perf_counter: Optimize context switch between identical inherited contexts
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102         atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107         if (atomic_dec_and_test(&ctx->refcount)) {
108                 if (ctx->parent_ctx)
109                         put_ctx(ctx->parent_ctx);
110                 kfree(ctx);
111         }
112 }
113
114 static void
115 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
116 {
117         struct perf_counter *group_leader = counter->group_leader;
118
119         /*
120          * Depending on whether it is a standalone or sibling counter,
121          * add it straight to the context's counter list, or to the group
122          * leader's sibling list:
123          */
124         if (group_leader == counter)
125                 list_add_tail(&counter->list_entry, &ctx->counter_list);
126         else {
127                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
128                 group_leader->nr_siblings++;
129         }
130
131         list_add_rcu(&counter->event_entry, &ctx->event_list);
132         ctx->nr_counters++;
133         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
134                 ctx->nr_enabled++;
135 }
136
137 /*
138  * Remove a counter from the lists for its context.
139  * Must be called with counter->mutex and ctx->mutex held.
140  */
141 static void
142 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
143 {
144         struct perf_counter *sibling, *tmp;
145
146         if (list_empty(&counter->list_entry))
147                 return;
148         ctx->nr_counters--;
149         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
150                 ctx->nr_enabled--;
151
152         list_del_init(&counter->list_entry);
153         list_del_rcu(&counter->event_entry);
154
155         if (counter->group_leader != counter)
156                 counter->group_leader->nr_siblings--;
157
158         /*
159          * If this was a group counter with sibling counters then
160          * upgrade the siblings to singleton counters by adding them
161          * to the context list directly:
162          */
163         list_for_each_entry_safe(sibling, tmp,
164                                  &counter->sibling_list, list_entry) {
165
166                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
167                 sibling->group_leader = sibling;
168         }
169 }
170
171 static void
172 counter_sched_out(struct perf_counter *counter,
173                   struct perf_cpu_context *cpuctx,
174                   struct perf_counter_context *ctx)
175 {
176         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
177                 return;
178
179         counter->state = PERF_COUNTER_STATE_INACTIVE;
180         counter->tstamp_stopped = ctx->time;
181         counter->pmu->disable(counter);
182         counter->oncpu = -1;
183
184         if (!is_software_counter(counter))
185                 cpuctx->active_oncpu--;
186         ctx->nr_active--;
187         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
188                 cpuctx->exclusive = 0;
189 }
190
191 static void
192 group_sched_out(struct perf_counter *group_counter,
193                 struct perf_cpu_context *cpuctx,
194                 struct perf_counter_context *ctx)
195 {
196         struct perf_counter *counter;
197
198         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
199                 return;
200
201         counter_sched_out(group_counter, cpuctx, ctx);
202
203         /*
204          * Schedule out siblings (if any):
205          */
206         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
207                 counter_sched_out(counter, cpuctx, ctx);
208
209         if (group_counter->hw_event.exclusive)
210                 cpuctx->exclusive = 0;
211 }
212
213 /*
214  * Mark this context as not being a clone of another.
215  * Called when counters are added to or removed from this context.
216  * We also increment our generation number so that anything that
217  * was cloned from this context before this will not match anything
218  * cloned from this context after this.
219  */
220 static void unclone_ctx(struct perf_counter_context *ctx)
221 {
222         ++ctx->generation;
223         if (!ctx->parent_ctx)
224                 return;
225         put_ctx(ctx->parent_ctx);
226         ctx->parent_ctx = NULL;
227 }
228
229 /*
230  * Cross CPU call to remove a performance counter
231  *
232  * We disable the counter on the hardware level first. After that we
233  * remove it from the context list.
234  */
235 static void __perf_counter_remove_from_context(void *info)
236 {
237         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238         struct perf_counter *counter = info;
239         struct perf_counter_context *ctx = counter->ctx;
240         unsigned long flags;
241
242         /*
243          * If this is a task context, we need to check whether it is
244          * the current task context of this cpu. If not it has been
245          * scheduled out before the smp call arrived.
246          */
247         if (ctx->task && cpuctx->task_ctx != ctx)
248                 return;
249
250         spin_lock_irqsave(&ctx->lock, flags);
251         /*
252          * Protect the list operation against NMI by disabling the
253          * counters on a global level.
254          */
255         perf_disable();
256
257         counter_sched_out(counter, cpuctx, ctx);
258
259         list_del_counter(counter, ctx);
260
261         if (!ctx->task) {
262                 /*
263                  * Allow more per task counters with respect to the
264                  * reservation:
265                  */
266                 cpuctx->max_pertask =
267                         min(perf_max_counters - ctx->nr_counters,
268                             perf_max_counters - perf_reserved_percpu);
269         }
270
271         perf_enable();
272         spin_unlock_irqrestore(&ctx->lock, flags);
273 }
274
275
276 /*
277  * Remove the counter from a task's (or a CPU's) list of counters.
278  *
279  * Must be called with counter->mutex and ctx->mutex held.
280  *
281  * CPU counters are removed with a smp call. For task counters we only
282  * call when the task is on a CPU.
283  */
284 static void perf_counter_remove_from_context(struct perf_counter *counter)
285 {
286         struct perf_counter_context *ctx = counter->ctx;
287         struct task_struct *task = ctx->task;
288
289         unclone_ctx(ctx);
290         if (!task) {
291                 /*
292                  * Per cpu counters are removed via an smp call and
293                  * the removal is always sucessful.
294                  */
295                 smp_call_function_single(counter->cpu,
296                                          __perf_counter_remove_from_context,
297                                          counter, 1);
298                 return;
299         }
300
301 retry:
302         task_oncpu_function_call(task, __perf_counter_remove_from_context,
303                                  counter);
304
305         spin_lock_irq(&ctx->lock);
306         /*
307          * If the context is active we need to retry the smp call.
308          */
309         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
310                 spin_unlock_irq(&ctx->lock);
311                 goto retry;
312         }
313
314         /*
315          * The lock prevents that this context is scheduled in so we
316          * can remove the counter safely, if the call above did not
317          * succeed.
318          */
319         if (!list_empty(&counter->list_entry)) {
320                 list_del_counter(counter, ctx);
321         }
322         spin_unlock_irq(&ctx->lock);
323 }
324
325 static inline u64 perf_clock(void)
326 {
327         return cpu_clock(smp_processor_id());
328 }
329
330 /*
331  * Update the record of the current time in a context.
332  */
333 static void update_context_time(struct perf_counter_context *ctx)
334 {
335         u64 now = perf_clock();
336
337         ctx->time += now - ctx->timestamp;
338         ctx->timestamp = now;
339 }
340
341 /*
342  * Update the total_time_enabled and total_time_running fields for a counter.
343  */
344 static void update_counter_times(struct perf_counter *counter)
345 {
346         struct perf_counter_context *ctx = counter->ctx;
347         u64 run_end;
348
349         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
350                 return;
351
352         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
353
354         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
355                 run_end = counter->tstamp_stopped;
356         else
357                 run_end = ctx->time;
358
359         counter->total_time_running = run_end - counter->tstamp_running;
360 }
361
362 /*
363  * Update total_time_enabled and total_time_running for all counters in a group.
364  */
365 static void update_group_times(struct perf_counter *leader)
366 {
367         struct perf_counter *counter;
368
369         update_counter_times(leader);
370         list_for_each_entry(counter, &leader->sibling_list, list_entry)
371                 update_counter_times(counter);
372 }
373
374 /*
375  * Cross CPU call to disable a performance counter
376  */
377 static void __perf_counter_disable(void *info)
378 {
379         struct perf_counter *counter = info;
380         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
381         struct perf_counter_context *ctx = counter->ctx;
382         unsigned long flags;
383
384         /*
385          * If this is a per-task counter, need to check whether this
386          * counter's task is the current task on this cpu.
387          */
388         if (ctx->task && cpuctx->task_ctx != ctx)
389                 return;
390
391         spin_lock_irqsave(&ctx->lock, flags);
392
393         /*
394          * If the counter is on, turn it off.
395          * If it is in error state, leave it in error state.
396          */
397         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398                 update_context_time(ctx);
399                 update_counter_times(counter);
400                 if (counter == counter->group_leader)
401                         group_sched_out(counter, cpuctx, ctx);
402                 else
403                         counter_sched_out(counter, cpuctx, ctx);
404                 counter->state = PERF_COUNTER_STATE_OFF;
405                 ctx->nr_enabled--;
406         }
407
408         spin_unlock_irqrestore(&ctx->lock, flags);
409 }
410
411 /*
412  * Disable a counter.
413  */
414 static void perf_counter_disable(struct perf_counter *counter)
415 {
416         struct perf_counter_context *ctx = counter->ctx;
417         struct task_struct *task = ctx->task;
418
419         if (!task) {
420                 /*
421                  * Disable the counter on the cpu that it's on
422                  */
423                 smp_call_function_single(counter->cpu, __perf_counter_disable,
424                                          counter, 1);
425                 return;
426         }
427
428  retry:
429         task_oncpu_function_call(task, __perf_counter_disable, counter);
430
431         spin_lock_irq(&ctx->lock);
432         /*
433          * If the counter is still active, we need to retry the cross-call.
434          */
435         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
436                 spin_unlock_irq(&ctx->lock);
437                 goto retry;
438         }
439
440         /*
441          * Since we have the lock this context can't be scheduled
442          * in, so we can change the state safely.
443          */
444         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
445                 update_counter_times(counter);
446                 counter->state = PERF_COUNTER_STATE_OFF;
447                 ctx->nr_enabled--;
448         }
449
450         spin_unlock_irq(&ctx->lock);
451 }
452
453 static int
454 counter_sched_in(struct perf_counter *counter,
455                  struct perf_cpu_context *cpuctx,
456                  struct perf_counter_context *ctx,
457                  int cpu)
458 {
459         if (counter->state <= PERF_COUNTER_STATE_OFF)
460                 return 0;
461
462         counter->state = PERF_COUNTER_STATE_ACTIVE;
463         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
464         /*
465          * The new state must be visible before we turn it on in the hardware:
466          */
467         smp_wmb();
468
469         if (counter->pmu->enable(counter)) {
470                 counter->state = PERF_COUNTER_STATE_INACTIVE;
471                 counter->oncpu = -1;
472                 return -EAGAIN;
473         }
474
475         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
476
477         if (!is_software_counter(counter))
478                 cpuctx->active_oncpu++;
479         ctx->nr_active++;
480
481         if (counter->hw_event.exclusive)
482                 cpuctx->exclusive = 1;
483
484         return 0;
485 }
486
487 static int
488 group_sched_in(struct perf_counter *group_counter,
489                struct perf_cpu_context *cpuctx,
490                struct perf_counter_context *ctx,
491                int cpu)
492 {
493         struct perf_counter *counter, *partial_group;
494         int ret;
495
496         if (group_counter->state == PERF_COUNTER_STATE_OFF)
497                 return 0;
498
499         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
500         if (ret)
501                 return ret < 0 ? ret : 0;
502
503         group_counter->prev_state = group_counter->state;
504         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
505                 return -EAGAIN;
506
507         /*
508          * Schedule in siblings as one group (if any):
509          */
510         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
511                 counter->prev_state = counter->state;
512                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
513                         partial_group = counter;
514                         goto group_error;
515                 }
516         }
517
518         return 0;
519
520 group_error:
521         /*
522          * Groups can be scheduled in as one unit only, so undo any
523          * partial group before returning:
524          */
525         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
526                 if (counter == partial_group)
527                         break;
528                 counter_sched_out(counter, cpuctx, ctx);
529         }
530         counter_sched_out(group_counter, cpuctx, ctx);
531
532         return -EAGAIN;
533 }
534
535 /*
536  * Return 1 for a group consisting entirely of software counters,
537  * 0 if the group contains any hardware counters.
538  */
539 static int is_software_only_group(struct perf_counter *leader)
540 {
541         struct perf_counter *counter;
542
543         if (!is_software_counter(leader))
544                 return 0;
545
546         list_for_each_entry(counter, &leader->sibling_list, list_entry)
547                 if (!is_software_counter(counter))
548                         return 0;
549
550         return 1;
551 }
552
553 /*
554  * Work out whether we can put this counter group on the CPU now.
555  */
556 static int group_can_go_on(struct perf_counter *counter,
557                            struct perf_cpu_context *cpuctx,
558                            int can_add_hw)
559 {
560         /*
561          * Groups consisting entirely of software counters can always go on.
562          */
563         if (is_software_only_group(counter))
564                 return 1;
565         /*
566          * If an exclusive group is already on, no other hardware
567          * counters can go on.
568          */
569         if (cpuctx->exclusive)
570                 return 0;
571         /*
572          * If this group is exclusive and there are already
573          * counters on the CPU, it can't go on.
574          */
575         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
576                 return 0;
577         /*
578          * Otherwise, try to add it if all previous groups were able
579          * to go on.
