perf_counter: Change data head from u32 to u64
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52  * Lock for (sysadmin-configurable) counter reservations:
53  */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57  * Architecture provided APIs - weak aliases:
58  */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61         return NULL;
62 }
63
64 void __weak hw_perf_disable(void)               { barrier(); }
65 void __weak hw_perf_enable(void)                { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
68
69 int __weak
70 hw_perf_group_sched_in(struct perf_counter *group_leader,
71                struct perf_cpu_context *cpuctx,
72                struct perf_counter_context *ctx, int cpu)
73 {
74         return 0;
75 }
76
77 void __weak perf_counter_print_debug(void)      { }
78
79 static DEFINE_PER_CPU(int, disable_count);
80
81 void __perf_disable(void)
82 {
83         __get_cpu_var(disable_count)++;
84 }
85
86 bool __perf_enable(void)
87 {
88         return !--__get_cpu_var(disable_count);
89 }
90
91 void perf_disable(void)
92 {
93         __perf_disable();
94         hw_perf_disable();
95 }
96
97 void perf_enable(void)
98 {
99         if (__perf_enable())
100                 hw_perf_enable();
101 }
102
103 static void get_ctx(struct perf_counter_context *ctx)
104 {
105         atomic_inc(&ctx->refcount);
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_counter_context *ctx;
111
112         ctx = container_of(head, struct perf_counter_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_counter_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 /*
128  * Get the perf_counter_context for a task and lock it.
129  * This has to cope with with the fact that until it is locked,
130  * the context could get moved to another task.
131  */
132 static struct perf_counter_context *
133 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134 {
135         struct perf_counter_context *ctx;
136
137         rcu_read_lock();
138  retry:
139         ctx = rcu_dereference(task->perf_counter_ctxp);
140         if (ctx) {
141                 /*
142                  * If this context is a clone of another, it might
143                  * get swapped for another underneath us by
144                  * perf_counter_task_sched_out, though the
145                  * rcu_read_lock() protects us from any context
146                  * getting freed.  Lock the context and check if it
147                  * got swapped before we could get the lock, and retry
148                  * if so.  If we locked the right context, then it
149                  * can't get swapped on us any more.
150                  */
151                 spin_lock_irqsave(&ctx->lock, *flags);
152                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
153                         spin_unlock_irqrestore(&ctx->lock, *flags);
154                         goto retry;
155                 }
156         }
157         rcu_read_unlock();
158         return ctx;
159 }
160
161 /*
162  * Get the context for a task and increment its pin_count so it
163  * can't get swapped to another task.  This also increments its
164  * reference count so that the context can't get freed.
165  */
166 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
167 {
168         struct perf_counter_context *ctx;
169         unsigned long flags;
170
171         ctx = perf_lock_task_context(task, &flags);
172         if (ctx) {
173                 ++ctx->pin_count;
174                 get_ctx(ctx);
175                 spin_unlock_irqrestore(&ctx->lock, flags);
176         }
177         return ctx;
178 }
179
180 static void perf_unpin_context(struct perf_counter_context *ctx)
181 {
182         unsigned long flags;
183
184         spin_lock_irqsave(&ctx->lock, flags);
185         --ctx->pin_count;
186         spin_unlock_irqrestore(&ctx->lock, flags);
187         put_ctx(ctx);
188 }
189
190 /*
191  * Add a counter from the lists for its context.
192  * Must be called with ctx->mutex and ctx->lock held.
193  */
194 static void
195 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
196 {
197         struct perf_counter *group_leader = counter->group_leader;
198
199         /*
200          * Depending on whether it is a standalone or sibling counter,
201          * add it straight to the context's counter list, or to the group
202          * leader's sibling list:
203          */
204         if (group_leader == counter)
205                 list_add_tail(&counter->list_entry, &ctx->counter_list);
206         else {
207                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
208                 group_leader->nr_siblings++;
209         }
210
211         list_add_rcu(&counter->event_entry, &ctx->event_list);
212         ctx->nr_counters++;
213 }
214
215 /*
216  * Remove a counter from the lists for its context.
217  * Must be called with ctx->mutex and ctx->lock held.
218  */
219 static void
220 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
221 {
222         struct perf_counter *sibling, *tmp;
223
224         if (list_empty(&counter->list_entry))
225                 return;
226         ctx->nr_counters--;
227
228         list_del_init(&counter->list_entry);
229         list_del_rcu(&counter->event_entry);
230
231         if (counter->group_leader != counter)
232                 counter->group_leader->nr_siblings--;
233
234         /*
235          * If this was a group counter with sibling counters then
236          * upgrade the siblings to singleton counters by adding them
237          * to the context list directly:
238          */
239         list_for_each_entry_safe(sibling, tmp,
240                                  &counter->sibling_list, list_entry) {
241
242                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
243                 sibling->group_leader = sibling;
244         }
245 }
246
247 static void
248 counter_sched_out(struct perf_counter *counter,
249                   struct perf_cpu_context *cpuctx,
250                   struct perf_counter_context *ctx)
251 {
252         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
253                 return;
254
255         counter->state = PERF_COUNTER_STATE_INACTIVE;
256         counter->tstamp_stopped = ctx->time;
257         counter->pmu->disable(counter);
258         counter->oncpu = -1;
259
260         if (!is_software_counter(counter))
261                 cpuctx->active_oncpu--;
262         ctx->nr_active--;
263         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
264                 cpuctx->exclusive = 0;
265 }
266
267 static void
268 group_sched_out(struct perf_counter *group_counter,
269                 struct perf_cpu_context *cpuctx,
270                 struct perf_counter_context *ctx)
271 {
272         struct perf_counter *counter;
273
274         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
275                 return;
276
277         counter_sched_out(group_counter, cpuctx, ctx);
278
279         /*
280          * Schedule out siblings (if any):
281          */
282         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
283                 counter_sched_out(counter, cpuctx, ctx);
284
285         if (group_counter->hw_event.exclusive)
286                 cpuctx->exclusive = 0;
287 }
288
289 /*
290  * Cross CPU call to remove a performance counter
291  *
292  * We disable the counter on the hardware level first. After that we
293  * remove it from the context list.
294  */
295 static void __perf_counter_remove_from_context(void *info)
296 {
297         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
298         struct perf_counter *counter = info;
299         struct perf_counter_context *ctx = counter->ctx;
300
301         /*
302          * If this is a task context, we need to check whether it is
303          * the current task context of this cpu. If not it has been
304          * scheduled out before the smp call arrived.
305          */
306         if (ctx->task && cpuctx->task_ctx != ctx)
307                 return;
308
309         spin_lock(&ctx->lock);
310         /*
311          * Protect the list operation against NMI by disabling the
312          * counters on a global level.
313          */
314         perf_disable();
315
316         counter_sched_out(counter, cpuctx, ctx);
317
318         list_del_counter(counter, ctx);
319
320         if (!ctx->task) {
321                 /*
322                  * Allow more per task counters with respect to the
323                  * reservation:
324                  */
325                 cpuctx->max_pertask =
326                         min(perf_max_counters - ctx->nr_counters,
327                             perf_max_counters - perf_reserved_percpu);
328         }
329
330         perf_enable();
331         spin_unlock(&ctx->lock);
332 }
333
334
335 /*
336  * Remove the counter from a task's (or a CPU's) list of counters.
337  *
338  * Must be called with ctx->mutex held.
339  *
340  * CPU counters are removed with a smp call. For task counters we only
341  * call when the task is on a CPU.
342  *
343  * If counter->ctx is a cloned context, callers must make sure that
344  * every task struct that counter->ctx->task could possibly point to
345  * remains valid.  This is OK when called from perf_release since
346  * that only calls us on the top-level context, which can't be a clone.
347  * When called from perf_counter_exit_task, it's OK because the
348  * context has been detached from its task.
349  */
350 static void perf_counter_remove_from_context(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Per cpu counters are removed via an smp call and
358                  * the removal is always sucessful.
359                  */
360                 smp_call_function_single(counter->cpu,
361                                          __perf_counter_remove_from_context,
362                                          counter, 1);
363                 return;
364         }
365
366 retry:
367         task_oncpu_function_call(task, __perf_counter_remove_from_context,
368                                  counter);
369
370         spin_lock_irq(&ctx->lock);
371         /*
372          * If the context is active we need to retry the smp call.
373          */
374         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
375                 spin_unlock_irq(&ctx->lock);
376                 goto retry;
377         }
378
379         /*
380          * The lock prevents that this context is scheduled in so we
381          * can remove the counter safely, if the call above did not
382          * succeed.
383          */
384         if (!list_empty(&counter->list_entry)) {
385                 list_del_counter(counter, ctx);
386         }
387         spin_unlock_irq(&ctx->lock);
388 }
389
390 static inline u64 perf_clock(void)
391 {
392         return cpu_clock(smp_processor_id());
393 }
394
395 /*
396  * Update the record of the current time in a context.
397  */
398 static void update_context_time(struct perf_counter_context *ctx)
399 {
400         u64 now = perf_clock();
401
402         ctx->time += now - ctx->timestamp;
403         ctx->timestamp = now;
404 }
405
406 /*
407  * Update the total_time_enabled and total_time_running fields for a counter.
408  */
409 static void update_counter_times(struct perf_counter *counter)
410 {
411         struct perf_counter_context *ctx = counter->ctx;
412         u64 run_end;
413
414         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
415                 return;
416
417         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
418
419         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
420                 run_end = counter->tstamp_stopped;
421         else
422                 run_end = ctx->time;
423
424         counter->total_time_running = run_end - counter->tstamp_running;
425 }
426
427 /*
428  * Update total_time_enabled and total_time_running for all counters in a group.
429  */
430 static void update_group_times(struct perf_counter *leader)
431 {
432         struct perf_counter *counter;
433
434         update_counter_times(leader);
435         list_for_each_entry(counter, &leader->sibling_list, list_entry)
436                 update_counter_times(counter);
437 }
438
439 /*
440  * Cross CPU call to disable a performance counter
441  */
442 static void __perf_counter_disable(void *info)
443 {
444         struct perf_counter *counter = info;
445         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
446         struct perf_counter_context *ctx = counter->ctx;
447
448         /*
449          * If this is a per-task counter, need to check whether this
450          * counter's task is the current task on this cpu.
451          */
452         if (ctx->task && cpuctx->task_ctx != ctx)
453                 return;
454
455         spin_lock(&ctx->lock);
456
457         /*
458          * If the counter is on, turn it off.
459          * If it is in error state, leave it in error state.
460          */
461         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
462                 update_context_time(ctx);
463                 update_counter_times(counter);
464                 if (counter == counter->group_leader)
465                         group_sched_out(counter, cpuctx, ctx);
466                 else
467                         counter_sched_out(counter, cpuctx, ctx);
468                 counter->state = PERF_COUNTER_STATE_OFF;
469         }
470
471         spin_unlock(&ctx->lock);
472 }
473
474 /*
475  * Disable a counter.
476  *
477  * If counter->ctx is a cloned context, callers must make sure that
478  * every task struct that counter->ctx->task could possibly point to
479  * remains valid.  This condition is satisifed when called through
480  * perf_counter_for_each_child or perf_counter_for_each because they
481  * hold the top-level counter's child_mutex, so any descendant that
482  * goes to exit will block in sync_child_counter.
483  * When called from perf_pending_counter it's OK because counter->ctx
484  * is the current context on this CPU and preemption is disabled,
485  * hence we can't get into perf_counter_task_sched_out for this context.
486  */
487 static void perf_counter_disable(struct perf_counter *counter)
488 {
489         struct perf_counter_context *ctx = counter->ctx;
490         struct task_struct *task = ctx->task;
491
492         if (!task) {
493                 /*
494                  * Disable the counter on the cpu that it's on
495                  */
496                 smp_call_function_single(counter->cpu, __perf_counter_disable,
497                                          counter, 1);
498                 return;
499         }
500
501  retry:
502         task_oncpu_function_call(task, __perf_counter_disable, counter);
503
504         spin_lock_irq(&ctx->lock);
505         /*
506          * If the counter is still active, we need to retry the cross-call.
507          */
508         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
509                 spin_unlock_irq(&ctx->lock);
510                 goto retry;
511         }
512
513         /*
514          * Since we have the lock this context can't be scheduled
515          * in, so we can change the state safely.
516          */
517         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
518                 update_counter_times(counter);
519                 counter->state = PERF_COUNTER_STATE_OFF;
520         }
521
522         spin_unlock_irq(&ctx->lock);
523 }
524
525 static int
526 counter_sched_in(struct perf_counter *counter,
527                  struct perf_cpu_context *cpuctx,
528                  struct perf_counter_context *ctx,
529                  int cpu)
530 {
531         if (counter->state <= PERF_COUNTER_STATE_OFF)
532                 return 0;
533
534         counter->state = PERF_COUNTER_STATE_ACTIVE;
535         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
536         /*
537          * The new state must be visible before we turn it on in the hardware:
538          */
539         smp_wmb();
540
541         if (counter->pmu->enable(counter)) {
542                 counter->state = PERF_COUNTER_STATE_INACTIVE;
543                 counter->oncpu = -1;
544                 return -EAGAIN;
545         }
546
547         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
548
549         if (!is_software_counter(counter))
550                 cpuctx->active_oncpu++;
551         ctx->nr_active++;
552
553         if (counter->hw_event.exclusive)
554                 cpuctx->exclusive = 1;
555
556         return 0;
557 }
558
559 static int
560 group_sched_in(struct perf_counter *group_counter,
561                struct perf_cpu_context *cpuctx,
562                struct perf_counter_context *ctx,
563                int cpu)
564 {
565         struct perf_counter *counter, *partial_group;
566         int ret;
567
568         if (group_counter->state == PERF_COUNTER_STATE_OFF)
569                 return 0;
570
571         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
572         if (ret)
573                 return ret < 0 ? ret : 0;
574
575         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
576                 return -EAGAIN;
577
578         /*
579          * Schedule in siblings as one group (if any):
580          */
581         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
582                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
583                         partial_group = counter;
584                         goto group_error;
585                 }
586         }
587
588         return 0;
589
590 group_error:
591         /*
592          * Groups can be scheduled in as one unit only, so undo any
593          * partial group before returning:
594          */
595         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
596                 if (counter == partial_group)
597                         break;
598                 counter_sched_out(counter, cpuctx, ctx);
599         }
600         counter_sched_out(group_counter, cpuctx, ctx);
601
602         return -EAGAIN;
603 }
604
605 /*
606  * Return 1 for a group consisting entirely of software counters,
607  * 0 if the group contains any hardware counters.
