perf_counter: remove the event config bitfields
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *  For licencing details see kernel-base/COPYING
8  */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23 #include <linux/mm.h>
24 #include <linux/vmstat.h>
25 #include <linux/rculist.h>
26
27 #include <asm/irq_regs.h>
28
29 /*
30  * Each CPU has a list of per CPU counters:
31  */
32 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
33
34 int perf_max_counters __read_mostly = 1;
35 static int perf_reserved_percpu __read_mostly;
36 static int perf_overcommit __read_mostly = 1;
37
38 /*
39  * Mutex for (sysadmin-configurable) counter reservations:
40  */
41 static DEFINE_MUTEX(perf_resource_mutex);
42
43 /*
44  * Architecture provided APIs - weak aliases:
45  */
46 extern __weak const struct hw_perf_counter_ops *
47 hw_perf_counter_init(struct perf_counter *counter)
48 {
49         return NULL;
50 }
51
52 u64 __weak hw_perf_save_disable(void)           { return 0; }
53 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
54 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
55 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
56                struct perf_cpu_context *cpuctx,
57                struct perf_counter_context *ctx, int cpu)
58 {
59         return 0;
60 }
61
62 void __weak perf_counter_print_debug(void)      { }
63
64 static void
65 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
66 {
67         struct perf_counter *group_leader = counter->group_leader;
68
69         /*
70          * Depending on whether it is a standalone or sibling counter,
71          * add it straight to the context's counter list, or to the group
72          * leader's sibling list:
73          */
74         if (counter->group_leader == counter)
75                 list_add_tail(&counter->list_entry, &ctx->counter_list);
76         else
77                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
78
79         list_add_rcu(&counter->event_entry, &ctx->event_list);
80 }
81
82 static void
83 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
84 {
85         struct perf_counter *sibling, *tmp;
86
87         list_del_init(&counter->list_entry);
88         list_del_rcu(&counter->event_entry);
89
90         /*
91          * If this was a group counter with sibling counters then
92          * upgrade the siblings to singleton counters by adding them
93          * to the context list directly:
94          */
95         list_for_each_entry_safe(sibling, tmp,
96                                  &counter->sibling_list, list_entry) {
97
98                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
99                 sibling->group_leader = sibling;
100         }
101 }
102
103 static void
104 counter_sched_out(struct perf_counter *counter,
105                   struct perf_cpu_context *cpuctx,
106                   struct perf_counter_context *ctx)
107 {
108         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
109                 return;
110
111         counter->state = PERF_COUNTER_STATE_INACTIVE;
112         counter->hw_ops->disable(counter);
113         counter->oncpu = -1;
114
115         if (!is_software_counter(counter))
116                 cpuctx->active_oncpu--;
117         ctx->nr_active--;
118         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
119                 cpuctx->exclusive = 0;
120 }
121
122 static void
123 group_sched_out(struct perf_counter *group_counter,
124                 struct perf_cpu_context *cpuctx,
125                 struct perf_counter_context *ctx)
126 {
127         struct perf_counter *counter;
128
129         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
130                 return;
131
132         counter_sched_out(group_counter, cpuctx, ctx);
133
134         /*
135          * Schedule out siblings (if any):
136          */
137         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
138                 counter_sched_out(counter, cpuctx, ctx);
139
140         if (group_counter->hw_event.exclusive)
141                 cpuctx->exclusive = 0;
142 }
143
144 /*
145  * Cross CPU call to remove a performance counter
146  *
147  * We disable the counter on the hardware level first. After that we
148  * remove it from the context list.
149  */
150 static void __perf_counter_remove_from_context(void *info)
151 {
152         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
153         struct perf_counter *counter = info;
154         struct perf_counter_context *ctx = counter->ctx;
155         unsigned long flags;
156         u64 perf_flags;
157
158         /*
159          * If this is a task context, we need to check whether it is
160          * the current task context of this cpu. If not it has been
161          * scheduled out before the smp call arrived.
162          */
163         if (ctx->task && cpuctx->task_ctx != ctx)
164                 return;
165
166         curr_rq_lock_irq_save(&flags);
167         spin_lock(&ctx->lock);
168
169         counter_sched_out(counter, cpuctx, ctx);
170
171         counter->task = NULL;
172         ctx->nr_counters--;
173
174         /*
175          * Protect the list operation against NMI by disabling the
176          * counters on a global level. NOP for non NMI based counters.
177          */
178         perf_flags = hw_perf_save_disable();
179         list_del_counter(counter, ctx);
180         hw_perf_restore(perf_flags);
181
182         if (!ctx->task) {
183                 /*
184                  * Allow more per task counters with respect to the
185                  * reservation:
186                  */
187                 cpuctx->max_pertask =
188                         min(perf_max_counters - ctx->nr_counters,
189                             perf_max_counters - perf_reserved_percpu);
190         }
191
192         spin_unlock(&ctx->lock);
193         curr_rq_unlock_irq_restore(&flags);
194 }
195
196
197 /*
198  * Remove the counter from a task's (or a CPU's) list of counters.
199  *
200  * Must be called with counter->mutex and ctx->mutex held.
201  *
202  * CPU counters are removed with a smp call. For task counters we only
203  * call when the task is on a CPU.
204  */
205 static void perf_counter_remove_from_context(struct perf_counter *counter)
206 {
207         struct perf_counter_context *ctx = counter->ctx;
208         struct task_struct *task = ctx->task;
209
210         if (!task) {
211                 /*
212                  * Per cpu counters are removed via an smp call and
213                  * the removal is always sucessful.
214                  */
215                 smp_call_function_single(counter->cpu,
216                                          __perf_counter_remove_from_context,
217                                          counter, 1);
218                 return;
219         }
220
221 retry:
222         task_oncpu_function_call(task, __perf_counter_remove_from_context,
223                                  counter);
224
225         spin_lock_irq(&ctx->lock);
226         /*
227          * If the context is active we need to retry the smp call.
228          */
229         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
230                 spin_unlock_irq(&ctx->lock);
231                 goto retry;
232         }
233
234         /*
235          * The lock prevents that this context is scheduled in so we
236          * can remove the counter safely, if the call above did not
237          * succeed.