580          */
581         return can_add_hw;
582 }
583
584 static void add_counter_to_ctx(struct perf_counter *counter,
585                                struct perf_counter_context *ctx)
586 {
587         list_add_counter(counter, ctx);
588         counter->prev_state = PERF_COUNTER_STATE_OFF;
589         counter->tstamp_enabled = ctx->time;
590         counter->tstamp_running = ctx->time;
591         counter->tstamp_stopped = ctx->time;
592 }
593
594 /*
595  * Cross CPU call to install and enable a performance counter
596  */
597 static void __perf_install_in_context(void *info)
598 {
599         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
600         struct perf_counter *counter = info;
601         struct perf_counter_context *ctx = counter->ctx;
602         struct perf_counter *leader = counter->group_leader;
603         int cpu = smp_processor_id();
604         unsigned long flags;
605         int err;
606
607         /*
608          * If this is a task context, we need to check whether it is
609          * the current task context of this cpu. If not it has been
610          * scheduled out before the smp call arrived.
611          * Or possibly this is the right context but it isn't
612          * on this cpu because it had no counters.
613          */
614         if (ctx->task && cpuctx->task_ctx != ctx) {
615                 if (cpuctx->task_ctx || ctx->task != current)
616                         return;
617                 cpuctx->task_ctx = ctx;
618         }
619
620         spin_lock_irqsave(&ctx->lock, flags);
621         ctx->is_active = 1;
622         update_context_time(ctx);
623
624         /*
625          * Protect the list operation against NMI by disabling the
626          * counters on a global level. NOP for non NMI based counters.
627          */
628         perf_disable();
629
630         add_counter_to_ctx(counter, ctx);
631
632         /*
633          * Don't put the counter on if it is disabled or if
634          * it is in a group and the group isn't on.
635          */
636         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
637             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
638                 goto unlock;
639
640         /*
641          * An exclusive counter can't go on if there are already active
642          * hardware counters, and no hardware counter can go on if there
643          * is already an exclusive counter on.
644          */
645         if (!group_can_go_on(counter, cpuctx, 1))
646                 err = -EEXIST;
647         else
648                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
649
650         if (err) {
651                 /*
652                  * This counter couldn't go on.  If it is in a group
653                  * then we have to pull the whole group off.
654                  * If the counter group is pinned then put it in error state.
655                  */
656                 if (leader != counter)
657                         group_sched_out(leader, cpuctx, ctx);
658                 if (leader->hw_event.pinned) {
659                         update_group_times(leader);
660                         leader->state = PERF_COUNTER_STATE_ERROR;
661                 }
662         }
663
664         if (!err && !ctx->task && cpuctx->max_pertask)
665                 cpuctx->max_pertask--;
666
667  unlock:
668         perf_enable();
669
670         spin_unlock_irqrestore(&ctx->lock, flags);
671 }
672
673 /*
674  * Attach a performance counter to a context
675  *
676  * First we add the counter to the list with the hardware enable bit
677  * in counter->hw_config cleared.
678  *
679  * If the counter is attached to a task which is on a CPU we use a smp
680  * call to enable it in the task context. The task might have been
681  * scheduled away, but we check this in the smp call again.
682  *
683  * Must be called with ctx->mutex held.
684  */
685 static void
686 perf_install_in_context(struct perf_counter_context *ctx,
687                         struct perf_counter *counter,
688                         int cpu)
689 {
690         struct task_struct *task = ctx->task;
691
692         if (!task) {
693                 /*
694                  * Per cpu counters are installed via an smp call and
695                  * the install is always sucessful.
696                  */
697                 smp_call_function_single(cpu, __perf_install_in_context,
698                                          counter, 1);
699                 return;
700         }
701
702 retry:
703         task_oncpu_function_call(task, __perf_install_in_context,
704                                  counter);
705
706         spin_lock_irq(&ctx->lock);
707         /*
708          * we need to retry the smp call.
709          */
710         if (ctx->is_active && list_empty(&counter->list_entry)) {
711                 spin_unlock_irq(&ctx->lock);
712                 goto retry;
713         }
714
715         /*
716          * The lock prevents that this context is scheduled in so we
717          * can add the counter safely, if it the call above did not
718          * succeed.
719          */
720         if (list_empty(&counter->list_entry))
721                 add_counter_to_ctx(counter, ctx);
722         spin_unlock_irq(&ctx->lock);
723 }
724
725 /*
726  * Cross CPU call to enable a performance counter
727  */
728 static void __perf_counter_enable(void *info)
729 {
730         struct perf_counter *counter = info;
731         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732         struct perf_counter_context *ctx = counter->ctx;
733         struct perf_counter *leader = counter->group_leader;
734         unsigned long flags;
735         int err;
736
737         /*
738          * If this is a per-task counter, need to check whether this
739          * counter's task is the current task on this cpu.
740          */
741         if (ctx->task && cpuctx->task_ctx != ctx) {
742                 if (cpuctx->task_ctx || ctx->task != current)
743                         return;
744                 cpuctx->task_ctx = ctx;
745         }
746
747         spin_lock_irqsave(&ctx->lock, flags);
748         ctx->is_active = 1;
749         update_context_time(ctx);
750
751         counter->prev_state = counter->state;
752         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
753                 goto unlock;
754         counter->state = PERF_COUNTER_STATE_INACTIVE;
755         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756         ctx->nr_enabled++;
757
758         /*
759          * If the counter is in a group and isn't the group leader,
760          * then don't put it on unless the group is on.
761          */
762         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
763                 goto unlock;
764
765         if (!group_can_go_on(counter, cpuctx, 1)) {
766                 err = -EEXIST;
767         } else {
768                 perf_disable();
769                 if (counter == leader)
770                         err = group_sched_in(counter, cpuctx, ctx,
771                                              smp_processor_id());
772                 else
773                         err = counter_sched_in(counter, cpuctx, ctx,
774                                                smp_processor_id());
775                 perf_enable();
776         }
777
778         if (err) {
779                 /*
780                  * If this counter can't go on and it's part of a
781                  * group, then the whole group has to come off.
782                  */
783                 if (leader != counter)
784                         group_sched_out(leader, cpuctx, ctx);
785                 if (leader->hw_event.pinned) {
786                         update_group_times(leader);
787                         leader->state = PERF_COUNTER_STATE_ERROR;
788                 }
789         }
790
791  unlock:
792         spin_unlock_irqrestore(&ctx->lock, flags);
793 }
794
795 /*
796  * Enable a counter.
797  */
798 static void perf_counter_enable(struct perf_counter *counter)
799 {
800         struct perf_counter_context *ctx = counter->ctx;
801         struct task_struct *task = ctx->task;
802
803         if (!task) {
804                 /*
805                  * Enable the counter on the cpu that it's on
806                  */
807                 smp_call_function_single(counter->cpu, __perf_counter_enable,
808                                          counter, 1);
809                 return;
810         }
811
812         spin_lock_irq(&ctx->lock);
813         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
814                 goto out;
815
816         /*
817          * If the counter is in error state, clear that first.
818          * That way, if we see the counter in error state below, we
819          * know that it has gone back into error state, as distinct
820          * from the task having been scheduled away before the
821          * cross-call arrived.
822          */
823         if (counter->state == PERF_COUNTER_STATE_ERROR)
824                 counter->state = PERF_COUNTER_STATE_OFF;
825
826  retry:
827         spin_unlock_irq(&ctx->lock);
828         task_oncpu_function_call(task, __perf_counter_enable, counter);
829
830         spin_lock_irq(&ctx->lock);
831
832         /*
833          * If the context is active and the counter is still off,
834          * we need to retry the cross-call.
835          */
836         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
837                 goto retry;
838
839         /*
840          * Since we have the lock this context can't be scheduled
841          * in, so we can change the state safely.
842          */
843         if (counter->state == PERF_COUNTER_STATE_OFF) {
844                 counter->state = PERF_COUNTER_STATE_INACTIVE;
845                 counter->tstamp_enabled =
846                         ctx->time - counter->total_time_enabled;
847                 ctx->nr_enabled++;
848         }
849  out:
850         spin_unlock_irq(&ctx->lock);
851 }
852
853 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
854 {
855         /*
856          * not supported on inherited counters
857          */
858         if (counter->hw_event.inherit)
859                 return -EINVAL;
860
861         atomic_add(refresh, &counter->event_limit);
862         perf_counter_enable(counter);
863
864         return 0;
865 }
866
867 void __perf_counter_sched_out(struct perf_counter_context *ctx,
868                               struct perf_cpu_context *cpuctx)
869 {
870         struct perf_counter *counter;
871
872         spin_lock(&ctx->lock);
873         ctx->is_active = 0;
874         if (likely(!ctx->nr_counters))
875                 goto out;
876         update_context_time(ctx);
877
878         perf_disable();
879         if (ctx->nr_active) {
880                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
881                         if (counter != counter->group_leader)
882                                 counter_sched_out(counter, cpuctx, ctx);
883                         else
884                                 group_sched_out(counter, cpuctx, ctx);
885                 }
886         }
887         perf_enable();
888  out:
889         spin_unlock(&ctx->lock);
890 }
891
892 /*
893  * Test whether two contexts are equivalent, i.e. whether they
894  * have both been cloned from the same version of the same context
895  * and they both have the same number of enabled counters.
896  * If the number of enabled counters is the same, then the set
897  * of enabled counters should be the same, because these are both
898  * inherited contexts, therefore we can't access individual counters
899  * in them directly with an fd; we can only enable/disable all
900  * counters via prctl, or enable/disable all counters in a family
901  * via ioctl, which will have the same effect on both contexts.
902  */
903 static int context_equiv(struct perf_counter_context *ctx1,
904                          struct perf_counter_context *ctx2)
905 {
906         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
907                 && ctx1->parent_gen == ctx2->parent_gen
908                 && ctx1->nr_enabled == ctx2->nr_enabled;
909 }
910
911 /*
912  * Called from scheduler to remove the counters of the current task,
913  * with interrupts disabled.
914  *
915  * We stop each counter and update the counter value in counter->count.
916  *
917  * This does not protect us against NMI, but disable()
918  * sets the disabled bit in the control field of counter _before_
919  * accessing the counter control register. If a NMI hits, then it will
920  * not restart the counter.
921  */
922 void perf_counter_task_sched_out(struct task_struct *task,
923                                  struct task_struct *next, int cpu)
924 {
925         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
926         struct perf_counter_context *ctx = task->perf_counter_ctxp;
927         struct perf_counter_context *next_ctx;
928         struct pt_regs *regs;
929
930         if (likely(!ctx || !cpuctx->task_ctx))
931                 return;
932
933         update_context_time(ctx);
934
935         regs = task_pt_regs(task);
936         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
937
938         next_ctx = next->perf_counter_ctxp;
939         if (next_ctx && context_equiv(ctx, next_ctx)) {
940                 task->perf_counter_ctxp = next_ctx;
941                 next->perf_counter_ctxp = ctx;
942                 ctx->task = next;
943                 next_ctx->task = task;
944                 return;
945         }
946
947         __perf_counter_sched_out(ctx, cpuctx);
948
949         cpuctx->task_ctx = NULL;
950 }
951
952 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
953 {
954         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
955
956         if (!cpuctx->task_ctx)
957                 return;
958         __perf_counter_sched_out(ctx, cpuctx);
959         cpuctx->task_ctx = NULL;
960 }
961
962 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
963 {
964         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
965 }
966
967 static void
968 __perf_counter_sched_in(struct perf_counter_context *ctx,
969                         struct perf_cpu_context *cpuctx, int cpu)
970 {
971         struct perf_counter *counter;
972         int can_add_hw = 1;
973
974         spin_lock(&ctx->lock);
975         ctx->is_active = 1;
976         if (likely(!ctx->nr_counters))
977                 goto out;
978
979         ctx->timestamp = perf_clock();
980
981         perf_disable();
982
983         /*
984          * First go through the list and put on any pinned groups
985          * in order to give them the best chance of going on.
986          */
987         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
988                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
989                     !counter->hw_event.pinned)
990                         continue;
991                 if (counter->cpu != -1 && counter->cpu != cpu)
992                         continue;
993
994                 if (counter != counter->group_leader)
995                         counter_sched_in(counter, cpuctx, ctx, cpu);
996                 else {
997                         if (group_can_go_on(counter, cpuctx, 1))
998                                 group_sched_in(counter, cpuctx, ctx, cpu);
999                 }
1000
1001                 /*
1002                  * If this pinned group hasn't been scheduled,
1003                  * put it in error state.
1004                  */
1005                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1006                         update_group_times(counter);
1007                         counter->state = PERF_COUNTER_STATE_ERROR;
1008                 }
1009         }
1010
1011         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1012                 /*
1013                  * Ignore counters in OFF or ERROR state, and
1014                  * ignore pinned counters since we did them already.
1015                  */
1016                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1017                     counter->hw_event.pinned)
1018                         continue;
1019
1020                 /*
1021                  * Listen to the 'cpu' scheduling filter constraint
1022                  * of counters:
1023                  */
1024                 if (counter->cpu != -1 && counter->cpu != cpu)
1025                         continue;
1026
1027                 if (counter != counter->group_leader) {
1028                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1029                                 can_add_hw = 0;
1030                 } else {
1031                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1032                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1033                                         can_add_hw = 0;
1034                         }
1035                 }
1036         }
1037         perf_enable();
1038  out:
1039         spin_unlock(&ctx->lock);
1040 }
1041
1042 /*
1043  * Called from scheduler to add the counters of the current task
1044  * with interrupts disabled.
