f4f7596f78414944bd2ea0676a09a8ac4041e6fd
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33  * Each CPU has a list of per CPU counters:
34  */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42  * Mutex for (sysadmin-configurable) counter reservations:
43  */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47  * Architecture provided APIs - weak aliases:
48  */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52         return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void)           { return 0; }
56 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59                struct perf_cpu_context *cpuctx,
60                struct perf_counter_context *ctx, int cpu)
61 {
62         return 0;
63 }
64
65 void __weak perf_counter_print_debug(void)      { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70         struct perf_counter *group_leader = counter->group_leader;
71
72         /*
73          * Depending on whether it is a standalone or sibling counter,
74          * add it straight to the context's counter list, or to the group
75          * leader's sibling list:
76          */
77         if (counter->group_leader == counter)
78                 list_add_tail(&counter->list_entry, &ctx->counter_list);
79         else {
80                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81                 group_leader->nr_siblings++;
82         }
83
84         list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90         struct perf_counter *sibling, *tmp;
91
92         list_del_init(&counter->list_entry);
93         list_del_rcu(&counter->event_entry);
94
95         if (counter->group_leader != counter)
96                 counter->group_leader->nr_siblings--;
97
98         /*
99          * If this was a group counter with sibling counters then
100          * upgrade the siblings to singleton counters by adding them
101          * to the context list directly:
102          */
103         list_for_each_entry_safe(sibling, tmp,
104                                  &counter->sibling_list, list_entry) {
105
106                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107                 sibling->group_leader = sibling;
108         }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113                   struct perf_cpu_context *cpuctx,
114                   struct perf_counter_context *ctx)
115 {
116         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117                 return;
118
119         counter->state = PERF_COUNTER_STATE_INACTIVE;
120         counter->tstamp_stopped = ctx->time;
121         counter->hw_ops->disable(counter);
122         counter->oncpu = -1;
123
124         if (!is_software_counter(counter))
125                 cpuctx->active_oncpu--;
126         ctx->nr_active--;
127         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128                 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133                 struct perf_cpu_context *cpuctx,
134                 struct perf_counter_context *ctx)
135 {
136         struct perf_counter *counter;
137
138         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139                 return;
140
141         counter_sched_out(group_counter, cpuctx, ctx);
142
143         /*
144          * Schedule out siblings (if any):
145          */
146         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147                 counter_sched_out(counter, cpuctx, ctx);
148
149         if (group_counter->hw_event.exclusive)
150                 cpuctx->exclusive = 0;
151 }
152
153 /*
154  * Cross CPU call to remove a performance counter
155  *
156  * We disable the counter on the hardware level first. After that we
157  * remove it from the context list.
158  */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162         struct perf_counter *counter = info;
163         struct perf_counter_context *ctx = counter->ctx;
164         unsigned long flags;
165         u64 perf_flags;
166
167         /*
168          * If this is a task context, we need to check whether it is
169          * the current task context of this cpu. If not it has been
170          * scheduled out before the smp call arrived.
171          */
172         if (ctx->task && cpuctx->task_ctx != ctx)
173                 return;
174
175         spin_lock_irqsave(&ctx->lock, flags);
176
177         counter_sched_out(counter, cpuctx, ctx);
178
179         counter->task = NULL;
180         ctx->nr_counters--;
181
182         /*
183          * Protect the list operation against NMI by disabling the
184          * counters on a global level. NOP for non NMI based counters.
185          */
186         perf_flags = hw_perf_save_disable();
187         list_del_counter(counter, ctx);
188         hw_perf_restore(perf_flags);
189
190         if (!ctx->task) {
191                 /*
192                  * Allow more per task counters with respect to the
193                  * reservation:
194                  */
195                 cpuctx->max_pertask =
196                         min(perf_max_counters - ctx->nr_counters,
197                             perf_max_counters - perf_reserved_percpu);
198         }
199
200         spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202
203
204 /*
205  * Remove the counter from a task's (or a CPU's) list of counters.
206  *
207  * Must be called with counter->mutex and ctx->mutex held.
208  *
209  * CPU counters are removed with a smp call. For task counters we only
210  * call when the task is on a CPU.
211  */
212 static void perf_counter_remove_from_context(struct perf_counter *counter)
213 {
214         struct perf_counter_context *ctx = counter->ctx;
215         struct task_struct *task = ctx->task;
216
217         if (!task) {
218                 /*
219                  * Per cpu counters are removed via an smp call and
220                  * the removal is always sucessful.
221                  */
222                 smp_call_function_single(counter->cpu,
223                                          __perf_counter_remove_from_context,
224                                          counter, 1);
225                 return;
226         }
227
228 retry:
229         task_oncpu_function_call(task, __perf_counter_remove_from_context,
230                                  counter);
231
232         spin_lock_irq(&ctx->lock);
233         /*
234          * If the context is active we need to retry the smp call.
235          */
236         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
237                 spin_unlock_irq(&ctx->lock);
238                 goto retry;
239         }
240
241         /*
242          * The lock prevents that this context is scheduled in so we
243          * can remove the counter safely, if the call above did not
244          * succeed.
245          */
246         if (!list_empty(&counter->list_entry)) {
247                 ctx->nr_counters--;
248                 list_del_counter(counter, ctx);
249                 counter->task = NULL;
250         }
251         spin_unlock_irq(&ctx->lock);
252 }
253
254 static inline u64 perf_clock(void)
255 {
256         return cpu_clock(smp_processor_id());
257 }
258
259 /*
260  * Update the record of the current time in a context.
261  */
262 static void update_context_time(struct perf_counter_context *ctx)
263 {
264         u64 now = perf_clock();
265
266         ctx->time += now - ctx->timestamp;
267         ctx->timestamp = now;
268 }
269
270 /*
271  * Update the total_time_enabled and total_time_running fields for a counter.
272  */
273 static void update_counter_times(struct perf_counter *counter)
274 {
275         struct perf_counter_context *ctx = counter->ctx;
276         u64 run_end;
277
278         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
279                 return;
280
281         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
282
283         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
284                 run_end = counter->tstamp_stopped;
285         else
286                 run_end = ctx->time;
287
288         counter->total_time_running = run_end - counter->tstamp_running;
289 }
290
291 /*
292  * Update total_time_enabled and total_time_running for all counters in a group.
293  */
294 static void update_group_times(struct perf_counter *leader)
295 {
296         struct perf_counter *counter;
297
298         update_counter_times(leader);
299         list_for_each_entry(counter, &leader->sibling_list, list_entry)
300                 update_counter_times(counter);
301 }
302
303 /*
304  * Cross CPU call to disable a performance counter
305  */
306 static void __perf_counter_disable(void *info)
307 {
308         struct perf_counter *counter = info;
309         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
310         struct perf_counter_context *ctx = counter->ctx;
311         unsigned long flags;
312
313         /*
314          * If this is a per-task counter, need to check whether this
315          * counter's task is the current task on this cpu.
316          */
317         if (ctx->task && cpuctx->task_ctx != ctx)
318                 return;
319
320         spin_lock_irqsave(&ctx->lock, flags);
321
322         /*
323          * If the counter is on, turn it off.
324          * If it is in error state, leave it in error state.
325          */
326         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
327                 update_context_time(ctx);
328                 update_counter_times(counter);
329                 if (counter == counter->group_leader)
330                         group_sched_out(counter, cpuctx, ctx);
331                 else
332                         counter_sched_out(counter, cpuctx, ctx);
333                 counter->state = PERF_COUNTER_STATE_OFF;
334         }
335
336         spin_unlock_irqrestore(&ctx->lock, flags);
337 }
338
339 /*
340  * Disable a counter.
341  */
342 static void perf_counter_disable(struct perf_counter *counter)
343 {
344         struct perf_counter_context *ctx = counter->ctx;
345         struct task_struct *task = ctx->task;
346
347         if (!task) {
348                 /*
349                  * Disable the counter on the cpu that it's on
350                  */
351                 smp_call_function_single(counter->cpu, __perf_counter_disable,
352                                          counter, 1);
353                 return;
354         }
355
356  retry:
357         task_oncpu_function_call(task, __perf_counter_disable, counter);
358
359         spin_lock_irq(&ctx->lock);
360         /*
361          * If the counter is still active, we need to retry the cross-call.
362          */
363         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
364                 spin_unlock_irq(&ctx->lock);
365                 goto retry;
366         }
367
368         /*
369          * Since we have the lock this context can't be scheduled
370          * in, so we can change the state safely.
371          */
372         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
373                 update_counter_times(counter);
374                 counter->state = PERF_COUNTER_STATE_OFF;
375         }
376
377         spin_unlock_irq(&ctx->lock);
378 }
379
380 /*
381  * Disable a counter and all its children.
382  */
383 static void perf_counter_disable_family(struct perf_counter *counter)
384 {
385         struct perf_counter *child;
386
387         perf_counter_disable(counter);
388
389         /*
390          * Lock the mutex to protect the list of children
391          */
392         mutex_lock(&counter->mutex);
393         list_for_each_entry(child, &counter->child_list, child_list)
394                 perf_counter_disable(child);
395         mutex_unlock(&counter->mutex);
396 }
397
398 static int
399 counter_sched_in(struct perf_counter *counter,
400                  struct perf_cpu_context *cpuctx,
401                  struct perf_counter_context *ctx,
402                  int cpu)
403 {
404         if (counter->state <= PERF_COUNTER_STATE_OFF)
405                 return 0;
406
407         counter->state = PERF_COUNTER_STATE_ACTIVE;
408         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
409         /*
410          * The new state must be visible before we turn it on in the hardware:
411          */
412         smp_wmb();
413
414         if (counter->hw_ops->enable(counter)) {
415                 counter->state = PERF_COUNTER_STATE_INACTIVE;
416                 counter->oncpu = -1;
417                 return -EAGAIN;
418         }
419
420         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
421
422         if (!is_software_counter(counter))
423                 cpuctx->active_oncpu++;
424         ctx->nr_active++;
425
426         if (counter->hw_event.exclusive)
427                 cpuctx->exclusive = 1;
428
429         return 0;
430 }
431
432 /*
433  * Return 1 for a group consisting entirely of software counters,
434  * 0 if the group contains any hardware counters.
435  */
436 static int is_software_only_group(struct perf_counter *leader)
437 {
438         struct perf_counter *counter;
439
440         if (!is_software_counter(leader))
441                 return 0;
442
443         list_for_each_entry(counter, &leader->sibling_list, list_entry)
444                 if (!is_software_counter(counter))
445                         return 0;
446
447         return 1;
448 }
449
450 /*
451  * Work out whether we can put this counter group on the CPU now.
452  */
453 static int group_can_go_on(struct perf_counter *counter,
454                            struct perf_cpu_context *cpuctx,
455                            int can_add_hw)
456 {
457         /*
458          * Groups consisting entirely of software counters can always go on.
459          */
460         if (is_software_only_group(counter))
461                 return 1;
462         /*
463          * If an exclusive group is already on, no other hardware
464          * counters can go on.
465          */
466         if (cpuctx->exclusive)
467                 return 0;
468         /*
469          * If this group is exclusive and there are already
470          * counters on the CPU, it can't go on.