608  */
609 static int is_software_only_group(struct perf_counter *leader)
610 {
611         struct perf_counter *counter;
612
613         if (!is_software_counter(leader))
614                 return 0;
615
616         list_for_each_entry(counter, &leader->sibling_list, list_entry)
617                 if (!is_software_counter(counter))
618                         return 0;
619
620         return 1;
621 }
622
623 /*
624  * Work out whether we can put this counter group on the CPU now.
625  */
626 static int group_can_go_on(struct perf_counter *counter,
627                            struct perf_cpu_context *cpuctx,
628                            int can_add_hw)
629 {
630         /*
631          * Groups consisting entirely of software counters can always go on.
632          */
633         if (is_software_only_group(counter))
634                 return 1;
635         /*
636          * If an exclusive group is already on, no other hardware
637          * counters can go on.
638          */
639         if (cpuctx->exclusive)
640                 return 0;
641         /*
642          * If this group is exclusive and there are already
643          * counters on the CPU, it can't go on.
644          */
645         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
646                 return 0;
647         /*
648          * Otherwise, try to add it if all previous groups were able
649          * to go on.
650          */
651         return can_add_hw;
652 }
653
654 static void add_counter_to_ctx(struct perf_counter *counter,
655                                struct perf_counter_context *ctx)
656 {
657         list_add_counter(counter, ctx);
658         counter->tstamp_enabled = ctx->time;
659         counter->tstamp_running = ctx->time;
660         counter->tstamp_stopped = ctx->time;
661 }
662
663 /*
664  * Cross CPU call to install and enable a performance counter
665  *
666  * Must be called with ctx->mutex held
667  */
668 static void __perf_install_in_context(void *info)
669 {
670         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
671         struct perf_counter *counter = info;
672         struct perf_counter_context *ctx = counter->ctx;
673         struct perf_counter *leader = counter->group_leader;
674         int cpu = smp_processor_id();
675         int err;
676
677         /*
678          * If this is a task context, we need to check whether it is
679          * the current task context of this cpu. If not it has been
680          * scheduled out before the smp call arrived.
681          * Or possibly this is the right context but it isn't
682          * on this cpu because it had no counters.
683          */
684         if (ctx->task && cpuctx->task_ctx != ctx) {
685                 if (cpuctx->task_ctx || ctx->task != current)
686                         return;
687                 cpuctx->task_ctx = ctx;
688         }
689
690         spin_lock(&ctx->lock);
691         ctx->is_active = 1;
692         update_context_time(ctx);
693
694         /*
695          * Protect the list operation against NMI by disabling the
696          * counters on a global level. NOP for non NMI based counters.
697          */
698         perf_disable();
699
700         add_counter_to_ctx(counter, ctx);
701
702         /*
703          * Don't put the counter on if it is disabled or if
704          * it is in a group and the group isn't on.
705          */
706         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
707             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
708                 goto unlock;
709
710         /*
711          * An exclusive counter can't go on if there are already active
712          * hardware counters, and no hardware counter can go on if there
713          * is already an exclusive counter on.
714          */
715         if (!group_can_go_on(counter, cpuctx, 1))
716                 err = -EEXIST;
717         else
718                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
719
720         if (err) {
721                 /*
722                  * This counter couldn't go on.  If it is in a group
723                  * then we have to pull the whole group off.
724                  * If the counter group is pinned then put it in error state.
725                  */
726                 if (leader != counter)
727                         group_sched_out(leader, cpuctx, ctx);
728                 if (leader->hw_event.pinned) {
729                         update_group_times(leader);
730                         leader->state = PERF_COUNTER_STATE_ERROR;
731                 }
732         }
733
734         if (!err && !ctx->task && cpuctx->max_pertask)
735                 cpuctx->max_pertask--;
736
737  unlock:
738         perf_enable();
739
740         spin_unlock(&ctx->lock);
741 }
742
743 /*
744  * Attach a performance counter to a context
745  *
746  * First we add the counter to the list with the hardware enable bit
747  * in counter->hw_config cleared.
748  *
749  * If the counter is attached to a task which is on a CPU we use a smp
750  * call to enable it in the task context. The task might have been
751  * scheduled away, but we check this in the smp call again.
752  *
753  * Must be called with ctx->mutex held.
754  */
755 static void
756 perf_install_in_context(struct perf_counter_context *ctx,
757                         struct perf_counter *counter,
758                         int cpu)
759 {
760         struct task_struct *task = ctx->task;
761
762         if (!task) {
763                 /*
764                  * Per cpu counters are installed via an smp call and
765                  * the install is always sucessful.
766                  */
767                 smp_call_function_single(cpu, __perf_install_in_context,
768                                          counter, 1);
769                 return;
770         }
771
772 retry:
773         task_oncpu_function_call(task, __perf_install_in_context,
774                                  counter);
775
776         spin_lock_irq(&ctx->lock);
777         /*
778          * we need to retry the smp call.
779          */
780         if (ctx->is_active && list_empty(&counter->list_entry)) {
781                 spin_unlock_irq(&ctx->lock);
782                 goto retry;
783         }
784
785         /*
786          * The lock prevents that this context is scheduled in so we
787          * can add the counter safely, if it the call above did not
788          * succeed.
789          */
790         if (list_empty(&counter->list_entry))
791                 add_counter_to_ctx(counter, ctx);
792         spin_unlock_irq(&ctx->lock);
793 }
794
795 /*
796  * Cross CPU call to enable a performance counter
797  */
798 static void __perf_counter_enable(void *info)
799 {
800         struct perf_counter *counter = info;
801         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
802         struct perf_counter_context *ctx = counter->ctx;
803         struct perf_counter *leader = counter->group_leader;
804         int err;
805
806         /*
807          * If this is a per-task counter, need to check whether this
808          * counter's task is the current task on this cpu.
809          */
810         if (ctx->task && cpuctx->task_ctx != ctx) {
811                 if (cpuctx->task_ctx || ctx->task != current)
812                         return;
813                 cpuctx->task_ctx = ctx;
814         }
815
816         spin_lock(&ctx->lock);
817         ctx->is_active = 1;
818         update_context_time(ctx);
819
820         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
821                 goto unlock;
822         counter->state = PERF_COUNTER_STATE_INACTIVE;
823         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
824
825         /*
826          * If the counter is in a group and isn't the group leader,
827          * then don't put it on unless the group is on.
828          */
829         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
830                 goto unlock;
831
832         if (!group_can_go_on(counter, cpuctx, 1)) {
833                 err = -EEXIST;
834         } else {
835                 perf_disable();
836                 if (counter == leader)
837                         err = group_sched_in(counter, cpuctx, ctx,
838                                              smp_processor_id());
839                 else
840                         err = counter_sched_in(counter, cpuctx, ctx,
841                                                smp_processor_id());
842                 perf_enable();
843         }
844
845         if (err) {
846                 /*
847                  * If this counter can't go on and it's part of a
848                  * group, then the whole group has to come off.
849                  */
850                 if (leader != counter)
851                         group_sched_out(leader, cpuctx, ctx);
852                 if (leader->hw_event.pinned) {
853                         update_group_times(leader);
854                         leader->state = PERF_COUNTER_STATE_ERROR;
855                 }
856         }
857
858  unlock:
859         spin_unlock(&ctx->lock);
860 }
861
862 /*
863  * Enable a counter.
864  *
865  * If counter->ctx is a cloned context, callers must make sure that
866  * every task struct that counter->ctx->task could possibly point to
867  * remains valid.  This condition is satisfied when called through
868  * perf_counter_for_each_child or perf_counter_for_each as described
869  * for perf_counter_disable.
870  */
871 static void perf_counter_enable(struct perf_counter *counter)
872 {
873         struct perf_counter_context *ctx = counter->ctx;
874         struct task_struct *task = ctx->task;
875
876         if (!task) {
877                 /*
878                  * Enable the counter on the cpu that it's on
879                  */
880                 smp_call_function_single(counter->cpu, __perf_counter_enable,
881                                          counter, 1);
882                 return;
883         }
884
885         spin_lock_irq(&ctx->lock);
886         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
887                 goto out;
888
889         /*
890          * If the counter is in error state, clear that first.
891          * That way, if we see the counter in error state below, we
892          * know that it has gone back into error state, as distinct
893          * from the task having been scheduled away before the
894          * cross-call arrived.
895          */
896         if (counter->state == PERF_COUNTER_STATE_ERROR)
897                 counter->state = PERF_COUNTER_STATE_OFF;
898
899  retry:
900         spin_unlock_irq(&ctx->lock);
901         task_oncpu_function_call(task, __perf_counter_enable, counter);
902
903         spin_lock_irq(&ctx->lock);
904
905         /*
906          * If the context is active and the counter is still off,
907          * we need to retry the cross-call.
908          */
909         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
910                 goto retry;
911
912         /*
913          * Since we have the lock this context can't be scheduled
914          * in, so we can change the state safely.
915          */
916         if (counter->state == PERF_COUNTER_STATE_OFF) {
917                 counter->state = PERF_COUNTER_STATE_INACTIVE;
918                 counter->tstamp_enabled =
919                         ctx->time - counter->total_time_enabled;
920         }
921  out:
922         spin_unlock_irq(&ctx->lock);
923 }
924
925 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
926 {
927         /*
928          * not supported on inherited counters
929          */
930         if (counter->hw_event.inherit)
931                 return -EINVAL;
932
933         atomic_add(refresh, &counter->event_limit);
934         perf_counter_enable(counter);
935
936         return 0;
937 }
938
939 void __perf_counter_sched_out(struct perf_counter_context *ctx,
940                               struct perf_cpu_context *cpuctx)
941 {
942         struct perf_counter *counter;
943
944         spin_lock(&ctx->lock);
945         ctx->is_active = 0;
946         if (likely(!ctx->nr_counters))
947                 goto out;
948         update_context_time(ctx);
949
950         perf_disable();
951         if (ctx->nr_active) {
952                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
953                         if (counter != counter->group_leader)
954                                 counter_sched_out(counter, cpuctx, ctx);
955                         else
956                                 group_sched_out(counter, cpuctx, ctx);
957                 }
958         }
959         perf_enable();
960  out:
961         spin_unlock(&ctx->lock);
962 }
963
964 /*
965  * Test whether two contexts are equivalent, i.e. whether they
966  * have both been cloned from the same version of the same context
967  * and they both have the same number of enabled counters.
968  * If the number of enabled counters is the same, then the set
969  * of enabled counters should be the same, because these are both
970  * inherited contexts, therefore we can't access individual counters
971  * in them directly with an fd; we can only enable/disable all
972  * counters via prctl, or enable/disable all counters in a family
973  * via ioctl, which will have the same effect on both contexts.
974  */
975 static int context_equiv(struct perf_counter_context *ctx1,
976                          struct perf_counter_context *ctx2)
977 {
978         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
979                 && ctx1->parent_gen == ctx2->parent_gen
980                 && !ctx1->pin_count && !ctx2->pin_count;
981 }
982
983 /*
984  * Called from scheduler to remove the counters of the current task,
985  * with interrupts disabled.
986  *
987  * We stop each counter and update the counter value in counter->count.
988  *
989  * This does not protect us against NMI, but disable()
990  * sets the disabled bit in the control field of counter _before_
991  * accessing the counter control register. If a NMI hits, then it will
992  * not restart the counter.
993  */
994 void perf_counter_task_sched_out(struct task_struct *task,
995                                  struct task_struct *next, int cpu)
996 {
997         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
998         struct perf_counter_context *ctx = task->perf_counter_ctxp;
999         struct perf_counter_context *next_ctx;
1000         struct perf_counter_context *parent;
1001         struct pt_regs *regs;
1002         int do_switch = 1;
1003
1004         regs = task_pt_regs(task);
1005         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1006
1007         if (likely(!ctx || !cpuctx->task_ctx))
1008                 return;
1009
1010         update_context_time(ctx);
1011
1012         rcu_read_lock();
1013         parent = rcu_dereference(ctx->parent_ctx);
1014         next_ctx = next->perf_counter_ctxp;
1015         if (parent && next_ctx &&
1016             rcu_dereference(next_ctx->parent_ctx) == parent) {
1017                 /*
1018                  * Looks like the two contexts are clones, so we might be
1019                  * able to optimize the context switch.  We lock both
1020                  * contexts and check that they are clones under the
1021                  * lock (including re-checking that neither has been
1022                  * uncloned in the meantime).  It doesn't matter which
1023                  * order we take the locks because no other cpu could
1024                  * be trying to lock both of these tasks.
1025                  */
1026                 spin_lock(&ctx->lock);
1027                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1028                 if (context_equiv(ctx, next_ctx)) {
1029                         /*
1030                          * XXX do we need a memory barrier of sorts
1031                          * wrt to rcu_dereference() of perf_counter_ctxp
1032                          */
1033                         task->perf_counter_ctxp = next_ctx;
1034                         next->perf_counter_ctxp = ctx;
1035                         ctx->task = next;
1036                         next_ctx->task = task;
1037                         do_switch = 0;
1038                 }
1039                 spin_unlock(&next_ctx->lock);
1040                 spin_unlock(&ctx->lock);
1041         }
1042         rcu_read_unlock();
1043
1044         if (do_switch) {
1045                 __perf_counter_sched_out(ctx, cpuctx);
1046                 cpuctx->task_ctx = NULL;
1047         }
1048 }
1049
1050 /*
1051  * Called with IRQs disabled
1052  */
1053 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1054 {
1055         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1056
1057         if (!cpuctx->task_ctx)
1058                 return;
1059
1060         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1061                 return;
1062
1063         __perf_counter_sched_out(ctx, cpuctx);
1064         cpuctx->task_ctx = NULL;
1065 }
1066
1067 /*
1068  * Called with IRQs disabled
1069  */
1070 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1071 {
1072         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1073 }
1074
1075 static void
1076 __perf_counter_sched_in(struct perf_counter_context *ctx,
1077                         struct perf_cpu_context *cpuctx, int cpu)
1078 {
1079         struct perf_counter *counter;
1080         int can_add_hw = 1;
1081
1082         spin_lock(&ctx->lock);
1083         ctx->is_active = 1;
1084         if (likely(!ctx->nr_counters))
1085                 goto out;
1086
1087         ctx->timestamp = perf_clock();
1088
1089         perf_disable();
1090
1091         /*
1092          * First go through the list and put on any pinned groups
1093          * in order to give them the best chance of going on.