1045  *
1046  * We restore the counter value and then enable it.
1047  *
1048  * This does not protect us against NMI, but enable()
1049  * sets the enabled bit in the control field of counter _before_
1050  * accessing the counter control register. If a NMI hits, then it will
1051  * keep the counter running.
1052  */
1053 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1054 {
1055         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1056         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1057
1058         if (likely(!ctx))
1059                 return;
1060         if (cpuctx->task_ctx == ctx)
1061                 return;
1062         __perf_counter_sched_in(ctx, cpuctx, cpu);
1063         cpuctx->task_ctx = ctx;
1064 }
1065
1066 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1067 {
1068         struct perf_counter_context *ctx = &cpuctx->ctx;
1069
1070         __perf_counter_sched_in(ctx, cpuctx, cpu);
1071 }
1072
1073 int perf_counter_task_disable(void)
1074 {
1075         struct task_struct *curr = current;
1076         struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1077         struct perf_counter *counter;
1078         unsigned long flags;
1079
1080         if (!ctx || !ctx->nr_counters)
1081                 return 0;
1082
1083         local_irq_save(flags);
1084
1085         __perf_counter_task_sched_out(ctx);
1086
1087         spin_lock(&ctx->lock);
1088
1089         /*
1090          * Disable all the counters:
1091          */
1092         perf_disable();
1093
1094         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1095                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
1096                         update_group_times(counter);
1097                         counter->state = PERF_COUNTER_STATE_OFF;
1098                 }
1099         }
1100
1101         perf_enable();
1102
1103         spin_unlock_irqrestore(&ctx->lock, flags);
1104
1105         return 0;
1106 }
1107
1108 int perf_counter_task_enable(void)
1109 {
1110         struct task_struct *curr = current;
1111         struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1112         struct perf_counter *counter;
1113         unsigned long flags;
1114         int cpu;
1115
1116         if (!ctx || !ctx->nr_counters)
1117                 return 0;
1118
1119         local_irq_save(flags);
1120         cpu = smp_processor_id();
1121
1122         __perf_counter_task_sched_out(ctx);
1123
1124         spin_lock(&ctx->lock);
1125
1126         /*
1127          * Disable all the counters:
1128          */
1129         perf_disable();
1130
1131         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1132                 if (counter->state > PERF_COUNTER_STATE_OFF)
1133                         continue;
1134                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1135                 counter->tstamp_enabled =
1136                         ctx->time - counter->total_time_enabled;
1137                 counter->hw_event.disabled = 0;
1138         }
1139         perf_enable();
1140
1141         spin_unlock(&ctx->lock);
1142
1143         perf_counter_task_sched_in(curr, cpu);
1144
1145         local_irq_restore(flags);
1146
1147         return 0;
1148 }
1149
1150 static void perf_log_period(struct perf_counter *counter, u64 period);
1151
1152 static void perf_adjust_freq(struct perf_counter_context *ctx)
1153 {
1154         struct perf_counter *counter;
1155         u64 irq_period;
1156         u64 events, period;
1157         s64 delta;
1158
1159         spin_lock(&ctx->lock);
1160         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1161                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1162                         continue;
1163
1164                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1165                         continue;
1166
1167                 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1168                 period = div64_u64(events, counter->hw_event.irq_freq);
1169
1170                 delta = (s64)(1 + period - counter->hw.irq_period);
1171                 delta >>= 1;
1172
1173                 irq_period = counter->hw.irq_period + delta;
1174
1175                 if (!irq_period)
1176                         irq_period = 1;
1177
1178                 perf_log_period(counter, irq_period);
1179
1180                 counter->hw.irq_period = irq_period;
1181                 counter->hw.interrupts = 0;
1182         }
1183         spin_unlock(&ctx->lock);
1184 }
1185
1186 /*
1187  * Round-robin a context's counters:
1188  */
1189 static void rotate_ctx(struct perf_counter_context *ctx)
1190 {
1191         struct perf_counter *counter;
1192
1193         if (!ctx->nr_counters)
1194                 return;
1195
1196         spin_lock(&ctx->lock);
1197         /*
1198          * Rotate the first entry last (works just fine for group counters too):
1199          */
1200         perf_disable();
1201         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1202                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1203                 break;
1204         }
1205         perf_enable();
1206
1207         spin_unlock(&ctx->lock);
1208 }
1209
1210 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1211 {
1212         struct perf_cpu_context *cpuctx;
1213         struct perf_counter_context *ctx;
1214
1215         if (!atomic_read(&nr_counters))
1216                 return;
1217
1218         cpuctx = &per_cpu(perf_cpu_context, cpu);
1219         ctx = curr->perf_counter_ctxp;
1220
1221         perf_adjust_freq(&cpuctx->ctx);
1222         if (ctx)
1223                 perf_adjust_freq(ctx);
1224
1225         perf_counter_cpu_sched_out(cpuctx);
1226         if (ctx)
1227                 __perf_counter_task_sched_out(ctx);
1228
1229         rotate_ctx(&cpuctx->ctx);
1230         if (ctx)
1231                 rotate_ctx(ctx);
1232
1233         perf_counter_cpu_sched_in(cpuctx, cpu);
1234         if (ctx)
1235                 perf_counter_task_sched_in(curr, cpu);
1236 }
1237
1238 /*
1239  * Cross CPU call to read the hardware counter
1240  */
1241 static void __read(void *info)
1242 {
1243         struct perf_counter *counter = info;
1244         struct perf_counter_context *ctx = counter->ctx;
1245         unsigned long flags;
1246
1247         local_irq_save(flags);
1248         if (ctx->is_active)
1249                 update_context_time(ctx);
1250         counter->pmu->read(counter);
1251         update_counter_times(counter);
1252         local_irq_restore(flags);
1253 }
1254
1255 static u64 perf_counter_read(struct perf_counter *counter)
1256 {
1257         /*
1258          * If counter is enabled and currently active on a CPU, update the
1259          * value in the counter structure:
1260          */
1261         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1262                 smp_call_function_single(counter->oncpu,
1263                                          __read, counter, 1);
1264         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1265                 update_counter_times(counter);
1266         }
1267
1268         return atomic64_read(&counter->count);
1269 }
1270
1271 /*
1272  * Initialize the perf_counter context in a task_struct:
1273  */
1274 static void
1275 __perf_counter_init_context(struct perf_counter_context *ctx,
1276                             struct task_struct *task)
1277 {
1278         memset(ctx, 0, sizeof(*ctx));
1279         spin_lock_init(&ctx->lock);
1280         mutex_init(&ctx->mutex);
1281         INIT_LIST_HEAD(&ctx->counter_list);
1282         INIT_LIST_HEAD(&ctx->event_list);
1283         atomic_set(&ctx->refcount, 1);
1284         ctx->task = task;
1285 }
1286
1287 static void put_context(struct perf_counter_context *ctx)
1288 {
1289         if (ctx->task)
1290                 put_task_struct(ctx->task);
1291 }
1292
1293 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1294 {
1295         struct perf_cpu_context *cpuctx;
1296         struct perf_counter_context *ctx;
1297         struct perf_counter_context *tctx;
1298         struct task_struct *task;
1299
1300         /*
1301          * If cpu is not a wildcard then this is a percpu counter:
1302          */
1303         if (cpu != -1) {
1304                 /* Must be root to operate on a CPU counter: */
1305                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1306                         return ERR_PTR(-EACCES);
1307
1308                 if (cpu < 0 || cpu > num_possible_cpus())
1309                         return ERR_PTR(-EINVAL);
1310
1311                 /*
1312                  * We could be clever and allow to attach a counter to an
1313                  * offline CPU and activate it when the CPU comes up, but
1314                  * that's for later.
1315                  */
1316                 if (!cpu_isset(cpu, cpu_online_map))
1317                         return ERR_PTR(-ENODEV);
1318
1319                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1320                 ctx = &cpuctx->ctx;
1321
1322                 return ctx;
1323         }
1324
1325         rcu_read_lock();
1326         if (!pid)
1327                 task = current;
1328         else
1329                 task = find_task_by_vpid(pid);
1330         if (task)
1331                 get_task_struct(task);
1332         rcu_read_unlock();
1333
1334         if (!task)
1335                 return ERR_PTR(-ESRCH);
1336
1337         /* Reuse ptrace permission checks for now. */
1338         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1339                 put_task_struct(task);
1340                 return ERR_PTR(-EACCES);
1341         }
1342
1343         ctx = task->perf_counter_ctxp;
1344         if (!ctx) {
1345                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1346                 if (!ctx) {
1347                         put_task_struct(task);
1348                         return ERR_PTR(-ENOMEM);
1349                 }
1350                 __perf_counter_init_context(ctx, task);
1351                 /*
1352                  * Make sure other cpus see correct values for *ctx
1353                  * once task->perf_counter_ctxp is visible to them.
1354                  */
1355                 smp_wmb();
1356                 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1357                 if (tctx) {
1358                         /*
1359                          * We raced with some other task; use
1360                          * the context they set.
1361                          */
1362                         kfree(ctx);
1363                         ctx = tctx;
1364                 }
1365         }
1366
1367         return ctx;
1368 }
1369
1370 static void free_counter_rcu(struct rcu_head *head)
1371 {
1372         struct perf_counter *counter;
1373
1374         counter = container_of(head, struct perf_counter, rcu_head);
1375         put_ctx(counter->ctx);
1376         kfree(counter);
1377 }
1378
1379 static void perf_pending_sync(struct perf_counter *counter);
1380
1381 static void free_counter(struct perf_counter *counter)
1382 {
1383         perf_pending_sync(counter);
1384
1385         atomic_dec(&nr_counters);
1386         if (counter->hw_event.mmap)
1387                 atomic_dec(&nr_mmap_tracking);
1388         if (counter->hw_event.munmap)
1389                 atomic_dec(&nr_munmap_tracking);
1390         if (counter->hw_event.comm)
1391                 atomic_dec(&nr_comm_tracking);
1392
1393         if (counter->destroy)
1394                 counter->destroy(counter);
1395
1396         call_rcu(&counter->rcu_head, free_counter_rcu);
1397 }
1398
1399 /*
1400  * Called when the last reference to the file is gone.
1401  */
1402 static int perf_release(struct inode *inode, struct file *file)
1403 {
1404         struct perf_counter *counter = file->private_data;
1405         struct perf_counter_context *ctx = counter->ctx;
1406
1407         file->private_data = NULL;
1408
1409         mutex_lock(&ctx->mutex);
1410         mutex_lock(&counter->mutex);
1411
1412         perf_counter_remove_from_context(counter);
1413
1414         mutex_unlock(&counter->mutex);
1415         mutex_unlock(&ctx->mutex);
1416
1417         free_counter(counter);
1418         put_context(ctx);
1419
1420         return 0;
1421 }
1422
1423 /*
1424  * Read the performance counter - simple non blocking version for now
1425  */
1426 static ssize_t
1427 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1428 {
1429         u64 values[3];
1430         int n;
1431
1432         /*
1433          * Return end-of-file for a read on a counter that is in
1434          * error state (i.e. because it was pinned but it couldn't be
1435          * scheduled on to the CPU at some point).