471          */
472         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
473                 return 0;
474         /*
475          * Otherwise, try to add it if all previous groups were able
476          * to go on.
477          */
478         return can_add_hw;
479 }
480
481 static void add_counter_to_ctx(struct perf_counter *counter,
482                                struct perf_counter_context *ctx)
483 {
484         list_add_counter(counter, ctx);
485         ctx->nr_counters++;
486         counter->prev_state = PERF_COUNTER_STATE_OFF;
487         counter->tstamp_enabled = ctx->time;
488         counter->tstamp_running = ctx->time;
489         counter->tstamp_stopped = ctx->time;
490 }
491
492 /*
493  * Cross CPU call to install and enable a performance counter
494  */
495 static void __perf_install_in_context(void *info)
496 {
497         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
498         struct perf_counter *counter = info;
499         struct perf_counter_context *ctx = counter->ctx;
500         struct perf_counter *leader = counter->group_leader;
501         int cpu = smp_processor_id();
502         unsigned long flags;
503         u64 perf_flags;
504         int err;
505
506         /*
507          * If this is a task context, we need to check whether it is
508          * the current task context of this cpu. If not it has been
509          * scheduled out before the smp call arrived.
510          */
511         if (ctx->task && cpuctx->task_ctx != ctx)
512                 return;
513
514         spin_lock_irqsave(&ctx->lock, flags);
515         update_context_time(ctx);
516
517         /*
518          * Protect the list operation against NMI by disabling the
519          * counters on a global level. NOP for non NMI based counters.
520          */
521         perf_flags = hw_perf_save_disable();
522
523         add_counter_to_ctx(counter, ctx);
524
525         /*
526          * Don't put the counter on if it is disabled or if
527          * it is in a group and the group isn't on.
528          */
529         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
530             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
531                 goto unlock;
532
533         /*
534          * An exclusive counter can't go on if there are already active
535          * hardware counters, and no hardware counter can go on if there
536          * is already an exclusive counter on.
537          */
538         if (!group_can_go_on(counter, cpuctx, 1))
539                 err = -EEXIST;
540         else
541                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
542
543         if (err) {
544                 /*
545                  * This counter couldn't go on.  If it is in a group
546                  * then we have to pull the whole group off.
547                  * If the counter group is pinned then put it in error state.
548                  */
549                 if (leader != counter)
550                         group_sched_out(leader, cpuctx, ctx);
551                 if (leader->hw_event.pinned) {
552                         update_group_times(leader);
553                         leader->state = PERF_COUNTER_STATE_ERROR;
554                 }
555         }
556
557         if (!err && !ctx->task && cpuctx->max_pertask)
558                 cpuctx->max_pertask--;
559
560  unlock:
561         hw_perf_restore(perf_flags);
562
563         spin_unlock_irqrestore(&ctx->lock, flags);
564 }
565
566 /*
567  * Attach a performance counter to a context
568  *
569  * First we add the counter to the list with the hardware enable bit
570  * in counter->hw_config cleared.
571  *
572  * If the counter is attached to a task which is on a CPU we use a smp
573  * call to enable it in the task context. The task might have been
574  * scheduled away, but we check this in the smp call again.
575  *
576  * Must be called with ctx->mutex held.
577  */
578 static void
579 perf_install_in_context(struct perf_counter_context *ctx,
580                         struct perf_counter *counter,
581                         int cpu)
582 {
583         struct task_struct *task = ctx->task;
584
585         if (!task) {
586                 /*
587                  * Per cpu counters are installed via an smp call and
588                  * the install is always sucessful.
589                  */
590                 smp_call_function_single(cpu, __perf_install_in_context,
591                                          counter, 1);
592                 return;
593         }
594
595         counter->task = task;
596 retry:
597         task_oncpu_function_call(task, __perf_install_in_context,
598                                  counter);
599
600         spin_lock_irq(&ctx->lock);
601         /*
602          * we need to retry the smp call.
603          */
604         if (ctx->is_active && list_empty(&counter->list_entry)) {
605                 spin_unlock_irq(&ctx->lock);
606                 goto retry;
607         }
608
609         /*
610          * The lock prevents that this context is scheduled in so we
611          * can add the counter safely, if it the call above did not
612          * succeed.
613          */
614         if (list_empty(&counter->list_entry))
615                 add_counter_to_ctx(counter, ctx);
616         spin_unlock_irq(&ctx->lock);
617 }
618
619 /*
620  * Cross CPU call to enable a performance counter
621  */
622 static void __perf_counter_enable(void *info)
623 {
624         struct perf_counter *counter = info;
625         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
626         struct perf_counter_context *ctx = counter->ctx;
627         struct perf_counter *leader = counter->group_leader;
628         unsigned long flags;
629         int err;
630
631         /*
632          * If this is a per-task counter, need to check whether this
633          * counter's task is the current task on this cpu.
634          */
635         if (ctx->task && cpuctx->task_ctx != ctx)
636                 return;
637
638         spin_lock_irqsave(&ctx->lock, flags);
639         update_context_time(ctx);
640
641         counter->prev_state = counter->state;
642         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
643                 goto unlock;
644         counter->state = PERF_COUNTER_STATE_INACTIVE;
645         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
646
647         /*
648          * If the counter is in a group and isn't the group leader,
649          * then don't put it on unless the group is on.
650          */
651         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
652                 goto unlock;
653
654         if (!group_can_go_on(counter, cpuctx, 1))
655                 err = -EEXIST;
656         else
657                 err = counter_sched_in(counter, cpuctx, ctx,
658                                        smp_processor_id());
659
660         if (err) {
661                 /*
662                  * If this counter can't go on and it's part of a
663                  * group, then the whole group has to come off.
664                  */
665                 if (leader != counter)
666                         group_sched_out(leader, cpuctx, ctx);
667                 if (leader->hw_event.pinned) {
668                         update_group_times(leader);
669                         leader->state = PERF_COUNTER_STATE_ERROR;
670                 }
671         }
672
673  unlock:
674         spin_unlock_irqrestore(&ctx->lock, flags);
675 }
676
677 /*
678  * Enable a counter.
679  */
680 static void perf_counter_enable(struct perf_counter *counter)
681 {
682         struct perf_counter_context *ctx = counter->ctx;
683         struct task_struct *task = ctx->task;
684
685         if (!task) {
686                 /*
687                  * Enable the counter on the cpu that it's on
688                  */
689                 smp_call_function_single(counter->cpu, __perf_counter_enable,
690                                          counter, 1);
691                 return;
692         }
693
694         spin_lock_irq(&ctx->lock);
695         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
696                 goto out;
697
698         /*
699          * If the counter is in error state, clear that first.
700          * That way, if we see the counter in error state below, we
701          * know that it has gone back into error state, as distinct
702          * from the task having been scheduled away before the
703          * cross-call arrived.
704          */
705         if (counter->state == PERF_COUNTER_STATE_ERROR)
706                 counter->state = PERF_COUNTER_STATE_OFF;
707
708  retry:
709         spin_unlock_irq(&ctx->lock);
710         task_oncpu_function_call(task, __perf_counter_enable, counter);
711
712         spin_lock_irq(&ctx->lock);
713
714         /*
715          * If the context is active and the counter is still off,
716          * we need to retry the cross-call.
717          */
718         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
719                 goto retry;
720
721         /*
722          * Since we have the lock this context can't be scheduled
723          * in, so we can change the state safely.
724          */
725         if (counter->state == PERF_COUNTER_STATE_OFF) {
726                 counter->state = PERF_COUNTER_STATE_INACTIVE;
727                 counter->tstamp_enabled =
728                         ctx->time - counter->total_time_enabled;
729         }
730  out:
731         spin_unlock_irq(&ctx->lock);
732 }
733
734 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
735 {
736         atomic_add(refresh, &counter->event_limit);
737         perf_counter_enable(counter);
738 }
739
740 /*
741  * Enable a counter and all its children.
742  */
743 static void perf_counter_enable_family(struct perf_counter *counter)
744 {
745         struct perf_counter *child;
746
747         perf_counter_enable(counter);
748
749         /*
750          * Lock the mutex to protect the list of children
751          */
752         mutex_lock(&counter->mutex);
753         list_for_each_entry(child, &counter->child_list, child_list)
754                 perf_counter_enable(child);
755         mutex_unlock(&counter->mutex);
756 }
757
758 void __perf_counter_sched_out(struct perf_counter_context *ctx,
759                               struct perf_cpu_context *cpuctx)
760 {
761         struct perf_counter *counter;
762         u64 flags;
763
764         spin_lock(&ctx->lock);
765         ctx->is_active = 0;
766         if (likely(!ctx->nr_counters))
767                 goto out;
768         update_context_time(ctx);
769
770         flags = hw_perf_save_disable();
771         if (ctx->nr_active) {
772                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
773                         group_sched_out(counter, cpuctx, ctx);
774         }
775         hw_perf_restore(flags);
776  out:
777         spin_unlock(&ctx->lock);
778 }
779
780 /*
781  * Called from scheduler to remove the counters of the current task,
782  * with interrupts disabled.
783  *
784  * We stop each counter and update the counter value in counter->count.
785  *
786  * This does not protect us against NMI, but disable()
787  * sets the disabled bit in the control field of counter _before_
788  * accessing the counter control register. If a NMI hits, then it will
789  * not restart the counter.
790  */
791 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
792 {
793         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
794         struct perf_counter_context *ctx = &task->perf_counter_ctx;
795         struct pt_regs *regs;
796
797         if (likely(!cpuctx->task_ctx))
798                 return;
799
800         regs = task_pt_regs(task);
801         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
802         __perf_counter_sched_out(ctx, cpuctx);
803
804         cpuctx->task_ctx = NULL;
805 }
806
807 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
808 {
809         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
810 }
811
812 static int
813 group_sched_in(struct perf_counter *group_counter,
814                struct perf_cpu_context *cpuctx,
815                struct perf_counter_context *ctx,
816                int cpu)
817 {
818         struct perf_counter *counter, *partial_group;
819         int ret;
820
821         if (group_counter->state == PERF_COUNTER_STATE_OFF)
822                 return 0;
823
824         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
825         if (ret)
826                 return ret < 0 ? ret : 0;
827
828         group_counter->prev_state = group_counter->state;
829         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
830                 return -EAGAIN;
831
832         /*
833          * Schedule in siblings as one group (if any):
834          */
835         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
836                 counter->prev_state = counter->state;
837                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
838                         partial_group = counter;
839                         goto group_error;
840                 }
841         }
842
843         return 0;
844
845 group_error:
846         /*
847          * Groups can be scheduled in as one unit only, so undo any
848          * partial group before returning:
849          */
850         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
851                 if (counter == partial_group)
852                         break;
853                 counter_sched_out(counter, cpuctx, ctx);
854         }
855         counter_sched_out(group_counter, cpuctx, ctx);
856
857         return -EAGAIN;
858 }
859
860 static void
861 __perf_counter_sched_in(struct perf_counter_context *ctx,
862                         struct perf_cpu_context *cpuctx, int cpu)
863 {
864         struct perf_counter *counter;
865         u64 flags;
866         int can_add_hw = 1;
867
868         spin_lock(&ctx->lock);
869         ctx->is_active = 1;
870         if (likely(!ctx->nr_counters))
871                 goto out;
872
873         ctx->timestamp = perf_clock();
874
875         flags = hw_perf_save_disable();
876
877         /*
878          * First go through the list and put on any pinned groups
879          * in order to give them the best chance of going on.