1094          */
1095         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1096                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1097                     !counter->hw_event.pinned)
1098                         continue;
1099                 if (counter->cpu != -1 && counter->cpu != cpu)
1100                         continue;
1101
1102                 if (counter != counter->group_leader)
1103                         counter_sched_in(counter, cpuctx, ctx, cpu);
1104                 else {
1105                         if (group_can_go_on(counter, cpuctx, 1))
1106                                 group_sched_in(counter, cpuctx, ctx, cpu);
1107                 }
1108
1109                 /*
1110                  * If this pinned group hasn't been scheduled,
1111                  * put it in error state.
1112                  */
1113                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114                         update_group_times(counter);
1115                         counter->state = PERF_COUNTER_STATE_ERROR;
1116                 }
1117         }
1118
1119         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1120                 /*
1121                  * Ignore counters in OFF or ERROR state, and
1122                  * ignore pinned counters since we did them already.
1123                  */
1124                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1125                     counter->hw_event.pinned)
1126                         continue;
1127
1128                 /*
1129                  * Listen to the 'cpu' scheduling filter constraint
1130                  * of counters:
1131                  */
1132                 if (counter->cpu != -1 && counter->cpu != cpu)
1133                         continue;
1134
1135                 if (counter != counter->group_leader) {
1136                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1137                                 can_add_hw = 0;
1138                 } else {
1139                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1140                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1141                                         can_add_hw = 0;
1142                         }
1143                 }
1144         }
1145         perf_enable();
1146  out:
1147         spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151  * Called from scheduler to add the counters of the current task
1152  * with interrupts disabled.
1153  *
1154  * We restore the counter value and then enable it.
1155  *
1156  * This does not protect us against NMI, but enable()
1157  * sets the enabled bit in the control field of counter _before_
1158  * accessing the counter control register. If a NMI hits, then it will
1159  * keep the counter running.
1160  */
1161 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1162 {
1163         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1164         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1165
1166         if (likely(!ctx))
1167                 return;
1168         if (cpuctx->task_ctx == ctx)
1169                 return;
1170         __perf_counter_sched_in(ctx, cpuctx, cpu);
1171         cpuctx->task_ctx = ctx;
1172 }
1173
1174 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1175 {
1176         struct perf_counter_context *ctx = &cpuctx->ctx;
1177
1178         __perf_counter_sched_in(ctx, cpuctx, cpu);
1179 }
1180
1181 #define MAX_INTERRUPTS (~0ULL)
1182
1183 static void perf_log_throttle(struct perf_counter *counter, int enable);
1184 static void perf_log_period(struct perf_counter *counter, u64 period);
1185
1186 static void perf_adjust_freq(struct perf_counter_context *ctx)
1187 {
1188         struct perf_counter *counter;
1189         u64 interrupts, sample_period;
1190         u64 events, period;
1191         s64 delta;
1192
1193         spin_lock(&ctx->lock);
1194         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1195                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1196                         continue;
1197
1198                 interrupts = counter->hw.interrupts;
1199                 counter->hw.interrupts = 0;
1200
1201                 if (interrupts == MAX_INTERRUPTS) {
1202                         perf_log_throttle(counter, 1);
1203                         counter->pmu->unthrottle(counter);
1204                         interrupts = 2*sysctl_perf_counter_limit/HZ;
1205                 }
1206
1207                 if (!counter->hw_event.freq || !counter->hw_event.sample_freq)
1208                         continue;
1209
1210                 events = HZ * interrupts * counter->hw.sample_period;
1211                 period = div64_u64(events, counter->hw_event.sample_freq);
1212
1213                 delta = (s64)(1 + period - counter->hw.sample_period);
1214                 delta >>= 1;
1215
1216                 sample_period = counter->hw.sample_period + delta;
1217
1218                 if (!sample_period)
1219                         sample_period = 1;
1220
1221                 perf_log_period(counter, sample_period);
1222
1223                 counter->hw.sample_period = sample_period;
1224         }
1225         spin_unlock(&ctx->lock);
1226 }
1227
1228 /*
1229  * Round-robin a context's counters:
1230  */
1231 static void rotate_ctx(struct perf_counter_context *ctx)
1232 {
1233         struct perf_counter *counter;
1234
1235         if (!ctx->nr_counters)
1236                 return;
1237
1238         spin_lock(&ctx->lock);
1239         /*
1240          * Rotate the first entry last (works just fine for group counters too):
1241          */
1242         perf_disable();
1243         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1244                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1245                 break;
1246         }
1247         perf_enable();
1248
1249         spin_unlock(&ctx->lock);
1250 }
1251
1252 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1253 {
1254         struct perf_cpu_context *cpuctx;
1255         struct perf_counter_context *ctx;
1256
1257         if (!atomic_read(&nr_counters))
1258                 return;
1259
1260         cpuctx = &per_cpu(perf_cpu_context, cpu);
1261         ctx = curr->perf_counter_ctxp;
1262
1263         perf_adjust_freq(&cpuctx->ctx);
1264         if (ctx)
1265                 perf_adjust_freq(ctx);
1266
1267         perf_counter_cpu_sched_out(cpuctx);
1268         if (ctx)
1269                 __perf_counter_task_sched_out(ctx);
1270
1271         rotate_ctx(&cpuctx->ctx);
1272         if (ctx)
1273                 rotate_ctx(ctx);
1274
1275         perf_counter_cpu_sched_in(cpuctx, cpu);
1276         if (ctx)
1277                 perf_counter_task_sched_in(curr, cpu);
1278 }
1279
1280 /*
1281  * Cross CPU call to read the hardware counter
1282  */
1283 static void __read(void *info)
1284 {
1285         struct perf_counter *counter = info;
1286         struct perf_counter_context *ctx = counter->ctx;
1287         unsigned long flags;
1288
1289         local_irq_save(flags);
1290         if (ctx->is_active)
1291                 update_context_time(ctx);
1292         counter->pmu->read(counter);
1293         update_counter_times(counter);
1294         local_irq_restore(flags);
1295 }
1296
1297 static u64 perf_counter_read(struct perf_counter *counter)
1298 {
1299         /*
1300          * If counter is enabled and currently active on a CPU, update the
1301          * value in the counter structure:
1302          */
1303         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1304                 smp_call_function_single(counter->oncpu,
1305                                          __read, counter, 1);
1306         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1307                 update_counter_times(counter);
1308         }
1309
1310         return atomic64_read(&counter->count);
1311 }
1312
1313 /*
1314  * Initialize the perf_counter context in a task_struct:
1315  */
1316 static void
1317 __perf_counter_init_context(struct perf_counter_context *ctx,
1318                             struct task_struct *task)
1319 {
1320         memset(ctx, 0, sizeof(*ctx));
1321         spin_lock_init(&ctx->lock);
1322         mutex_init(&ctx->mutex);
1323         INIT_LIST_HEAD(&ctx->counter_list);
1324         INIT_LIST_HEAD(&ctx->event_list);
1325         atomic_set(&ctx->refcount, 1);
1326         ctx->task = task;
1327 }
1328
1329 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1330 {
1331         struct perf_counter_context *parent_ctx;
1332         struct perf_counter_context *ctx;
1333         struct perf_cpu_context *cpuctx;
1334         struct task_struct *task;
1335         unsigned long flags;
1336         int err;
1337
1338         /*
1339          * If cpu is not a wildcard then this is a percpu counter:
1340          */
1341         if (cpu != -1) {
1342                 /* Must be root to operate on a CPU counter: */
1343                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1344                         return ERR_PTR(-EACCES);
1345
1346                 if (cpu < 0 || cpu > num_possible_cpus())
1347                         return ERR_PTR(-EINVAL);
1348
1349                 /*
1350                  * We could be clever and allow to attach a counter to an
1351                  * offline CPU and activate it when the CPU comes up, but
1352                  * that's for later.
1353                  */
1354                 if (!cpu_isset(cpu, cpu_online_map))
1355                         return ERR_PTR(-ENODEV);
1356
1357                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1358                 ctx = &cpuctx->ctx;
1359                 get_ctx(ctx);
1360
1361                 return ctx;
1362         }
1363
1364         rcu_read_lock();
1365         if (!pid)
1366                 task = current;
1367         else
1368                 task = find_task_by_vpid(pid);
1369         if (task)
1370                 get_task_struct(task);
1371         rcu_read_unlock();
1372
1373         if (!task)
1374                 return ERR_PTR(-ESRCH);
1375
1376         /*
1377          * Can't attach counters to a dying task.
1378          */
1379         err = -ESRCH;
1380         if (task->flags & PF_EXITING)
1381                 goto errout;
1382
1383         /* Reuse ptrace permission checks for now. */
1384         err = -EACCES;
1385         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1386                 goto errout;
1387
1388  retry:
1389         ctx = perf_lock_task_context(task, &flags);
1390         if (ctx) {
1391                 parent_ctx = ctx->parent_ctx;
1392                 if (parent_ctx) {
1393                         put_ctx(parent_ctx);
1394                         ctx->parent_ctx = NULL;         /* no longer a clone */
1395                 }
1396                 /*
1397                  * Get an extra reference before dropping the lock so that
1398                  * this context won't get freed if the task exits.
1399                  */
1400                 get_ctx(ctx);
1401                 spin_unlock_irqrestore(&ctx->lock, flags);
1402         }
1403
1404         if (!ctx) {
1405                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1406                 err = -ENOMEM;
1407                 if (!ctx)
1408                         goto errout;
1409                 __perf_counter_init_context(ctx, task);
1410                 get_ctx(ctx);
1411                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1412                         /*
1413                          * We raced with some other task; use
1414                          * the context they set.
1415                          */
1416                         kfree(ctx);
1417                         goto retry;
1418                 }
1419                 get_task_struct(task);
1420         }
1421
1422         put_task_struct(task);
1423         return ctx;
1424
1425  errout:
1426         put_task_struct(task);
1427         return ERR_PTR(err);
1428 }
1429
1430 static void free_counter_rcu(struct rcu_head *head)
1431 {
1432         struct perf_counter *counter;
1433
1434         counter = container_of(head, struct perf_counter, rcu_head);
1435         if (counter->ns)
1436                 put_pid_ns(counter->ns);
1437         kfree(counter);
1438 }
1439
1440 static void perf_pending_sync(struct perf_counter *counter);
1441
1442 static void free_counter(struct perf_counter *counter)
1443 {
1444         perf_pending_sync(counter);
1445
1446         atomic_dec(&nr_counters);
1447         if (counter->hw_event.mmap)
1448                 atomic_dec(&nr_mmap_tracking);
1449         if (counter->hw_event.munmap)
1450                 atomic_dec(&nr_munmap_tracking);
1451         if (counter->hw_event.comm)
1452                 atomic_dec(&nr_comm_tracking);
1453
1454         if (counter->destroy)
1455                 counter->destroy(counter);
1456
1457         put_ctx(counter->ctx);
1458         call_rcu(&counter->rcu_head, free_counter_rcu);
1459 }
1460
1461 /*
1462  * Called when the last reference to the file is gone.
1463  */
1464 static int perf_release(struct inode *inode, struct file *file)
1465 {
1466         struct perf_counter *counter = file->private_data;
1467         struct perf_counter_context *ctx = counter->ctx;
1468
1469         file->private_data = NULL;
1470
1471         WARN_ON_ONCE(ctx->parent_ctx);
1472         mutex_lock(&ctx->mutex);
1473         perf_counter_remove_from_context(counter);
1474         mutex_unlock(&ctx->mutex);
1475
1476         mutex_lock(&counter->owner->perf_counter_mutex);
1477         list_del_init(&counter->owner_entry);
1478         mutex_unlock(&counter->owner->perf_counter_mutex);
1479         put_task_struct(counter->owner);
1480
1481         free_counter(counter);
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * Read the performance counter - simple non blocking version for now
1488  */
1489 static ssize_t
1490 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1491 {
1492         u64 values[3];
1493         int n;
1494
1495         /*
1496          * Return end-of-file for a read on a counter that is in
1497          * error state (i.e. because it was pinned but it couldn't be
1498          * scheduled on to the CPU at some point).
1499          */
1500         if (counter->state == PERF_COUNTER_STATE_ERROR)
1501                 return 0;
1502
1503         WARN_ON_ONCE(counter->ctx->parent_ctx);
1504         mutex_lock(&counter->child_mutex);
1505         values[0] = perf_counter_read(counter);
1506         n = 1;
1507         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508                 values[n++] = counter->total_time_enabled +
1509                         atomic64_read(&counter->child_total_time_enabled);
1510         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1511                 values[n++] = counter->total_time_running +
1512                         atomic64_read(&counter->child_total_time_running);
1513         if (counter->hw_event.read_format & PERF_FORMAT_ID)
1514                 values[n++] = counter->id;
1515         mutex_unlock(&counter->child_mutex);
1516
1517         if (count < n * sizeof(u64))
1518                 return -EINVAL;
1519         count = n * sizeof(u64);
1520
1521         if (copy_to_user(buf, values, count))
1522                 return -EFAULT;
1523
1524         return count;
1525 }
1526
1527 static ssize_t
1528 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1529 {
1530         struct perf_counter *counter = file->private_data;
1531
1532         return perf_read_hw(counter, buf, count);
1533 }
1534
1535 static unsigned int perf_poll(struct file *file, poll_table *wait)
1536 {
1537         struct perf_counter *counter = file->private_data;
1538         struct perf_mmap_data *data;
1539         unsigned int events = POLL_HUP;
1540
1541         rcu_read_lock();
1542         data = rcu_dereference(counter->data);
1543         if (data)
1544                 events = atomic_xchg(&data->poll, 0);
1545         rcu_read_unlock();
1546
1547         poll_wait(file, &counter->waitq, wait);
1548
1549         return events;
1550 }
1551
1552 static void perf_counter_reset(struct perf_counter *counter)
1553 {
1554         (void)perf_counter_read(counter);
1555         atomic64_set(&counter->count, 0);
1556         perf_counter_update_userpage(counter);
1557 }
1558
1559 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1560                                           void (*func)(struct perf_counter *))
1561 {
1562         struct perf_counter_context *ctx = counter->ctx;
1563         struct perf_counter *sibling;
1564
1565         WARN_ON_ONCE(ctx->parent_ctx);
1566         mutex_lock(&ctx->mutex);
1567         counter = counter->group_leader;
1568
1569         func(counter);
1570         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1571                 func(sibling);
1572         mutex_unlock(&ctx->mutex);
1573 }
1574
1575 /*
1576  * Holding the top-level counter's child_mutex means that any
1577  * descendant process that has inherited this counter will block
1578  * in sync_child_counter if it goes to exit, thus satisfying the
1579  * task existence requirements of perf_counter_enable/disable.