238          */
239         if (!list_empty(&counter->list_entry)) {
240                 ctx->nr_counters--;
241                 list_del_counter(counter, ctx);
242                 counter->task = NULL;
243         }
244         spin_unlock_irq(&ctx->lock);
245 }
246
247 /*
248  * Cross CPU call to disable a performance counter
249  */
250 static void __perf_counter_disable(void *info)
251 {
252         struct perf_counter *counter = info;
253         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
254         struct perf_counter_context *ctx = counter->ctx;
255         unsigned long flags;
256
257         /*
258          * If this is a per-task counter, need to check whether this
259          * counter's task is the current task on this cpu.
260          */
261         if (ctx->task && cpuctx->task_ctx != ctx)
262                 return;
263
264         curr_rq_lock_irq_save(&flags);
265         spin_lock(&ctx->lock);
266
267         /*
268          * If the counter is on, turn it off.
269          * If it is in error state, leave it in error state.
270          */
271         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
272                 if (counter == counter->group_leader)
273                         group_sched_out(counter, cpuctx, ctx);
274                 else
275                         counter_sched_out(counter, cpuctx, ctx);
276                 counter->state = PERF_COUNTER_STATE_OFF;
277         }
278
279         spin_unlock(&ctx->lock);
280         curr_rq_unlock_irq_restore(&flags);
281 }
282
283 /*
284  * Disable a counter.
285  */
286 static void perf_counter_disable(struct perf_counter *counter)
287 {
288         struct perf_counter_context *ctx = counter->ctx;
289         struct task_struct *task = ctx->task;
290
291         if (!task) {
292                 /*
293                  * Disable the counter on the cpu that it's on
294                  */
295                 smp_call_function_single(counter->cpu, __perf_counter_disable,
296                                          counter, 1);
297                 return;
298         }
299
300  retry:
301         task_oncpu_function_call(task, __perf_counter_disable, counter);
302
303         spin_lock_irq(&ctx->lock);
304         /*
305          * If the counter is still active, we need to retry the cross-call.
306          */
307         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
308                 spin_unlock_irq(&ctx->lock);
309                 goto retry;
310         }
311
312         /*
313          * Since we have the lock this context can't be scheduled
314          * in, so we can change the state safely.
315          */
316         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
317                 counter->state = PERF_COUNTER_STATE_OFF;
318
319         spin_unlock_irq(&ctx->lock);
320 }
321
322 /*
323  * Disable a counter and all its children.
324  */
325 static void perf_counter_disable_family(struct perf_counter *counter)
326 {
327         struct perf_counter *child;
328
329         perf_counter_disable(counter);
330
331         /*
332          * Lock the mutex to protect the list of children
333          */
334         mutex_lock(&counter->mutex);
335         list_for_each_entry(child, &counter->child_list, child_list)
336                 perf_counter_disable(child);
337         mutex_unlock(&counter->mutex);
338 }
339
340 static int
341 counter_sched_in(struct perf_counter *counter,
342                  struct perf_cpu_context *cpuctx,
343                  struct perf_counter_context *ctx,
344                  int cpu)
345 {
346         if (counter->state <= PERF_COUNTER_STATE_OFF)
347                 return 0;
348
349         counter->state = PERF_COUNTER_STATE_ACTIVE;
350         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
351         /*
352          * The new state must be visible before we turn it on in the hardware:
353          */
354         smp_wmb();
355
356         if (counter->hw_ops->enable(counter)) {
357                 counter->state = PERF_COUNTER_STATE_INACTIVE;
358                 counter->oncpu = -1;
359                 return -EAGAIN;
360         }
361
362         if (!is_software_counter(counter))
363                 cpuctx->active_oncpu++;
364         ctx->nr_active++;
365
366         if (counter->hw_event.exclusive)
367                 cpuctx->exclusive = 1;
368
369         return 0;
370 }
371
372 /*
373  * Return 1 for a group consisting entirely of software counters,
374  * 0 if the group contains any hardware counters.
375  */
376 static int is_software_only_group(struct perf_counter *leader)
377 {
378         struct perf_counter *counter;
379
380         if (!is_software_counter(leader))
381                 return 0;
382         list_for_each_entry(counter, &leader->sibling_list, list_entry)
383                 if (!is_software_counter(counter))
384                         return 0;
385         return 1;
386 }
387
388 /*
389  * Work out whether we can put this counter group on the CPU now.
390  */
391 static int group_can_go_on(struct perf_counter *counter,
392                            struct perf_cpu_context *cpuctx,
393                            int can_add_hw)
394 {
395         /*
396          * Groups consisting entirely of software counters can always go on.
397          */
398         if (is_software_only_group(counter))
399                 return 1;
400         /*
401          * If an exclusive group is already on, no other hardware
402          * counters can go on.
403          */
404         if (cpuctx->exclusive)
405                 return 0;
406         /*
407          * If this group is exclusive and there are already
408          * counters on the CPU, it can't go on.
409          */
410         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
411                 return 0;
412         /*
413          * Otherwise, try to add it if all previous groups were able
414          * to go on.
415          */
416         return can_add_hw;
417 }
418
419 /*
420  * Cross CPU call to install and enable a performance counter
421  */
422 static void __perf_install_in_context(void *info)
423 {
424         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425         struct perf_counter *counter = info;
426         struct perf_counter_context *ctx = counter->ctx;
427         struct perf_counter *leader = counter->group_leader;
428         int cpu = smp_processor_id();
429         unsigned long flags;
430         u64 perf_flags;
431         int err;
432
433         /*
434          * If this is a task context, we need to check whether it is
435          * the current task context of this cpu. If not it has been
436          * scheduled out before the smp call arrived.
437          */
438         if (ctx->task && cpuctx->task_ctx != ctx)
439                 return;
440
441         curr_rq_lock_irq_save(&flags);
442         spin_lock(&ctx->lock);
443
444         /*
445          * Protect the list operation against NMI by disabling the
446          * counters on a global level. NOP for non NMI based counters.
447          */
448         perf_flags = hw_perf_save_disable();
449
450         list_add_counter(counter, ctx);
451         ctx->nr_counters++;
452         counter->prev_state = PERF_COUNTER_STATE_OFF;
453
454         /*
455          * Don't put the counter on if it is disabled or if
456          * it is in a group and the group isn't on.
457          */
458         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
459             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
460                 goto unlock;
461
462         /*
463          * An exclusive counter can't go on if there are already active
464          * hardware counters, and no hardware counter can go on if there
465          * is already an exclusive counter on.
466          */
467         if (!group_can_go_on(counter, cpuctx, 1))
468                 err = -EEXIST;
469         else
470                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
471
472         if (err) {
473                 /*
474                  * This counter couldn't go on.  If it is in a group
475                  * then we have to pull the whole group off.