880          */
881         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
882                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
883                     !counter->hw_event.pinned)
884                         continue;
885                 if (counter->cpu != -1 && counter->cpu != cpu)
886                         continue;
887
888                 if (group_can_go_on(counter, cpuctx, 1))
889                         group_sched_in(counter, cpuctx, ctx, cpu);
890
891                 /*
892                  * If this pinned group hasn't been scheduled,
893                  * put it in error state.
894                  */
895                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
896                         update_group_times(counter);
897                         counter->state = PERF_COUNTER_STATE_ERROR;
898                 }
899         }
900
901         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
902                 /*
903                  * Ignore counters in OFF or ERROR state, and
904                  * ignore pinned counters since we did them already.
905                  */
906                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
907                     counter->hw_event.pinned)
908                         continue;
909
910                 /*
911                  * Listen to the 'cpu' scheduling filter constraint
912                  * of counters:
913                  */
914                 if (counter->cpu != -1 && counter->cpu != cpu)
915                         continue;
916
917                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
918                         if (group_sched_in(counter, cpuctx, ctx, cpu))
919                                 can_add_hw = 0;
920                 }
921         }
922         hw_perf_restore(flags);
923  out:
924         spin_unlock(&ctx->lock);
925 }
926
927 /*
928  * Called from scheduler to add the counters of the current task
929  * with interrupts disabled.
930  *
931  * We restore the counter value and then enable it.
932  *
933  * This does not protect us against NMI, but enable()
934  * sets the enabled bit in the control field of counter _before_
935  * accessing the counter control register. If a NMI hits, then it will
936  * keep the counter running.
937  */
938 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
939 {
940         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
941         struct perf_counter_context *ctx = &task->perf_counter_ctx;
942
943         __perf_counter_sched_in(ctx, cpuctx, cpu);
944         cpuctx->task_ctx = ctx;
945 }
946
947 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
948 {
949         struct perf_counter_context *ctx = &cpuctx->ctx;
950
951         __perf_counter_sched_in(ctx, cpuctx, cpu);
952 }
953
954 int perf_counter_task_disable(void)
955 {
956         struct task_struct *curr = current;
957         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
958         struct perf_counter *counter;
959         unsigned long flags;
960         u64 perf_flags;
961         int cpu;
962
963         if (likely(!ctx->nr_counters))
964                 return 0;
965
966         local_irq_save(flags);
967         cpu = smp_processor_id();
968
969         perf_counter_task_sched_out(curr, cpu);
970
971         spin_lock(&ctx->lock);
972
973         /*
974          * Disable all the counters:
975          */
976         perf_flags = hw_perf_save_disable();
977
978         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
979                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
980                         update_group_times(counter);
981                         counter->state = PERF_COUNTER_STATE_OFF;
982                 }
983         }
984
985         hw_perf_restore(perf_flags);
986
987         spin_unlock_irqrestore(&ctx->lock, flags);
988
989         return 0;
990 }
991
992 int perf_counter_task_enable(void)
993 {
994         struct task_struct *curr = current;
995         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
996         struct perf_counter *counter;
997         unsigned long flags;
998         u64 perf_flags;
999         int cpu;
1000
1001         if (likely(!ctx->nr_counters))
1002                 return 0;
1003
1004         local_irq_save(flags);
1005         cpu = smp_processor_id();
1006
1007         perf_counter_task_sched_out(curr, cpu);
1008
1009         spin_lock(&ctx->lock);
1010
1011         /*
1012          * Disable all the counters:
1013          */
1014         perf_flags = hw_perf_save_disable();
1015
1016         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1017                 if (counter->state > PERF_COUNTER_STATE_OFF)
1018                         continue;
1019                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1020                 counter->tstamp_enabled =
1021                         ctx->time - counter->total_time_enabled;
1022                 counter->hw_event.disabled = 0;
1023         }
1024         hw_perf_restore(perf_flags);
1025
1026         spin_unlock(&ctx->lock);
1027
1028         perf_counter_task_sched_in(curr, cpu);
1029
1030         local_irq_restore(flags);
1031
1032         return 0;
1033 }
1034
1035 /*
1036  * Round-robin a context's counters:
1037  */
1038 static void rotate_ctx(struct perf_counter_context *ctx)
1039 {
1040         struct perf_counter *counter;
1041         u64 perf_flags;
1042
1043         if (!ctx->nr_counters)
1044                 return;
1045
1046         spin_lock(&ctx->lock);
1047         /*
1048          * Rotate the first entry last (works just fine for group counters too):
1049          */
1050         perf_flags = hw_perf_save_disable();
1051         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1052                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1053                 break;
1054         }
1055         hw_perf_restore(perf_flags);
1056
1057         spin_unlock(&ctx->lock);
1058 }
1059
1060 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1061 {
1062         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1063         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1064         const int rotate_percpu = 0;
1065
1066         if (rotate_percpu)
1067                 perf_counter_cpu_sched_out(cpuctx);
1068         perf_counter_task_sched_out(curr, cpu);
1069
1070         if (rotate_percpu)
1071                 rotate_ctx(&cpuctx->ctx);
1072         rotate_ctx(ctx);
1073
1074         if (rotate_percpu)
1075                 perf_counter_cpu_sched_in(cpuctx, cpu);
1076         perf_counter_task_sched_in(curr, cpu);
1077 }
1078
1079 /*
1080  * Cross CPU call to read the hardware counter
1081  */
1082 static void __read(void *info)
1083 {
1084         struct perf_counter *counter = info;
1085         struct perf_counter_context *ctx = counter->ctx;
1086         unsigned long flags;
1087
1088         local_irq_save(flags);
1089         if (ctx->is_active)
1090                 update_context_time(ctx);
1091         counter->hw_ops->read(counter);
1092         update_counter_times(counter);
1093         local_irq_restore(flags);
1094 }
1095
1096 static u64 perf_counter_read(struct perf_counter *counter)
1097 {
1098         /*
1099          * If counter is enabled and currently active on a CPU, update the
1100          * value in the counter structure:
1101          */
1102         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1103                 smp_call_function_single(counter->oncpu,
1104                                          __read, counter, 1);
1105         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1106                 update_counter_times(counter);
1107         }
1108
1109         return atomic64_read(&counter->count);
1110 }
1111
1112 static void put_context(struct perf_counter_context *ctx)
1113 {
1114         if (ctx->task)
1115                 put_task_struct(ctx->task);
1116 }
1117
1118 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1119 {
1120         struct perf_cpu_context *cpuctx;
1121         struct perf_counter_context *ctx;
1122         struct task_struct *task;
1123
1124         /*
1125          * If cpu is not a wildcard then this is a percpu counter:
1126          */
1127         if (cpu != -1) {
1128                 /* Must be root to operate on a CPU counter: */
1129                 if (!capable(CAP_SYS_ADMIN))
1130                         return ERR_PTR(-EACCES);
1131
1132                 if (cpu < 0 || cpu > num_possible_cpus())
1133                         return ERR_PTR(-EINVAL);
1134
1135                 /*
1136                  * We could be clever and allow to attach a counter to an
1137                  * offline CPU and activate it when the CPU comes up, but
1138                  * that's for later.
1139                  */
1140                 if (!cpu_isset(cpu, cpu_online_map))
1141                         return ERR_PTR(-ENODEV);
1142
1143                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1144                 ctx = &cpuctx->ctx;
1145
1146                 return ctx;
1147         }
1148
1149         rcu_read_lock();
1150         if (!pid)
1151                 task = current;
1152         else
1153                 task = find_task_by_vpid(pid);
1154         if (task)
1155                 get_task_struct(task);
1156         rcu_read_unlock();
1157
1158         if (!task)
1159                 return ERR_PTR(-ESRCH);
1160
1161         ctx = &task->perf_counter_ctx;
1162         ctx->task = task;
1163
1164         /* Reuse ptrace permission checks for now. */
1165         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1166                 put_context(ctx);
1167                 return ERR_PTR(-EACCES);
1168         }
1169
1170         return ctx;
1171 }
1172
1173 static void free_counter_rcu(struct rcu_head *head)
1174 {
1175         struct perf_counter *counter;
1176
1177         counter = container_of(head, struct perf_counter, rcu_head);
1178         kfree(counter);
1179 }
1180
1181 static void perf_pending_sync(struct perf_counter *counter);
1182
1183 static void free_counter(struct perf_counter *counter)
1184 {
1185         perf_pending_sync(counter);
1186
1187         if (counter->destroy)
1188                 counter->destroy(counter);
1189
1190         call_rcu(&counter->rcu_head, free_counter_rcu);
1191 }
1192
1193 /*
1194  * Called when the last reference to the file is gone.
1195  */
1196 static int perf_release(struct inode *inode, struct file *file)
1197 {
1198         struct perf_counter *counter = file->private_data;
1199         struct perf_counter_context *ctx = counter->ctx;
1200
1201         file->private_data = NULL;
1202
1203         mutex_lock(&ctx->mutex);
1204         mutex_lock(&counter->mutex);
1205
1206         perf_counter_remove_from_context(counter);
1207
1208         mutex_unlock(&counter->mutex);
1209         mutex_unlock(&ctx->mutex);
1210
1211         free_counter(counter);
1212         put_context(ctx);
1213
1214         return 0;
1215 }
1216
1217 /*
1218  * Read the performance counter - simple non blocking version for now
1219  */
1220 static ssize_t
1221 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1222 {
1223         u64 values[3];
1224         int n;
1225
1226         /*
1227          * Return end-of-file for a read on a counter that is in
1228          * error state (i.e. because it was pinned but it couldn't be
1229          * scheduled on to the CPU at some point).
1230          */
1231         if (counter->state == PERF_COUNTER_STATE_ERROR)
1232                 return 0;
1233
1234         mutex_lock(&counter->mutex);
1235         values[0] = perf_counter_read(counter);
1236         n = 1;
1237         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1238                 values[n++] = counter->total_time_enabled +
1239                         atomic64_read(&counter->child_total_time_enabled);
1240         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1241                 values[n++] = counter->total_time_running +
1242                         atomic64_read(&counter->child_total_time_running);
1243         mutex_unlock(&counter->mutex);
1244
1245         if (count < n * sizeof(u64))
1246                 return -EINVAL;
1247         count = n * sizeof(u64);
1248
1249         if (copy_to_user(buf, values, count))
1250                 return -EFAULT;
1251
1252         return count;
1253 }
1254
1255 static ssize_t
1256 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1257 {
1258         struct perf_counter *counter = file->private_data;
1259
1260         return perf_read_hw(counter, buf, count);
1261 }
1262
1263 static unsigned int perf_poll(struct file *file, poll_table *wait)
1264 {
1265         struct perf_counter *counter = file->private_data;
1266         struct perf_mmap_data *data;
1267         unsigned int events;
1268
1269         rcu_read_lock();
1270         data = rcu_dereference(counter->data);
1271         if (data)
1272                 events = atomic_xchg(&data->wakeup, 0);
1273         else
1274                 events = POLL_HUP;
1275         rcu_read_unlock();
1276
1277         poll_wait(file, &counter->waitq, wait);
1278
1279         return events;
1280 }
1281
1282 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1283 {
1284         struct perf_counter *counter = file->private_data;
1285         int err = 0;
1286
1287         switch (cmd) {
1288         case PERF_COUNTER_IOC_ENABLE:
1289                 perf_counter_enable_family(counter);
1290                 break;
1291         case PERF_COUNTER_IOC_DISABLE:
1292                 perf_counter_disable_family(counter);
1293                 break;
1294         case PERF_COUNTER_IOC_REFRESH:
1295                 perf_counter_refresh(counter, arg);
1296                 break;
1297         default:
1298                 err = -ENOTTY;
1299         }
1300         return err;
1301 }
1302
1303 /*
1304  * Callers need to ensure there can be no nesting of this function, otherwise
1305  * the seqlock logic goes bad. We can not serialize this because the arch
1306  * code calls this from NMI context.