1580  */
1581 static void perf_counter_for_each_child(struct perf_counter *counter,
1582                                         void (*func)(struct perf_counter *))
1583 {
1584         struct perf_counter *child;
1585
1586         WARN_ON_ONCE(counter->ctx->parent_ctx);
1587         mutex_lock(&counter->child_mutex);
1588         func(counter);
1589         list_for_each_entry(child, &counter->child_list, child_list)
1590                 func(child);
1591         mutex_unlock(&counter->child_mutex);
1592 }
1593
1594 static void perf_counter_for_each(struct perf_counter *counter,
1595                                   void (*func)(struct perf_counter *))
1596 {
1597         struct perf_counter *child;
1598
1599         WARN_ON_ONCE(counter->ctx->parent_ctx);
1600         mutex_lock(&counter->child_mutex);
1601         perf_counter_for_each_sibling(counter, func);
1602         list_for_each_entry(child, &counter->child_list, child_list)
1603                 perf_counter_for_each_sibling(child, func);
1604         mutex_unlock(&counter->child_mutex);
1605 }
1606
1607 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1608 {
1609         struct perf_counter *counter = file->private_data;
1610         void (*func)(struct perf_counter *);
1611         u32 flags = arg;
1612
1613         switch (cmd) {
1614         case PERF_COUNTER_IOC_ENABLE:
1615                 func = perf_counter_enable;
1616                 break;
1617         case PERF_COUNTER_IOC_DISABLE:
1618                 func = perf_counter_disable;
1619                 break;
1620         case PERF_COUNTER_IOC_RESET:
1621                 func = perf_counter_reset;
1622                 break;
1623
1624         case PERF_COUNTER_IOC_REFRESH:
1625                 return perf_counter_refresh(counter, arg);
1626         default:
1627                 return -ENOTTY;
1628         }
1629
1630         if (flags & PERF_IOC_FLAG_GROUP)
1631                 perf_counter_for_each(counter, func);
1632         else
1633                 perf_counter_for_each_child(counter, func);
1634
1635         return 0;
1636 }
1637
1638 int perf_counter_task_enable(void)
1639 {
1640         struct perf_counter *counter;
1641
1642         mutex_lock(&current->perf_counter_mutex);
1643         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1644                 perf_counter_for_each_child(counter, perf_counter_enable);
1645         mutex_unlock(&current->perf_counter_mutex);
1646
1647         return 0;
1648 }
1649
1650 int perf_counter_task_disable(void)
1651 {
1652         struct perf_counter *counter;
1653
1654         mutex_lock(&current->perf_counter_mutex);
1655         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1656                 perf_counter_for_each_child(counter, perf_counter_disable);
1657         mutex_unlock(&current->perf_counter_mutex);
1658
1659         return 0;
1660 }
1661
1662 /*
1663  * Callers need to ensure there can be no nesting of this function, otherwise
1664  * the seqlock logic goes bad. We can not serialize this because the arch
1665  * code calls this from NMI context.
1666  */
1667 void perf_counter_update_userpage(struct perf_counter *counter)
1668 {
1669         struct perf_counter_mmap_page *userpg;
1670         struct perf_mmap_data *data;
1671
1672         rcu_read_lock();
1673         data = rcu_dereference(counter->data);
1674         if (!data)
1675                 goto unlock;
1676
1677         userpg = data->user_page;
1678
1679         /*
1680          * Disable preemption so as to not let the corresponding user-space
1681          * spin too long if we get preempted.
1682          */
1683         preempt_disable();
1684         ++userpg->lock;
1685         barrier();
1686         userpg->index = counter->hw.idx;
1687         userpg->offset = atomic64_read(&counter->count);
1688         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1689                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1690
1691         barrier();
1692         ++userpg->lock;
1693         preempt_enable();
1694 unlock:
1695         rcu_read_unlock();
1696 }
1697
1698 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1699 {
1700         struct perf_counter *counter = vma->vm_file->private_data;
1701         struct perf_mmap_data *data;
1702         int ret = VM_FAULT_SIGBUS;
1703
1704         rcu_read_lock();
1705         data = rcu_dereference(counter->data);
1706         if (!data)
1707                 goto unlock;
1708
1709         if (vmf->pgoff == 0) {
1710                 vmf->page = virt_to_page(data->user_page);
1711         } else {
1712                 int nr = vmf->pgoff - 1;
1713
1714                 if ((unsigned)nr > data->nr_pages)
1715                         goto unlock;
1716
1717                 vmf->page = virt_to_page(data->data_pages[nr]);
1718         }
1719         get_page(vmf->page);
1720         ret = 0;
1721 unlock:
1722         rcu_read_unlock();
1723
1724         return ret;
1725 }
1726
1727 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1728 {
1729         struct perf_mmap_data *data;
1730         unsigned long size;
1731         int i;
1732
1733         WARN_ON(atomic_read(&counter->mmap_count));
1734
1735         size = sizeof(struct perf_mmap_data);
1736         size += nr_pages * sizeof(void *);
1737
1738         data = kzalloc(size, GFP_KERNEL);
1739         if (!data)
1740                 goto fail;
1741
1742         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1743         if (!data->user_page)
1744                 goto fail_user_page;
1745
1746         for (i = 0; i < nr_pages; i++) {
1747                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1748                 if (!data->data_pages[i])
1749                         goto fail_data_pages;
1750         }
1751
1752         data->nr_pages = nr_pages;
1753         atomic_set(&data->lock, -1);
1754
1755         rcu_assign_pointer(counter->data, data);
1756
1757         return 0;
1758
1759 fail_data_pages:
1760         for (i--; i >= 0; i--)
1761                 free_page((unsigned long)data->data_pages[i]);
1762
1763         free_page((unsigned long)data->user_page);
1764
1765 fail_user_page:
1766         kfree(data);
1767
1768 fail:
1769         return -ENOMEM;
1770 }
1771
1772 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1773 {
1774         struct perf_mmap_data *data;
1775         int i;
1776
1777         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1778
1779         free_page((unsigned long)data->user_page);
1780         for (i = 0; i < data->nr_pages; i++)
1781                 free_page((unsigned long)data->data_pages[i]);
1782         kfree(data);
1783 }
1784
1785 static void perf_mmap_data_free(struct perf_counter *counter)
1786 {
1787         struct perf_mmap_data *data = counter->data;
1788
1789         WARN_ON(atomic_read(&counter->mmap_count));
1790
1791         rcu_assign_pointer(counter->data, NULL);
1792         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1793 }
1794
1795 static void perf_mmap_open(struct vm_area_struct *vma)
1796 {
1797         struct perf_counter *counter = vma->vm_file->private_data;
1798
1799         atomic_inc(&counter->mmap_count);
1800 }
1801
1802 static void perf_mmap_close(struct vm_area_struct *vma)
1803 {
1804         struct perf_counter *counter = vma->vm_file->private_data;
1805
1806         WARN_ON_ONCE(counter->ctx->parent_ctx);
1807         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1808                 struct user_struct *user = current_user();
1809
1810                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1811                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1812                 perf_mmap_data_free(counter);
1813                 mutex_unlock(&counter->mmap_mutex);
1814         }
1815 }
1816
1817 static struct vm_operations_struct perf_mmap_vmops = {
1818         .open  = perf_mmap_open,
1819         .close = perf_mmap_close,
1820         .fault = perf_mmap_fault,
1821 };
1822
1823 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1824 {
1825         struct perf_counter *counter = file->private_data;
1826         unsigned long user_locked, user_lock_limit;
1827         struct user_struct *user = current_user();
1828         unsigned long locked, lock_limit;
1829         unsigned long vma_size;
1830         unsigned long nr_pages;
1831         long user_extra, extra;
1832         int ret = 0;
1833
1834         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1835                 return -EINVAL;
1836
1837         vma_size = vma->vm_end - vma->vm_start;
1838         nr_pages = (vma_size / PAGE_SIZE) - 1;
1839
1840         /*
1841          * If we have data pages ensure they're a power-of-two number, so we
1842          * can do bitmasks instead of modulo.
1843          */
1844         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1845                 return -EINVAL;
1846
1847         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1848                 return -EINVAL;
1849
1850         if (vma->vm_pgoff != 0)
1851                 return -EINVAL;
1852
1853         WARN_ON_ONCE(counter->ctx->parent_ctx);
1854         mutex_lock(&counter->mmap_mutex);
1855         if (atomic_inc_not_zero(&counter->mmap_count)) {
1856                 if (nr_pages != counter->data->nr_pages)
1857                         ret = -EINVAL;
1858                 goto unlock;
1859         }
1860
1861         user_extra = nr_pages + 1;
1862         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1863
1864         /*
1865          * Increase the limit linearly with more CPUs:
1866          */
1867         user_lock_limit *= num_online_cpus();
1868
1869         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1870
1871         extra = 0;
1872         if (user_locked > user_lock_limit)
1873                 extra = user_locked - user_lock_limit;
1874
1875         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1876         lock_limit >>= PAGE_SHIFT;
1877         locked = vma->vm_mm->locked_vm + extra;
1878
1879         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1880                 ret = -EPERM;
1881                 goto unlock;
1882         }
1883
1884         WARN_ON(counter->data);
1885         ret = perf_mmap_data_alloc(counter, nr_pages);
1886         if (ret)
1887                 goto unlock;
1888
1889         atomic_set(&counter->mmap_count, 1);
1890         atomic_long_add(user_extra, &user->locked_vm);
1891         vma->vm_mm->locked_vm += extra;
1892         counter->data->nr_locked = extra;
1893 unlock:
1894         mutex_unlock(&counter->mmap_mutex);
1895
1896         vma->vm_flags &= ~VM_MAYWRITE;
1897         vma->vm_flags |= VM_RESERVED;
1898         vma->vm_ops = &perf_mmap_vmops;
1899
1900         return ret;
1901 }
1902
1903 static int perf_fasync(int fd, struct file *filp, int on)
1904 {
1905         struct inode *inode = filp->f_path.dentry->d_inode;
1906         struct perf_counter *counter = filp->private_data;
1907         int retval;
1908
1909         mutex_lock(&inode->i_mutex);
1910         retval = fasync_helper(fd, filp, on, &counter->fasync);
1911         mutex_unlock(&inode->i_mutex);
1912
1913         if (retval < 0)
1914                 return retval;
1915
1916         return 0;
1917 }
1918
1919 static const struct file_operations perf_fops = {
1920         .release                = perf_release,
1921         .read                   = perf_read,
1922         .poll                   = perf_poll,
1923         .unlocked_ioctl         = perf_ioctl,
1924         .compat_ioctl           = perf_ioctl,
1925         .mmap                   = perf_mmap,
1926         .fasync                 = perf_fasync,
1927 };
1928
1929 /*
1930  * Perf counter wakeup
1931  *
1932  * If there's data, ensure we set the poll() state and publish everything
1933  * to user-space before waking everybody up.
1934  */
1935
1936 void perf_counter_wakeup(struct perf_counter *counter)
1937 {
1938         wake_up_all(&counter->waitq);
1939
1940         if (counter->pending_kill) {
1941                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1942                 counter->pending_kill = 0;
1943         }
1944 }
1945
1946 /*
1947  * Pending wakeups
1948  *
1949  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1950  *
1951  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1952  * single linked list and use cmpxchg() to add entries lockless.
1953  */
1954
1955 static void perf_pending_counter(struct perf_pending_entry *entry)
1956 {
1957         struct perf_counter *counter = container_of(entry,
1958                         struct perf_counter, pending);
1959
1960         if (counter->pending_disable) {
1961                 counter->pending_disable = 0;
1962                 perf_counter_disable(counter);
1963         }
1964
1965         if (counter->pending_wakeup) {
1966                 counter->pending_wakeup = 0;
1967                 perf_counter_wakeup(counter);
1968         }
1969 }
1970
1971 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1972
1973 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1974         PENDING_TAIL,
1975 };
1976
1977 static void perf_pending_queue(struct perf_pending_entry *entry,
1978                                void (*func)(struct perf_pending_entry *))
1979 {
1980         struct perf_pending_entry **head;
1981
1982         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1983                 return;
1984
1985         entry->func = func;
1986
1987         head = &get_cpu_var(perf_pending_head);
1988
1989         do {
1990                 entry->next = *head;
1991         } while (cmpxchg(head, entry->next, entry) != entry->next);
1992
1993         set_perf_counter_pending();
1994
1995         put_cpu_var(perf_pending_head);
1996 }
1997
1998 static int __perf_pending_run(void)
1999 {
2000         struct perf_pending_entry *list;
2001         int nr = 0;
2002
2003         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2004         while (list != PENDING_TAIL) {
2005                 void (*func)(struct perf_pending_entry *);
2006                 struct perf_pending_entry *entry = list;
2007
2008                 list = list->next;
2009
2010                 func = entry->func;
2011                 entry->next = NULL;
2012                 /*
2013                  * Ensure we observe the unqueue before we issue the wakeup,
2014                  * so that we won't be waiting forever.
2015                  * -- see perf_not_pending().
2016                  */
2017                 smp_wmb();
2018
2019                 func(entry);
2020                 nr++;
2021         }
2022
2023         return nr;
2024 }
2025
2026 static inline int perf_not_pending(struct perf_counter *counter)
2027 {
2028         /*
2029          * If we flush on whatever cpu we run, there is a chance we don't
2030          * need to wait.
2031          */
2032         get_cpu();
2033         __perf_pending_run();
2034         put_cpu();
2035
2036         /*
2037          * Ensure we see the proper queue state before going to sleep
2038          * so that we do not miss the wakeup. -- see perf_pending_handle()
2039          */
2040         smp_rmb();
2041         return counter->pending.next == NULL;
2042 }
2043
2044 static void perf_pending_sync(struct perf_counter *counter)
2045 {
2046         wait_event(counter->waitq, perf_not_pending(counter));
2047 }
2048
2049 void perf_counter_do_pending(void)
2050 {
2051         __perf_pending_run();
2052 }
2053
2054 /*
2055  * Callchain support -- arch specific
2056  */
2057
2058 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2059 {
2060         return NULL;
2061 }
2062
2063 /*
2064  * Output
2065  */
2066
2067 struct perf_output_handle {
2068         struct perf_counter     *counter;
2069         struct perf_mmap_data   *data;
2070         unsigned long           head;
2071         unsigned long           offset;
2072         int                     nmi;
2073         int                     overflow;
2074         int                     locked;
2075         unsigned long           flags;
2076 };
2077
2078 static void perf_output_wakeup(struct perf_output_handle *handle)
2079 {
2080         atomic_set(&handle->data->poll, POLL_IN);
2081
2082         if (handle->nmi) {
2083                 handle->counter->pending_wakeup = 1;
2084                 perf_pending_queue(&handle->counter->pending,
2085                                    perf_pending_counter);
2086         } else
2087                 perf_counter_wakeup(handle->counter);
2088 }
2089
2090 /*
2091  * Curious locking construct.