476                  * If the counter group is pinned then put it in error state.
477                  */
478                 if (leader != counter)
479                         group_sched_out(leader, cpuctx, ctx);
480                 if (leader->hw_event.pinned)
481                         leader->state = PERF_COUNTER_STATE_ERROR;
482         }
483
484         if (!err && !ctx->task && cpuctx->max_pertask)
485                 cpuctx->max_pertask--;
486
487  unlock:
488         hw_perf_restore(perf_flags);
489
490         spin_unlock(&ctx->lock);
491         curr_rq_unlock_irq_restore(&flags);
492 }
493
494 /*
495  * Attach a performance counter to a context
496  *
497  * First we add the counter to the list with the hardware enable bit
498  * in counter->hw_config cleared.
499  *
500  * If the counter is attached to a task which is on a CPU we use a smp
501  * call to enable it in the task context. The task might have been
502  * scheduled away, but we check this in the smp call again.
503  *
504  * Must be called with ctx->mutex held.
505  */
506 static void
507 perf_install_in_context(struct perf_counter_context *ctx,
508                         struct perf_counter *counter,
509                         int cpu)
510 {
511         struct task_struct *task = ctx->task;
512
513         if (!task) {
514                 /*
515                  * Per cpu counters are installed via an smp call and
516                  * the install is always sucessful.
517                  */
518                 smp_call_function_single(cpu, __perf_install_in_context,
519                                          counter, 1);
520                 return;
521         }
522
523         counter->task = task;
524 retry:
525         task_oncpu_function_call(task, __perf_install_in_context,
526                                  counter);
527
528         spin_lock_irq(&ctx->lock);
529         /*
530          * we need to retry the smp call.
531          */
532         if (ctx->is_active && list_empty(&counter->list_entry)) {
533                 spin_unlock_irq(&ctx->lock);
534                 goto retry;
535         }
536
537         /*
538          * The lock prevents that this context is scheduled in so we
539          * can add the counter safely, if it the call above did not
540          * succeed.
541          */
542         if (list_empty(&counter->list_entry)) {
543                 list_add_counter(counter, ctx);
544                 ctx->nr_counters++;
545         }
546         spin_unlock_irq(&ctx->lock);
547 }
548
549 /*
550  * Cross CPU call to enable a performance counter
551  */
552 static void __perf_counter_enable(void *info)
553 {
554         struct perf_counter *counter = info;
555         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
556         struct perf_counter_context *ctx = counter->ctx;
557         struct perf_counter *leader = counter->group_leader;
558         unsigned long flags;
559         int err;
560
561         /*
562          * If this is a per-task counter, need to check whether this
563          * counter's task is the current task on this cpu.
564          */
565         if (ctx->task && cpuctx->task_ctx != ctx)
566                 return;
567
568         curr_rq_lock_irq_save(&flags);
569         spin_lock(&ctx->lock);
570
571         counter->prev_state = counter->state;
572         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
573                 goto unlock;
574         counter->state = PERF_COUNTER_STATE_INACTIVE;
575
576         /*
577          * If the counter is in a group and isn't the group leader,
578          * then don't put it on unless the group is on.
579          */
580         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
581                 goto unlock;
582
583         if (!group_can_go_on(counter, cpuctx, 1))
584                 err = -EEXIST;
585         else
586                 err = counter_sched_in(counter, cpuctx, ctx,
587                                        smp_processor_id());
588
589         if (err) {
590                 /*
591                  * If this counter can't go on and it's part of a
592                  * group, then the whole group has to come off.
593                  */
594                 if (leader != counter)
595                         group_sched_out(leader, cpuctx, ctx);
596                 if (leader->hw_event.pinned)
597                         leader->state = PERF_COUNTER_STATE_ERROR;
598         }
599
600  unlock:
601         spin_unlock(&ctx->lock);
602         curr_rq_unlock_irq_restore(&flags);
603 }
604
605 /*
606  * Enable a counter.
607  */
608 static void perf_counter_enable(struct perf_counter *counter)
609 {
610         struct perf_counter_context *ctx = counter->ctx;
611         struct task_struct *task = ctx->task;
612
613         if (!task) {
614                 /*
615                  * Enable the counter on the cpu that it's on
616                  */
617                 smp_call_function_single(counter->cpu, __perf_counter_enable,
618                                          counter, 1);
619                 return;
620         }
621
622         spin_lock_irq(&ctx->lock);
623         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
624                 goto out;
625
626         /*
627          * If the counter is in error state, clear that first.
628          * That way, if we see the counter in error state below, we
629          * know that it has gone back into error state, as distinct
630          * from the task having been scheduled away before the
631          * cross-call arrived.
632          */
633         if (counter->state == PERF_COUNTER_STATE_ERROR)
634                 counter->state = PERF_COUNTER_STATE_OFF;
635
636  retry:
637         spin_unlock_irq(&ctx->lock);
638         task_oncpu_function_call(task, __perf_counter_enable, counter);
639
640         spin_lock_irq(&ctx->lock);
641
642         /*
643          * If the context is active and the counter is still off,
644          * we need to retry the cross-call.
645          */
646         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
647                 goto retry;
648
649         /*
650          * Since we have the lock this context can't be scheduled
651          * in, so we can change the state safely.
652          */
653         if (counter->state == PERF_COUNTER_STATE_OFF)
654                 counter->state = PERF_COUNTER_STATE_INACTIVE;
655  out:
656         spin_unlock_irq(&ctx->lock);
657 }
658
659 /*
660  * Enable a counter and all its children.
661  */
662 static void perf_counter_enable_family(struct perf_counter *counter)
663 {
664         struct perf_counter *child;
665
666         perf_counter_enable(counter);
667
668         /*
669          * Lock the mutex to protect the list of children
670          */
671         mutex_lock(&counter->mutex);
672         list_for_each_entry(child, &counter->child_list, child_list)
673                 perf_counter_enable(child);
674         mutex_unlock(&counter->mutex);
675 }
676
677 void __perf_counter_sched_out(struct perf_counter_context *ctx,
678                               struct perf_cpu_context *cpuctx)
679 {
680         struct perf_counter *counter;
681         u64 flags;
682
683         spin_lock(&ctx->lock);
684         ctx->is_active = 0;
685         if (likely(!ctx->nr_counters))
686                 goto out;
687
688         flags = hw_perf_save_disable();
689         if (ctx->nr_active) {
690                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
691                         group_sched_out(counter, cpuctx, ctx);
692         }
693         hw_perf_restore(flags);
694  out:
695         spin_unlock(&ctx->lock);
696 }
697
698 /*
699  * Called from scheduler to remove the counters of the current task,
700  * with interrupts disabled.