1307  */
1308 void perf_counter_update_userpage(struct perf_counter *counter)
1309 {
1310         struct perf_mmap_data *data;
1311         struct perf_counter_mmap_page *userpg;
1312
1313         rcu_read_lock();
1314         data = rcu_dereference(counter->data);
1315         if (!data)
1316                 goto unlock;
1317
1318         userpg = data->user_page;
1319
1320         /*
1321          * Disable preemption so as to not let the corresponding user-space
1322          * spin too long if we get preempted.
1323          */
1324         preempt_disable();
1325         ++userpg->lock;
1326         barrier();
1327         userpg->index = counter->hw.idx;
1328         userpg->offset = atomic64_read(&counter->count);
1329         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1330                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1331
1332         barrier();
1333         ++userpg->lock;
1334         preempt_enable();
1335 unlock:
1336         rcu_read_unlock();
1337 }
1338
1339 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1340 {
1341         struct perf_counter *counter = vma->vm_file->private_data;
1342         struct perf_mmap_data *data;
1343         int ret = VM_FAULT_SIGBUS;
1344
1345         rcu_read_lock();
1346         data = rcu_dereference(counter->data);
1347         if (!data)
1348                 goto unlock;
1349
1350         if (vmf->pgoff == 0) {
1351                 vmf->page = virt_to_page(data->user_page);
1352         } else {
1353                 int nr = vmf->pgoff - 1;
1354
1355                 if ((unsigned)nr > data->nr_pages)
1356                         goto unlock;
1357
1358                 vmf->page = virt_to_page(data->data_pages[nr]);
1359         }
1360         get_page(vmf->page);
1361         ret = 0;
1362 unlock:
1363         rcu_read_unlock();
1364
1365         return ret;
1366 }
1367
1368 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1369 {
1370         struct perf_mmap_data *data;
1371         unsigned long size;
1372         int i;
1373
1374         WARN_ON(atomic_read(&counter->mmap_count));
1375
1376         size = sizeof(struct perf_mmap_data);
1377         size += nr_pages * sizeof(void *);
1378
1379         data = kzalloc(size, GFP_KERNEL);
1380         if (!data)
1381                 goto fail;
1382
1383         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1384         if (!data->user_page)
1385                 goto fail_user_page;
1386
1387         for (i = 0; i < nr_pages; i++) {
1388                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1389                 if (!data->data_pages[i])
1390                         goto fail_data_pages;
1391         }
1392
1393         data->nr_pages = nr_pages;
1394
1395         rcu_assign_pointer(counter->data, data);
1396
1397         return 0;
1398
1399 fail_data_pages:
1400         for (i--; i >= 0; i--)
1401                 free_page((unsigned long)data->data_pages[i]);
1402
1403         free_page((unsigned long)data->user_page);
1404
1405 fail_user_page:
1406         kfree(data);
1407
1408 fail:
1409         return -ENOMEM;
1410 }
1411
1412 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1413 {
1414         struct perf_mmap_data *data = container_of(rcu_head,
1415                         struct perf_mmap_data, rcu_head);
1416         int i;
1417
1418         free_page((unsigned long)data->user_page);
1419         for (i = 0; i < data->nr_pages; i++)
1420                 free_page((unsigned long)data->data_pages[i]);
1421         kfree(data);
1422 }
1423
1424 static void perf_mmap_data_free(struct perf_counter *counter)
1425 {
1426         struct perf_mmap_data *data = counter->data;
1427
1428         WARN_ON(atomic_read(&counter->mmap_count));
1429
1430         rcu_assign_pointer(counter->data, NULL);
1431         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1432 }
1433
1434 static void perf_mmap_open(struct vm_area_struct *vma)
1435 {
1436         struct perf_counter *counter = vma->vm_file->private_data;
1437
1438         atomic_inc(&counter->mmap_count);
1439 }
1440
1441 static void perf_mmap_close(struct vm_area_struct *vma)
1442 {
1443         struct perf_counter *counter = vma->vm_file->private_data;
1444
1445         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1446                                       &counter->mmap_mutex)) {
1447                 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1448                 perf_mmap_data_free(counter);
1449                 mutex_unlock(&counter->mmap_mutex);
1450         }
1451 }
1452
1453 static struct vm_operations_struct perf_mmap_vmops = {
1454         .open  = perf_mmap_open,
1455         .close = perf_mmap_close,
1456         .fault = perf_mmap_fault,
1457 };
1458
1459 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1460 {
1461         struct perf_counter *counter = file->private_data;
1462         unsigned long vma_size;
1463         unsigned long nr_pages;
1464         unsigned long locked, lock_limit;
1465         int ret = 0;
1466
1467         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1468                 return -EINVAL;
1469
1470         vma_size = vma->vm_end - vma->vm_start;
1471         nr_pages = (vma_size / PAGE_SIZE) - 1;
1472
1473         /*
1474          * If we have data pages ensure they're a power-of-two number, so we
1475          * can do bitmasks instead of modulo.
1476          */
1477         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1478                 return -EINVAL;
1479
1480         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1481                 return -EINVAL;
1482
1483         if (vma->vm_pgoff != 0)
1484                 return -EINVAL;
1485
1486         mutex_lock(&counter->mmap_mutex);
1487         if (atomic_inc_not_zero(&counter->mmap_count)) {
1488                 if (nr_pages != counter->data->nr_pages)
1489                         ret = -EINVAL;
1490                 goto unlock;
1491         }
1492
1493         locked = vma->vm_mm->locked_vm;
1494         locked += nr_pages + 1;
1495
1496         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1497         lock_limit >>= PAGE_SHIFT;
1498
1499         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1500                 ret = -EPERM;
1501                 goto unlock;
1502         }
1503
1504         WARN_ON(counter->data);
1505         ret = perf_mmap_data_alloc(counter, nr_pages);
1506         if (ret)
1507                 goto unlock;
1508
1509         atomic_set(&counter->mmap_count, 1);
1510         vma->vm_mm->locked_vm += nr_pages + 1;
1511 unlock:
1512         mutex_unlock(&counter->mmap_mutex);
1513
1514         vma->vm_flags &= ~VM_MAYWRITE;
1515         vma->vm_flags |= VM_RESERVED;
1516         vma->vm_ops = &perf_mmap_vmops;
1517
1518         return ret;
1519 }
1520
1521 static int perf_fasync(int fd, struct file *filp, int on)
1522 {
1523         struct perf_counter *counter = filp->private_data;
1524         struct inode *inode = filp->f_path.dentry->d_inode;
1525         int retval;
1526
1527         mutex_lock(&inode->i_mutex);
1528         retval = fasync_helper(fd, filp, on, &counter->fasync);
1529         mutex_unlock(&inode->i_mutex);
1530
1531         if (retval < 0)
1532                 return retval;
1533
1534         return 0;
1535 }
1536
1537 static const struct file_operations perf_fops = {
1538         .release                = perf_release,
1539         .read                   = perf_read,
1540         .poll                   = perf_poll,
1541         .unlocked_ioctl         = perf_ioctl,
1542         .compat_ioctl           = perf_ioctl,
1543         .mmap                   = perf_mmap,
1544         .fasync                 = perf_fasync,
1545 };
1546
1547 /*
1548  * Perf counter wakeup
1549  *
1550  * If there's data, ensure we set the poll() state and publish everything
1551  * to user-space before waking everybody up.
1552  */
1553
1554 void perf_counter_wakeup(struct perf_counter *counter)
1555 {
1556         struct perf_mmap_data *data;
1557
1558         rcu_read_lock();
1559         data = rcu_dereference(counter->data);
1560         if (data) {
1561                 atomic_set(&data->wakeup, POLL_IN);
1562                 /*
1563                  * Ensure all data writes are issued before updating the
1564                  * user-space data head information. The matching rmb()
1565                  * will be in userspace after reading this value.
1566                  */
1567                 smp_wmb();
1568                 data->user_page->data_head = atomic_read(&data->head);
1569         }
1570         rcu_read_unlock();
1571
1572         wake_up_all(&counter->waitq);
1573
1574         if (counter->pending_kill) {
1575                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1576                 counter->pending_kill = 0;
1577         }
1578 }
1579
1580 /*
1581  * Pending wakeups
1582  *
1583  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1584  *
1585  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1586  * single linked list and use cmpxchg() to add entries lockless.
1587  */
1588
1589 static void perf_pending_counter(struct perf_pending_entry *entry)
1590 {
1591         struct perf_counter *counter = container_of(entry,
1592                         struct perf_counter, pending);
1593
1594         if (counter->pending_disable) {
1595                 counter->pending_disable = 0;
1596                 perf_counter_disable(counter);
1597         }
1598
1599         if (counter->pending_wakeup) {
1600                 counter->pending_wakeup = 0;
1601                 perf_counter_wakeup(counter);
1602         }
1603 }
1604
1605 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1606
1607 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1608         PENDING_TAIL,
1609 };
1610
1611 static void perf_pending_queue(struct perf_pending_entry *entry,
1612                                void (*func)(struct perf_pending_entry *))
1613 {
1614         struct perf_pending_entry **head;
1615
1616         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1617                 return;
1618
1619         entry->func = func;
1620
1621         head = &get_cpu_var(perf_pending_head);
1622
1623         do {
1624                 entry->next = *head;
1625         } while (cmpxchg(head, entry->next, entry) != entry->next);
1626
1627         set_perf_counter_pending();
1628
1629         put_cpu_var(perf_pending_head);
1630 }
1631
1632 static int __perf_pending_run(void)
1633 {
1634         struct perf_pending_entry *list;
1635         int nr = 0;
1636
1637         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1638         while (list != PENDING_TAIL) {
1639                 void (*func)(struct perf_pending_entry *);
1640                 struct perf_pending_entry *entry = list;
1641
1642                 list = list->next;
1643
1644                 func = entry->func;
1645                 entry->next = NULL;
1646                 /*
1647                  * Ensure we observe the unqueue before we issue the wakeup,
1648                  * so that we won't be waiting forever.
1649                  * -- see perf_not_pending().
1650                  */
1651                 smp_wmb();
1652
1653                 func(entry);
1654                 nr++;
1655         }
1656
1657         return nr;
1658 }
1659
1660 static inline int perf_not_pending(struct perf_counter *counter)
1661 {
1662         /*
1663          * If we flush on whatever cpu we run, there is a chance we don't
1664          * need to wait.