1436          */
1437         if (counter->state == PERF_COUNTER_STATE_ERROR)
1438                 return 0;
1439
1440         mutex_lock(&counter->mutex);
1441         values[0] = perf_counter_read(counter);
1442         n = 1;
1443         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1444                 values[n++] = counter->total_time_enabled +
1445                         atomic64_read(&counter->child_total_time_enabled);
1446         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1447                 values[n++] = counter->total_time_running +
1448                         atomic64_read(&counter->child_total_time_running);
1449         mutex_unlock(&counter->mutex);
1450
1451         if (count < n * sizeof(u64))
1452                 return -EINVAL;
1453         count = n * sizeof(u64);
1454
1455         if (copy_to_user(buf, values, count))
1456                 return -EFAULT;
1457
1458         return count;
1459 }
1460
1461 static ssize_t
1462 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1463 {
1464         struct perf_counter *counter = file->private_data;
1465
1466         return perf_read_hw(counter, buf, count);
1467 }
1468
1469 static unsigned int perf_poll(struct file *file, poll_table *wait)
1470 {
1471         struct perf_counter *counter = file->private_data;
1472         struct perf_mmap_data *data;
1473         unsigned int events = POLL_HUP;
1474
1475         rcu_read_lock();
1476         data = rcu_dereference(counter->data);
1477         if (data)
1478                 events = atomic_xchg(&data->poll, 0);
1479         rcu_read_unlock();
1480
1481         poll_wait(file, &counter->waitq, wait);
1482
1483         return events;
1484 }
1485
1486 static void perf_counter_reset(struct perf_counter *counter)
1487 {
1488         (void)perf_counter_read(counter);
1489         atomic64_set(&counter->count, 0);
1490         perf_counter_update_userpage(counter);
1491 }
1492
1493 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1494                                           void (*func)(struct perf_counter *))
1495 {
1496         struct perf_counter_context *ctx = counter->ctx;
1497         struct perf_counter *sibling;
1498
1499         spin_lock_irq(&ctx->lock);
1500         counter = counter->group_leader;
1501
1502         func(counter);
1503         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1504                 func(sibling);
1505         spin_unlock_irq(&ctx->lock);
1506 }
1507
1508 static void perf_counter_for_each_child(struct perf_counter *counter,
1509                                         void (*func)(struct perf_counter *))
1510 {
1511         struct perf_counter *child;
1512
1513         mutex_lock(&counter->mutex);
1514         func(counter);
1515         list_for_each_entry(child, &counter->child_list, child_list)
1516                 func(child);
1517         mutex_unlock(&counter->mutex);
1518 }
1519
1520 static void perf_counter_for_each(struct perf_counter *counter,
1521                                   void (*func)(struct perf_counter *))
1522 {
1523         struct perf_counter *child;
1524
1525         mutex_lock(&counter->mutex);
1526         perf_counter_for_each_sibling(counter, func);
1527         list_for_each_entry(child, &counter->child_list, child_list)
1528                 perf_counter_for_each_sibling(child, func);
1529         mutex_unlock(&counter->mutex);
1530 }
1531
1532 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1533 {
1534         struct perf_counter *counter = file->private_data;
1535         void (*func)(struct perf_counter *);
1536         u32 flags = arg;
1537
1538         switch (cmd) {
1539         case PERF_COUNTER_IOC_ENABLE:
1540                 func = perf_counter_enable;
1541                 break;
1542         case PERF_COUNTER_IOC_DISABLE:
1543                 func = perf_counter_disable;
1544                 break;
1545         case PERF_COUNTER_IOC_RESET:
1546                 func = perf_counter_reset;
1547                 break;
1548
1549         case PERF_COUNTER_IOC_REFRESH:
1550                 return perf_counter_refresh(counter, arg);
1551         default:
1552                 return -ENOTTY;
1553         }
1554
1555         if (flags & PERF_IOC_FLAG_GROUP)
1556                 perf_counter_for_each(counter, func);
1557         else
1558                 perf_counter_for_each_child(counter, func);
1559
1560         return 0;
1561 }
1562
1563 /*
1564  * Callers need to ensure there can be no nesting of this function, otherwise
1565  * the seqlock logic goes bad. We can not serialize this because the arch
1566  * code calls this from NMI context.
1567  */
1568 void perf_counter_update_userpage(struct perf_counter *counter)
1569 {
1570         struct perf_mmap_data *data;
1571         struct perf_counter_mmap_page *userpg;
1572
1573         rcu_read_lock();
1574         data = rcu_dereference(counter->data);
1575         if (!data)
1576                 goto unlock;
1577
1578         userpg = data->user_page;
1579
1580         /*
1581          * Disable preemption so as to not let the corresponding user-space
1582          * spin too long if we get preempted.
1583          */
1584         preempt_disable();
1585         ++userpg->lock;
1586         barrier();
1587         userpg->index = counter->hw.idx;
1588         userpg->offset = atomic64_read(&counter->count);
1589         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1590                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1591
1592         barrier();
1593         ++userpg->lock;
1594         preempt_enable();
1595 unlock:
1596         rcu_read_unlock();
1597 }
1598
1599 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1600 {
1601         struct perf_counter *counter = vma->vm_file->private_data;
1602         struct perf_mmap_data *data;
1603         int ret = VM_FAULT_SIGBUS;
1604
1605         rcu_read_lock();
1606         data = rcu_dereference(counter->data);
1607         if (!data)
1608                 goto unlock;
1609
1610         if (vmf->pgoff == 0) {
1611                 vmf->page = virt_to_page(data->user_page);
1612         } else {
1613                 int nr = vmf->pgoff - 1;
1614
1615                 if ((unsigned)nr > data->nr_pages)
1616                         goto unlock;
1617
1618                 vmf->page = virt_to_page(data->data_pages[nr]);
1619         }
1620         get_page(vmf->page);
1621         ret = 0;
1622 unlock:
1623         rcu_read_unlock();
1624
1625         return ret;
1626 }
1627
1628 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1629 {
1630         struct perf_mmap_data *data;
1631         unsigned long size;
1632         int i;
1633
1634         WARN_ON(atomic_read(&counter->mmap_count));
1635
1636         size = sizeof(struct perf_mmap_data);
1637         size += nr_pages * sizeof(void *);
1638
1639         data = kzalloc(size, GFP_KERNEL);
1640         if (!data)
1641                 goto fail;
1642
1643         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1644         if (!data->user_page)
1645                 goto fail_user_page;
1646
1647         for (i = 0; i < nr_pages; i++) {
1648                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1649                 if (!data->data_pages[i])
1650                         goto fail_data_pages;
1651         }
1652
1653         data->nr_pages = nr_pages;
1654         atomic_set(&data->lock, -1);
1655
1656         rcu_assign_pointer(counter->data, data);
1657
1658         return 0;
1659
1660 fail_data_pages:
1661         for (i--; i >= 0; i--)
1662                 free_page((unsigned long)data->data_pages[i]);
1663
1664         free_page((unsigned long)data->user_page);
1665
1666 fail_user_page:
1667         kfree(data);
1668
1669 fail:
1670         return -ENOMEM;
1671 }
1672
1673 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1674 {
1675         struct perf_mmap_data *data = container_of(rcu_head,
1676                         struct perf_mmap_data, rcu_head);
1677         int i;
1678
1679         free_page((unsigned long)data->user_page);
1680         for (i = 0; i < data->nr_pages; i++)
1681                 free_page((unsigned long)data->data_pages[i]);
1682         kfree(data);
1683 }
1684
1685 static void perf_mmap_data_free(struct perf_counter *counter)
1686 {
1687         struct perf_mmap_data *data = counter->data;
1688
1689         WARN_ON(atomic_read(&counter->mmap_count));
1690
1691         rcu_assign_pointer(counter->data, NULL);
1692         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1693 }
1694
1695 static void perf_mmap_open(struct vm_area_struct *vma)
1696 {
1697         struct perf_counter *counter = vma->vm_file->private_data;
1698
1699         atomic_inc(&counter->mmap_count);
1700 }
1701
1702 static void perf_mmap_close(struct vm_area_struct *vma)
1703 {
1704         struct perf_counter *counter = vma->vm_file->private_data;
1705
1706         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1707                                       &counter->mmap_mutex)) {
1708                 struct user_struct *user = current_user();
1709
1710                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1711                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1712                 perf_mmap_data_free(counter);
1713                 mutex_unlock(&counter->mmap_mutex);
1714         }
1715 }
1716
1717 static struct vm_operations_struct perf_mmap_vmops = {
1718         .open  = perf_mmap_open,
1719         .close = perf_mmap_close,
1720         .fault = perf_mmap_fault,
1721 };
1722
1723 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1724 {
1725         struct perf_counter *counter = file->private_data;
1726         struct user_struct *user = current_user();
1727         unsigned long vma_size;
1728         unsigned long nr_pages;
1729         unsigned long user_locked, user_lock_limit;
1730         unsigned long locked, lock_limit;
1731         long user_extra, extra;
1732         int ret = 0;
1733
1734         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1735                 return -EINVAL;
1736
1737         vma_size = vma->vm_end - vma->vm_start;
1738         nr_pages = (vma_size / PAGE_SIZE) - 1;
1739
1740         /*
1741          * If we have data pages ensure they're a power-of-two number, so we
1742          * can do bitmasks instead of modulo.
1743          */
1744         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1745                 return -EINVAL;
1746
1747         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1748                 return -EINVAL;
1749
1750         if (vma->vm_pgoff != 0)
1751                 return -EINVAL;
1752
1753         mutex_lock(&counter->mmap_mutex);
1754         if (atomic_inc_not_zero(&counter->mmap_count)) {
1755                 if (nr_pages != counter->data->nr_pages)
1756                         ret = -EINVAL;
1757                 goto unlock;
1758         }
1759
1760         user_extra = nr_pages + 1;
1761         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1762         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1763
1764         extra = 0;
1765         if (user_locked > user_lock_limit)
1766                 extra = user_locked - user_lock_limit;
1767
1768         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1769         lock_limit >>= PAGE_SHIFT;
1770         locked = vma->vm_mm->locked_vm + extra;
1771
1772         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1773                 ret = -EPERM;
1774                 goto unlock;
1775         }
1776
1777         WARN_ON(counter->data);
1778         ret = perf_mmap_data_alloc(counter, nr_pages);
1779         if (ret)
1780                 goto unlock;
1781
1782         atomic_set(&counter->mmap_count, 1);
1783         atomic_long_add(user_extra, &user->locked_vm);
1784         vma->vm_mm->locked_vm += extra;
1785         counter->data->nr_locked = extra;
1786 unlock:
1787         mutex_unlock(&counter->mmap_mutex);
1788
1789         vma->vm_flags &= ~VM_MAYWRITE;
1790         vma->vm_flags |= VM_RESERVED;
1791         vma->vm_ops = &perf_mmap_vmops;
1792
1793         return ret;
1794 }
1795
1796 static int perf_fasync(int fd, struct file *filp, int on)
1797 {
1798         struct perf_counter *counter = filp->private_data;
1799         struct inode *inode = filp->f_path.dentry->d_inode;
1800         int retval;
1801
1802         mutex_lock(&inode->i_mutex);
1803         retval = fasync_helper(fd, filp, on, &counter->fasync);
1804         mutex_unlock(&inode->i_mutex);
1805
1806         if (retval < 0)
1807                 return retval;
1808
1809         return 0;
1810 }
1811
1812 static const struct file_operations perf_fops = {
1813         .release                = perf_release,
1814         .read                   = perf_read,
1815         .poll                   = perf_poll,
1816         .unlocked_ioctl         = perf_ioctl,
1817         .compat_ioctl           = perf_ioctl,
1818         .mmap                   = perf_mmap,
1819         .fasync                 = perf_fasync,
1820 };
1821
1822 /*
1823  * Perf counter wakeup
1824  *
1825  * If there's data, ensure we set the poll() state and publish everything
1826  * to user-space before waking everybody up.
1827  */
1828
1829 void perf_counter_wakeup(struct perf_counter *counter)
1830 {
1831         wake_up_all(&counter->waitq);
1832
1833         if (counter->pending_kill) {
1834                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1835                 counter->pending_kill = 0;
1836         }
1837 }
1838
1839 /*
1840  * Pending wakeups
1841  *
1842  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1843  *
1844  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1845  * single linked list and use cmpxchg() to add entries lockless.
1846  */
1847
1848 static void perf_pending_counter(struct perf_pending_entry *entry)
1849 {
1850         struct perf_counter *counter = container_of(entry,
1851                         struct perf_counter, pending);
1852
1853         if (counter->pending_disable) {
1854                 counter->pending_disable = 0;
1855                 perf_counter_disable(counter);
1856         }
1857
1858         if (counter->pending_wakeup) {
1859                 counter->pending_wakeup = 0;
1860                 perf_counter_wakeup(counter);
1861         }
1862 }
1863
1864 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1865
1866 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1867         PENDING_TAIL,
1868 };
1869
1870 static void perf_pending_queue(struct perf_pending_entry *entry,
1871                                void (*func)(struct perf_pending_entry *))
1872 {
1873         struct perf_pending_entry **head;
1874
1875         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1876                 return;
1877
1878         entry->func = func;
1879
1880         head = &get_cpu_var(perf_pending_head);
1881
1882         do {
1883                 entry->next = *head;
1884         } while (cmpxchg(head, entry->next, entry) != entry->next);
1885
1886         set_perf_counter_pending();
1887
1888         put_cpu_var(perf_pending_head);
1889 }
1890
1891 static int __perf_pending_run(void)
1892 {
1893         struct perf_pending_entry *list;
1894         int nr = 0;
1895
1896         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1897         while (list != PENDING_TAIL) {
1898                 void (*func)(struct perf_pending_entry *);
1899                 struct perf_pending_entry *entry = list;
1900
1901                 list = list->next;
1902
1903                 func = entry->func;
1904                 entry->next = NULL;
1905                 /*
1906                  * Ensure we observe the unqueue before we issue the wakeup,
1907                  * so that we won't be waiting forever.
1908                  * -- see perf_not_pending().
1909                  */
1910                 smp_wmb();
1911
1912                 func(entry);
1913                 nr++;
1914         }
1915
1916         return nr;
1917 }
1918
1919 static inline int perf_not_pending(struct perf_counter *counter)
1920 {
1921         /*
1922          * If we flush on whatever cpu we run, there is a chance we don't
1923          * need to wait.