701  *
702  * We stop each counter and update the counter value in counter->count.
703  *
704  * This does not protect us against NMI, but disable()
705  * sets the disabled bit in the control field of counter _before_
706  * accessing the counter control register. If a NMI hits, then it will
707  * not restart the counter.
708  */
709 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
710 {
711         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
712         struct perf_counter_context *ctx = &task->perf_counter_ctx;
713         struct pt_regs *regs;
714
715         if (likely(!cpuctx->task_ctx))
716                 return;
717
718         regs = task_pt_regs(task);
719         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
720         __perf_counter_sched_out(ctx, cpuctx);
721
722         cpuctx->task_ctx = NULL;
723 }
724
725 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
726 {
727         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
728 }
729
730 static int
731 group_sched_in(struct perf_counter *group_counter,
732                struct perf_cpu_context *cpuctx,
733                struct perf_counter_context *ctx,
734                int cpu)
735 {
736         struct perf_counter *counter, *partial_group;
737         int ret;
738
739         if (group_counter->state == PERF_COUNTER_STATE_OFF)
740                 return 0;
741
742         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
743         if (ret)
744                 return ret < 0 ? ret : 0;
745
746         group_counter->prev_state = group_counter->state;
747         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
748                 return -EAGAIN;
749
750         /*
751          * Schedule in siblings as one group (if any):
752          */
753         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
754                 counter->prev_state = counter->state;
755                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
756                         partial_group = counter;
757                         goto group_error;
758                 }
759         }
760
761         return 0;
762
763 group_error:
764         /*
765          * Groups can be scheduled in as one unit only, so undo any
766          * partial group before returning:
767          */
768         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
769                 if (counter == partial_group)
770                         break;
771                 counter_sched_out(counter, cpuctx, ctx);
772         }
773         counter_sched_out(group_counter, cpuctx, ctx);
774
775         return -EAGAIN;
776 }
777
778 static void
779 __perf_counter_sched_in(struct perf_counter_context *ctx,
780                         struct perf_cpu_context *cpuctx, int cpu)
781 {
782         struct perf_counter *counter;
783         u64 flags;
784         int can_add_hw = 1;
785
786         spin_lock(&ctx->lock);
787         ctx->is_active = 1;
788         if (likely(!ctx->nr_counters))
789                 goto out;
790
791         flags = hw_perf_save_disable();
792
793         /*
794          * First go through the list and put on any pinned groups
795          * in order to give them the best chance of going on.
796          */
797         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
798                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
799                     !counter->hw_event.pinned)
800                         continue;
801                 if (counter->cpu != -1 && counter->cpu != cpu)
802                         continue;
803
804                 if (group_can_go_on(counter, cpuctx, 1))
805                         group_sched_in(counter, cpuctx, ctx, cpu);
806
807                 /*
808                  * If this pinned group hasn't been scheduled,
809                  * put it in error state.
810                  */
811                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
812                         counter->state = PERF_COUNTER_STATE_ERROR;
813         }
814
815         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
816                 /*
817                  * Ignore counters in OFF or ERROR state, and
818                  * ignore pinned counters since we did them already.
819                  */
820                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
821                     counter->hw_event.pinned)
822                         continue;
823
824                 /*
825                  * Listen to the 'cpu' scheduling filter constraint
826                  * of counters:
827                  */
828                 if (counter->cpu != -1 && counter->cpu != cpu)
829                         continue;
830
831                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
832                         if (group_sched_in(counter, cpuctx, ctx, cpu))
833                                 can_add_hw = 0;
834                 }
835         }
836         hw_perf_restore(flags);
837  out:
838         spin_unlock(&ctx->lock);
839 }
840
841 /*
842  * Called from scheduler to add the counters of the current task
843  * with interrupts disabled.
844  *
845  * We restore the counter value and then enable it.
846  *
847  * This does not protect us against NMI, but enable()
848  * sets the enabled bit in the control field of counter _before_
849  * accessing the counter control register. If a NMI hits, then it will
850  * keep the counter running.
851  */
852 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
853 {
854         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
855         struct perf_counter_context *ctx = &task->perf_counter_ctx;
856
857         __perf_counter_sched_in(ctx, cpuctx, cpu);
858         cpuctx->task_ctx = ctx;
859 }
860
861 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
862 {
863         struct perf_counter_context *ctx = &cpuctx->ctx;
864
865         __perf_counter_sched_in(ctx, cpuctx, cpu);
866 }
867
868 int perf_counter_task_disable(void)
869 {
870         struct task_struct *curr = current;
871         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
872         struct perf_counter *counter;
873         unsigned long flags;
874         u64 perf_flags;
875         int cpu;
876
877         if (likely(!ctx->nr_counters))
878                 return 0;
879
880         curr_rq_lock_irq_save(&flags);
881         cpu = smp_processor_id();
882
883         /* force the update of the task clock: */
884         __task_delta_exec(curr, 1);
885
886         perf_counter_task_sched_out(curr, cpu);
887
888         spin_lock(&ctx->lock);
889
890         /*
891          * Disable all the counters:
892          */
893         perf_flags = hw_perf_save_disable();
894
895         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
896                 if (counter->state != PERF_COUNTER_STATE_ERROR)
897                         counter->state = PERF_COUNTER_STATE_OFF;
898         }
899
900         hw_perf_restore(perf_flags);
901
902         spin_unlock(&ctx->lock);
903
904         curr_rq_unlock_irq_restore(&flags);
905
906         return 0;
907 }
908
909 int perf_counter_task_enable(void)
910 {
911         struct task_struct *curr = current;
912         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
913         struct perf_counter *counter;
914         unsigned long flags;
915         u64 perf_flags;
916         int cpu;
917
918         if (likely(!ctx->nr_counters))
919                 return 0;
920
921         curr_rq_lock_irq_save(&flags);
922         cpu = smp_processor_id();
923
924         /* force the update of the task clock: */
925         __task_delta_exec(curr, 1);
926
927         perf_counter_task_sched_out(curr, cpu);
928
929         spin_lock(&ctx->lock);