1665          */
1666         get_cpu();
1667         __perf_pending_run();
1668         put_cpu();
1669
1670         /*
1671          * Ensure we see the proper queue state before going to sleep
1672          * so that we do not miss the wakeup. -- see perf_pending_handle()
1673          */
1674         smp_rmb();
1675         return counter->pending.next == NULL;
1676 }
1677
1678 static void perf_pending_sync(struct perf_counter *counter)
1679 {
1680         wait_event(counter->waitq, perf_not_pending(counter));
1681 }
1682
1683 void perf_counter_do_pending(void)
1684 {
1685         __perf_pending_run();
1686 }
1687
1688 /*
1689  * Callchain support -- arch specific
1690  */
1691
1692 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1693 {
1694         return NULL;
1695 }
1696
1697 /*
1698  * Output
1699  */
1700
1701 struct perf_output_handle {
1702         struct perf_counter     *counter;
1703         struct perf_mmap_data   *data;
1704         unsigned int            offset;
1705         unsigned int            head;
1706         int                     wakeup;
1707         int                     nmi;
1708         int                     overflow;
1709 };
1710
1711 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1712 {
1713         if (handle->nmi) {
1714                 handle->counter->pending_wakeup = 1;
1715                 perf_pending_queue(&handle->counter->pending,
1716                                    perf_pending_counter);
1717         } else
1718                 perf_counter_wakeup(handle->counter);
1719 }
1720
1721 static int perf_output_begin(struct perf_output_handle *handle,
1722                              struct perf_counter *counter, unsigned int size,
1723                              int nmi, int overflow)
1724 {
1725         struct perf_mmap_data *data;
1726         unsigned int offset, head;
1727
1728         rcu_read_lock();
1729         data = rcu_dereference(counter->data);
1730         if (!data)
1731                 goto out;
1732
1733         handle->counter  = counter;
1734         handle->nmi      = nmi;
1735         handle->overflow = overflow;
1736
1737         if (!data->nr_pages)
1738                 goto fail;
1739
1740         do {
1741                 offset = head = atomic_read(&data->head);
1742                 head += size;
1743         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1744
1745         handle->data    = data;
1746         handle->offset  = offset;
1747         handle->head    = head;
1748         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1749
1750         return 0;
1751
1752 fail:
1753         __perf_output_wakeup(handle);
1754 out:
1755         rcu_read_unlock();
1756
1757         return -ENOSPC;
1758 }
1759
1760 static void perf_output_copy(struct perf_output_handle *handle,
1761                              void *buf, unsigned int len)
1762 {
1763         unsigned int pages_mask;
1764         unsigned int offset;
1765         unsigned int size;
1766         void **pages;
1767
1768         offset          = handle->offset;
1769         pages_mask      = handle->data->nr_pages - 1;
1770         pages           = handle->data->data_pages;
1771
1772         do {
1773                 unsigned int page_offset;
1774                 int nr;
1775
1776                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1777                 page_offset = offset & (PAGE_SIZE - 1);
1778                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1779
1780                 memcpy(pages[nr] + page_offset, buf, size);
1781
1782                 len         -= size;
1783                 buf         += size;
1784                 offset      += size;
1785         } while (len);
1786
1787         handle->offset = offset;
1788
1789         WARN_ON_ONCE(handle->offset > handle->head);
1790 }
1791
1792 #define perf_output_put(handle, x) \
1793         perf_output_copy((handle), &(x), sizeof(x))
1794
1795 static void perf_output_end(struct perf_output_handle *handle)
1796 {
1797         int wakeup_events = handle->counter->hw_event.wakeup_events;
1798
1799         if (handle->overflow && wakeup_events) {
1800                 int events = atomic_inc_return(&handle->data->events);
1801                 if (events >= wakeup_events) {
1802                         atomic_sub(wakeup_events, &handle->data->events);
1803                         __perf_output_wakeup(handle);
1804                 }
1805         } else if (handle->wakeup)
1806                 __perf_output_wakeup(handle);
1807         rcu_read_unlock();
1808 }
1809
1810 static void perf_counter_output(struct perf_counter *counter,
1811                                 int nmi, struct pt_regs *regs)
1812 {
1813         int ret;
1814         u64 record_type = counter->hw_event.record_type;
1815         struct perf_output_handle handle;
1816         struct perf_event_header header;
1817         u64 ip;
1818         struct {
1819                 u32 pid, tid;
1820         } tid_entry;
1821         struct {
1822                 u64 event;
1823                 u64 counter;
1824         } group_entry;
1825         struct perf_callchain_entry *callchain = NULL;
1826         int callchain_size = 0;
1827         u64 time;
1828
1829         header.type = PERF_EVENT_COUNTER_OVERFLOW;
1830         header.size = sizeof(header);
1831
1832         if (record_type & PERF_RECORD_IP) {
1833                 ip = instruction_pointer(regs);
1834                 header.type |= __PERF_EVENT_IP;
1835                 header.size += sizeof(ip);
1836         }
1837
1838         if (record_type & PERF_RECORD_TID) {
1839                 /* namespace issues */
1840                 tid_entry.pid = current->group_leader->pid;
1841                 tid_entry.tid = current->pid;
1842
1843                 header.type |= __PERF_EVENT_TID;
1844                 header.size += sizeof(tid_entry);
1845         }
1846
1847         if (record_type & PERF_RECORD_GROUP) {
1848                 header.type |= __PERF_EVENT_GROUP;
1849                 header.size += sizeof(u64) +
1850                         counter->nr_siblings * sizeof(group_entry);
1851         }
1852
1853         if (record_type & PERF_RECORD_CALLCHAIN) {
1854                 callchain = perf_callchain(regs);
1855
1856                 if (callchain) {
1857                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1858
1859                         header.type |= __PERF_EVENT_CALLCHAIN;
1860                         header.size += callchain_size;
1861                 }
1862         }
1863
1864         if (record_type & PERF_RECORD_TIME) {
1865                 /*
1866                  * Maybe do better on x86 and provide cpu_clock_nmi()
1867                  */
1868                 time = sched_clock();
1869
1870                 header.type |= __PERF_EVENT_TIME;
1871                 header.size += sizeof(u64);
1872         }
1873
1874         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1875         if (ret)
1876                 return;
1877
1878         perf_output_put(&handle, header);
1879
1880         if (record_type & PERF_RECORD_IP)
1881                 perf_output_put(&handle, ip);
1882
1883         if (record_type & PERF_RECORD_TID)
1884                 perf_output_put(&handle, tid_entry);
1885
1886         if (record_type & PERF_RECORD_GROUP) {
1887                 struct perf_counter *leader, *sub;
1888                 u64 nr = counter->nr_siblings;
1889
1890                 perf_output_put(&handle, nr);
1891
1892                 leader = counter->group_leader;
1893                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1894                         if (sub != counter)
1895                                 sub->hw_ops->read(sub);
1896
1897                         group_entry.event = sub->hw_event.config;
1898                         group_entry.counter = atomic64_read(&sub->count);
1899
1900                         perf_output_put(&handle, group_entry);
1901                 }
1902         }
1903
1904         if (callchain)
1905                 perf_output_copy(&handle, callchain, callchain_size);
1906
1907         if (record_type & PERF_RECORD_TIME)
1908                 perf_output_put(&handle, time);
1909
1910         perf_output_end(&handle);
1911 }
1912
1913 /*
1914  * mmap tracking
1915  */
1916
1917 struct perf_mmap_event {
1918         struct file     *file;
1919         char            *file_name;
1920         int             file_size;
1921
1922         struct {
1923                 struct perf_event_header        header;
1924
1925                 u32                             pid;
1926                 u32                             tid;
1927                 u64                             start;
1928                 u64                             len;
1929                 u64                             pgoff;
1930         } event;
1931 };
1932
1933 static void perf_counter_mmap_output(struct perf_counter *counter,
1934                                      struct perf_mmap_event *mmap_event)
1935 {
1936         struct perf_output_handle handle;
1937         int size = mmap_event->event.header.size;
1938         int ret = perf_output_begin(&handle, counter, size, 0, 0);
1939
1940         if (ret)
1941                 return;
1942
1943         perf_output_put(&handle, mmap_event->event);
1944         perf_output_copy(&handle, mmap_event->file_name,
1945                                    mmap_event->file_size);
1946         perf_output_end(&handle);
1947 }
1948
1949 static int perf_counter_mmap_match(struct perf_counter *counter,
1950                                    struct perf_mmap_event *mmap_event)
1951 {
1952         if (counter->hw_event.mmap &&
1953             mmap_event->event.header.type == PERF_EVENT_MMAP)
1954                 return 1;
1955
1956         if (counter->hw_event.munmap &&
1957             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
1958                 return 1;
1959
1960         return 0;
1961 }
1962
1963 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
1964                                   struct perf_mmap_event *mmap_event)
1965 {
1966         struct perf_counter *counter;
1967
1968         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1969                 return;
1970
1971         rcu_read_lock();
1972         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1973                 if (perf_counter_mmap_match(counter, mmap_event))
1974                         perf_counter_mmap_output(counter, mmap_event);
1975         }
1976         rcu_read_unlock();
1977 }
1978
1979 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
1980 {
1981         struct perf_cpu_context *cpuctx;
1982         struct file *file = mmap_event->file;
1983         unsigned int size;
1984         char tmp[16];
1985         char *buf = NULL;
1986         char *name;
1987
1988         if (file) {
1989                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
1990                 if (!buf) {
1991                         name = strncpy(tmp, "//enomem", sizeof(tmp));
1992                         goto got_name;
1993                 }
1994                 name = dentry_path(file->f_dentry, buf, PATH_MAX);
1995                 if (IS_ERR(name)) {
1996                         name = strncpy(tmp, "//toolong", sizeof(tmp));
1997                         goto got_name;
1998                 }
1999         } else {
2000                 name = strncpy(tmp, "//anon", sizeof(tmp));
2001                 goto got_name;
2002         }
2003
2004 got_name:
2005         size = ALIGN(strlen(name), sizeof(u64));
2006
2007         mmap_event->file_name = name;
2008         mmap_event->file_size = size;
2009
2010         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2011
2012         cpuctx = &get_cpu_var(perf_cpu_context);
2013         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2014         put_cpu_var(perf_cpu_context);
2015
2016         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2017
2018         kfree(buf);
2019 }
2020
2021 void perf_counter_mmap(unsigned long addr, unsigned long len,
2022                        unsigned long pgoff, struct file *file)
2023 {
2024         struct perf_mmap_event mmap_event = {
2025                 .file   = file,
2026                 .event  = {
2027                         .header = { .type = PERF_EVENT_MMAP, },
2028                         .pid    = current->group_leader->pid,
2029                         .tid    = current->pid,
2030                         .start  = addr,
2031                         .len    = len,
2032                         .pgoff  = pgoff,
2033                 },
2034         };
2035
2036         perf_counter_mmap_event(&mmap_event);
2037 }
2038
2039 void perf_counter_munmap(unsigned long addr, unsigned long len,
2040                          unsigned long pgoff, struct file *file)
2041 {
2042         struct perf_mmap_event mmap_event = {
2043                 .file   = file,
2044                 .event  = {
2045                         .header = { .type = PERF_EVENT_MUNMAP, },
2046                         .pid    = current->group_leader->pid,
2047                         .tid    = current->pid,
2048                         .start  = addr,
2049                         .len    = len,
2050                         .pgoff  = pgoff,
2051                 },
2052         };
2053
2054         perf_counter_mmap_event(&mmap_event);
2055 }
2056
2057 /*
2058  * Generic counter overflow handling.
