3622         struct perf_counter *parent_counter;
3623
3624         update_counter_times(child_counter);
3625         perf_counter_remove_from_context(child_counter);
3626
3627         parent_counter = child_counter->parent;
3628         /*
3629          * It can happen that parent exits first, and has counters
3630          * that are still around due to the child reference. These
3631          * counters need to be zapped - but otherwise linger.
3632          */
3633         if (parent_counter) {
3634                 sync_child_counter(child_counter, parent_counter);
3635                 free_counter(child_counter);
3636         }
3637 }
3638
3639 /*
3640  * When a child task exits, feed back counter values to parent counters.
3641  */
3642 void perf_counter_exit_task(struct task_struct *child)
3643 {
3644         struct perf_counter *child_counter, *tmp;
3645         struct perf_counter_context *child_ctx;
3646         unsigned long flags;
3647
3648         if (likely(!child->perf_counter_ctxp))
3649                 return;
3650
3651         local_irq_save(flags);
3652         /*
3653          * We can't reschedule here because interrupts are disabled,
3654          * and either child is current or it is a task that can't be
3655          * scheduled, so we are now safe from rescheduling changing
3656          * our context.
3657          */
3658         child_ctx = child->perf_counter_ctxp;
3659         __perf_counter_task_sched_out(child_ctx);
3660
3661         /*
3662          * Take the context lock here so that if find_get_context is
3663          * reading child->perf_counter_ctxp, we wait until it has
3664          * incremented the context's refcount before we do put_ctx below.
3665          */
3666         spin_lock(&child_ctx->lock);
3667         child->perf_counter_ctxp = NULL;
3668         if (child_ctx->parent_ctx) {
3669                 /*
3670                  * This context is a clone; unclone it so it can't get
3671                  * swapped to another process while we're removing all
3672                  * the counters from it.
3673                  */
3674                 put_ctx(child_ctx->parent_ctx);
3675                 child_ctx->parent_ctx = NULL;
3676         }
3677         spin_unlock(&child_ctx->lock);
3678         local_irq_restore(flags);
3679
3680         mutex_lock(&child_ctx->mutex);
3681
3682 again:
3683         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3684                                  list_entry)
3685                 __perf_counter_exit_task(child_counter, child_ctx);
3686
3687         /*
3688          * If the last counter was a group counter, it will have appended all
3689          * its siblings to the list, but we obtained 'tmp' before that which
3690          * will still point to the list head terminating the iteration.
3691          */
3692         if (!list_empty(&child_ctx->counter_list))
3693                 goto again;
3694
3695         mutex_unlock(&child_ctx->mutex);
3696
3697         put_ctx(child_ctx);
3698 }
3699
3700 /*
3701  * free an unexposed, unused context as created by inheritance by
3702  * init_task below, used by fork() in case of fail.
3703  */
3704 void perf_counter_free_task(struct task_struct *task)
3705 {
3706         struct perf_counter_context *ctx = task->perf_counter_ctxp;
3707         struct perf_counter *counter, *tmp;
3708
3709         if (!ctx)
3710                 return;
3711
3712         mutex_lock(&ctx->mutex);
3713 again:
3714         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3715                 struct perf_counter *parent = counter->parent;
3716
3717                 if (WARN_ON_ONCE(!parent))
3718                         continue;
3719
3720                 mutex_lock(&parent->child_mutex);
3721                 list_del_init(&counter->child_list);
3722                 mutex_unlock(&parent->child_mutex);
3723
3724                 fput(parent->filp);
3725
3726                 list_del_counter(counter, ctx);
3727                 free_counter(counter);
3728         }
3729
3730         if (!list_empty(&ctx->counter_list))
3731                 goto again;
3732
3733         mutex_unlock(&ctx->mutex);
3734
3735         put_ctx(ctx);
3736 }
3737
3738 /*
3739  * Initialize the perf_counter context in task_struct
3740  */
3741 int perf_counter_init_task(struct task_struct *child)
3742 {
3743         struct perf_counter_context *child_ctx, *parent_ctx;
3744         struct perf_counter_context *cloned_ctx;
3745         struct perf_counter *counter;
3746         struct task_struct *parent = current;
3747         int inherited_all = 1;
3748         int ret = 0;
3749
3750         child->perf_counter_ctxp = NULL;
3751
3752         mutex_init(&child->perf_counter_mutex);
3753         INIT_LIST_HEAD(&child->perf_counter_list);
3754
3755         if (likely(!parent->perf_counter_ctxp))
3756                 return 0;
3757
3758         /*
3759          * This is executed from the parent task context, so inherit
3760          * counters that have been marked for cloning.