2092  *
2093  * We need to ensure a later event doesn't publish a head when a former
2094  * event isn't done writing. However since we need to deal with NMIs we
2095  * cannot fully serialize things.
2096  *
2097  * What we do is serialize between CPUs so we only have to deal with NMI
2098  * nesting on a single CPU.
2099  *
2100  * We only publish the head (and generate a wakeup) when the outer-most
2101  * event completes.
2102  */
2103 static void perf_output_lock(struct perf_output_handle *handle)
2104 {
2105         struct perf_mmap_data *data = handle->data;
2106         int cpu;
2107
2108         handle->locked = 0;
2109
2110         local_irq_save(handle->flags);
2111         cpu = smp_processor_id();
2112
2113         if (in_nmi() && atomic_read(&data->lock) == cpu)
2114                 return;
2115
2116         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2117                 cpu_relax();
2118
2119         handle->locked = 1;
2120 }
2121
2122 static void perf_output_unlock(struct perf_output_handle *handle)
2123 {
2124         struct perf_mmap_data *data = handle->data;
2125         unsigned long head;
2126         int cpu;
2127
2128         data->done_head = data->head;
2129
2130         if (!handle->locked)
2131                 goto out;
2132
2133 again:
2134         /*
2135          * The xchg implies a full barrier that ensures all writes are done
2136          * before we publish the new head, matched by a rmb() in userspace when
2137          * reading this position.
2138          */
2139         while ((head = atomic_long_xchg(&data->done_head, 0)))
2140                 data->user_page->data_head = head;
2141
2142         /*
2143          * NMI can happen here, which means we can miss a done_head update.
2144          */
2145
2146         cpu = atomic_xchg(&data->lock, -1);
2147         WARN_ON_ONCE(cpu != smp_processor_id());
2148
2149         /*
2150          * Therefore we have to validate we did not indeed do so.
2151          */
2152         if (unlikely(atomic_long_read(&data->done_head))) {
2153                 /*
2154                  * Since we had it locked, we can lock it again.
2155                  */
2156                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2157                         cpu_relax();
2158
2159                 goto again;
2160         }
2161
2162         if (atomic_xchg(&data->wakeup, 0))
2163                 perf_output_wakeup(handle);
2164 out:
2165         local_irq_restore(handle->flags);
2166 }
2167
2168 static int perf_output_begin(struct perf_output_handle *handle,
2169                              struct perf_counter *counter, unsigned int size,
2170                              int nmi, int overflow)
2171 {
2172         struct perf_mmap_data *data;
2173         unsigned int offset, head;
2174
2175         /*
2176          * For inherited counters we send all the output towards the parent.
2177          */
2178         if (counter->parent)
2179                 counter = counter->parent;
2180
2181         rcu_read_lock();
2182         data = rcu_dereference(counter->data);
2183         if (!data)
2184                 goto out;
2185
2186         handle->data     = data;
2187         handle->counter  = counter;
2188         handle->nmi      = nmi;
2189         handle->overflow = overflow;
2190
2191         if (!data->nr_pages)
2192                 goto fail;
2193
2194         perf_output_lock(handle);
2195
2196         do {
2197                 offset = head = atomic_read(&data->head);
2198                 head += size;
2199         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2200
2201         handle->offset  = offset;
2202         handle->head    = head;
2203
2204         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2205                 atomic_set(&data->wakeup, 1);
2206
2207         return 0;
2208
2209 fail:
2210         perf_output_wakeup(handle);
2211 out:
2212         rcu_read_unlock();
2213
2214         return -ENOSPC;
2215 }
2216
2217 static void perf_output_copy(struct perf_output_handle *handle,
2218                              void *buf, unsigned int len)
2219 {
2220         unsigned int pages_mask;
2221         unsigned int offset;
2222         unsigned int size;
2223         void **pages;
2224
2225         offset          = handle->offset;
2226         pages_mask      = handle->data->nr_pages - 1;
2227         pages           = handle->data->data_pages;
2228
2229         do {
2230                 unsigned int page_offset;
2231                 int nr;
2232
2233                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2234                 page_offset = offset & (PAGE_SIZE - 1);
2235                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2236
2237                 memcpy(pages[nr] + page_offset, buf, size);
2238
2239                 len         -= size;
2240                 buf         += size;
2241                 offset      += size;
2242         } while (len);
2243
2244         handle->offset = offset;
2245
2246         /*
2247          * Check we didn't copy past our reservation window, taking the
2248          * possible unsigned int wrap into account.
2249          */
2250         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2251 }
2252
2253 #define perf_output_put(handle, x) \
2254         perf_output_copy((handle), &(x), sizeof(x))
2255
2256 static void perf_output_end(struct perf_output_handle *handle)
2257 {
2258         struct perf_counter *counter = handle->counter;
2259         struct perf_mmap_data *data = handle->data;
2260
2261         int wakeup_events = counter->hw_event.wakeup_events;
2262
2263         if (handle->overflow && wakeup_events) {
2264                 int events = atomic_inc_return(&data->events);
2265                 if (events >= wakeup_events) {
2266                         atomic_sub(wakeup_events, &data->events);
2267                         atomic_set(&data->wakeup, 1);
2268                 }
2269         }
2270
2271         perf_output_unlock(handle);
2272         rcu_read_unlock();
2273 }
2274
2275 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2276 {
2277         /*
2278          * only top level counters have the pid namespace they were created in
2279          */
2280         if (counter->parent)
2281                 counter = counter->parent;
2282
2283         return task_tgid_nr_ns(p, counter->ns);
2284 }
2285
2286 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2287 {
2288         /*
2289          * only top level counters have the pid namespace they were created in
2290          */
2291         if (counter->parent)
2292                 counter = counter->parent;
2293
2294         return task_pid_nr_ns(p, counter->ns);
2295 }
2296
2297 static void perf_counter_output(struct perf_counter *counter,
2298                                 int nmi, struct pt_regs *regs, u64 addr)
2299 {
2300         int ret;
2301         u64 sample_type = counter->hw_event.sample_type;
2302         struct perf_output_handle handle;
2303         struct perf_event_header header;
2304         u64 ip;
2305         struct {
2306                 u32 pid, tid;
2307         } tid_entry;
2308         struct {
2309                 u64 id;
2310                 u64 counter;
2311         } group_entry;
2312         struct perf_callchain_entry *callchain = NULL;
2313         int callchain_size = 0;
2314         u64 time;
2315         struct {
2316                 u32 cpu, reserved;
2317         } cpu_entry;
2318
2319         header.type = 0;
2320         header.size = sizeof(header);
2321
2322         header.misc = PERF_EVENT_MISC_OVERFLOW;
2323         header.misc |= perf_misc_flags(regs);
2324
2325         if (sample_type & PERF_SAMPLE_IP) {
2326                 ip = perf_instruction_pointer(regs);
2327                 header.type |= PERF_SAMPLE_IP;
2328                 header.size += sizeof(ip);
2329         }
2330
2331         if (sample_type & PERF_SAMPLE_TID) {
2332                 /* namespace issues */
2333                 tid_entry.pid = perf_counter_pid(counter, current);
2334                 tid_entry.tid = perf_counter_tid(counter, current);
2335
2336                 header.type |= PERF_SAMPLE_TID;
2337                 header.size += sizeof(tid_entry);
2338         }
2339
2340         if (sample_type & PERF_SAMPLE_TIME) {
2341                 /*
2342                  * Maybe do better on x86 and provide cpu_clock_nmi()
2343                  */
2344                 time = sched_clock();
2345
2346                 header.type |= PERF_SAMPLE_TIME;
2347                 header.size += sizeof(u64);
2348         }
2349
2350         if (sample_type & PERF_SAMPLE_ADDR) {
2351                 header.type |= PERF_SAMPLE_ADDR;
2352                 header.size += sizeof(u64);
2353         }
2354
2355         if (sample_type & PERF_SAMPLE_CONFIG) {
2356                 header.type |= PERF_SAMPLE_CONFIG;
2357                 header.size += sizeof(u64);
2358         }
2359
2360         if (sample_type & PERF_SAMPLE_CPU) {
2361                 header.type |= PERF_SAMPLE_CPU;
2362                 header.size += sizeof(cpu_entry);
2363
2364                 cpu_entry.cpu = raw_smp_processor_id();
2365         }
2366
2367         if (sample_type & PERF_SAMPLE_GROUP) {
2368                 header.type |= PERF_SAMPLE_GROUP;
2369                 header.size += sizeof(u64) +
2370                         counter->nr_siblings * sizeof(group_entry);
2371         }
2372
2373         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2374                 callchain = perf_callchain(regs);
2375
2376                 if (callchain) {
2377                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2378
2379                         header.type |= PERF_SAMPLE_CALLCHAIN;
2380                         header.size += callchain_size;
2381                 }
2382         }
2383
2384         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2385         if (ret)
2386                 return;
2387
2388         perf_output_put(&handle, header);
2389
2390         if (sample_type & PERF_SAMPLE_IP)
2391                 perf_output_put(&handle, ip);
2392
2393         if (sample_type & PERF_SAMPLE_TID)
2394                 perf_output_put(&handle, tid_entry);
2395
2396         if (sample_type & PERF_SAMPLE_TIME)
2397                 perf_output_put(&handle, time);
2398
2399         if (sample_type & PERF_SAMPLE_ADDR)
2400                 perf_output_put(&handle, addr);
2401
2402         if (sample_type & PERF_SAMPLE_CONFIG)
2403                 perf_output_put(&handle, counter->hw_event.config);
2404
2405         if (sample_type & PERF_SAMPLE_CPU)
2406                 perf_output_put(&handle, cpu_entry);
2407
2408         /*
2409          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2410          */
2411         if (sample_type & PERF_SAMPLE_GROUP) {
2412                 struct perf_counter *leader, *sub;
2413                 u64 nr = counter->nr_siblings;
2414
2415                 perf_output_put(&handle, nr);
2416
2417                 leader = counter->group_leader;
2418                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2419                         if (sub != counter)
2420                                 sub->pmu->read(sub);
2421
2422                         group_entry.id = sub->id;
2423                         group_entry.counter = atomic64_read(&sub->count);
2424
2425                         perf_output_put(&handle, group_entry);
2426                 }
2427         }
2428
2429         if (callchain)
2430                 perf_output_copy(&handle, callchain, callchain_size);
2431
2432         perf_output_end(&handle);
2433 }
2434
2435 /*
2436  * comm tracking
2437  */
2438
2439 struct perf_comm_event {
2440         struct task_struct      *task;
2441         char                    *comm;
2442         int                     comm_size;
2443
2444         struct {
2445                 struct perf_event_header        header;
2446
2447                 u32                             pid;
2448                 u32                             tid;
2449         } event;
2450 };
2451
2452 static void perf_counter_comm_output(struct perf_counter *counter,
2453                                      struct perf_comm_event *comm_event)
2454 {
2455         struct perf_output_handle handle;
2456         int size = comm_event->event.header.size;
2457         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2458
2459         if (ret)
2460                 return;
2461
2462         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2463         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2464
2465         perf_output_put(&handle, comm_event->event);
2466         perf_output_copy(&handle, comm_event->comm,
2467                                    comm_event->comm_size);
2468         perf_output_end(&handle);
2469 }
2470
2471 static int perf_counter_comm_match(struct perf_counter *counter,
2472                                    struct perf_comm_event *comm_event)
2473 {
2474         if (counter->hw_event.comm &&
2475             comm_event->event.header.type == PERF_EVENT_COMM)
2476                 return 1;
2477
2478         return 0;
2479 }
2480
2481 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2482                                   struct perf_comm_event *comm_event)
2483 {
2484         struct perf_counter *counter;
2485
2486         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2487                 return;
2488
2489         rcu_read_lock();
2490         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2491                 if (perf_counter_comm_match(counter, comm_event))
2492                         perf_counter_comm_output(counter, comm_event);
2493         }
2494         rcu_read_unlock();
2495 }
2496
2497 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2498 {
2499         struct perf_cpu_context *cpuctx;
2500         struct perf_counter_context *ctx;
2501         unsigned int size;
2502         char *comm = comm_event->task->comm;
2503
2504         size = ALIGN(strlen(comm)+1, sizeof(u64));
2505
2506         comm_event->comm = comm;
2507         comm_event->comm_size = size;
2508
2509         comm_event->event.header.size = sizeof(comm_event->event) + size;
2510
2511         cpuctx = &get_cpu_var(perf_cpu_context);
2512         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2513         put_cpu_var(perf_cpu_context);
2514
2515         rcu_read_lock();
2516         /*
2517          * doesn't really matter which of the child contexts the
2518          * events ends up in.