2059  */
2060
2061 int perf_counter_overflow(struct perf_counter *counter,
2062                           int nmi, struct pt_regs *regs)
2063 {
2064         int events = atomic_read(&counter->event_limit);
2065         int ret = 0;
2066
2067         counter->pending_kill = POLL_IN;
2068         if (events && atomic_dec_and_test(&counter->event_limit)) {
2069                 ret = 1;
2070                 counter->pending_kill = POLL_HUP;
2071                 if (nmi) {
2072                         counter->pending_disable = 1;
2073                         perf_pending_queue(&counter->pending,
2074                                            perf_pending_counter);
2075                 } else
2076                         perf_counter_disable(counter);
2077         }
2078
2079         perf_counter_output(counter, nmi, regs);
2080         return ret;
2081 }
2082
2083 /*
2084  * Generic software counter infrastructure
2085  */
2086
2087 static void perf_swcounter_update(struct perf_counter *counter)
2088 {
2089         struct hw_perf_counter *hwc = &counter->hw;
2090         u64 prev, now;
2091         s64 delta;
2092
2093 again:
2094         prev = atomic64_read(&hwc->prev_count);
2095         now = atomic64_read(&hwc->count);
2096         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2097                 goto again;
2098
2099         delta = now - prev;
2100
2101         atomic64_add(delta, &counter->count);
2102         atomic64_sub(delta, &hwc->period_left);
2103 }
2104
2105 static void perf_swcounter_set_period(struct perf_counter *counter)
2106 {
2107         struct hw_perf_counter *hwc = &counter->hw;
2108         s64 left = atomic64_read(&hwc->period_left);
2109         s64 period = hwc->irq_period;
2110
2111         if (unlikely(left <= -period)) {
2112                 left = period;
2113                 atomic64_set(&hwc->period_left, left);
2114         }
2115
2116         if (unlikely(left <= 0)) {
2117                 left += period;
2118                 atomic64_add(period, &hwc->period_left);
2119         }
2120
2121         atomic64_set(&hwc->prev_count, -left);
2122         atomic64_set(&hwc->count, -left);
2123 }
2124
2125 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2126 {
2127         enum hrtimer_restart ret = HRTIMER_RESTART;
2128         struct perf_counter *counter;
2129         struct pt_regs *regs;
2130
2131         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2132         counter->hw_ops->read(counter);
2133
2134         regs = get_irq_regs();
2135         /*
2136          * In case we exclude kernel IPs or are somehow not in interrupt
2137          * context, provide the next best thing, the user IP.
2138          */
2139         if ((counter->hw_event.exclude_kernel || !regs) &&
2140                         !counter->hw_event.exclude_user)
2141                 regs = task_pt_regs(current);
2142
2143         if (regs) {
2144                 if (perf_counter_overflow(counter, 0, regs))
2145                         ret = HRTIMER_NORESTART;
2146         }
2147
2148         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2149
2150         return ret;
2151 }
2152
2153 static void perf_swcounter_overflow(struct perf_counter *counter,
2154                                     int nmi, struct pt_regs *regs)
2155 {
2156         perf_swcounter_update(counter);
2157         perf_swcounter_set_period(counter);
2158         if (perf_counter_overflow(counter, nmi, regs))
2159                 /* soft-disable the counter */
2160                 ;
2161
2162 }
2163
2164 static int perf_swcounter_match(struct perf_counter *counter,
2165                                 enum perf_event_types type,
2166                                 u32 event, struct pt_regs *regs)
2167 {
2168         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2169                 return 0;
2170
2171         if (perf_event_raw(&counter->hw_event))
2172                 return 0;
2173
2174         if (perf_event_type(&counter->hw_event) != type)
2175                 return 0;
2176
2177         if (perf_event_id(&counter->hw_event) != event)
2178                 return 0;
2179
2180         if (counter->hw_event.exclude_user && user_mode(regs))
2181                 return 0;
2182
2183         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2184                 return 0;
2185
2186         return 1;
2187 }
2188
2189 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2190                                int nmi, struct pt_regs *regs)
2191 {
2192         int neg = atomic64_add_negative(nr, &counter->hw.count);
2193         if (counter->hw.irq_period && !neg)
2194                 perf_swcounter_overflow(counter, nmi, regs);
2195 }
2196
2197 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2198                                      enum perf_event_types type, u32 event,
2199                                      u64 nr, int nmi, struct pt_regs *regs)
2200 {
2201         struct perf_counter *counter;
2202
2203         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2204                 return;
2205
2206         rcu_read_lock();
2207         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2208                 if (perf_swcounter_match(counter, type, event, regs))
2209                         perf_swcounter_add(counter, nr, nmi, regs);
2210         }
2211         rcu_read_unlock();
2212 }
2213
2214 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2215 {
2216         if (in_nmi())
2217                 return &cpuctx->recursion[3];
2218
2219         if (in_irq())
2220                 return &cpuctx->recursion[2];
2221
2222         if (in_softirq())
2223                 return &cpuctx->recursion[1];
2224
2225         return &cpuctx->recursion[0];
2226 }
2227
2228 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2229                                    u64 nr, int nmi, struct pt_regs *regs)
2230 {
2231         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2232         int *recursion = perf_swcounter_recursion_context(cpuctx);
2233
2234         if (*recursion)
2235                 goto out;
2236
2237         (*recursion)++;
2238         barrier();
2239
2240         perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
2241         if (cpuctx->task_ctx) {
2242                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2243                                 nr, nmi, regs);
2244         }
2245
2246         barrier();
2247         (*recursion)--;
2248
2249 out:
2250         put_cpu_var(perf_cpu_context);
2251 }
2252
2253 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2254 {
2255         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2256 }
2257
2258 static void perf_swcounter_read(struct perf_counter *counter)
2259 {
2260         perf_swcounter_update(counter);
2261 }
2262
2263 static int perf_swcounter_enable(struct perf_counter *counter)
2264 {
2265         perf_swcounter_set_period(counter);
2266         return 0;
2267 }
2268
2269 static void perf_swcounter_disable(struct perf_counter *counter)
2270 {
2271         perf_swcounter_update(counter);
2272 }
2273
2274 static const struct hw_perf_counter_ops perf_ops_generic = {
2275         .enable         = perf_swcounter_enable,
2276         .disable        = perf_swcounter_disable,
2277         .read           = perf_swcounter_read,
2278 };
2279
2280 /*
2281  * Software counter: cpu wall time clock
2282  */
2283
2284 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2285 {
2286         int cpu = raw_smp_processor_id();
2287         s64 prev;
2288         u64 now;
2289
2290         now = cpu_clock(cpu);
2291         prev = atomic64_read(&counter->hw.prev_count);
2292         atomic64_set(&counter->hw.prev_count, now);
2293         atomic64_add(now - prev, &counter->count);
2294 }
2295
2296 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2297 {
2298         struct hw_perf_counter *hwc = &counter->hw;
2299         int cpu = raw_smp_processor_id();
2300
2301         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2302         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2303         hwc->hrtimer.function = perf_swcounter_hrtimer;
2304         if (hwc->irq_period) {
2305                 __hrtimer_start_range_ns(&hwc->hrtimer,
2306                                 ns_to_ktime(hwc->irq_period), 0,
2307                                 HRTIMER_MODE_REL, 0);
2308         }
2309
2310         return 0;
2311 }
2312
2313 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2314 {
2315         hrtimer_cancel(&counter->hw.hrtimer);
2316         cpu_clock_perf_counter_update(counter);
2317 }
2318
2319 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2320 {
2321         cpu_clock_perf_counter_update(counter);
2322 }
2323
2324 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2325         .enable         = cpu_clock_perf_counter_enable,
2326         .disable        = cpu_clock_perf_counter_disable,
2327         .read           = cpu_clock_perf_counter_read,
2328 };
2329
2330 /*
2331  * Software counter: task time clock
2332  */
2333
2334 static void task_clock_perf_counter_update(struct perf_counter *counter)
2335 {
2336         u64 prev, now;
2337         s64 delta;
2338
2339         update_context_time(counter->ctx);
2340         now = counter->ctx->time;
2341
2342         prev = atomic64_xchg(&counter->hw.prev_count, now);
2343         delta = now - prev;
2344         atomic64_add(delta, &counter->count);
2345 }
2346
2347 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2348 {
2349         struct hw_perf_counter *hwc = &counter->hw;
2350         u64 now;
2351
2352         update_context_time(counter->ctx);
2353         now = counter->ctx->time;
2354
2355         atomic64_set(&hwc->prev_count, now);
2356         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2357         hwc->hrtimer.function = perf_swcounter_hrtimer;
2358         if (hwc->irq_period) {
2359                 __hrtimer_start_range_ns(&hwc->hrtimer,
2360                                 ns_to_ktime(hwc->irq_period), 0,
2361                                 HRTIMER_MODE_REL, 0);
2362         }
2363
2364         return 0;
2365 }
2366
2367 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2368 {
2369         hrtimer_cancel(&counter->hw.hrtimer);
2370         task_clock_perf_counter_update(counter);
2371 }
2372
2373 static void task_clock_perf_counter_read(struct perf_counter *counter)
2374 {
2375         task_clock_perf_counter_update(counter);
2376 }
2377
2378 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2379         .enable         = task_clock_perf_counter_enable,
2380         .disable        = task_clock_perf_counter_disable,
2381         .read           = task_clock_perf_counter_read,
2382 };
2383
2384 /*
2385  * Software counter: cpu migrations
2386  */
2387
2388 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2389 {
2390         struct task_struct *curr = counter->ctx->task;
2391
2392         if (curr)
2393                 return curr->se.nr_migrations;
2394         return cpu_nr_migrations(smp_processor_id());
2395 }
2396
2397 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2398 {
2399         u64 prev, now;
2400         s64 delta;
2401
2402         prev = atomic64_read(&counter->hw.prev_count);
2403         now = get_cpu_migrations(counter);
2404
2405         atomic64_set(&counter->hw.prev_count, now);
2406
2407         delta = now - prev;
2408
2409         atomic64_add(delta, &counter->count);
2410 }
2411
2412 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2413 {
2414         cpu_migrations_perf_counter_update(counter);
2415 }
2416
2417 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2418 {
2419         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2420                 atomic64_set(&counter->hw.prev_count,
2421                              get_cpu_migrations(counter));
2422         return 0;
2423 }
2424
2425 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2426 {
2427         cpu_migrations_perf_counter_update(counter);
2428 }
2429
2430 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2431         .enable         = cpu_migrations_perf_counter_enable,
2432         .disable        = cpu_migrations_perf_counter_disable,
2433         .read           = cpu_migrations_perf_counter_read,
2434 };
2435
2436 #ifdef CONFIG_EVENT_PROFILE
2437 void perf_tpcounter_event(int event_id)
2438 {
2439         struct pt_regs *regs = get_irq_regs();
2440
2441         if (!regs)
2442                 regs = task_pt_regs(current);
2443
2444         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2445 }
2446
2447 extern int ftrace_profile_enable(int);
2448 extern void ftrace_profile_disable(int);
2449
2450 static void tp_perf_counter_destroy(struct perf_counter *counter)
2451 {
2452         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2453 }
2454
2455 static const struct hw_perf_counter_ops *
2456 tp_perf_counter_init(struct perf_counter *counter)
2457 {
2458         int event_id = perf_event_id(&counter->hw_event);
2459         int ret;
2460
2461         ret = ftrace_profile_enable(event_id);
2462         if (ret)
2463                 return NULL;
2464
2465         counter->destroy = tp_perf_counter_destroy;
2466         counter->hw.irq_period = counter->hw_event.irq_period;
2467
2468         return &perf_ops_generic;
2469 }
2470 #else
2471 static const struct hw_perf_counter_ops *
2472 tp_perf_counter_init(struct perf_counter *counter)
2473 {
2474         return NULL;
2475 }
2476 #endif
2477
2478 static const struct hw_perf_counter_ops *
2479 sw_perf_counter_init(struct perf_counter *counter)
2480 {
2481         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2482         const struct hw_perf_counter_ops *hw_ops = NULL;
2483         struct hw_perf_counter *hwc = &counter->hw;
2484
2485         /*
2486          * Software counters (currently) can't in general distinguish
2487          * between user, kernel and hypervisor events.