930
931         /*
932          * Disable all the counters:
933          */
934         perf_flags = hw_perf_save_disable();
935
936         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
937                 if (counter->state > PERF_COUNTER_STATE_OFF)
938                         continue;
939                 counter->state = PERF_COUNTER_STATE_INACTIVE;
940                 counter->hw_event.disabled = 0;
941         }
942         hw_perf_restore(perf_flags);
943
944         spin_unlock(&ctx->lock);
945
946         perf_counter_task_sched_in(curr, cpu);
947
948         curr_rq_unlock_irq_restore(&flags);
949
950         return 0;
951 }
952
953 /*
954  * Round-robin a context's counters:
955  */
956 static void rotate_ctx(struct perf_counter_context *ctx)
957 {
958         struct perf_counter *counter;
959         u64 perf_flags;
960
961         if (!ctx->nr_counters)
962                 return;
963
964         spin_lock(&ctx->lock);
965         /*
966          * Rotate the first entry last (works just fine for group counters too):
967          */
968         perf_flags = hw_perf_save_disable();
969         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
970                 list_move_tail(&counter->list_entry, &ctx->counter_list);
971                 break;
972         }
973         hw_perf_restore(perf_flags);
974
975         spin_unlock(&ctx->lock);
976 }
977
978 void perf_counter_task_tick(struct task_struct *curr, int cpu)
979 {
980         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
981         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
982         const int rotate_percpu = 0;
983
984         if (rotate_percpu)
985                 perf_counter_cpu_sched_out(cpuctx);
986         perf_counter_task_sched_out(curr, cpu);
987
988         if (rotate_percpu)
989                 rotate_ctx(&cpuctx->ctx);
990         rotate_ctx(ctx);
991
992         if (rotate_percpu)
993                 perf_counter_cpu_sched_in(cpuctx, cpu);
994         perf_counter_task_sched_in(curr, cpu);
995 }
996
997 /*
998  * Cross CPU call to read the hardware counter
999  */
1000 static void __read(void *info)
1001 {
1002         struct perf_counter *counter = info;
1003         unsigned long flags;
1004
1005         curr_rq_lock_irq_save(&flags);
1006         counter->hw_ops->read(counter);
1007         curr_rq_unlock_irq_restore(&flags);
1008 }
1009
1010 static u64 perf_counter_read(struct perf_counter *counter)
1011 {
1012         /*
1013          * If counter is enabled and currently active on a CPU, update the
1014          * value in the counter structure:
1015          */
1016         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1017                 smp_call_function_single(counter->oncpu,
1018                                          __read, counter, 1);
1019         }
1020
1021         return atomic64_read(&counter->count);
1022 }
1023
1024 /*
1025  * Cross CPU call to switch performance data pointers
1026  */
1027 static void __perf_switch_irq_data(void *info)
1028 {
1029         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1030         struct perf_counter *counter = info;
1031         struct perf_counter_context *ctx = counter->ctx;
1032         struct perf_data *oldirqdata = counter->irqdata;
1033
1034         /*
1035          * If this is a task context, we need to check whether it is
1036          * the current task context of this cpu. If not it has been
1037          * scheduled out before the smp call arrived.
1038          */
1039         if (ctx->task) {
1040                 if (cpuctx->task_ctx != ctx)
1041                         return;
1042                 spin_lock(&ctx->lock);
1043         }
1044
1045         /* Change the pointer NMI safe */
1046         atomic_long_set((atomic_long_t *)&counter->irqdata,
1047                         (unsigned long) counter->usrdata);
1048         counter->usrdata = oldirqdata;
1049
1050         if (ctx->task)
1051                 spin_unlock(&ctx->lock);
1052 }
1053
1054 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1055 {
1056         struct perf_counter_context *ctx = counter->ctx;
1057         struct perf_data *oldirqdata = counter->irqdata;
1058         struct task_struct *task = ctx->task;
1059
1060         if (!task) {
1061                 smp_call_function_single(counter->cpu,
1062                                          __perf_switch_irq_data,
1063                                          counter, 1);
1064                 return counter->usrdata;
1065         }
1066
1067 retry:
1068         spin_lock_irq(&ctx->lock);
1069         if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1070                 counter->irqdata = counter->usrdata;
1071                 counter->usrdata = oldirqdata;
1072                 spin_unlock_irq(&ctx->lock);
1073                 return oldirqdata;
1074         }
1075         spin_unlock_irq(&ctx->lock);
1076         task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1077         /* Might have failed, because task was scheduled out */
1078         if (counter->irqdata == oldirqdata)
1079                 goto retry;
1080
1081         return counter->usrdata;
1082 }
1083
1084 static void put_context(struct perf_counter_context *ctx)
1085 {
1086         if (ctx->task)
1087                 put_task_struct(ctx->task);
1088 }
1089
1090 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1091 {
1092         struct perf_cpu_context *cpuctx;
1093         struct perf_counter_context *ctx;
1094         struct task_struct *task;
1095
1096         /*
1097          * If cpu is not a wildcard then this is a percpu counter:
1098          */
1099         if (cpu != -1) {
1100                 /* Must be root to operate on a CPU counter: */
1101                 if (!capable(CAP_SYS_ADMIN))
1102                         return ERR_PTR(-EACCES);
1103
1104                 if (cpu < 0 || cpu > num_possible_cpus())
1105                         return ERR_PTR(-EINVAL);
1106
1107                 /*
1108                  * We could be clever and allow to attach a counter to an
1109                  * offline CPU and activate it when the CPU comes up, but
1110                  * that's for later.
1111                  */
1112                 if (!cpu_isset(cpu, cpu_online_map))
1113                         return ERR_PTR(-ENODEV);
1114
1115                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1116                 ctx = &cpuctx->ctx;
1117
1118                 return ctx;
1119         }
1120
1121         rcu_read_lock();
1122         if (!pid)
1123                 task = current;
1124         else
1125                 task = find_task_by_vpid(pid);
1126         if (task)
1127                 get_task_struct(task);
1128         rcu_read_unlock();
1129
1130         if (!task)
1131                 return ERR_PTR(-ESRCH);
1132
1133         ctx = &task->perf_counter_ctx;
1134         ctx->task = task;
1135
1136         /* Reuse ptrace permission checks for now. */
1137         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1138                 put_context(ctx);
1139                 return ERR_PTR(-EACCES);
1140         }
1141
1142         return ctx;
1143 }
1144
1145 static void free_counter_rcu(struct rcu_head *head)
1146 {
1147         struct perf_counter *counter;
1148
1149         counter = container_of(head, struct perf_counter, rcu_head);
1150         kfree(counter);
1151 }
1152
1153 static void free_counter(struct perf_counter *counter)
1154 {
1155         if (counter->destroy)
1156                 counter->destroy(counter);
1157
1158         call_rcu(&counter->rcu_head, free_counter_rcu);
1159 }
1160
1161 /*
1162  * Called when the last reference to the file is gone.