1924          */
1925         get_cpu();
1926         __perf_pending_run();
1927         put_cpu();
1928
1929         /*
1930          * Ensure we see the proper queue state before going to sleep
1931          * so that we do not miss the wakeup. -- see perf_pending_handle()
1932          */
1933         smp_rmb();
1934         return counter->pending.next == NULL;
1935 }
1936
1937 static void perf_pending_sync(struct perf_counter *counter)
1938 {
1939         wait_event(counter->waitq, perf_not_pending(counter));
1940 }
1941
1942 void perf_counter_do_pending(void)
1943 {
1944         __perf_pending_run();
1945 }
1946
1947 /*
1948  * Callchain support -- arch specific
1949  */
1950
1951 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 {
1953         return NULL;
1954 }
1955
1956 /*
1957  * Output
1958  */
1959
1960 struct perf_output_handle {
1961         struct perf_counter     *counter;
1962         struct perf_mmap_data   *data;
1963         unsigned int            offset;
1964         unsigned int            head;
1965         int                     nmi;
1966         int                     overflow;
1967         int                     locked;
1968         unsigned long           flags;
1969 };
1970
1971 static void perf_output_wakeup(struct perf_output_handle *handle)
1972 {
1973         atomic_set(&handle->data->poll, POLL_IN);
1974
1975         if (handle->nmi) {
1976                 handle->counter->pending_wakeup = 1;
1977                 perf_pending_queue(&handle->counter->pending,
1978                                    perf_pending_counter);
1979         } else
1980                 perf_counter_wakeup(handle->counter);
1981 }
1982
1983 /*
1984  * Curious locking construct.
1985  *
1986  * We need to ensure a later event doesn't publish a head when a former
1987  * event isn't done writing. However since we need to deal with NMIs we
1988  * cannot fully serialize things.
1989  *
1990  * What we do is serialize between CPUs so we only have to deal with NMI
1991  * nesting on a single CPU.
1992  *
1993  * We only publish the head (and generate a wakeup) when the outer-most
1994  * event completes.
1995  */
1996 static void perf_output_lock(struct perf_output_handle *handle)
1997 {
1998         struct perf_mmap_data *data = handle->data;
1999         int cpu;
2000
2001         handle->locked = 0;
2002
2003         local_irq_save(handle->flags);
2004         cpu = smp_processor_id();
2005
2006         if (in_nmi() && atomic_read(&data->lock) == cpu)
2007                 return;
2008
2009         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2010                 cpu_relax();
2011
2012         handle->locked = 1;
2013 }
2014
2015 static void perf_output_unlock(struct perf_output_handle *handle)
2016 {
2017         struct perf_mmap_data *data = handle->data;
2018         int head, cpu;
2019
2020         data->done_head = data->head;
2021
2022         if (!handle->locked)
2023                 goto out;
2024
2025 again:
2026         /*
2027          * The xchg implies a full barrier that ensures all writes are done
2028          * before we publish the new head, matched by a rmb() in userspace when
2029          * reading this position.
2030          */
2031         while ((head = atomic_xchg(&data->done_head, 0)))
2032                 data->user_page->data_head = head;
2033
2034         /*
2035          * NMI can happen here, which means we can miss a done_head update.
2036          */
2037
2038         cpu = atomic_xchg(&data->lock, -1);
2039         WARN_ON_ONCE(cpu != smp_processor_id());
2040
2041         /*
2042          * Therefore we have to validate we did not indeed do so.
2043          */
2044         if (unlikely(atomic_read(&data->done_head))) {
2045                 /*
2046                  * Since we had it locked, we can lock it again.
2047                  */
2048                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2049                         cpu_relax();
2050
2051                 goto again;
2052         }
2053
2054         if (atomic_xchg(&data->wakeup, 0))
2055                 perf_output_wakeup(handle);
2056 out:
2057         local_irq_restore(handle->flags);
2058 }
2059
2060 static int perf_output_begin(struct perf_output_handle *handle,
2061                              struct perf_counter *counter, unsigned int size,
2062                              int nmi, int overflow)
2063 {
2064         struct perf_mmap_data *data;
2065         unsigned int offset, head;
2066
2067         /*
2068          * For inherited counters we send all the output towards the parent.
2069          */
2070         if (counter->parent)
2071                 counter = counter->parent;
2072
2073         rcu_read_lock();
2074         data = rcu_dereference(counter->data);
2075         if (!data)
2076                 goto out;
2077
2078         handle->data     = data;
2079         handle->counter  = counter;
2080         handle->nmi      = nmi;
2081         handle->overflow = overflow;
2082
2083         if (!data->nr_pages)
2084                 goto fail;
2085
2086         perf_output_lock(handle);
2087
2088         do {
2089                 offset = head = atomic_read(&data->head);
2090                 head += size;
2091         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2092
2093         handle->offset  = offset;
2094         handle->head    = head;
2095
2096         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2097                 atomic_set(&data->wakeup, 1);
2098
2099         return 0;
2100
2101 fail:
2102         perf_output_wakeup(handle);
2103 out:
2104         rcu_read_unlock();
2105
2106         return -ENOSPC;
2107 }
2108
2109 static void perf_output_copy(struct perf_output_handle *handle,
2110                              void *buf, unsigned int len)
2111 {
2112         unsigned int pages_mask;
2113         unsigned int offset;
2114         unsigned int size;
2115         void **pages;
2116
2117         offset          = handle->offset;
2118         pages_mask      = handle->data->nr_pages - 1;
2119         pages           = handle->data->data_pages;
2120
2121         do {
2122                 unsigned int page_offset;
2123                 int nr;
2124
2125                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2126                 page_offset = offset & (PAGE_SIZE - 1);
2127                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2128
2129                 memcpy(pages[nr] + page_offset, buf, size);
2130
2131                 len         -= size;
2132                 buf         += size;
2133                 offset      += size;
2134         } while (len);
2135
2136         handle->offset = offset;
2137
2138         /*
2139          * Check we didn't copy past our reservation window, taking the
2140          * possible unsigned int wrap into account.
2141          */
2142         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2143 }
2144
2145 #define perf_output_put(handle, x) \
2146         perf_output_copy((handle), &(x), sizeof(x))
2147
2148 static void perf_output_end(struct perf_output_handle *handle)
2149 {
2150         struct perf_counter *counter = handle->counter;
2151         struct perf_mmap_data *data = handle->data;
2152
2153         int wakeup_events = counter->hw_event.wakeup_events;
2154
2155         if (handle->overflow && wakeup_events) {
2156                 int events = atomic_inc_return(&data->events);
2157                 if (events >= wakeup_events) {
2158                         atomic_sub(wakeup_events, &data->events);
2159                         atomic_set(&data->wakeup, 1);
2160                 }
2161         }
2162
2163         perf_output_unlock(handle);
2164         rcu_read_unlock();
2165 }
2166
2167 static void perf_counter_output(struct perf_counter *counter,
2168                                 int nmi, struct pt_regs *regs, u64 addr)
2169 {
2170         int ret;
2171         u64 record_type = counter->hw_event.record_type;
2172         struct perf_output_handle handle;
2173         struct perf_event_header header;
2174         u64 ip;
2175         struct {
2176                 u32 pid, tid;
2177         } tid_entry;
2178         struct {
2179                 u64 event;
2180                 u64 counter;
2181         } group_entry;
2182         struct perf_callchain_entry *callchain = NULL;
2183         int callchain_size = 0;
2184         u64 time;
2185         struct {
2186                 u32 cpu, reserved;
2187         } cpu_entry;
2188
2189         header.type = 0;
2190         header.size = sizeof(header);
2191
2192         header.misc = PERF_EVENT_MISC_OVERFLOW;
2193         header.misc |= perf_misc_flags(regs);
2194
2195         if (record_type & PERF_RECORD_IP) {
2196                 ip = perf_instruction_pointer(regs);
2197                 header.type |= PERF_RECORD_IP;
2198                 header.size += sizeof(ip);
2199         }
2200
2201         if (record_type & PERF_RECORD_TID) {
2202                 /* namespace issues */
2203                 tid_entry.pid = current->group_leader->pid;
2204                 tid_entry.tid = current->pid;
2205
2206                 header.type |= PERF_RECORD_TID;
2207                 header.size += sizeof(tid_entry);
2208         }
2209
2210         if (record_type & PERF_RECORD_TIME) {
2211                 /*
2212                  * Maybe do better on x86 and provide cpu_clock_nmi()
2213                  */
2214                 time = sched_clock();
2215
2216                 header.type |= PERF_RECORD_TIME;
2217                 header.size += sizeof(u64);
2218         }
2219
2220         if (record_type & PERF_RECORD_ADDR) {
2221                 header.type |= PERF_RECORD_ADDR;
2222                 header.size += sizeof(u64);
2223         }
2224
2225         if (record_type & PERF_RECORD_CONFIG) {
2226                 header.type |= PERF_RECORD_CONFIG;
2227                 header.size += sizeof(u64);
2228         }
2229
2230         if (record_type & PERF_RECORD_CPU) {
2231                 header.type |= PERF_RECORD_CPU;
2232                 header.size += sizeof(cpu_entry);
2233
2234                 cpu_entry.cpu = raw_smp_processor_id();
2235         }
2236
2237         if (record_type & PERF_RECORD_GROUP) {
2238                 header.type |= PERF_RECORD_GROUP;
2239                 header.size += sizeof(u64) +
2240                         counter->nr_siblings * sizeof(group_entry);
2241         }
2242
2243         if (record_type & PERF_RECORD_CALLCHAIN) {
2244                 callchain = perf_callchain(regs);
2245
2246                 if (callchain) {
2247                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2248
2249                         header.type |= PERF_RECORD_CALLCHAIN;
2250                         header.size += callchain_size;
2251                 }
2252         }
2253
2254         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2255         if (ret)
2256                 return;
2257
2258         perf_output_put(&handle, header);
2259
2260         if (record_type & PERF_RECORD_IP)
2261                 perf_output_put(&handle, ip);
2262
2263         if (record_type & PERF_RECORD_TID)
2264                 perf_output_put(&handle, tid_entry);
2265
2266         if (record_type & PERF_RECORD_TIME)
2267                 perf_output_put(&handle, time);
2268
2269         if (record_type & PERF_RECORD_ADDR)
2270                 perf_output_put(&handle, addr);
2271
2272         if (record_type & PERF_RECORD_CONFIG)
2273                 perf_output_put(&handle, counter->hw_event.config);
2274
2275         if (record_type & PERF_RECORD_CPU)
2276                 perf_output_put(&handle, cpu_entry);
2277
2278         /*
2279          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2280          */
2281         if (record_type & PERF_RECORD_GROUP) {
2282                 struct perf_counter *leader, *sub;
2283                 u64 nr = counter->nr_siblings;
2284
2285                 perf_output_put(&handle, nr);
2286
2287                 leader = counter->group_leader;
2288                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2289                         if (sub != counter)
2290                                 sub->pmu->read(sub);
2291
2292                         group_entry.event = sub->hw_event.config;
2293                         group_entry.counter = atomic64_read(&sub->count);
2294
2295                         perf_output_put(&handle, group_entry);
2296                 }
2297         }
2298
2299         if (callchain)
2300                 perf_output_copy(&handle, callchain, callchain_size);
2301
2302         perf_output_end(&handle);
2303 }
2304
2305 /*
2306  * comm tracking
2307  */
2308
2309 struct perf_comm_event {
2310         struct task_struct      *task;
2311         char                    *comm;
2312         int                     comm_size;
2313
2314         struct {
2315                 struct perf_event_header        header;
2316
2317                 u32                             pid;
2318                 u32                             tid;
2319         } event;
2320 };
2321
2322 static void perf_counter_comm_output(struct perf_counter *counter,
2323                                      struct perf_comm_event *comm_event)
2324 {
2325         struct perf_output_handle handle;
2326         int size = comm_event->event.header.size;
2327         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2328
2329         if (ret)
2330                 return;
2331
2332         perf_output_put(&handle, comm_event->event);
2333         perf_output_copy(&handle, comm_event->comm,
2334                                    comm_event->comm_size);
2335         perf_output_end(&handle);
2336 }
2337
2338 static int perf_counter_comm_match(struct perf_counter *counter,
2339                                    struct perf_comm_event *comm_event)
2340 {
2341         if (counter->hw_event.comm &&
2342             comm_event->event.header.type == PERF_EVENT_COMM)
2343                 return 1;
2344
2345         return 0;
2346 }
2347
2348 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2349                                   struct perf_comm_event *comm_event)
2350 {
2351         struct perf_counter *counter;
2352
2353         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2354                 return;
2355
2356         rcu_read_lock();
2357         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2358                 if (perf_counter_comm_match(counter, comm_event))
2359                         perf_counter_comm_output(counter, comm_event);
2360         }
2361         rcu_read_unlock();
2362 }
2363
2364 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2365 {
2366         struct perf_cpu_context *cpuctx;
2367         unsigned int size;
2368         char *comm = comm_event->task->comm;
2369
2370         size = ALIGN(strlen(comm)+1, sizeof(u64));
2371
2372         comm_event->comm = comm;
2373         comm_event->comm_size = size;
2374
2375         comm_event->event.header.size = sizeof(comm_event->event) + size;
2376
2377         cpuctx = &get_cpu_var(perf_cpu_context);
2378         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2379         put_cpu_var(perf_cpu_context);
2380
2381         perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2382 }
2383
2384 void perf_counter_comm(struct task_struct *task)
2385 {
2386         struct perf_comm_event comm_event;
2387
2388         if (!atomic_read(&nr_comm_tracking))
2389                 return;
2390         if (!current->perf_counter_ctxp)
2391                 return;
2392
2393         comm_event = (struct perf_comm_event){
2394                 .task   = task,
2395                 .event  = {