3761          * First allocate and initialize a context for the child.
3762          */
3763
3764         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3765         if (!child_ctx)
3766                 return -ENOMEM;
3767
3768         __perf_counter_init_context(child_ctx, child);
3769         child->perf_counter_ctxp = child_ctx;
3770         get_task_struct(child);
3771
3772         /*
3773          * If the parent's context is a clone, pin it so it won't get
3774          * swapped under us.
3775          */
3776         parent_ctx = perf_pin_task_context(parent);
3777
3778         /*
3779          * No need to check if parent_ctx != NULL here; since we saw
3780          * it non-NULL earlier, the only reason for it to become NULL
3781          * is if we exit, and since we're currently in the middle of
3782          * a fork we can't be exiting at the same time.
3783          */
3784
3785         /*
3786          * Lock the parent list. No need to lock the child - not PID
3787          * hashed yet and not running, so nobody can access it.
3788          */
3789         mutex_lock(&parent_ctx->mutex);
3790
3791         /*
3792          * We dont have to disable NMIs - we are only looking at
3793          * the list, not manipulating it:
3794          */
3795         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3796                 if (counter != counter->group_leader)
3797                         continue;
3798
3799                 if (!counter->hw_event.inherit) {
3800                         inherited_all = 0;
3801                         continue;
3802                 }
3803
3804                 ret = inherit_group(counter, parent, parent_ctx,
3805                                              child, child_ctx);
3806                 if (ret) {
3807                         inherited_all = 0;
3808                         break;
3809                 }
3810         }
3811
3812         if (inherited_all) {
3813                 /*
3814                  * Mark the child context as a clone of the parent
3815                  * context, or of whatever the parent is a clone of.
3816                  * Note that if the parent is a clone, it could get
3817                  * uncloned at any point, but that doesn't matter
3818                  * because the list of counters and the generation
3819                  * count can't have changed since we took the mutex.
3820                  */
3821                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3822                 if (cloned_ctx) {
3823                         child_ctx->parent_ctx = cloned_ctx;
3824                         child_ctx->parent_gen = parent_ctx->parent_gen;
3825                 } else {
3826                         child_ctx->parent_ctx = parent_ctx;
3827                         child_ctx->parent_gen = parent_ctx->generation;
3828                 }
3829                 get_ctx(child_ctx->parent_ctx);
3830         }
3831
3832         mutex_unlock(&parent_ctx->mutex);
3833
3834         perf_unpin_context(parent_ctx);
3835
3836         return ret;
3837 }
3838
3839 static void __cpuinit perf_counter_init_cpu(int cpu)
3840 {
3841         struct perf_cpu_context *cpuctx;
3842
3843         cpuctx = &per_cpu(perf_cpu_context, cpu);
3844         __perf_counter_init_context(&cpuctx->ctx, NULL);
3845
3846         spin_lock(&perf_resource_lock);
3847         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3848         spin_unlock(&perf_resource_lock);
3849
3850         hw_perf_counter_setup(cpu);
3851 }
3852
3853 #ifdef CONFIG_HOTPLUG_CPU
3854 static void __perf_counter_exit_cpu(void *info)
3855 {
3856         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3857         struct perf_counter_context *ctx = &cpuctx->ctx;
3858         struct perf_counter *counter, *tmp;
3859
3860         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3861                 __perf_counter_remove_from_context(counter);
3862 }
3863 static void perf_counter_exit_cpu(int cpu)
3864 {
3865         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3866         struct perf_counter_context *ctx = &cpuctx->ctx;
3867
3868         mutex_lock(&ctx->mutex);
3869         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3870         mutex_unlock(&ctx->mutex);
3871 }
3872 #else
3873 static inline void perf_counter_exit_cpu(int cpu) { }
3874 #endif
3875
3876 static int __cpuinit
3877 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3878 {
3879         unsigned int cpu = (long)hcpu;
3880
3881         switch (action) {
3882
3883         case CPU_UP_PREPARE:
3884         case CPU_UP_PREPARE_FROZEN:
3885                 perf_counter_init_cpu(cpu);
3886                 break;
3887
3888         case CPU_DOWN_PREPARE:
3889         case CPU_DOWN_PREPARE_FROZEN:
3890                 perf_counter_exit_cpu(cpu);
3891                 break;
3892
3893         default:
3894                 break;
3895         }
3896
3897         return NOTIFY_OK;
3898 }
3899
3900 /*
3901  * This has to have a higher priority than migration_notifier in sched.c.