2519          */
2520         ctx = rcu_dereference(current->perf_counter_ctxp);
2521         if (ctx)
2522                 perf_counter_comm_ctx(ctx, comm_event);
2523         rcu_read_unlock();
2524 }
2525
2526 void perf_counter_comm(struct task_struct *task)
2527 {
2528         struct perf_comm_event comm_event;
2529
2530         if (!atomic_read(&nr_comm_tracking))
2531                 return;
2532
2533         comm_event = (struct perf_comm_event){
2534                 .task   = task,
2535                 .event  = {
2536                         .header = { .type = PERF_EVENT_COMM, },
2537                 },
2538         };
2539
2540         perf_counter_comm_event(&comm_event);
2541 }
2542
2543 /*
2544  * mmap tracking
2545  */
2546
2547 struct perf_mmap_event {
2548         struct file     *file;
2549         char            *file_name;
2550         int             file_size;
2551
2552         struct {
2553                 struct perf_event_header        header;
2554
2555                 u32                             pid;
2556                 u32                             tid;
2557                 u64                             start;
2558                 u64                             len;
2559                 u64                             pgoff;
2560         } event;
2561 };
2562
2563 static void perf_counter_mmap_output(struct perf_counter *counter,
2564                                      struct perf_mmap_event *mmap_event)
2565 {
2566         struct perf_output_handle handle;
2567         int size = mmap_event->event.header.size;
2568         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2569
2570         if (ret)
2571                 return;
2572
2573         mmap_event->event.pid = perf_counter_pid(counter, current);
2574         mmap_event->event.tid = perf_counter_tid(counter, current);
2575
2576         perf_output_put(&handle, mmap_event->event);
2577         perf_output_copy(&handle, mmap_event->file_name,
2578                                    mmap_event->file_size);
2579         perf_output_end(&handle);
2580 }
2581
2582 static int perf_counter_mmap_match(struct perf_counter *counter,
2583                                    struct perf_mmap_event *mmap_event)
2584 {
2585         if (counter->hw_event.mmap &&
2586             mmap_event->event.header.type == PERF_EVENT_MMAP)
2587                 return 1;
2588
2589         if (counter->hw_event.munmap &&
2590             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2591                 return 1;
2592
2593         return 0;
2594 }
2595
2596 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2597                                   struct perf_mmap_event *mmap_event)
2598 {
2599         struct perf_counter *counter;
2600
2601         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2602                 return;
2603
2604         rcu_read_lock();
2605         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2606                 if (perf_counter_mmap_match(counter, mmap_event))
2607                         perf_counter_mmap_output(counter, mmap_event);
2608         }
2609         rcu_read_unlock();
2610 }
2611
2612 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2613 {
2614         struct perf_cpu_context *cpuctx;
2615         struct perf_counter_context *ctx;
2616         struct file *file = mmap_event->file;
2617         unsigned int size;
2618         char tmp[16];
2619         char *buf = NULL;
2620         char *name;
2621
2622         if (file) {
2623                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2624                 if (!buf) {
2625                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2626                         goto got_name;
2627                 }
2628                 name = d_path(&file->f_path, buf, PATH_MAX);
2629                 if (IS_ERR(name)) {
2630                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2631                         goto got_name;
2632                 }
2633         } else {
2634                 name = strncpy(tmp, "//anon", sizeof(tmp));
2635                 goto got_name;
2636         }
2637
2638 got_name:
2639         size = ALIGN(strlen(name)+1, sizeof(u64));
2640
2641         mmap_event->file_name = name;
2642         mmap_event->file_size = size;
2643
2644         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2645
2646         cpuctx = &get_cpu_var(perf_cpu_context);
2647         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2648         put_cpu_var(perf_cpu_context);
2649
2650         rcu_read_lock();
2651         /*
2652          * doesn't really matter which of the child contexts the
2653          * events ends up in.
2654          */
2655         ctx = rcu_dereference(current->perf_counter_ctxp);
2656         if (ctx)
2657                 perf_counter_mmap_ctx(ctx, mmap_event);
2658         rcu_read_unlock();
2659
2660         kfree(buf);
2661 }
2662
2663 void perf_counter_mmap(unsigned long addr, unsigned long len,
2664                        unsigned long pgoff, struct file *file)
2665 {
2666         struct perf_mmap_event mmap_event;
2667
2668         if (!atomic_read(&nr_mmap_tracking))
2669                 return;
2670
2671         mmap_event = (struct perf_mmap_event){
2672                 .file   = file,
2673                 .event  = {
2674                         .header = { .type = PERF_EVENT_MMAP, },
2675                         .start  = addr,
2676                         .len    = len,
2677                         .pgoff  = pgoff,
2678                 },
2679         };
2680
2681         perf_counter_mmap_event(&mmap_event);
2682 }
2683
2684 void perf_counter_munmap(unsigned long addr, unsigned long len,
2685                          unsigned long pgoff, struct file *file)
2686 {
2687         struct perf_mmap_event mmap_event;
2688
2689         if (!atomic_read(&nr_munmap_tracking))
2690                 return;
2691
2692         mmap_event = (struct perf_mmap_event){
2693                 .file   = file,
2694                 .event  = {
2695                         .header = { .type = PERF_EVENT_MUNMAP, },
2696                         .start  = addr,
2697                         .len    = len,
2698                         .pgoff  = pgoff,
2699                 },
2700         };
2701
2702         perf_counter_mmap_event(&mmap_event);
2703 }
2704
2705 /*
2706  * Log sample_period changes so that analyzing tools can re-normalize the
2707  * event flow.
2708  */
2709
2710 static void perf_log_period(struct perf_counter *counter, u64 period)
2711 {
2712         struct perf_output_handle handle;
2713         int ret;
2714
2715         struct {
2716                 struct perf_event_header        header;
2717                 u64                             time;
2718                 u64                             period;
2719         } freq_event = {
2720                 .header = {
2721                         .type = PERF_EVENT_PERIOD,
2722                         .misc = 0,
2723                         .size = sizeof(freq_event),
2724                 },
2725                 .time = sched_clock(),
2726                 .period = period,
2727         };
2728
2729         if (counter->hw.sample_period == period)
2730                 return;
2731
2732         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2733         if (ret)
2734                 return;
2735
2736         perf_output_put(&handle, freq_event);
2737         perf_output_end(&handle);
2738 }
2739
2740 /*
2741  * IRQ throttle logging
2742  */
2743
2744 static void perf_log_throttle(struct perf_counter *counter, int enable)
2745 {
2746         struct perf_output_handle handle;
2747         int ret;
2748
2749         struct {
2750                 struct perf_event_header        header;
2751                 u64                             time;
2752         } throttle_event = {
2753                 .header = {
2754                         .type = PERF_EVENT_THROTTLE + 1,
2755                         .misc = 0,
2756                         .size = sizeof(throttle_event),
2757                 },
2758                 .time = sched_clock(),
2759         };
2760
2761         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2762         if (ret)
2763                 return;
2764
2765         perf_output_put(&handle, throttle_event);
2766         perf_output_end(&handle);
2767 }
2768
2769 /*
2770  * Generic counter overflow handling.
2771  */
2772
2773 int perf_counter_overflow(struct perf_counter *counter,
2774                           int nmi, struct pt_regs *regs, u64 addr)
2775 {
2776         int events = atomic_read(&counter->event_limit);
2777         int throttle = counter->pmu->unthrottle != NULL;
2778         int ret = 0;
2779
2780         if (!throttle) {
2781                 counter->hw.interrupts++;
2782         } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2783                 counter->hw.interrupts++;
2784                 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2785                         counter->hw.interrupts = MAX_INTERRUPTS;
2786                         perf_log_throttle(counter, 0);
2787                         ret = 1;
2788                 }
2789         }
2790
2791         /*
2792          * XXX event_limit might not quite work as expected on inherited
2793          * counters
2794          */
2795
2796         counter->pending_kill = POLL_IN;
2797         if (events && atomic_dec_and_test(&counter->event_limit)) {
2798                 ret = 1;
2799                 counter->pending_kill = POLL_HUP;
2800                 if (nmi) {
2801                         counter->pending_disable = 1;
2802                         perf_pending_queue(&counter->pending,
2803                                            perf_pending_counter);
2804                 } else
2805                         perf_counter_disable(counter);
2806         }
2807
2808         perf_counter_output(counter, nmi, regs, addr);
2809         return ret;
2810 }
2811
2812 /*
2813  * Generic software counter infrastructure
2814  */
2815
2816 static void perf_swcounter_update(struct perf_counter *counter)
2817 {
2818         struct hw_perf_counter *hwc = &counter->hw;
2819         u64 prev, now;
2820         s64 delta;
2821
2822 again:
2823         prev = atomic64_read(&hwc->prev_count);
2824         now = atomic64_read(&hwc->count);
2825         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2826                 goto again;
2827
2828         delta = now - prev;
2829
2830         atomic64_add(delta, &counter->count);
2831         atomic64_sub(delta, &hwc->period_left);
2832 }
2833
2834 static void perf_swcounter_set_period(struct perf_counter *counter)
2835 {
2836         struct hw_perf_counter *hwc = &counter->hw;
2837         s64 left = atomic64_read(&hwc->period_left);
2838         s64 period = hwc->sample_period;
2839
2840         if (unlikely(left <= -period)) {
2841                 left = period;
2842                 atomic64_set(&hwc->period_left, left);
2843         }
2844
2845         if (unlikely(left <= 0)) {
2846                 left += period;
2847                 atomic64_add(period, &hwc->period_left);
2848         }
2849
2850         atomic64_set(&hwc->prev_count, -left);
2851         atomic64_set(&hwc->count, -left);
2852 }
2853
2854 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2855 {
2856         enum hrtimer_restart ret = HRTIMER_RESTART;
2857         struct perf_counter *counter;
2858         struct pt_regs *regs;
2859         u64 period;
2860
2861         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2862         counter->pmu->read(counter);
2863
2864         regs = get_irq_regs();
2865         /*
2866          * In case we exclude kernel IPs or are somehow not in interrupt
2867          * context, provide the next best thing, the user IP.
2868          */
2869         if ((counter->hw_event.exclude_kernel || !regs) &&
2870                         !counter->hw_event.exclude_user)
2871                 regs = task_pt_regs(current);
2872
2873         if (regs) {
2874                 if (perf_counter_overflow(counter, 0, regs, 0))
2875                         ret = HRTIMER_NORESTART;
2876         }
2877
2878         period = max_t(u64, 10000, counter->hw.sample_period);
2879         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2880
2881         return ret;
2882 }
2883
2884 static void perf_swcounter_overflow(struct perf_counter *counter,
2885                                     int nmi, struct pt_regs *regs, u64 addr)
2886 {
2887         perf_swcounter_update(counter);
2888         perf_swcounter_set_period(counter);
2889         if (perf_counter_overflow(counter, nmi, regs, addr))
2890                 /* soft-disable the counter */
2891                 ;
2892
2893 }
2894
2895 static int perf_swcounter_is_counting(struct perf_counter *counter)
2896 {
2897         struct perf_counter_context *ctx;
2898         unsigned long flags;
2899         int count;
2900
2901         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2902                 return 1;
2903
2904         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
2905                 return 0;
2906
2907         /*
2908          * If the counter is inactive, it could be just because
2909          * its task is scheduled out, or because it's in a group
2910          * which could not go on the PMU.  We want to count in
2911          * the first case but not the second.  If the context is
2912          * currently active then an inactive software counter must
2913          * be the second case.  If it's not currently active then
2914          * we need to know whether the counter was active when the
2915          * context was last active, which we can determine by
2916          * comparing counter->tstamp_stopped with ctx->time.
2917          *
2918          * We are within an RCU read-side critical section,
2919          * which protects the existence of *ctx.
2920          */
2921         ctx = counter->ctx;
2922         spin_lock_irqsave(&ctx->lock, flags);
2923         count = 1;
2924         /* Re-check state now we have the lock */
2925         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
2926             counter->ctx->is_active ||
2927             counter->tstamp_stopped < ctx->time)
2928                 count = 0;
2929         spin_unlock_irqrestore(&ctx->lock, flags);
2930         return count;
2931 }
2932
2933 static int perf_swcounter_match(struct perf_counter *counter,
2934                                 enum perf_event_types type,
2935                                 u32 event, struct pt_regs *regs)
2936 {
2937         u64 event_config;
2938
2939         event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2940
2941         if (!perf_swcounter_is_counting(counter))
2942                 return 0;
2943
2944         if (counter->hw_event.config != event_config)
2945                 return 0;
2946
2947         if (regs) {
2948                 if (counter->hw_event.exclude_user && user_mode(regs))
2949                         return 0;
2950
2951                 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2952                         return 0;
2953         }
2954
2955         return 1;
2956 }
2957
2958 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2959                                int nmi, struct pt_regs *regs, u64 addr)
2960 {
2961         int neg = atomic64_add_negative(nr, &counter->hw.count);
2962
2963         if (counter->hw.sample_period && !neg && regs)
2964                 perf_swcounter_overflow(counter, nmi, regs, addr);
2965 }
2966
2967 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2968                                      enum perf_event_types type, u32 event,
2969                                      u64 nr, int nmi, struct pt_regs *regs,
2970                                      u64 addr)
2971 {
2972         struct perf_counter *counter;
2973
2974         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2975                 return;
2976
2977         rcu_read_lock();
2978         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2979                 if (perf_swcounter_match(counter, type, event, regs))
2980                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2981         }
2982         rcu_read_unlock();
2983 }
2984
2985 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2986 {
2987         if (in_nmi())
2988                 return &cpuctx->recursion[3];
2989
2990         if (in_irq())
2991                 return &cpuctx->recursion[2];
2992
2993         if (in_softirq())
2994                 return &cpuctx->recursion[1];
2995
2996         return &cpuctx->recursion[0];
2997 }
2998
2999 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3000                                    u64 nr, int nmi, struct pt_regs *regs,
3001                                    u64 addr)
3002 {
3003         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3004         int *recursion = perf_swcounter_recursion_context(cpuctx);
3005         struct perf_counter_context *ctx;
3006
3007         if (*recursion)
3008                 goto out;
3009
3010         (*recursion)++;
3011         barrier();
3012
3013         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3014                                  nr, nmi, regs, addr);
3015         rcu_read_lock();
3016         /*
3017          * doesn't really matter which of the child contexts the
3018          * events ends up in.