2396                         .header = { .type = PERF_EVENT_COMM, },
2397                         .pid    = task->group_leader->pid,
2398                         .tid    = task->pid,
2399                 },
2400         };
2401
2402         perf_counter_comm_event(&comm_event);
2403 }
2404
2405 /*
2406  * mmap tracking
2407  */
2408
2409 struct perf_mmap_event {
2410         struct file     *file;
2411         char            *file_name;
2412         int             file_size;
2413
2414         struct {
2415                 struct perf_event_header        header;
2416
2417                 u32                             pid;
2418                 u32                             tid;
2419                 u64                             start;
2420                 u64                             len;
2421                 u64                             pgoff;
2422         } event;
2423 };
2424
2425 static void perf_counter_mmap_output(struct perf_counter *counter,
2426                                      struct perf_mmap_event *mmap_event)
2427 {
2428         struct perf_output_handle handle;
2429         int size = mmap_event->event.header.size;
2430         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2431
2432         if (ret)
2433                 return;
2434
2435         perf_output_put(&handle, mmap_event->event);
2436         perf_output_copy(&handle, mmap_event->file_name,
2437                                    mmap_event->file_size);
2438         perf_output_end(&handle);
2439 }
2440
2441 static int perf_counter_mmap_match(struct perf_counter *counter,
2442                                    struct perf_mmap_event *mmap_event)
2443 {
2444         if (counter->hw_event.mmap &&
2445             mmap_event->event.header.type == PERF_EVENT_MMAP)
2446                 return 1;
2447
2448         if (counter->hw_event.munmap &&
2449             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2450                 return 1;
2451
2452         return 0;
2453 }
2454
2455 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2456                                   struct perf_mmap_event *mmap_event)
2457 {
2458         struct perf_counter *counter;
2459
2460         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2461                 return;
2462
2463         rcu_read_lock();
2464         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2465                 if (perf_counter_mmap_match(counter, mmap_event))
2466                         perf_counter_mmap_output(counter, mmap_event);
2467         }
2468         rcu_read_unlock();
2469 }
2470
2471 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2472 {
2473         struct perf_cpu_context *cpuctx;
2474         struct file *file = mmap_event->file;
2475         unsigned int size;
2476         char tmp[16];
2477         char *buf = NULL;
2478         char *name;
2479
2480         if (file) {
2481                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2482                 if (!buf) {
2483                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2484                         goto got_name;
2485                 }
2486                 name = d_path(&file->f_path, buf, PATH_MAX);
2487                 if (IS_ERR(name)) {
2488                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2489                         goto got_name;
2490                 }
2491         } else {
2492                 name = strncpy(tmp, "//anon", sizeof(tmp));
2493                 goto got_name;
2494         }
2495
2496 got_name:
2497         size = ALIGN(strlen(name)+1, sizeof(u64));
2498
2499         mmap_event->file_name = name;
2500         mmap_event->file_size = size;
2501
2502         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2503
2504         cpuctx = &get_cpu_var(perf_cpu_context);
2505         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2506         put_cpu_var(perf_cpu_context);
2507
2508         perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2509
2510         kfree(buf);
2511 }
2512
2513 void perf_counter_mmap(unsigned long addr, unsigned long len,
2514                        unsigned long pgoff, struct file *file)
2515 {
2516         struct perf_mmap_event mmap_event;
2517
2518         if (!atomic_read(&nr_mmap_tracking))
2519                 return;
2520         if (!current->perf_counter_ctxp)
2521                 return;
2522
2523         mmap_event = (struct perf_mmap_event){
2524                 .file   = file,
2525                 .event  = {
2526                         .header = { .type = PERF_EVENT_MMAP, },
2527                         .pid    = current->group_leader->pid,
2528                         .tid    = current->pid,
2529                         .start  = addr,
2530                         .len    = len,
2531                         .pgoff  = pgoff,
2532                 },
2533         };
2534
2535         perf_counter_mmap_event(&mmap_event);
2536 }
2537
2538 void perf_counter_munmap(unsigned long addr, unsigned long len,
2539                          unsigned long pgoff, struct file *file)
2540 {
2541         struct perf_mmap_event mmap_event;
2542
2543         if (!atomic_read(&nr_munmap_tracking))
2544                 return;
2545
2546         mmap_event = (struct perf_mmap_event){
2547                 .file   = file,
2548                 .event  = {
2549                         .header = { .type = PERF_EVENT_MUNMAP, },
2550                         .pid    = current->group_leader->pid,
2551                         .tid    = current->pid,
2552                         .start  = addr,
2553                         .len    = len,
2554                         .pgoff  = pgoff,
2555                 },
2556         };
2557
2558         perf_counter_mmap_event(&mmap_event);
2559 }
2560
2561 /*
2562  *
2563  */
2564
2565 static void perf_log_period(struct perf_counter *counter, u64 period)
2566 {
2567         struct perf_output_handle handle;
2568         int ret;
2569
2570         struct {
2571                 struct perf_event_header        header;
2572                 u64                             time;
2573                 u64                             period;
2574         } freq_event = {
2575                 .header = {
2576                         .type = PERF_EVENT_PERIOD,
2577                         .misc = 0,
2578                         .size = sizeof(freq_event),
2579                 },
2580                 .time = sched_clock(),
2581                 .period = period,
2582         };
2583
2584         if (counter->hw.irq_period == period)
2585                 return;
2586
2587         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2588         if (ret)
2589                 return;
2590
2591         perf_output_put(&handle, freq_event);
2592         perf_output_end(&handle);
2593 }
2594
2595 /*
2596  * Generic counter overflow handling.
2597  */
2598
2599 int perf_counter_overflow(struct perf_counter *counter,
2600                           int nmi, struct pt_regs *regs, u64 addr)
2601 {
2602         int events = atomic_read(&counter->event_limit);
2603         int ret = 0;
2604
2605         counter->hw.interrupts++;
2606
2607         /*
2608          * XXX event_limit might not quite work as expected on inherited
2609          * counters
2610          */
2611
2612         counter->pending_kill = POLL_IN;
2613         if (events && atomic_dec_and_test(&counter->event_limit)) {
2614                 ret = 1;
2615                 counter->pending_kill = POLL_HUP;
2616                 if (nmi) {
2617                         counter->pending_disable = 1;
2618                         perf_pending_queue(&counter->pending,
2619                                            perf_pending_counter);
2620                 } else
2621                         perf_counter_disable(counter);
2622         }
2623
2624         perf_counter_output(counter, nmi, regs, addr);
2625         return ret;
2626 }
2627
2628 /*
2629  * Generic software counter infrastructure
2630  */
2631
2632 static void perf_swcounter_update(struct perf_counter *counter)
2633 {
2634         struct hw_perf_counter *hwc = &counter->hw;
2635         u64 prev, now;
2636         s64 delta;
2637
2638 again:
2639         prev = atomic64_read(&hwc->prev_count);
2640         now = atomic64_read(&hwc->count);
2641         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2642                 goto again;
2643
2644         delta = now - prev;
2645
2646         atomic64_add(delta, &counter->count);
2647         atomic64_sub(delta, &hwc->period_left);
2648 }
2649
2650 static void perf_swcounter_set_period(struct perf_counter *counter)
2651 {
2652         struct hw_perf_counter *hwc = &counter->hw;
2653         s64 left = atomic64_read(&hwc->period_left);
2654         s64 period = hwc->irq_period;
2655
2656         if (unlikely(left <= -period)) {
2657                 left = period;
2658                 atomic64_set(&hwc->period_left, left);
2659         }
2660
2661         if (unlikely(left <= 0)) {
2662                 left += period;
2663                 atomic64_add(period, &hwc->period_left);
2664         }
2665
2666         atomic64_set(&hwc->prev_count, -left);
2667         atomic64_set(&hwc->count, -left);
2668 }
2669
2670 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2671 {
2672         enum hrtimer_restart ret = HRTIMER_RESTART;
2673         struct perf_counter *counter;
2674         struct pt_regs *regs;
2675         u64 period;
2676
2677         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2678         counter->pmu->read(counter);
2679
2680         regs = get_irq_regs();
2681         /*
2682          * In case we exclude kernel IPs or are somehow not in interrupt
2683          * context, provide the next best thing, the user IP.
2684          */
2685         if ((counter->hw_event.exclude_kernel || !regs) &&
2686                         !counter->hw_event.exclude_user)
2687                 regs = task_pt_regs(current);
2688
2689         if (regs) {
2690                 if (perf_counter_overflow(counter, 0, regs, 0))
2691                         ret = HRTIMER_NORESTART;
2692         }
2693
2694         period = max_t(u64, 10000, counter->hw.irq_period);
2695         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2696
2697         return ret;
2698 }
2699
2700 static void perf_swcounter_overflow(struct perf_counter *counter,
2701                                     int nmi, struct pt_regs *regs, u64 addr)
2702 {
2703         perf_swcounter_update(counter);
2704         perf_swcounter_set_period(counter);
2705         if (perf_counter_overflow(counter, nmi, regs, addr))
2706                 /* soft-disable the counter */
2707                 ;
2708
2709 }
2710
2711 static int perf_swcounter_match(struct perf_counter *counter,
2712                                 enum perf_event_types type,
2713                                 u32 event, struct pt_regs *regs)
2714 {
2715         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2716                 return 0;
2717
2718         if (perf_event_raw(&counter->hw_event))
2719                 return 0;
2720
2721         if (perf_event_type(&counter->hw_event) != type)
2722                 return 0;
2723
2724         if (perf_event_id(&counter->hw_event) != event)
2725                 return 0;
2726
2727         if (counter->hw_event.exclude_user && user_mode(regs))
2728                 return 0;
2729
2730         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2731                 return 0;
2732
2733         return 1;
2734 }
2735
2736 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2737                                int nmi, struct pt_regs *regs, u64 addr)
2738 {
2739         int neg = atomic64_add_negative(nr, &counter->hw.count);
2740         if (counter->hw.irq_period && !neg)
2741                 perf_swcounter_overflow(counter, nmi, regs, addr);
2742 }
2743
2744 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2745                                      enum perf_event_types type, u32 event,
2746                                      u64 nr, int nmi, struct pt_regs *regs,
2747                                      u64 addr)
2748 {
2749         struct perf_counter *counter;
2750
2751         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2752                 return;
2753
2754         rcu_read_lock();
2755         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2756                 if (perf_swcounter_match(counter, type, event, regs))
2757                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2758         }
2759         rcu_read_unlock();
2760 }
2761
2762 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2763 {
2764         if (in_nmi())
2765                 return &cpuctx->recursion[3];
2766
2767         if (in_irq())
2768                 return &cpuctx->recursion[2];
2769
2770         if (in_softirq())
2771                 return &cpuctx->recursion[1];
2772
2773         return &cpuctx->recursion[0];
2774 }
2775
2776 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2777                                    u64 nr, int nmi, struct pt_regs *regs,
2778                                    u64 addr)
2779 {
2780         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2781         int *recursion = perf_swcounter_recursion_context(cpuctx);
2782
2783         if (*recursion)
2784                 goto out;
2785
2786         (*recursion)++;
2787         barrier();
2788
2789         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2790                                  nr, nmi, regs, addr);
2791         if (cpuctx->task_ctx) {
2792                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2793                                          nr, nmi, regs, addr);
2794         }
2795
2796         barrier();
2797         (*recursion)--;
2798
2799 out:
2800         put_cpu_var(perf_cpu_context);
2801 }
2802
2803 void
2804 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2805 {
2806         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2807 }
2808
2809 static void perf_swcounter_read(struct perf_counter *counter)
2810 {
2811         perf_swcounter_update(counter);
2812 }
2813
2814 static int perf_swcounter_enable(struct perf_counter *counter)
2815 {
2816         perf_swcounter_set_period(counter);
2817         return 0;
2818 }
2819
2820 static void perf_swcounter_disable(struct perf_counter *counter)
2821 {
2822         perf_swcounter_update(counter);
2823 }
2824
2825 static const struct pmu perf_ops_generic = {
2826         .enable         = perf_swcounter_enable,
2827         .disable        = perf_swcounter_disable,
2828         .read           = perf_swcounter_read,
2829 };
2830
2831 /*
2832  * Software counter: cpu wall time clock
2833  */
2834
2835 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2836 {
2837         int cpu = raw_smp_processor_id();
2838         s64 prev;
2839         u64 now;
2840
2841         now = cpu_clock(cpu);
2842         prev = atomic64_read(&counter->hw.prev_count);
2843         atomic64_set(&counter->hw.prev_count, now);
2844         atomic64_add(now - prev, &counter->count);
2845 }
2846
2847 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2848 {
2849         struct hw_perf_counter *hwc = &counter->hw;
2850         int cpu = raw_smp_processor_id();
2851
2852         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2853         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2854         hwc->hrtimer.function = perf_swcounter_hrtimer;
2855         if (hwc->irq_period) {
2856                 u64 period = max_t(u64, 10000, hwc->irq_period);
2857                 __hrtimer_start_range_ns(&hwc->hrtimer,
2858                                 ns_to_ktime(period), 0,