3902  */
3903 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3904         .notifier_call          = perf_cpu_notify,
3905         .priority               = 20,
3906 };
3907
3908 void __init perf_counter_init(void)
3909 {
3910         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3911                         (void *)(long)smp_processor_id());
3912         register_cpu_notifier(&perf_cpu_nb);
3913 }
3914
3915 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3916 {
3917         return sprintf(buf, "%d\n", perf_reserved_percpu);
3918 }
3919
3920 static ssize_t
3921 perf_set_reserve_percpu(struct sysdev_class *class,
3922                         const char *buf,
3923                         size_t count)
3924 {
3925         struct perf_cpu_context *cpuctx;
3926         unsigned long val;
3927         int err, cpu, mpt;
3928
3929         err = strict_strtoul(buf, 10, &val);
3930         if (err)
3931                 return err;
3932         if (val > perf_max_counters)
3933                 return -EINVAL;
3934
3935         spin_lock(&perf_resource_lock);
3936         perf_reserved_percpu = val;
3937         for_each_online_cpu(cpu) {
3938                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3939                 spin_lock_irq(&cpuctx->ctx.lock);
3940                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3941                           perf_max_counters - perf_reserved_percpu);
3942                 cpuctx->max_pertask = mpt;
3943                 spin_unlock_irq(&cpuctx->ctx.lock);
3944         }
3945         spin_unlock(&perf_resource_lock);
3946
3947         return count;
3948 }
3949
3950 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3951 {
3952         return sprintf(buf, "%d\n", perf_overcommit);
3953 }
3954
3955 static ssize_t
3956 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3957 {
3958         unsigned long val;
3959         int err;
3960
3961         err = strict_strtoul(buf, 10, &val);
3962         if (err)
3963                 return err;
3964         if (val > 1)
3965                 return -EINVAL;
3966
3967         spin_lock(&perf_resource_lock);
3968         perf_overcommit = val;
3969         spin_unlock(&perf_resource_lock);
3970
3971         return count;
3972 }
3973
3974 static SYSDEV_CLASS_ATTR(
3975                                 reserve_percpu,
3976                                 0644,
3977                                 perf_show_reserve_percpu,
3978                                 perf_set_reserve_percpu
3979                         );
3980
3981 static SYSDEV_CLASS_ATTR(
3982                                 overcommit,
3983                                 0644,
3984                                 perf_show_overcommit,
3985                                 perf_set_overcommit
3986                         );
3987
3988 static struct attribute *perfclass_attrs[] = {
3989         &attr_reserve_percpu.attr,
3990         &attr_overcommit.attr,
3991         NULL
3992 };
3993
3994 static struct attribute_group perfclass_attr_group = {
3995         .attrs                  = perfclass_attrs,
3996         .name                   = "perf_counters",
3997 };
3998
3999 static int __init perf_counter_sysfs_init(void)
4000 {
4001         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4002                                   &perfclass_attr_group);
4003 }
4004 device_initcall(perf_counter_sysfs_init);