2488          * However, context switches and cpu migrations are considered
2489          * to be kernel events, and page faults are never hypervisor
2490          * events.
2491          */
2492         switch (perf_event_id(&counter->hw_event)) {
2493         case PERF_COUNT_CPU_CLOCK:
2494                 hw_ops = &perf_ops_cpu_clock;
2495
2496                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2497                         hw_event->irq_period = 10000;
2498                 break;
2499         case PERF_COUNT_TASK_CLOCK:
2500                 /*
2501                  * If the user instantiates this as a per-cpu counter,
2502                  * use the cpu_clock counter instead.
2503                  */
2504                 if (counter->ctx->task)
2505                         hw_ops = &perf_ops_task_clock;
2506                 else
2507                         hw_ops = &perf_ops_cpu_clock;
2508
2509                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2510                         hw_event->irq_period = 10000;
2511                 break;
2512         case PERF_COUNT_PAGE_FAULTS:
2513         case PERF_COUNT_PAGE_FAULTS_MIN:
2514         case PERF_COUNT_PAGE_FAULTS_MAJ:
2515         case PERF_COUNT_CONTEXT_SWITCHES:
2516                 hw_ops = &perf_ops_generic;
2517                 break;
2518         case PERF_COUNT_CPU_MIGRATIONS:
2519                 if (!counter->hw_event.exclude_kernel)
2520                         hw_ops = &perf_ops_cpu_migrations;
2521                 break;
2522         }
2523
2524         if (hw_ops)
2525                 hwc->irq_period = hw_event->irq_period;
2526
2527         return hw_ops;
2528 }
2529
2530 /*
2531  * Allocate and initialize a counter structure
2532  */
2533 static struct perf_counter *
2534 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2535                    int cpu,
2536                    struct perf_counter_context *ctx,
2537                    struct perf_counter *group_leader,
2538                    gfp_t gfpflags)
2539 {
2540         const struct hw_perf_counter_ops *hw_ops;
2541         struct perf_counter *counter;
2542         long err;
2543
2544         counter = kzalloc(sizeof(*counter), gfpflags);
2545         if (!counter)
2546                 return ERR_PTR(-ENOMEM);
2547
2548         /*
2549          * Single counters are their own group leaders, with an
2550          * empty sibling list:
2551          */
2552         if (!group_leader)
2553                 group_leader = counter;
2554
2555         mutex_init(&counter->mutex);
2556         INIT_LIST_HEAD(&counter->list_entry);
2557         INIT_LIST_HEAD(&counter->event_entry);
2558         INIT_LIST_HEAD(&counter->sibling_list);
2559         init_waitqueue_head(&counter->waitq);
2560
2561         mutex_init(&counter->mmap_mutex);
2562
2563         INIT_LIST_HEAD(&counter->child_list);
2564
2565         counter->cpu                    = cpu;
2566         counter->hw_event               = *hw_event;
2567         counter->group_leader           = group_leader;
2568         counter->hw_ops                 = NULL;
2569         counter->ctx                    = ctx;
2570
2571         counter->state = PERF_COUNTER_STATE_INACTIVE;
2572         if (hw_event->disabled)
2573                 counter->state = PERF_COUNTER_STATE_OFF;
2574
2575         hw_ops = NULL;
2576
2577         if (perf_event_raw(hw_event)) {
2578                 hw_ops = hw_perf_counter_init(counter);
2579                 goto done;
2580         }
2581
2582         switch (perf_event_type(hw_event)) {
2583         case PERF_TYPE_HARDWARE:
2584                 hw_ops = hw_perf_counter_init(counter);
2585                 break;
2586
2587         case PERF_TYPE_SOFTWARE:
2588                 hw_ops = sw_perf_counter_init(counter);
2589                 break;
2590
2591         case PERF_TYPE_TRACEPOINT:
2592                 hw_ops = tp_perf_counter_init(counter);
2593                 break;
2594         }
2595 done:
2596         err = 0;
2597         if (!hw_ops)
2598                 err = -EINVAL;
2599         else if (IS_ERR(hw_ops))
2600                 err = PTR_ERR(hw_ops);
2601
2602         if (err) {
2603                 kfree(counter);
2604                 return ERR_PTR(err);
2605         }
2606
2607         counter->hw_ops = hw_ops;
2608
2609         return counter;
2610 }
2611
2612 /**
2613  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2614  *
2615  * @hw_event_uptr:      event type attributes for monitoring/sampling
2616  * @pid:                target pid
2617  * @cpu:                target cpu
2618  * @group_fd:           group leader counter fd
2619  */
2620 SYSCALL_DEFINE5(perf_counter_open,
2621                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2622                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2623 {
2624         struct perf_counter *counter, *group_leader;
2625         struct perf_counter_hw_event hw_event;
2626         struct perf_counter_context *ctx;
2627         struct file *counter_file = NULL;
2628         struct file *group_file = NULL;
2629         int fput_needed = 0;
2630         int fput_needed2 = 0;
2631         int ret;
2632
2633         /* for future expandability... */
2634         if (flags)
2635                 return -EINVAL;
2636
2637         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2638                 return -EFAULT;
2639
2640         /*
2641          * Get the target context (task or percpu):
2642          */
2643         ctx = find_get_context(pid, cpu);
2644         if (IS_ERR(ctx))
2645                 return PTR_ERR(ctx);
2646
2647         /*
2648          * Look up the group leader (we will attach this counter to it):
2649          */
2650         group_leader = NULL;
2651         if (group_fd != -1) {
2652                 ret = -EINVAL;
2653                 group_file = fget_light(group_fd, &fput_needed);
2654                 if (!group_file)
2655                         goto err_put_context;
2656                 if (group_file->f_op != &perf_fops)
2657                         goto err_put_context;
2658
2659                 group_leader = group_file->private_data;
2660                 /*
2661                  * Do not allow a recursive hierarchy (this new sibling
2662                  * becoming part of another group-sibling):
2663                  */
2664                 if (group_leader->group_leader != group_leader)
2665                         goto err_put_context;
2666                 /*
2667                  * Do not allow to attach to a group in a different
2668                  * task or CPU context:
2669                  */
2670                 if (group_leader->ctx != ctx)
2671                         goto err_put_context;
2672                 /*
2673                  * Only a group leader can be exclusive or pinned
2674                  */
2675                 if (hw_event.exclusive || hw_event.pinned)
2676                         goto err_put_context;
2677         }
2678
2679         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2680                                      GFP_KERNEL);
2681         ret = PTR_ERR(counter);
2682         if (IS_ERR(counter))
2683                 goto err_put_context;
2684
2685         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2686         if (ret < 0)
2687                 goto err_free_put_context;
2688
2689         counter_file = fget_light(ret, &fput_needed2);
2690         if (!counter_file)
2691                 goto err_free_put_context;
2692
2693         counter->filp = counter_file;
2694         mutex_lock(&ctx->mutex);
2695         perf_install_in_context(ctx, counter, cpu);
2696         mutex_unlock(&ctx->mutex);
2697
2698         fput_light(counter_file, fput_needed2);
2699
2700 out_fput:
2701         fput_light(group_file, fput_needed);
2702
2703         return ret;
2704
2705 err_free_put_context:
2706         kfree(counter);
2707
2708 err_put_context:
2709         put_context(ctx);
2710
2711         goto out_fput;
2712 }
2713
2714 /*
2715  * Initialize the perf_counter context in a task_struct:
2716  */
2717 static void
2718 __perf_counter_init_context(struct perf_counter_context *ctx,
2719                             struct task_struct *task)
2720 {
2721         memset(ctx, 0, sizeof(*ctx));
2722         spin_lock_init(&ctx->lock);
2723         mutex_init(&ctx->mutex);
2724         INIT_LIST_HEAD(&ctx->counter_list);
2725         INIT_LIST_HEAD(&ctx->event_list);
2726         ctx->task = task;
2727 }
2728
2729 /*
2730  * inherit a counter from parent task to child task:
2731  */
2732 static struct perf_counter *
2733 inherit_counter(struct perf_counter *parent_counter,
2734               struct task_struct *parent,
2735               struct perf_counter_context *parent_ctx,
2736               struct task_struct *child,
2737               struct perf_counter *group_leader,
2738               struct perf_counter_context *child_ctx)
2739 {
2740         struct perf_counter *child_counter;
2741
2742         /*
2743          * Instead of creating recursive hierarchies of counters,
2744          * we link inherited counters back to the original parent,
2745          * which has a filp for sure, which we use as the reference
2746          * count:
2747          */
2748         if (parent_counter->parent)
2749                 parent_counter = parent_counter->parent;
2750
2751         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2752                                            parent_counter->cpu, child_ctx,
2753                                            group_leader, GFP_KERNEL);
2754         if (IS_ERR(child_counter))
2755                 return child_counter;
2756
2757         /*
2758          * Link it up in the child's context:
2759          */
2760         child_counter->task = child;
2761         add_counter_to_ctx(child_counter, child_ctx);
2762
2763         child_counter->parent = parent_counter;
2764         /*
2765          * inherit into child's child as well:
2766          */
2767         child_counter->hw_event.inherit = 1;
2768
2769         /*
2770          * Get a reference to the parent filp - we will fput it
2771          * when the child counter exits. This is safe to do because
2772          * we are in the parent and we know that the filp still
2773          * exists and has a nonzero count:
2774          */
2775         atomic_long_inc(&parent_counter->filp->f_count);
2776
2777         /*
2778          * Link this into the parent counter's child list
2779          */
2780         mutex_lock(&parent_counter->mutex);
2781         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2782
2783         /*
2784          * Make the child state follow the state of the parent counter,
2785          * not its hw_event.disabled bit.  We hold the parent's mutex,
2786          * so we won't race with perf_counter_{en,dis}able_family.