2859                                 HRTIMER_MODE_REL, 0);
2860         }
2861
2862         return 0;
2863 }
2864
2865 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2866 {
2867         if (counter->hw.irq_period)
2868                 hrtimer_cancel(&counter->hw.hrtimer);
2869         cpu_clock_perf_counter_update(counter);
2870 }
2871
2872 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2873 {
2874         cpu_clock_perf_counter_update(counter);
2875 }
2876
2877 static const struct pmu perf_ops_cpu_clock = {
2878         .enable         = cpu_clock_perf_counter_enable,
2879         .disable        = cpu_clock_perf_counter_disable,
2880         .read           = cpu_clock_perf_counter_read,
2881 };
2882
2883 /*
2884  * Software counter: task time clock
2885  */
2886
2887 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2888 {
2889         u64 prev;
2890         s64 delta;
2891
2892         prev = atomic64_xchg(&counter->hw.prev_count, now);
2893         delta = now - prev;
2894         atomic64_add(delta, &counter->count);
2895 }
2896
2897 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2898 {
2899         struct hw_perf_counter *hwc = &counter->hw;
2900         u64 now;
2901
2902         now = counter->ctx->time;
2903
2904         atomic64_set(&hwc->prev_count, now);
2905         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2906         hwc->hrtimer.function = perf_swcounter_hrtimer;
2907         if (hwc->irq_period) {
2908                 u64 period = max_t(u64, 10000, hwc->irq_period);
2909                 __hrtimer_start_range_ns(&hwc->hrtimer,
2910                                 ns_to_ktime(period), 0,
2911                                 HRTIMER_MODE_REL, 0);
2912         }
2913
2914         return 0;
2915 }
2916
2917 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2918 {
2919         if (counter->hw.irq_period)
2920                 hrtimer_cancel(&counter->hw.hrtimer);
2921         task_clock_perf_counter_update(counter, counter->ctx->time);
2922
2923 }
2924
2925 static void task_clock_perf_counter_read(struct perf_counter *counter)
2926 {
2927         u64 time;
2928
2929         if (!in_nmi()) {
2930                 update_context_time(counter->ctx);
2931                 time = counter->ctx->time;
2932         } else {
2933                 u64 now = perf_clock();
2934                 u64 delta = now - counter->ctx->timestamp;
2935                 time = counter->ctx->time + delta;
2936         }
2937
2938         task_clock_perf_counter_update(counter, time);
2939 }
2940
2941 static const struct pmu perf_ops_task_clock = {
2942         .enable         = task_clock_perf_counter_enable,
2943         .disable        = task_clock_perf_counter_disable,
2944         .read           = task_clock_perf_counter_read,
2945 };
2946
2947 /*
2948  * Software counter: cpu migrations
2949  */
2950
2951 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2952 {
2953         struct task_struct *curr = counter->ctx->task;
2954
2955         if (curr)
2956                 return curr->se.nr_migrations;
2957         return cpu_nr_migrations(smp_processor_id());
2958 }
2959
2960 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2961 {
2962         u64 prev, now;
2963         s64 delta;
2964
2965         prev = atomic64_read(&counter->hw.prev_count);
2966         now = get_cpu_migrations(counter);
2967
2968         atomic64_set(&counter->hw.prev_count, now);
2969
2970         delta = now - prev;
2971
2972         atomic64_add(delta, &counter->count);
2973 }
2974
2975 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2976 {
2977         cpu_migrations_perf_counter_update(counter);
2978 }
2979
2980 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2981 {
2982         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2983                 atomic64_set(&counter->hw.prev_count,
2984                              get_cpu_migrations(counter));
2985         return 0;
2986 }
2987
2988 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2989 {
2990         cpu_migrations_perf_counter_update(counter);
2991 }
2992
2993 static const struct pmu perf_ops_cpu_migrations = {
2994         .enable         = cpu_migrations_perf_counter_enable,
2995         .disable        = cpu_migrations_perf_counter_disable,
2996         .read           = cpu_migrations_perf_counter_read,
2997 };
2998
2999 #ifdef CONFIG_EVENT_PROFILE
3000 void perf_tpcounter_event(int event_id)
3001 {
3002         struct pt_regs *regs = get_irq_regs();
3003
3004         if (!regs)
3005                 regs = task_pt_regs(current);
3006
3007         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3008 }
3009 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3010
3011 extern int ftrace_profile_enable(int);
3012 extern void ftrace_profile_disable(int);
3013
3014 static void tp_perf_counter_destroy(struct perf_counter *counter)
3015 {
3016         ftrace_profile_disable(perf_event_id(&counter->hw_event));
3017 }
3018
3019 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3020 {
3021         int event_id = perf_event_id(&counter->hw_event);
3022         int ret;
3023
3024         ret = ftrace_profile_enable(event_id);
3025         if (ret)
3026                 return NULL;
3027
3028         counter->destroy = tp_perf_counter_destroy;
3029         counter->hw.irq_period = counter->hw_event.irq_period;
3030
3031         return &perf_ops_generic;
3032 }
3033 #else
3034 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3035 {
3036         return NULL;
3037 }
3038 #endif
3039
3040 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3041 {
3042         const struct pmu *pmu = NULL;
3043
3044         /*
3045          * Software counters (currently) can't in general distinguish
3046          * between user, kernel and hypervisor events.
3047          * However, context switches and cpu migrations are considered
3048          * to be kernel events, and page faults are never hypervisor
3049          * events.
3050          */
3051         switch (perf_event_id(&counter->hw_event)) {
3052         case PERF_COUNT_CPU_CLOCK:
3053                 pmu = &perf_ops_cpu_clock;
3054
3055                 break;
3056         case PERF_COUNT_TASK_CLOCK:
3057                 /*
3058                  * If the user instantiates this as a per-cpu counter,
3059                  * use the cpu_clock counter instead.
3060                  */
3061                 if (counter->ctx->task)
3062                         pmu = &perf_ops_task_clock;
3063                 else
3064                         pmu = &perf_ops_cpu_clock;
3065
3066                 break;
3067         case PERF_COUNT_PAGE_FAULTS:
3068         case PERF_COUNT_PAGE_FAULTS_MIN:
3069         case PERF_COUNT_PAGE_FAULTS_MAJ:
3070         case PERF_COUNT_CONTEXT_SWITCHES:
3071                 pmu = &perf_ops_generic;
3072                 break;
3073         case PERF_COUNT_CPU_MIGRATIONS:
3074                 if (!counter->hw_event.exclude_kernel)
3075                         pmu = &perf_ops_cpu_migrations;
3076                 break;
3077         }
3078
3079         return pmu;
3080 }
3081
3082 /*
3083  * Allocate and initialize a counter structure
3084  */
3085 static struct perf_counter *
3086 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3087                    int cpu,
3088                    struct perf_counter_context *ctx,
3089                    struct perf_counter *group_leader,
3090                    gfp_t gfpflags)
3091 {
3092         const struct pmu *pmu;
3093         struct perf_counter *counter;
3094         struct hw_perf_counter *hwc;
3095         long err;
3096
3097         counter = kzalloc(sizeof(*counter), gfpflags);
3098         if (!counter)
3099                 return ERR_PTR(-ENOMEM);
3100
3101         /*
3102          * Single counters are their own group leaders, with an
3103          * empty sibling list:
3104          */
3105         if (!group_leader)
3106                 group_leader = counter;
3107
3108         mutex_init(&counter->mutex);
3109         INIT_LIST_HEAD(&counter->list_entry);
3110         INIT_LIST_HEAD(&counter->event_entry);
3111         INIT_LIST_HEAD(&counter->sibling_list);
3112         init_waitqueue_head(&counter->waitq);
3113
3114         mutex_init(&counter->mmap_mutex);
3115
3116         INIT_LIST_HEAD(&counter->child_list);
3117
3118         counter->cpu                    = cpu;
3119         counter->hw_event               = *hw_event;
3120         counter->group_leader           = group_leader;
3121         counter->pmu                    = NULL;
3122         counter->ctx                    = ctx;
3123         get_ctx(ctx);
3124
3125         counter->state = PERF_COUNTER_STATE_INACTIVE;
3126         if (hw_event->disabled)
3127                 counter->state = PERF_COUNTER_STATE_OFF;
3128
3129         pmu = NULL;
3130
3131         hwc = &counter->hw;
3132         if (hw_event->freq && hw_event->irq_freq)
3133                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3134         else
3135                 hwc->irq_period = hw_event->irq_period;
3136
3137         /*
3138          * we currently do not support PERF_RECORD_GROUP on inherited counters
3139          */
3140         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3141                 goto done;
3142
3143         if (perf_event_raw(hw_event)) {
3144                 pmu = hw_perf_counter_init(counter);
3145                 goto done;
3146         }
3147
3148         switch (perf_event_type(hw_event)) {
3149         case PERF_TYPE_HARDWARE:
3150                 pmu = hw_perf_counter_init(counter);
3151                 break;
3152
3153         case PERF_TYPE_SOFTWARE:
3154                 pmu = sw_perf_counter_init(counter);
3155                 break;
3156
3157         case PERF_TYPE_TRACEPOINT:
3158                 pmu = tp_perf_counter_init(counter);
3159                 break;
3160         }
3161 done:
3162         err = 0;
3163         if (!pmu)
3164                 err = -EINVAL;
3165         else if (IS_ERR(pmu))
3166                 err = PTR_ERR(pmu);
3167
3168         if (err) {
3169                 kfree(counter);
3170                 return ERR_PTR(err);
3171         }
3172
3173         counter->pmu = pmu;
3174
3175         atomic_inc(&nr_counters);
3176         if (counter->hw_event.mmap)
3177                 atomic_inc(&nr_mmap_tracking);
3178         if (counter->hw_event.munmap)
3179                 atomic_inc(&nr_munmap_tracking);
3180         if (counter->hw_event.comm)
3181                 atomic_inc(&nr_comm_tracking);
3182
3183         return counter;
3184 }
3185
3186 /**
3187  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3188  *
3189  * @hw_event_uptr:      event type attributes for monitoring/sampling
3190  * @pid:                target pid
3191  * @cpu:                target cpu
3192  * @group_fd:           group leader counter fd
3193  */
3194 SYSCALL_DEFINE5(perf_counter_open,
3195                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3196                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3197 {
3198         struct perf_counter *counter, *group_leader;
3199         struct perf_counter_hw_event hw_event;
3200         struct perf_counter_context *ctx;
3201         struct file *counter_file = NULL;
3202         struct file *group_file = NULL;
3203         int fput_needed = 0;
3204         int fput_needed2 = 0;
3205         int ret;
3206
3207         /* for future expandability... */
3208         if (flags)
3209                 return -EINVAL;
3210
3211         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3212                 return -EFAULT;
3213
3214         /*
3215          * Get the target context (task or percpu):
3216          */
3217         ctx = find_get_context(pid, cpu);
3218         if (IS_ERR(ctx))
3219                 return PTR_ERR(ctx);
3220
3221         /*
3222          * Look up the group leader (we will attach this counter to it):
3223          */
3224         group_leader = NULL;
3225         if (group_fd != -1) {
3226                 ret = -EINVAL;
3227                 group_file = fget_light(group_fd, &fput_needed);
3228                 if (!group_file)
3229                         goto err_put_context;
3230                 if (group_file->f_op != &perf_fops)
3231                         goto err_put_context;
3232
3233                 group_leader = group_file->private_data;
3234                 /*
3235                  * Do not allow a recursive hierarchy (this new sibling
3236                  * becoming part of another group-sibling):
3237                  */
3238                 if (group_leader->group_leader != group_leader)
3239                         goto err_put_context;
3240                 /*
3241                  * Do not allow to attach to a group in a different
3242                  * task or CPU context:
3243                  */
3244                 if (group_leader->ctx != ctx)
3245                         goto err_put_context;
3246                 /*
3247                  * Only a group leader can be exclusive or pinned
3248                  */
3249                 if (hw_event.exclusive || hw_event.pinned)
3250                         goto err_put_context;
3251         }
3252
3253         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3254                                      GFP_KERNEL);
3255         ret = PTR_ERR(counter);
3256         if (IS_ERR(counter))
3257                 goto err_put_context;
3258
3259         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3260         if (ret < 0)
3261                 goto err_free_put_context;
3262
3263         counter_file = fget_light(ret, &fput_needed2);
3264         if (!counter_file)
3265                 goto err_free_put_context;
3266
3267         counter->filp = counter_file;
3268         mutex_lock(&ctx->mutex);
3269         perf_install_in_context(ctx, counter, cpu);
3270         mutex_unlock(&ctx->mutex);
3271
3272         fput_light(counter_file, fput_needed2);
3273
3274 out_fput:
3275         fput_light(group_file, fput_needed);
3276
3277         return ret;
3278
3279 err_free_put_context:
3280         kfree(counter);
3281
3282 err_put_context:
3283         put_context(ctx);
3284
3285         goto out_fput;
3286 }
3287
3288 /*
3289  * inherit a counter from parent task to child task:
3290  */
3291 static struct perf_counter *
3292 inherit_counter(struct perf_counter *parent_counter,
3293               struct task_struct *parent,
3294               struct perf_counter_context *parent_ctx,
3295               struct task_struct *child,
3296               struct perf_counter *group_leader,
3297               struct perf_counter_context *child_ctx)
3298 {
3299         struct perf_counter *child_counter;
3300
3301         /*
3302          * Instead of creating recursive hierarchies of counters,
3303          * we link inherited counters back to the original parent,
3304          * which has a filp for sure, which we use as the reference
3305          * count:
3306          */
3307         if (parent_counter->parent)
3308                 parent_counter = parent_counter->parent;
3309
3310         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3311                                            parent_counter->cpu, child_ctx,
3312                                            group_leader, GFP_KERNEL);
3313         if (IS_ERR(child_counter))
3314                 return child_counter;
3315
3316         /*
3317          * Make the child state follow the state of the parent counter,
3318          * not its hw_event.disabled bit.  We hold the parent's mutex,
3319          * so we won't race with perf_counter_{en,dis}able_family.