3019          */
3020         ctx = rcu_dereference(current->perf_counter_ctxp);
3021         if (ctx)
3022                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3023         rcu_read_unlock();
3024
3025         barrier();
3026         (*recursion)--;
3027
3028 out:
3029         put_cpu_var(perf_cpu_context);
3030 }
3031
3032 void
3033 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3034 {
3035         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3036 }
3037
3038 static void perf_swcounter_read(struct perf_counter *counter)
3039 {
3040         perf_swcounter_update(counter);
3041 }
3042
3043 static int perf_swcounter_enable(struct perf_counter *counter)
3044 {
3045         perf_swcounter_set_period(counter);
3046         return 0;
3047 }
3048
3049 static void perf_swcounter_disable(struct perf_counter *counter)
3050 {
3051         perf_swcounter_update(counter);
3052 }
3053
3054 static const struct pmu perf_ops_generic = {
3055         .enable         = perf_swcounter_enable,
3056         .disable        = perf_swcounter_disable,
3057         .read           = perf_swcounter_read,
3058 };
3059
3060 /*
3061  * Software counter: cpu wall time clock
3062  */
3063
3064 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3065 {
3066         int cpu = raw_smp_processor_id();
3067         s64 prev;
3068         u64 now;
3069
3070         now = cpu_clock(cpu);
3071         prev = atomic64_read(&counter->hw.prev_count);
3072         atomic64_set(&counter->hw.prev_count, now);
3073         atomic64_add(now - prev, &counter->count);
3074 }
3075
3076 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3077 {
3078         struct hw_perf_counter *hwc = &counter->hw;
3079         int cpu = raw_smp_processor_id();
3080
3081         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3082         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3083         hwc->hrtimer.function = perf_swcounter_hrtimer;
3084         if (hwc->sample_period) {
3085                 u64 period = max_t(u64, 10000, hwc->sample_period);
3086                 __hrtimer_start_range_ns(&hwc->hrtimer,
3087                                 ns_to_ktime(period), 0,
3088                                 HRTIMER_MODE_REL, 0);
3089         }
3090
3091         return 0;
3092 }
3093
3094 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3095 {
3096         if (counter->hw.sample_period)
3097                 hrtimer_cancel(&counter->hw.hrtimer);
3098         cpu_clock_perf_counter_update(counter);
3099 }
3100
3101 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3102 {
3103         cpu_clock_perf_counter_update(counter);
3104 }
3105
3106 static const struct pmu perf_ops_cpu_clock = {
3107         .enable         = cpu_clock_perf_counter_enable,
3108         .disable        = cpu_clock_perf_counter_disable,
3109         .read           = cpu_clock_perf_counter_read,
3110 };
3111
3112 /*
3113  * Software counter: task time clock
3114  */
3115
3116 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3117 {
3118         u64 prev;
3119         s64 delta;
3120
3121         prev = atomic64_xchg(&counter->hw.prev_count, now);
3122         delta = now - prev;
3123         atomic64_add(delta, &counter->count);
3124 }
3125
3126 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3127 {
3128         struct hw_perf_counter *hwc = &counter->hw;
3129         u64 now;
3130
3131         now = counter->ctx->time;
3132
3133         atomic64_set(&hwc->prev_count, now);
3134         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3135         hwc->hrtimer.function = perf_swcounter_hrtimer;
3136         if (hwc->sample_period) {
3137                 u64 period = max_t(u64, 10000, hwc->sample_period);
3138                 __hrtimer_start_range_ns(&hwc->hrtimer,
3139                                 ns_to_ktime(period), 0,
3140                                 HRTIMER_MODE_REL, 0);
3141         }
3142
3143         return 0;
3144 }
3145
3146 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3147 {
3148         if (counter->hw.sample_period)
3149                 hrtimer_cancel(&counter->hw.hrtimer);
3150         task_clock_perf_counter_update(counter, counter->ctx->time);
3151
3152 }
3153
3154 static void task_clock_perf_counter_read(struct perf_counter *counter)
3155 {
3156         u64 time;
3157
3158         if (!in_nmi()) {
3159                 update_context_time(counter->ctx);
3160                 time = counter->ctx->time;
3161         } else {
3162                 u64 now = perf_clock();
3163                 u64 delta = now - counter->ctx->timestamp;
3164                 time = counter->ctx->time + delta;
3165         }
3166
3167         task_clock_perf_counter_update(counter, time);
3168 }
3169
3170 static const struct pmu perf_ops_task_clock = {
3171         .enable         = task_clock_perf_counter_enable,
3172         .disable        = task_clock_perf_counter_disable,
3173         .read           = task_clock_perf_counter_read,
3174 };
3175
3176 /*
3177  * Software counter: cpu migrations
3178  */
3179 void perf_counter_task_migration(struct task_struct *task, int cpu)
3180 {
3181         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3182         struct perf_counter_context *ctx;
3183
3184         perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3185                                  PERF_COUNT_CPU_MIGRATIONS,
3186                                  1, 1, NULL, 0);
3187
3188         ctx = perf_pin_task_context(task);
3189         if (ctx) {
3190                 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3191                                          PERF_COUNT_CPU_MIGRATIONS,
3192                                          1, 1, NULL, 0);
3193                 perf_unpin_context(ctx);
3194         }
3195 }
3196
3197 #ifdef CONFIG_EVENT_PROFILE
3198 void perf_tpcounter_event(int event_id)
3199 {
3200         struct pt_regs *regs = get_irq_regs();
3201
3202         if (!regs)
3203                 regs = task_pt_regs(current);
3204
3205         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3206 }
3207 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3208
3209 extern int ftrace_profile_enable(int);
3210 extern void ftrace_profile_disable(int);
3211
3212 static void tp_perf_counter_destroy(struct perf_counter *counter)
3213 {
3214         ftrace_profile_disable(perf_event_id(&counter->hw_event));
3215 }
3216
3217 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3218 {
3219         int event_id = perf_event_id(&counter->hw_event);
3220         int ret;
3221
3222         ret = ftrace_profile_enable(event_id);
3223         if (ret)
3224                 return NULL;
3225
3226         counter->destroy = tp_perf_counter_destroy;
3227         counter->hw.sample_period = counter->hw_event.sample_period;
3228
3229         return &perf_ops_generic;
3230 }
3231 #else
3232 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3233 {
3234         return NULL;
3235 }
3236 #endif
3237
3238 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3239 {
3240         const struct pmu *pmu = NULL;
3241
3242         /*
3243          * Software counters (currently) can't in general distinguish
3244          * between user, kernel and hypervisor events.
3245          * However, context switches and cpu migrations are considered
3246          * to be kernel events, and page faults are never hypervisor
3247          * events.
3248          */
3249         switch (perf_event_id(&counter->hw_event)) {
3250         case PERF_COUNT_CPU_CLOCK:
3251                 pmu = &perf_ops_cpu_clock;
3252
3253                 break;
3254         case PERF_COUNT_TASK_CLOCK:
3255                 /*
3256                  * If the user instantiates this as a per-cpu counter,
3257                  * use the cpu_clock counter instead.
3258                  */
3259                 if (counter->ctx->task)
3260                         pmu = &perf_ops_task_clock;
3261                 else
3262                         pmu = &perf_ops_cpu_clock;
3263
3264                 break;
3265         case PERF_COUNT_PAGE_FAULTS:
3266         case PERF_COUNT_PAGE_FAULTS_MIN:
3267         case PERF_COUNT_PAGE_FAULTS_MAJ:
3268         case PERF_COUNT_CONTEXT_SWITCHES:
3269         case PERF_COUNT_CPU_MIGRATIONS:
3270                 pmu = &perf_ops_generic;
3271                 break;
3272         }
3273
3274         return pmu;
3275 }
3276
3277 /*
3278  * Allocate and initialize a counter structure
3279  */
3280 static struct perf_counter *
3281 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3282                    int cpu,
3283                    struct perf_counter_context *ctx,
3284                    struct perf_counter *group_leader,
3285                    gfp_t gfpflags)
3286 {
3287         const struct pmu *pmu;
3288         struct perf_counter *counter;
3289         struct hw_perf_counter *hwc;
3290         long err;
3291
3292         counter = kzalloc(sizeof(*counter), gfpflags);
3293         if (!counter)
3294                 return ERR_PTR(-ENOMEM);
3295
3296         /*
3297          * Single counters are their own group leaders, with an
3298          * empty sibling list:
3299          */
3300         if (!group_leader)
3301                 group_leader = counter;
3302
3303         mutex_init(&counter->child_mutex);
3304         INIT_LIST_HEAD(&counter->child_list);
3305
3306         INIT_LIST_HEAD(&counter->list_entry);
3307         INIT_LIST_HEAD(&counter->event_entry);
3308         INIT_LIST_HEAD(&counter->sibling_list);
3309         init_waitqueue_head(&counter->waitq);
3310
3311         mutex_init(&counter->mmap_mutex);
3312
3313         counter->cpu                    = cpu;
3314         counter->hw_event               = *hw_event;
3315         counter->group_leader           = group_leader;
3316         counter->pmu                    = NULL;
3317         counter->ctx                    = ctx;
3318         counter->oncpu                  = -1;
3319
3320         counter->state = PERF_COUNTER_STATE_INACTIVE;
3321         if (hw_event->disabled)
3322                 counter->state = PERF_COUNTER_STATE_OFF;
3323
3324         pmu = NULL;
3325
3326         hwc = &counter->hw;
3327         if (hw_event->freq && hw_event->sample_freq)
3328                 hwc->sample_period = div64_u64(TICK_NSEC, hw_event->sample_freq);
3329         else
3330                 hwc->sample_period = hw_event->sample_period;
3331
3332         /*
3333          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3334          */
3335         if (hw_event->inherit && (hw_event->sample_type & PERF_SAMPLE_GROUP))
3336                 goto done;
3337
3338         if (perf_event_raw(hw_event)) {
3339                 pmu = hw_perf_counter_init(counter);
3340                 goto done;
3341         }
3342
3343         switch (perf_event_type(hw_event)) {
3344         case PERF_TYPE_HARDWARE:
3345                 pmu = hw_perf_counter_init(counter);
3346                 break;
3347
3348         case PERF_TYPE_SOFTWARE:
3349                 pmu = sw_perf_counter_init(counter);
3350                 break;
3351
3352         case PERF_TYPE_TRACEPOINT:
3353                 pmu = tp_perf_counter_init(counter);
3354                 break;
3355         }
3356 done:
3357         err = 0;
3358         if (!pmu)
3359                 err = -EINVAL;
3360         else if (IS_ERR(pmu))
3361                 err = PTR_ERR(pmu);
3362
3363         if (err) {
3364                 kfree(counter);
3365                 return ERR_PTR(err);
3366         }
3367
3368         counter->pmu = pmu;
3369
3370         atomic_inc(&nr_counters);
3371         if (counter->hw_event.mmap)
3372                 atomic_inc(&nr_mmap_tracking);
3373         if (counter->hw_event.munmap)
3374                 atomic_inc(&nr_munmap_tracking);
3375         if (counter->hw_event.comm)
3376                 atomic_inc(&nr_comm_tracking);
3377
3378         return counter;
3379 }
3380
3381 static atomic64_t perf_counter_id;
3382
3383 /**
3384  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3385  *
3386  * @hw_event_uptr:      event type attributes for monitoring/sampling
3387  * @pid:                target pid
3388  * @cpu:                target cpu
3389  * @group_fd:           group leader counter fd
3390  */
3391 SYSCALL_DEFINE5(perf_counter_open,
3392                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3393                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3394 {
3395         struct perf_counter *counter, *group_leader;
3396         struct perf_counter_hw_event hw_event;
3397         struct perf_counter_context *ctx;
3398         struct file *counter_file = NULL;
3399         struct file *group_file = NULL;
3400         int fput_needed = 0;
3401         int fput_needed2 = 0;
3402         int ret;
3403
3404         /* for future expandability... */
3405         if (flags)
3406                 return -EINVAL;
3407
3408         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3409                 return -EFAULT;
3410
3411         /*
3412          * Get the target context (task or percpu):
3413          */
3414         ctx = find_get_context(pid, cpu);
3415         if (IS_ERR(ctx))
3416                 return PTR_ERR(ctx);
3417
3418         /*
3419          * Look up the group leader (we will attach this counter to it):
3420          */
3421         group_leader = NULL;
3422         if (group_fd != -1) {
3423                 ret = -EINVAL;
3424                 group_file = fget_light(group_fd, &fput_needed);
3425                 if (!group_file)
3426                         goto err_put_context;
3427                 if (group_file->f_op != &perf_fops)
3428                         goto err_put_context;
3429
3430                 group_leader = group_file->private_data;
3431                 /*
3432                  * Do not allow a recursive hierarchy (this new sibling
3433                  * becoming part of another group-sibling):
3434                  */
3435                 if (group_leader->group_leader != group_leader)
3436                         goto err_put_context;
3437                 /*
3438                  * Do not allow to attach to a group in a different
3439                  * task or CPU context:
3440                  */
3441                 if (group_leader->ctx != ctx)
3442                         goto err_put_context;
3443                 /*
3444                  * Only a group leader can be exclusive or pinned
3445                  */
3446                 if (hw_event.exclusive || hw_event.pinned)
3447                         goto err_put_context;
3448         }
3449
3450         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3451                                      GFP_KERNEL);
3452         ret = PTR_ERR(counter);
3453         if (IS_ERR(counter))
3454                 goto err_put_context;
3455
3456         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3457         if (ret < 0)
3458                 goto err_free_put_context;
3459
3460         counter_file = fget_light(ret, &fput_needed2);
3461         if (!counter_file)
3462                 goto err_free_put_context;
3463
3464         counter->filp = counter_file;
3465         WARN_ON_ONCE(ctx->parent_ctx);
3466         mutex_lock(&ctx->mutex);
3467         perf_install_in_context(ctx, counter, cpu);
3468         ++ctx->generation;
3469         mutex_unlock(&ctx->mutex);
3470
3471         counter->owner = current;
3472         get_task_struct(current);
3473         mutex_lock(&current->perf_counter_mutex);
3474         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3475         mutex_unlock(&current->perf_counter_mutex);
3476
3477         counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3478         counter->id = atomic64_inc_return(&perf_counter_id);
3479
3480         fput_light(counter_file, fput_needed2);
3481
3482 out_fput:
3483         fput_light(group_file, fput_needed);
3484
3485         return ret;
3486
3487 err_free_put_context:
3488         kfree(counter);
3489
3490 err_put_context:
3491         put_ctx(ctx);
3492
3493         goto out_fput;
3494 }
3495
3496 /*
3497  * inherit a counter from parent task to child task:
3498  */
3499 static struct perf_counter *
3500 inherit_counter(struct perf_counter *parent_counter,
3501               struct task_struct *parent,
3502               struct perf_counter_context *parent_ctx,
3503               struct task_struct *child,
3504               struct perf_counter *group_leader,
3505               struct perf_counter_context *child_ctx)
3506 {
3507         struct perf_counter *child_counter;
3508
3509         /*
3510          * Instead of creating recursive hierarchies of counters,
3511          * we link inherited counters back to the original parent,
3512          * which has a filp for sure, which we use as the reference
3513          * count:
3514          */
3515         if (parent_counter->parent)
3516                 parent_counter = parent_counter->parent;
3517
3518         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3519                                            parent_counter->cpu, child_ctx,
3520                                            group_leader, GFP_KERNEL);
3521         if (IS_ERR(child_counter))
3522                 return child_counter;
3523         get_ctx(child_ctx);
3524
3525         /*
3526          * Make the child state follow the state of the parent counter,
3527          * not its hw_event.disabled bit.  We hold the parent's mutex,
3528          * so we won't race with perf_counter_{en, dis}able_family.