1163  */
1164 static int perf_release(struct inode *inode, struct file *file)
1165 {
1166         struct perf_counter *counter = file->private_data;
1167         struct perf_counter_context *ctx = counter->ctx;
1168
1169         file->private_data = NULL;
1170
1171         mutex_lock(&ctx->mutex);
1172         mutex_lock(&counter->mutex);
1173
1174         perf_counter_remove_from_context(counter);
1175
1176         mutex_unlock(&counter->mutex);
1177         mutex_unlock(&ctx->mutex);
1178
1179         free_counter(counter);
1180         put_context(ctx);
1181
1182         return 0;
1183 }
1184
1185 /*
1186  * Read the performance counter - simple non blocking version for now
1187  */
1188 static ssize_t
1189 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1190 {
1191         u64 cntval;
1192
1193         if (count != sizeof(cntval))
1194                 return -EINVAL;
1195
1196         /*
1197          * Return end-of-file for a read on a counter that is in
1198          * error state (i.e. because it was pinned but it couldn't be
1199          * scheduled on to the CPU at some point).
1200          */
1201         if (counter->state == PERF_COUNTER_STATE_ERROR)
1202                 return 0;
1203
1204         mutex_lock(&counter->mutex);
1205         cntval = perf_counter_read(counter);
1206         mutex_unlock(&counter->mutex);
1207
1208         return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1209 }
1210
1211 static ssize_t
1212 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1213 {
1214         if (!usrdata->len)
1215                 return 0;
1216
1217         count = min(count, (size_t)usrdata->len);
1218         if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1219                 return -EFAULT;
1220
1221         /* Adjust the counters */
1222         usrdata->len -= count;
1223         if (!usrdata->len)
1224                 usrdata->rd_idx = 0;
1225         else
1226                 usrdata->rd_idx += count;
1227
1228         return count;
1229 }
1230
1231 static ssize_t
1232 perf_read_irq_data(struct perf_counter  *counter,
1233                    char __user          *buf,
1234                    size_t               count,
1235                    int                  nonblocking)
1236 {
1237         struct perf_data *irqdata, *usrdata;
1238         DECLARE_WAITQUEUE(wait, current);
1239         ssize_t res, res2;
1240
1241         irqdata = counter->irqdata;
1242         usrdata = counter->usrdata;
1243
1244         if (usrdata->len + irqdata->len >= count)
1245                 goto read_pending;
1246
1247         if (nonblocking)
1248                 return -EAGAIN;
1249
1250         spin_lock_irq(&counter->waitq.lock);
1251         __add_wait_queue(&counter->waitq, &wait);
1252         for (;;) {
1253                 set_current_state(TASK_INTERRUPTIBLE);
1254                 if (usrdata->len + irqdata->len >= count)
1255                         break;
1256
1257                 if (signal_pending(current))
1258                         break;
1259
1260                 if (counter->state == PERF_COUNTER_STATE_ERROR)
1261                         break;
1262
1263                 spin_unlock_irq(&counter->waitq.lock);
1264                 schedule();
1265                 spin_lock_irq(&counter->waitq.lock);
1266         }
1267         __remove_wait_queue(&counter->waitq, &wait);
1268         __set_current_state(TASK_RUNNING);
1269         spin_unlock_irq(&counter->waitq.lock);
1270
1271         if (usrdata->len + irqdata->len < count &&
1272             counter->state != PERF_COUNTER_STATE_ERROR)
1273                 return -ERESTARTSYS;
1274 read_pending:
1275         mutex_lock(&counter->mutex);
1276
1277         /* Drain pending data first: */
1278         res = perf_copy_usrdata(usrdata, buf, count);
1279         if (res < 0 || res == count)
1280                 goto out;
1281
1282         /* Switch irq buffer: */
1283         usrdata = perf_switch_irq_data(counter);
1284         res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1285         if (res2 < 0) {
1286                 if (!res)
1287                         res = -EFAULT;
1288         } else {
1289                 res += res2;
1290         }
1291 out:
1292         mutex_unlock(&counter->mutex);
1293
1294         return res;
1295 }
1296
1297 static ssize_t
1298 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1299 {
1300         struct perf_counter *counter = file->private_data;
1301
1302         switch (counter->hw_event.record_type) {
1303         case PERF_RECORD_SIMPLE:
1304                 return perf_read_hw(counter, buf, count);
1305
1306         case PERF_RECORD_IRQ:
1307         case PERF_RECORD_GROUP:
1308                 return perf_read_irq_data(counter, buf, count,
1309                                           file->f_flags & O_NONBLOCK);
1310         }
1311         return -EINVAL;
1312 }
1313
1314 static unsigned int perf_poll(struct file *file, poll_table *wait)
1315 {
1316         struct perf_counter *counter = file->private_data;
1317         unsigned int events = 0;
1318         unsigned long flags;
1319
1320         poll_wait(file, &counter->waitq, wait);
1321
1322         spin_lock_irqsave(&counter->waitq.lock, flags);
1323         if (counter->usrdata->len || counter->irqdata->len)
1324                 events |= POLLIN;
1325         spin_unlock_irqrestore(&counter->waitq.lock, flags);
1326
1327         return events;
1328 }
1329
1330 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1331 {
1332         struct perf_counter *counter = file->private_data;
1333         int err = 0;
1334
1335         switch (cmd) {
1336         case PERF_COUNTER_IOC_ENABLE:
1337                 perf_counter_enable_family(counter);
1338                 break;
1339         case PERF_COUNTER_IOC_DISABLE:
1340                 perf_counter_disable_family(counter);
1341                 break;
1342         default:
1343                 err = -ENOTTY;
1344         }
1345         return err;
1346 }
1347
1348 static const struct file_operations perf_fops = {
1349         .release                = perf_release,
1350         .read                   = perf_read,
1351         .poll                   = perf_poll,
1352         .unlocked_ioctl         = perf_ioctl,
1353         .compat_ioctl           = perf_ioctl,
1354 };
1355
1356 /*
1357  * Output
1358  */
1359
1360 static void perf_counter_store_irq(struct perf_counter *counter, u64 data)
1361 {
1362         struct perf_data *irqdata = counter->irqdata;
1363
1364         if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
1365                 irqdata->overrun++;
1366         } else {
1367                 u64 *p = (u64 *) &irqdata->data[irqdata->len];
1368
1369                 *p = data;
1370                 irqdata->len += sizeof(u64);
1371         }
1372 }
1373
1374 static void perf_counter_handle_group(struct perf_counter *counter)
1375 {
1376         struct perf_counter *leader, *sub;
1377
1378         leader = counter->group_leader;