2787          */
2788         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2789                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2790         else
2791                 child_counter->state = PERF_COUNTER_STATE_OFF;
2792
2793         mutex_unlock(&parent_counter->mutex);
2794
2795         return child_counter;
2796 }
2797
2798 static int inherit_group(struct perf_counter *parent_counter,
2799               struct task_struct *parent,
2800               struct perf_counter_context *parent_ctx,
2801               struct task_struct *child,
2802               struct perf_counter_context *child_ctx)
2803 {
2804         struct perf_counter *leader;
2805         struct perf_counter *sub;
2806         struct perf_counter *child_ctr;
2807
2808         leader = inherit_counter(parent_counter, parent, parent_ctx,
2809                                  child, NULL, child_ctx);
2810         if (IS_ERR(leader))
2811                 return PTR_ERR(leader);
2812         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2813                 child_ctr = inherit_counter(sub, parent, parent_ctx,
2814                                             child, leader, child_ctx);
2815                 if (IS_ERR(child_ctr))
2816                         return PTR_ERR(child_ctr);
2817         }
2818         return 0;
2819 }
2820
2821 static void sync_child_counter(struct perf_counter *child_counter,
2822                                struct perf_counter *parent_counter)
2823 {
2824         u64 parent_val, child_val;
2825
2826         parent_val = atomic64_read(&parent_counter->count);
2827         child_val = atomic64_read(&child_counter->count);
2828
2829         /*
2830          * Add back the child's count to the parent's count:
2831          */
2832         atomic64_add(child_val, &parent_counter->count);
2833         atomic64_add(child_counter->total_time_enabled,
2834                      &parent_counter->child_total_time_enabled);
2835         atomic64_add(child_counter->total_time_running,
2836                      &parent_counter->child_total_time_running);
2837
2838         /*
2839          * Remove this counter from the parent's list
2840          */
2841         mutex_lock(&parent_counter->mutex);
2842         list_del_init(&child_counter->child_list);
2843         mutex_unlock(&parent_counter->mutex);
2844
2845         /*
2846          * Release the parent counter, if this was the last
2847          * reference to it.
2848          */
2849         fput(parent_counter->filp);
2850 }
2851
2852 static void
2853 __perf_counter_exit_task(struct task_struct *child,
2854                          struct perf_counter *child_counter,
2855                          struct perf_counter_context *child_ctx)
2856 {
2857         struct perf_counter *parent_counter;
2858         struct perf_counter *sub, *tmp;
2859
2860         /*
2861          * If we do not self-reap then we have to wait for the
2862          * child task to unschedule (it will happen for sure),
2863          * so that its counter is at its final count. (This
2864          * condition triggers rarely - child tasks usually get
2865          * off their CPU before the parent has a chance to
2866          * get this far into the reaping action)
2867          */
2868         if (child != current) {
2869                 wait_task_inactive(child, 0);
2870                 list_del_init(&child_counter->list_entry);
2871                 update_counter_times(child_counter);
2872         } else {
2873                 struct perf_cpu_context *cpuctx;
2874                 unsigned long flags;
2875                 u64 perf_flags;
2876
2877                 /*
2878                  * Disable and unlink this counter.
2879                  *
2880                  * Be careful about zapping the list - IRQ/NMI context
2881                  * could still be processing it:
2882                  */
2883                 local_irq_save(flags);
2884                 perf_flags = hw_perf_save_disable();
2885
2886                 cpuctx = &__get_cpu_var(perf_cpu_context);
2887
2888                 group_sched_out(child_counter, cpuctx, child_ctx);
2889                 update_counter_times(child_counter);
2890
2891                 list_del_init(&child_counter->list_entry);
2892
2893                 child_ctx->nr_counters--;
2894
2895                 hw_perf_restore(perf_flags);
2896                 local_irq_restore(flags);
2897         }
2898
2899         parent_counter = child_counter->parent;
2900         /*
2901          * It can happen that parent exits first, and has counters
2902          * that are still around due to the child reference. These
2903          * counters need to be zapped - but otherwise linger.
2904          */
2905         if (parent_counter) {
2906                 sync_child_counter(child_counter, parent_counter);
2907                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2908                                          list_entry) {
2909                         if (sub->parent) {
2910                                 sync_child_counter(sub, sub->parent);
2911                                 free_counter(sub);
2912                         }
2913                 }
2914                 free_counter(child_counter);
2915         }
2916 }
2917
2918 /*
2919  * When a child task exits, feed back counter values to parent counters.
2920  *
2921  * Note: we may be running in child context, but the PID is not hashed
2922  * anymore so new counters will not be added.
2923  */
2924 void perf_counter_exit_task(struct task_struct *child)
2925 {
2926         struct perf_counter *child_counter, *tmp;
2927         struct perf_counter_context *child_ctx;
2928
2929         child_ctx = &child->perf_counter_ctx;
2930
2931         if (likely(!child_ctx->nr_counters))
2932                 return;
2933
2934         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2935                                  list_entry)
2936                 __perf_counter_exit_task(child, child_counter, child_ctx);
2937 }
2938
2939 /*
2940  * Initialize the perf_counter context in task_struct
2941  */
2942 void perf_counter_init_task(struct task_struct *child)
2943 {
2944         struct perf_counter_context *child_ctx, *parent_ctx;
2945         struct perf_counter *counter;
2946         struct task_struct *parent = current;
2947
2948         child_ctx  =  &child->perf_counter_ctx;
2949         parent_ctx = &parent->perf_counter_ctx;
2950
2951         __perf_counter_init_context(child_ctx, child);
2952
2953         /*
2954          * This is executed from the parent task context, so inherit
2955          * counters that have been marked for cloning:
2956          */
2957
2958         if (likely(!parent_ctx->nr_counters))
2959                 return;
2960
2961         /*
2962          * Lock the parent list. No need to lock the child - not PID
2963          * hashed yet and not running, so nobody can access it.
2964          */
2965         mutex_lock(&parent_ctx->mutex);
2966
2967         /*
2968          * We dont have to disable NMIs - we are only looking at
2969          * the list, not manipulating it:
2970          */
2971         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2972                 if (!counter->hw_event.inherit)
2973                         continue;
2974
2975                 if (inherit_group(counter, parent,
2976                                   parent_ctx, child, child_ctx))
2977                         break;
2978         }
2979
2980         mutex_unlock(&parent_ctx->mutex);
2981 }
2982
2983 static void __cpuinit perf_counter_init_cpu(int cpu)
2984 {
2985         struct perf_cpu_context *cpuctx;
2986
2987         cpuctx = &per_cpu(perf_cpu_context, cpu);
2988         __perf_counter_init_context(&cpuctx->ctx, NULL);
2989
2990         mutex_lock(&perf_resource_mutex);
2991         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2992         mutex_unlock(&perf_resource_mutex);
2993
2994         hw_perf_counter_setup(cpu);
2995 }
2996
2997 #ifdef CONFIG_HOTPLUG_CPU
2998 static void __perf_counter_exit_cpu(void *info)
2999 {
3000         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3001         struct perf_counter_context *ctx = &cpuctx->ctx;
3002         struct perf_counter *counter, *tmp;
3003
3004         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3005                 __perf_counter_remove_from_context(counter);
3006 }
3007 static void perf_counter_exit_cpu(int cpu)
3008 {
3009         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3010         struct perf_counter_context *ctx = &cpuctx->ctx;
3011
3012         mutex_lock(&ctx->mutex);
3013         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3014         mutex_unlock(&ctx->mutex);
3015 }
3016 #else
3017 static inline void perf_counter_exit_cpu(int cpu) { }
3018 #endif
3019
3020 static int __cpuinit
3021 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3022 {
3023         unsigned int cpu = (long)hcpu;
3024
3025         switch (action) {
3026
3027         case CPU_UP_PREPARE:
3028         case CPU_UP_PREPARE_FROZEN:
3029                 perf_counter_init_cpu(cpu);
3030                 break;
3031
3032         case CPU_DOWN_PREPARE:
3033         case CPU_DOWN_PREPARE_FROZEN:
3034                 perf_counter_exit_cpu(cpu);
3035                 break;
3036
3037         default:
3038                 break;
3039         }
3040
3041         return NOTIFY_OK;
3042 }
3043
3044 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3045         .notifier_call          = perf_cpu_notify,
3046 };
3047
3048 static int __init perf_counter_init(void)
3049 {
3050         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3051                         (void *)(long)smp_processor_id());
3052         register_cpu_notifier(&perf_cpu_nb);
3053
3054         return 0;
3055 }
3056 early_initcall(perf_counter_init);
3057
3058 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3059 {
3060         return sprintf(buf, "%d\n", perf_reserved_percpu);
3061 }
3062
3063 static ssize_t
3064 perf_set_reserve_percpu(struct sysdev_class *class,
3065                         const char *buf,
3066                         size_t count)
3067 {
3068         struct perf_cpu_context *cpuctx;
3069         unsigned long val;
3070         int err, cpu, mpt;
3071
3072         err = strict_strtoul(buf, 10, &val);
3073         if (err)
3074                 return err;
3075         if (val > perf_max_counters)
3076                 return -EINVAL;
3077
3078         mutex_lock(&perf_resource_mutex);
3079         perf_reserved_percpu = val;
3080         for_each_online_cpu(cpu) {
3081                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3082                 spin_lock_irq(&cpuctx->ctx.lock);
3083                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3084                           perf_max_counters - perf_reserved_percpu);
3085                 cpuctx->max_pertask = mpt;
3086                 spin_unlock_irq(&cpuctx->ctx.lock);
3087         }
3088         mutex_unlock(&perf_resource_mutex);
3089
3090         return count;
3091 }
3092
3093 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3094 {
3095         return sprintf(buf, "%d\n", perf_overcommit);
3096 }
3097
3098 static ssize_t
3099 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3100 {
3101         unsigned long val;
3102         int err;
3103
3104         err = strict_strtoul(buf, 10, &val);
3105         if (err)
3106                 return err;
3107         if (val > 1)
3108                 return -EINVAL;
3109
3110         mutex_lock(&perf_resource_mutex);
3111         perf_overcommit = val;
3112         mutex_unlock(&perf_resource_mutex);
3113
3114         return count;
3115 }
3116
3117 static SYSDEV_CLASS_ATTR(
3118                                 reserve_percpu,
3119                                 0644,
3120                                 perf_show_reserve_percpu,
3121                                 perf_set_reserve_percpu
3122                         );
3123
3124 static SYSDEV_CLASS_ATTR(
3125                                 overcommit,
3126                                 0644,
3127                                 perf_show_overcommit,
3128                                 perf_set_overcommit
3129                         );
3130
3131 static struct attribute *perfclass_attrs[] = {
3132         &attr_reserve_percpu.attr,
3133         &attr_overcommit.attr,
3134         NULL
3135 };
3136
3137 static struct attribute_group perfclass_attr_group = {
3138         .attrs                  = perfclass_attrs,
3139         .name                   = "perf_counters",
3140 };
3141
3142 static int __init perf_counter_sysfs_init(void)
3143 {
3144         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3145                                   &perfclass_attr_group);
3146 }
3147 device_initcall(perf_counter_sysfs_init);