3529          */
3530         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3531                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3532         else
3533                 child_counter->state = PERF_COUNTER_STATE_OFF;
3534
3535         /*
3536          * Link it up in the child's context:
3537          */
3538         add_counter_to_ctx(child_counter, child_ctx);
3539
3540         child_counter->parent = parent_counter;
3541         /*
3542          * inherit into child's child as well:
3543          */
3544         child_counter->hw_event.inherit = 1;
3545
3546         /*
3547          * Get a reference to the parent filp - we will fput it
3548          * when the child counter exits. This is safe to do because
3549          * we are in the parent and we know that the filp still
3550          * exists and has a nonzero count:
3551          */
3552         atomic_long_inc(&parent_counter->filp->f_count);
3553
3554         /*
3555          * Link this into the parent counter's child list
3556          */
3557         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3558         mutex_lock(&parent_counter->child_mutex);
3559         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3560         mutex_unlock(&parent_counter->child_mutex);
3561
3562         return child_counter;
3563 }
3564
3565 static int inherit_group(struct perf_counter *parent_counter,
3566               struct task_struct *parent,
3567               struct perf_counter_context *parent_ctx,
3568               struct task_struct *child,
3569               struct perf_counter_context *child_ctx)
3570 {
3571         struct perf_counter *leader;
3572         struct perf_counter *sub;
3573         struct perf_counter *child_ctr;
3574
3575         leader = inherit_counter(parent_counter, parent, parent_ctx,
3576                                  child, NULL, child_ctx);
3577         if (IS_ERR(leader))
3578                 return PTR_ERR(leader);
3579         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3580                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3581                                             child, leader, child_ctx);
3582                 if (IS_ERR(child_ctr))
3583                         return PTR_ERR(child_ctr);
3584         }
3585         return 0;
3586 }
3587
3588 static void sync_child_counter(struct perf_counter *child_counter,
3589                                struct perf_counter *parent_counter)
3590 {
3591         u64 child_val;
3592
3593         child_val = atomic64_read(&child_counter->count);
3594
3595         /*
3596          * Add back the child's count to the parent's count:
3597          */
3598         atomic64_add(child_val, &parent_counter->count);
3599         atomic64_add(child_counter->total_time_enabled,
3600                      &parent_counter->child_total_time_enabled);
3601         atomic64_add(child_counter->total_time_running,
3602                      &parent_counter->child_total_time_running);
3603
3604         /*
3605          * Remove this counter from the parent's list
3606          */
3607         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3608         mutex_lock(&parent_counter->child_mutex);
3609         list_del_init(&child_counter->child_list);
3610         mutex_unlock(&parent_counter->child_mutex);
3611
3612         /*
3613          * Release the parent counter, if this was the last
3614          * reference to it.
3615          */
3616         fput(parent_counter->filp);
3617 }
3618
3619 static void
3620 __perf_counter_exit_task(struct perf_counter *child_counter,
3621                          struct perf_counter_context *child_ctx)
3622 {
3623         struct perf_counter *parent_counter;
3624
3625         update_counter_times(child_counter);
3626         perf_counter_remove_from_context(child_counter);
3627
3628         parent_counter = child_counter->parent;
3629         /*
3630          * It can happen that parent exits first, and has counters
3631          * that are still around due to the child reference. These
3632          * counters need to be zapped - but otherwise linger.
3633          */
3634         if (parent_counter) {
3635                 sync_child_counter(child_counter, parent_counter);
3636                 free_counter(child_counter);
3637         }
3638 }
3639
3640 /*
3641  * When a child task exits, feed back counter values to parent counters.
3642  */
3643 void perf_counter_exit_task(struct task_struct *child)
3644 {
3645         struct perf_counter *child_counter, *tmp;
3646         struct perf_counter_context *child_ctx;
3647         unsigned long flags;
3648
3649         if (likely(!child->perf_counter_ctxp))
3650                 return;
3651
3652         local_irq_save(flags);
3653         /*
3654          * We can't reschedule here because interrupts are disabled,
3655          * and either child is current or it is a task that can't be
3656          * scheduled, so we are now safe from rescheduling changing
3657          * our context.
3658          */
3659         child_ctx = child->perf_counter_ctxp;
3660         __perf_counter_task_sched_out(child_ctx);
3661
3662         /*
3663          * Take the context lock here so that if find_get_context is
3664          * reading child->perf_counter_ctxp, we wait until it has
3665          * incremented the context's refcount before we do put_ctx below.
3666          */
3667         spin_lock(&child_ctx->lock);
3668         child->perf_counter_ctxp = NULL;
3669         if (child_ctx->parent_ctx) {
3670                 /*
3671                  * This context is a clone; unclone it so it can't get
3672                  * swapped to another process while we're removing all
3673                  * the counters from it.
3674                  */
3675                 put_ctx(child_ctx->parent_ctx);
3676                 child_ctx->parent_ctx = NULL;
3677         }
3678         spin_unlock(&child_ctx->lock);
3679         local_irq_restore(flags);
3680
3681         mutex_lock(&child_ctx->mutex);
3682
3683 again:
3684         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3685                                  list_entry)
3686                 __perf_counter_exit_task(child_counter, child_ctx);
3687
3688         /*
3689          * If the last counter was a group counter, it will have appended all
3690          * its siblings to the list, but we obtained 'tmp' before that which
3691          * will still point to the list head terminating the iteration.
3692          */
3693         if (!list_empty(&child_ctx->counter_list))
3694                 goto again;
3695
3696         mutex_unlock(&child_ctx->mutex);
3697
3698         put_ctx(child_ctx);
3699 }
3700
3701 /*
3702  * free an unexposed, unused context as created by inheritance by
3703  * init_task below, used by fork() in case of fail.
3704  */
3705 void perf_counter_free_task(struct task_struct *task)
3706 {
3707         struct perf_counter_context *ctx = task->perf_counter_ctxp;
3708         struct perf_counter *counter, *tmp;
3709
3710         if (!ctx)
3711                 return;
3712
3713         mutex_lock(&ctx->mutex);
3714 again:
3715         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3716                 struct perf_counter *parent = counter->parent;
3717
3718                 if (WARN_ON_ONCE(!parent))
3719                         continue;
3720
3721                 mutex_lock(&parent->child_mutex);
3722                 list_del_init(&counter->child_list);
3723                 mutex_unlock(&parent->child_mutex);
3724
3725                 fput(parent->filp);
3726
3727                 list_del_counter(counter, ctx);
3728                 free_counter(counter);
3729         }
3730
3731         if (!list_empty(&ctx->counter_list))
3732                 goto again;
3733
3734         mutex_unlock(&ctx->mutex);
3735
3736         put_ctx(ctx);
3737 }
3738
3739 /*
3740  * Initialize the perf_counter context in task_struct
3741  */
3742 int perf_counter_init_task(struct task_struct *child)
3743 {
3744         struct perf_counter_context *child_ctx, *parent_ctx;
3745         struct perf_counter_context *cloned_ctx;
3746         struct perf_counter *counter;
3747         struct task_struct *parent = current;
3748         int inherited_all = 1;
3749         int ret = 0;
3750
3751         child->perf_counter_ctxp = NULL;
3752
3753         mutex_init(&child->perf_counter_mutex);
3754         INIT_LIST_HEAD(&child->perf_counter_list);
3755
3756         if (likely(!parent->perf_counter_ctxp))
3757                 return 0;
3758
3759         /*
3760          * This is executed from the parent task context, so inherit
3761          * counters that have been marked for cloning.
3762          * First allocate and initialize a context for the child.
3763          */
3764
3765         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3766         if (!child_ctx)
3767                 return -ENOMEM;
3768
3769         __perf_counter_init_context(child_ctx, child);
3770         child->perf_counter_ctxp = child_ctx;
3771         get_task_struct(child);
3772
3773         /*
3774          * If the parent's context is a clone, pin it so it won't get
3775          * swapped under us.
3776          */
3777         parent_ctx = perf_pin_task_context(parent);
3778
3779         /*
3780          * No need to check if parent_ctx != NULL here; since we saw
3781          * it non-NULL earlier, the only reason for it to become NULL
3782          * is if we exit, and since we're currently in the middle of
3783          * a fork we can't be exiting at the same time.
3784          */
3785
3786         /*
3787          * Lock the parent list. No need to lock the child - not PID
3788          * hashed yet and not running, so nobody can access it.
3789          */
3790         mutex_lock(&parent_ctx->mutex);
3791
3792         /*
3793          * We dont have to disable NMIs - we are only looking at
3794          * the list, not manipulating it:
3795          */
3796         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3797                 if (counter != counter->group_leader)
3798                         continue;
3799
3800                 if (!counter->hw_event.inherit) {
3801                         inherited_all = 0;
3802                         continue;
3803                 }
3804
3805                 ret = inherit_group(counter, parent, parent_ctx,
3806                                              child, child_ctx);
3807                 if (ret) {
3808                         inherited_all = 0;
3809                         break;
3810                 }
3811         }
3812
3813         if (inherited_all) {
3814                 /*
3815                  * Mark the child context as a clone of the parent
3816                  * context, or of whatever the parent is a clone of.
3817                  * Note that if the parent is a clone, it could get
3818                  * uncloned at any point, but that doesn't matter
3819                  * because the list of counters and the generation
3820                  * count can't have changed since we took the mutex.
3821                  */
3822                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3823                 if (cloned_ctx) {
3824                         child_ctx->parent_ctx = cloned_ctx;
3825                         child_ctx->parent_gen = parent_ctx->parent_gen;
3826                 } else {
3827                         child_ctx->parent_ctx = parent_ctx;
3828                         child_ctx->parent_gen = parent_ctx->generation;
3829                 }
3830                 get_ctx(child_ctx->parent_ctx);
3831         }
3832
3833         mutex_unlock(&parent_ctx->mutex);
3834
3835         perf_unpin_context(parent_ctx);
3836
3837         return ret;
3838 }
3839
3840 static void __cpuinit perf_counter_init_cpu(int cpu)
3841 {
3842         struct perf_cpu_context *cpuctx;
3843
3844         cpuctx = &per_cpu(perf_cpu_context, cpu);
3845         __perf_counter_init_context(&cpuctx->ctx, NULL);
3846
3847         spin_lock(&perf_resource_lock);
3848         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3849         spin_unlock(&perf_resource_lock);
3850
3851         hw_perf_counter_setup(cpu);
3852 }
3853
3854 #ifdef CONFIG_HOTPLUG_CPU
3855 static void __perf_counter_exit_cpu(void *info)
3856 {
3857         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3858         struct perf_counter_context *ctx = &cpuctx->ctx;
3859         struct perf_counter *counter, *tmp;
3860
3861         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3862                 __perf_counter_remove_from_context(counter);
3863 }
3864 static void perf_counter_exit_cpu(int cpu)
3865 {
3866         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3867         struct perf_counter_context *ctx = &cpuctx->ctx;
3868
3869         mutex_lock(&ctx->mutex);
3870         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3871         mutex_unlock(&ctx->mutex);
3872 }
3873 #else
3874 static inline void perf_counter_exit_cpu(int cpu) { }
3875 #endif
3876
3877 static int __cpuinit
3878 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3879 {
3880         unsigned int cpu = (long)hcpu;
3881
3882         switch (action) {
3883
3884         case CPU_UP_PREPARE:
3885         case CPU_UP_PREPARE_FROZEN:
3886                 perf_counter_init_cpu(cpu);
3887                 break;
3888
3889         case CPU_DOWN_PREPARE:
3890         case CPU_DOWN_PREPARE_FROZEN:
3891                 perf_counter_exit_cpu(cpu);
3892                 break;
3893
3894         default:
3895                 break;
3896         }
3897
3898         return NOTIFY_OK;
3899 }
3900
3901 /*
3902  * This has to have a higher priority than migration_notifier in sched.c.
3903  */
3904 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3905         .notifier_call          = perf_cpu_notify,
3906         .priority               = 20,
3907 };
3908
3909 void __init perf_counter_init(void)
3910 {
3911         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3912                         (void *)(long)smp_processor_id());
3913         register_cpu_notifier(&perf_cpu_nb);
3914 }
3915
3916 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3917 {
3918         return sprintf(buf, "%d\n", perf_reserved_percpu);
3919 }
3920
3921 static ssize_t
3922 perf_set_reserve_percpu(struct sysdev_class *class,
3923                         const char *buf,
3924                         size_t count)
3925 {
3926         struct perf_cpu_context *cpuctx;
3927         unsigned long val;
3928         int err, cpu, mpt;
3929
3930         err = strict_strtoul(buf, 10, &val);
3931         if (err)
3932                 return err;
3933         if (val > perf_max_counters)
3934                 return -EINVAL;
3935
3936         spin_lock(&perf_resource_lock);
3937         perf_reserved_percpu = val;
3938         for_each_online_cpu(cpu) {
3939                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3940                 spin_lock_irq(&cpuctx->ctx.lock);
3941                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3942                           perf_max_counters - perf_reserved_percpu);
3943                 cpuctx->max_pertask = mpt;
3944                 spin_unlock_irq(&cpuctx->ctx.lock);
3945         }
3946         spin_unlock(&perf_resource_lock);
3947
3948         return count;
3949 }
3950
3951 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3952 {
3953         return sprintf(buf, "%d\n", perf_overcommit);
3954 }
3955
3956 static ssize_t
3957 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3958 {
3959         unsigned long val;
3960         int err;
3961
3962         err = strict_strtoul(buf, 10, &val);
3963         if (err)
3964                 return err;
3965         if (val > 1)
3966                 return -EINVAL;
3967
3968         spin_lock(&perf_resource_lock);
3969         perf_overcommit = val;
3970         spin_unlock(&perf_resource_lock);
3971
3972         return count;
3973 }
3974
3975 static SYSDEV_CLASS_ATTR(
3976                                 reserve_percpu,
3977                                 0644,
3978                                 perf_show_reserve_percpu,
3979                                 perf_set_reserve_percpu
3980                         );
3981
3982 static SYSDEV_CLASS_ATTR(
3983                                 overcommit,
3984                                 0644,
3985                                 perf_show_overcommit,
3986                                 perf_set_overcommit
3987                         );
3988
3989 static struct attribute *perfclass_attrs[] = {
3990         &attr_reserve_percpu.attr,
3991         &attr_overcommit.attr,
3992         NULL
3993 };
3994
3995 static struct attribute_group perfclass_attr_group = {
3996         .attrs                  = perfclass_attrs,
3997         .name                   = "perf_counters",
3998 };
3999
4000 static int __init perf_counter_sysfs_init(void)
4001 {
4002         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4003                                   &perfclass_attr_group);
4004 }
4005 device_initcall(perf_counter_sysfs_init);