1379         list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1380                 if (sub != counter)
1381                         sub->hw_ops->read(sub);
1382                 perf_counter_store_irq(counter, sub->hw_event.config);
1383                 perf_counter_store_irq(counter, atomic64_read(&sub->count));
1384         }
1385 }
1386
1387 void perf_counter_output(struct perf_counter *counter,
1388                          int nmi, struct pt_regs *regs)
1389 {
1390         switch (counter->hw_event.record_type) {
1391         case PERF_RECORD_SIMPLE:
1392                 return;
1393
1394         case PERF_RECORD_IRQ:
1395                 perf_counter_store_irq(counter, instruction_pointer(regs));
1396                 break;
1397
1398         case PERF_RECORD_GROUP:
1399                 perf_counter_handle_group(counter);
1400                 break;
1401         }
1402
1403         if (nmi) {
1404                 counter->wakeup_pending = 1;
1405                 set_perf_counter_pending();
1406         } else
1407                 wake_up(&counter->waitq);
1408 }
1409
1410 /*
1411  * Generic software counter infrastructure
1412  */
1413
1414 static void perf_swcounter_update(struct perf_counter *counter)
1415 {
1416         struct hw_perf_counter *hwc = &counter->hw;
1417         u64 prev, now;
1418         s64 delta;
1419
1420 again:
1421         prev = atomic64_read(&hwc->prev_count);
1422         now = atomic64_read(&hwc->count);
1423         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1424                 goto again;
1425
1426         delta = now - prev;
1427
1428         atomic64_add(delta, &counter->count);
1429         atomic64_sub(delta, &hwc->period_left);
1430 }
1431
1432 static void perf_swcounter_set_period(struct perf_counter *counter)
1433 {
1434         struct hw_perf_counter *hwc = &counter->hw;
1435         s64 left = atomic64_read(&hwc->period_left);
1436         s64 period = hwc->irq_period;
1437
1438         if (unlikely(left <= -period)) {
1439                 left = period;
1440                 atomic64_set(&hwc->period_left, left);
1441         }
1442
1443         if (unlikely(left <= 0)) {
1444                 left += period;
1445                 atomic64_add(period, &hwc->period_left);
1446         }
1447
1448         atomic64_set(&hwc->prev_count, -left);
1449         atomic64_set(&hwc->count, -left);
1450 }
1451
1452 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1453 {
1454         struct perf_counter *counter;
1455         struct pt_regs *regs;
1456
1457         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1458         counter->hw_ops->read(counter);
1459
1460         regs = get_irq_regs();
1461         /*
1462          * In case we exclude kernel IPs or are somehow not in interrupt
1463          * context, provide the next best thing, the user IP.
1464          */
1465         if ((counter->hw_event.exclude_kernel || !regs) &&
1466                         !counter->hw_event.exclude_user)
1467                 regs = task_pt_regs(current);
1468
1469         if (regs)
1470                 perf_counter_output(counter, 0, regs);
1471
1472         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1473
1474         return HRTIMER_RESTART;
1475 }
1476
1477 static void perf_swcounter_overflow(struct perf_counter *counter,
1478                                     int nmi, struct pt_regs *regs)
1479 {
1480         perf_swcounter_update(counter);
1481         perf_swcounter_set_period(counter);
1482         perf_counter_output(counter, nmi, regs);
1483 }
1484
1485 static int perf_swcounter_match(struct perf_counter *counter,
1486                                 enum perf_event_types type,
1487                                 u32 event, struct pt_regs *regs)
1488 {
1489         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1490                 return 0;
1491
1492         if (perf_event_raw(&counter->hw_event))
1493                 return 0;
1494
1495         if (perf_event_type(&counter->hw_event) != type)
1496                 return 0;
1497
1498         if (perf_event_id(&counter->hw_event) != event)
1499                 return 0;
1500
1501         if (counter->hw_event.exclude_user && user_mode(regs))
1502                 return 0;
1503
1504         if (counter->hw_event.exclude_kernel && !user_mode(regs))
1505                 return 0;
1506
1507         return 1;
1508 }
1509
1510 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1511                                int nmi, struct pt_regs *regs)
1512 {
1513         int neg = atomic64_add_negative(nr, &counter->hw.count);
1514         if (counter->hw.irq_period && !neg)
1515                 perf_swcounter_overflow(counter, nmi, regs);
1516 }
1517
1518 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1519                                      enum perf_event_types type, u32 event,
1520                                      u64 nr, int nmi, struct pt_regs *regs)
1521 {
1522         struct perf_counter *counter;
1523
1524         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1525                 return;
1526
1527         rcu_read_lock();
1528         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1529                 if (perf_swcounter_match(counter, type, event, regs))
1530                         perf_swcounter_add(counter, nr, nmi, regs);
1531         }
1532         rcu_read_unlock();
1533 }
1534
1535 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1536                                    u64 nr, int nmi, struct pt_regs *regs)
1537 {
1538         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1539
1540         perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1541         if (cpuctx->task_ctx) {
1542                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1543                                 nr, nmi, regs);
1544         }
1545
1546         put_cpu_var(perf_cpu_context);
1547 }
1548
1549 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1550 {
1551         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1552 }
1553
1554 static void perf_swcounter_read(struct perf_counter *counter)
1555 {
1556         perf_swcounter_update(counter);
1557 }
1558
1559 static int perf_swcounter_enable(struct perf_counter *counter)
1560 {
1561         perf_swcounter_set_period(counter);
1562         return 0;
1563 }
1564
1565 static void perf_swcounter_disable(struct perf_counter *counter)
1566 {
1567         perf_swcounter_update(counter);
1568 }
1569
1570 static const struct hw_perf_counter_ops perf_ops_generic = {
1571         .enable         = perf_swcounter_enable,
1572         .disable        = perf_swcounter_disable,
1573         .read           = perf_swcounter_read,
1574 };
1575
1576 /*
1577  * Software counter: cpu wall time clock
1578  */
1579
1580 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1581 {
1582         int cpu = raw_smp_processor_id();
1583         s64 prev;
1584         u64 now;
1585
1586         now = cpu_clock(cpu);