3320          */
3321         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3322                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3323         else
3324                 child_counter->state = PERF_COUNTER_STATE_OFF;
3325
3326         /*
3327          * Link it up in the child's context:
3328          */
3329         add_counter_to_ctx(child_counter, child_ctx);
3330
3331         child_counter->parent = parent_counter;
3332         /*
3333          * inherit into child's child as well:
3334          */
3335         child_counter->hw_event.inherit = 1;
3336
3337         /*
3338          * Get a reference to the parent filp - we will fput it
3339          * when the child counter exits. This is safe to do because
3340          * we are in the parent and we know that the filp still
3341          * exists and has a nonzero count:
3342          */
3343         atomic_long_inc(&parent_counter->filp->f_count);
3344
3345         /*
3346          * Link this into the parent counter's child list
3347          */
3348         mutex_lock(&parent_counter->mutex);
3349         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3350
3351         mutex_unlock(&parent_counter->mutex);
3352
3353         return child_counter;
3354 }
3355
3356 static int inherit_group(struct perf_counter *parent_counter,
3357               struct task_struct *parent,
3358               struct perf_counter_context *parent_ctx,
3359               struct task_struct *child,
3360               struct perf_counter_context *child_ctx)
3361 {
3362         struct perf_counter *leader;
3363         struct perf_counter *sub;
3364         struct perf_counter *child_ctr;
3365
3366         leader = inherit_counter(parent_counter, parent, parent_ctx,
3367                                  child, NULL, child_ctx);
3368         if (IS_ERR(leader))
3369                 return PTR_ERR(leader);
3370         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3371                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3372                                             child, leader, child_ctx);
3373                 if (IS_ERR(child_ctr))
3374                         return PTR_ERR(child_ctr);
3375         }
3376         return 0;
3377 }
3378
3379 static void sync_child_counter(struct perf_counter *child_counter,
3380                                struct perf_counter *parent_counter)
3381 {
3382         u64 child_val;
3383
3384         child_val = atomic64_read(&child_counter->count);
3385
3386         /*
3387          * Add back the child's count to the parent's count:
3388          */
3389         atomic64_add(child_val, &parent_counter->count);
3390         atomic64_add(child_counter->total_time_enabled,
3391                      &parent_counter->child_total_time_enabled);
3392         atomic64_add(child_counter->total_time_running,
3393                      &parent_counter->child_total_time_running);
3394
3395         /*
3396          * Remove this counter from the parent's list
3397          */
3398         mutex_lock(&parent_counter->mutex);
3399         list_del_init(&child_counter->child_list);
3400         mutex_unlock(&parent_counter->mutex);
3401
3402         /*
3403          * Release the parent counter, if this was the last
3404          * reference to it.
3405          */
3406         fput(parent_counter->filp);
3407 }
3408
3409 static void
3410 __perf_counter_exit_task(struct task_struct *child,
3411                          struct perf_counter *child_counter,
3412                          struct perf_counter_context *child_ctx)
3413 {
3414         struct perf_counter *parent_counter;
3415
3416         /*
3417          * Protect against concurrent operations on child_counter
3418          * due its fd getting closed, etc.
3419          */
3420         mutex_lock(&child_counter->mutex);
3421
3422         update_counter_times(child_counter);
3423         list_del_counter(child_counter, child_ctx);
3424
3425         mutex_unlock(&child_counter->mutex);
3426
3427         parent_counter = child_counter->parent;
3428         /*
3429          * It can happen that parent exits first, and has counters
3430          * that are still around due to the child reference. These
3431          * counters need to be zapped - but otherwise linger.
3432          */
3433         if (parent_counter) {
3434                 sync_child_counter(child_counter, parent_counter);
3435                 free_counter(child_counter);
3436         }
3437 }
3438
3439 /*
3440  * When a child task exits, feed back counter values to parent counters.
3441  *
3442  * Note: we may be running in child context, but the PID is not hashed
3443  * anymore so new counters will not be added.
3444  * (XXX not sure that is true when we get called from flush_old_exec.
3445  *  -- paulus)
3446  */
3447 void perf_counter_exit_task(struct task_struct *child)
3448 {
3449         struct perf_counter *child_counter, *tmp;
3450         struct perf_counter_context *child_ctx;
3451         unsigned long flags;
3452
3453         WARN_ON_ONCE(child != current);
3454
3455         child_ctx = child->perf_counter_ctxp;
3456
3457         if (likely(!child_ctx))
3458                 return;
3459
3460         local_irq_save(flags);
3461         __perf_counter_task_sched_out(child_ctx);
3462         child->perf_counter_ctxp = NULL;
3463         local_irq_restore(flags);
3464
3465         mutex_lock(&child_ctx->mutex);
3466
3467 again:
3468         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3469                                  list_entry)
3470                 __perf_counter_exit_task(child, child_counter, child_ctx);
3471
3472         /*
3473          * If the last counter was a group counter, it will have appended all
3474          * its siblings to the list, but we obtained 'tmp' before that which
3475          * will still point to the list head terminating the iteration.
3476          */
3477         if (!list_empty(&child_ctx->counter_list))
3478                 goto again;
3479
3480         mutex_unlock(&child_ctx->mutex);
3481
3482         put_ctx(child_ctx);
3483 }
3484
3485 /*
3486  * Initialize the perf_counter context in task_struct
3487  */
3488 void perf_counter_init_task(struct task_struct *child)
3489 {
3490         struct perf_counter_context *child_ctx, *parent_ctx;
3491         struct perf_counter *counter;
3492         struct task_struct *parent = current;
3493         int inherited_all = 1;
3494
3495         child->perf_counter_ctxp = NULL;
3496
3497         /*
3498          * This is executed from the parent task context, so inherit
3499          * counters that have been marked for cloning.
3500          * First allocate and initialize a context for the child.
3501          */
3502
3503         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3504         if (!child_ctx)
3505                 return;
3506
3507         parent_ctx = parent->perf_counter_ctxp;
3508         if (likely(!parent_ctx || !parent_ctx->nr_counters))
3509                 return;
3510
3511         __perf_counter_init_context(child_ctx, child);
3512         child->perf_counter_ctxp = child_ctx;
3513
3514         /*
3515          * Lock the parent list. No need to lock the child - not PID
3516          * hashed yet and not running, so nobody can access it.
3517          */
3518         mutex_lock(&parent_ctx->mutex);
3519
3520         /*
3521          * We dont have to disable NMIs - we are only looking at
3522          * the list, not manipulating it:
3523          */
3524         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3525                 if (counter != counter->group_leader)
3526                         continue;
3527
3528                 if (!counter->hw_event.inherit) {
3529                         inherited_all = 0;
3530                         continue;
3531                 }
3532
3533                 if (inherit_group(counter, parent,
3534                                   parent_ctx, child, child_ctx)) {
3535                         inherited_all = 0;
3536                         break;
3537                 }
3538         }
3539
3540         if (inherited_all) {
3541                 /*
3542                  * Mark the child context as a clone of the parent
3543                  * context, or of whatever the parent is a clone of.
3544                  */
3545                 if (parent_ctx->parent_ctx) {
3546                         child_ctx->parent_ctx = parent_ctx->parent_ctx;
3547                         child_ctx->parent_gen = parent_ctx->parent_gen;
3548                 } else {
3549                         child_ctx->parent_ctx = parent_ctx;
3550                         child_ctx->parent_gen = parent_ctx->generation;
3551                 }
3552                 get_ctx(child_ctx->parent_ctx);
3553         }
3554
3555         mutex_unlock(&parent_ctx->mutex);
3556 }
3557
3558 static void __cpuinit perf_counter_init_cpu(int cpu)
3559 {
3560         struct perf_cpu_context *cpuctx;
3561
3562         cpuctx = &per_cpu(perf_cpu_context, cpu);
3563         __perf_counter_init_context(&cpuctx->ctx, NULL);
3564
3565         spin_lock(&perf_resource_lock);
3566         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3567         spin_unlock(&perf_resource_lock);
3568
3569         hw_perf_counter_setup(cpu);
3570 }
3571
3572 #ifdef CONFIG_HOTPLUG_CPU
3573 static void __perf_counter_exit_cpu(void *info)
3574 {
3575         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3576         struct perf_counter_context *ctx = &cpuctx->ctx;
3577         struct perf_counter *counter, *tmp;
3578
3579         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3580                 __perf_counter_remove_from_context(counter);
3581 }
3582 static void perf_counter_exit_cpu(int cpu)
3583 {
3584         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3585         struct perf_counter_context *ctx = &cpuctx->ctx;
3586
3587         mutex_lock(&ctx->mutex);
3588         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3589         mutex_unlock(&ctx->mutex);
3590 }
3591 #else
3592 static inline void perf_counter_exit_cpu(int cpu) { }
3593 #endif
3594
3595 static int __cpuinit
3596 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3597 {
3598         unsigned int cpu = (long)hcpu;
3599
3600         switch (action) {
3601
3602         case CPU_UP_PREPARE:
3603         case CPU_UP_PREPARE_FROZEN:
3604                 perf_counter_init_cpu(cpu);
3605                 break;
3606
3607         case CPU_DOWN_PREPARE:
3608         case CPU_DOWN_PREPARE_FROZEN:
3609                 perf_counter_exit_cpu(cpu);
3610                 break;
3611
3612         default:
3613                 break;
3614         }
3615
3616         return NOTIFY_OK;
3617 }
3618
3619 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3620         .notifier_call          = perf_cpu_notify,
3621 };
3622
3623 void __init perf_counter_init(void)
3624 {
3625         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3626                         (void *)(long)smp_processor_id());
3627         register_cpu_notifier(&perf_cpu_nb);
3628 }
3629
3630 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3631 {
3632         return sprintf(buf, "%d\n", perf_reserved_percpu);
3633 }
3634
3635 static ssize_t
3636 perf_set_reserve_percpu(struct sysdev_class *class,
3637                         const char *buf,
3638                         size_t count)
3639 {
3640         struct perf_cpu_context *cpuctx;
3641         unsigned long val;
3642         int err, cpu, mpt;
3643
3644         err = strict_strtoul(buf, 10, &val);
3645         if (err)
3646                 return err;
3647         if (val > perf_max_counters)
3648                 return -EINVAL;
3649
3650         spin_lock(&perf_resource_lock);
3651         perf_reserved_percpu = val;
3652         for_each_online_cpu(cpu) {
3653                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3654                 spin_lock_irq(&cpuctx->ctx.lock);
3655                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3656                           perf_max_counters - perf_reserved_percpu);
3657                 cpuctx->max_pertask = mpt;
3658                 spin_unlock_irq(&cpuctx->ctx.lock);
3659         }
3660         spin_unlock(&perf_resource_lock);
3661
3662         return count;
3663 }
3664
3665 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3666 {
3667         return sprintf(buf, "%d\n", perf_overcommit);
3668 }
3669
3670 static ssize_t
3671 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3672 {
3673         unsigned long val;
3674         int err;
3675
3676         err = strict_strtoul(buf, 10, &val);
3677         if (err)
3678                 return err;
3679         if (val > 1)
3680                 return -EINVAL;
3681
3682         spin_lock(&perf_resource_lock);
3683         perf_overcommit = val;
3684         spin_unlock(&perf_resource_lock);
3685
3686         return count;
3687 }
3688
3689 static SYSDEV_CLASS_ATTR(
3690                                 reserve_percpu,
3691                                 0644,
3692                                 perf_show_reserve_percpu,
3693                                 perf_set_reserve_percpu
3694                         );
3695
3696 static SYSDEV_CLASS_ATTR(
3697                                 overcommit,
3698                                 0644,
3699                                 perf_show_overcommit,
3700                                 perf_set_overcommit
3701                         );
3702
3703 static struct attribute *perfclass_attrs[] = {
3704         &attr_reserve_percpu.attr,
3705         &attr_overcommit.attr,
3706         NULL
3707 };
3708
3709 static struct attribute_group perfclass_attr_group = {
3710         .attrs                  = perfclass_attrs,
3711         .name                   = "perf_counters",
3712 };
3713
3714 static int __init perf_counter_sysfs_init(void)
3715 {
3716         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3717                                   &perfclass_attr_group);
3718 }
3719 device_initcall(perf_counter_sysfs_init);