1587         prev = atomic64_read(&counter->hw.prev_count);
1588         atomic64_set(&counter->hw.prev_count, now);
1589         atomic64_add(now - prev, &counter->count);
1590 }
1591
1592 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1593 {
1594         struct hw_perf_counter *hwc = &counter->hw;
1595         int cpu = raw_smp_processor_id();
1596
1597         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1598         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1599         hwc->hrtimer.function = perf_swcounter_hrtimer;
1600         if (hwc->irq_period) {
1601                 __hrtimer_start_range_ns(&hwc->hrtimer,
1602                                 ns_to_ktime(hwc->irq_period), 0,
1603                                 HRTIMER_MODE_REL, 0);
1604         }
1605
1606         return 0;
1607 }
1608
1609 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1610 {
1611         hrtimer_cancel(&counter->hw.hrtimer);
1612         cpu_clock_perf_counter_update(counter);
1613 }
1614
1615 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1616 {
1617         cpu_clock_perf_counter_update(counter);
1618 }
1619
1620 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1621         .enable         = cpu_clock_perf_counter_enable,
1622         .disable        = cpu_clock_perf_counter_disable,
1623         .read           = cpu_clock_perf_counter_read,
1624 };
1625
1626 /*
1627  * Software counter: task time clock
1628  */
1629
1630 /*
1631  * Called from within the scheduler:
1632  */
1633 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1634 {
1635         struct task_struct *curr = counter->task;
1636         u64 delta;
1637
1638         delta = __task_delta_exec(curr, update);
1639
1640         return curr->se.sum_exec_runtime + delta;
1641 }
1642
1643 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1644 {
1645         u64 prev;
1646         s64 delta;
1647
1648         prev = atomic64_read(&counter->hw.prev_count);
1649
1650         atomic64_set(&counter->hw.prev_count, now);
1651
1652         delta = now - prev;
1653
1654         atomic64_add(delta, &counter->count);
1655 }
1656
1657 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1658 {
1659         struct hw_perf_counter *hwc = &counter->hw;
1660
1661         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1662         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1663         hwc->hrtimer.function = perf_swcounter_hrtimer;
1664         if (hwc->irq_period) {
1665                 __hrtimer_start_range_ns(&hwc->hrtimer,
1666                                 ns_to_ktime(hwc->irq_period), 0,
1667                                 HRTIMER_MODE_REL, 0);
1668         }
1669
1670         return 0;
1671 }
1672
1673 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1674 {
1675         hrtimer_cancel(&counter->hw.hrtimer);
1676         task_clock_perf_counter_update(counter,
1677                         task_clock_perf_counter_val(counter, 0));
1678 }
1679
1680 static void task_clock_perf_counter_read(struct perf_counter *counter)
1681 {
1682         task_clock_perf_counter_update(counter,
1683                         task_clock_perf_counter_val(counter, 1));
1684 }
1685
1686 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1687         .enable         = task_clock_perf_counter_enable,
1688         .disable        = task_clock_perf_counter_disable,
1689         .read           = task_clock_perf_counter_read,
1690 };
1691
1692 /*
1693  * Software counter: cpu migrations
1694  */
1695
1696 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1697 {
1698         struct task_struct *curr = counter->ctx->task;
1699
1700         if (curr)
1701                 return curr->se.nr_migrations;
1702         return cpu_nr_migrations(smp_processor_id());
1703 }
1704
1705 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1706 {
1707         u64 prev, now;
1708         s64 delta;
1709
1710         prev = atomic64_read(&counter->hw.prev_count);
1711         now = get_cpu_migrations(counter);
1712
1713         atomic64_set(&counter->hw.prev_count, now);
1714
1715         delta = now - prev;
1716
1717         atomic64_add(delta, &counter->count);
1718 }
1719
1720 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1721 {
1722         cpu_migrations_perf_counter_update(counter);
1723 }
1724
1725 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1726 {
1727         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1728                 atomic64_set(&counter->hw.prev_count,
1729                              get_cpu_migrations(counter));
1730         return 0;
1731 }
1732
1733 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1734 {
1735         cpu_migrations_perf_counter_update(counter);
1736 }
1737
1738 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1739         .enable         = cpu_migrations_perf_counter_enable,
1740         .disable        = cpu_migrations_perf_counter_disable,
1741         .read           = cpu_migrations_perf_counter_read,
1742 };
1743
1744 #ifdef CONFIG_EVENT_PROFILE
1745 void perf_tpcounter_event(int event_id)
1746 {
1747         struct pt_regs *regs = get_irq_regs();
1748
1749         if (!regs)
1750                 regs = task_pt_regs(current);
1751
1752         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
1753 }
1754
1755 extern int ftrace_profile_enable(int);
1756 extern void ftrace_profile_disable(int);
1757
1758 static void tp_perf_counter_destroy(struct perf_counter *counter)
1759 {
1760         ftrace_profile_disable(perf_event_id(&counter->hw_event));
1761 }
1762
1763 static const struct hw_perf_counter_ops *
1764 tp_perf_counter_init(struct perf_counter *counter)
1765 {
1766         int event_id = perf_event_id(&counter->hw_event);
1767         int ret;
1768
1769         ret = ftrace_profile_enable(event_id);
1770         if (ret)
1771                 return NULL;
1772
1773         counter->destroy = tp_perf_counter_destroy;
1774         counter->hw.irq_period = counter->hw_event.irq_period;
1775
1776         return &perf_ops_generic;
1777 }
1778 #else
1779 static const struct hw_perf_counter_ops *
1780 tp_perf_counter_init(struct perf_counter *counter)
1781 {
1782         return NULL;
1783 }
1784 #endif
1785
1786 static const struct hw_perf_counter_ops *
1787 sw_perf_counter_init(struct perf_counter *counter)
1788 {
1789         struct perf_counter_hw_event *hw_event = &counter->hw_event;
1790         const struct hw_perf_counter_ops *hw_ops = NULL;
1791         struct hw_perf_counter *hwc = &counter->hw;
1792
1793         /*
1794          * Software counters (currently) can't in general distinguish
1795          * between user, kernel and hypervisor events.
1796          * However, context switches and cpu migrations are considered
1797          * to be kernel events, and page faults are never hypervisor
1798          * events.
1799          */
1800         switch (perf_event_id(&counter->hw_event)) {
1801         case PERF_COUNT_CPU_CLOCK:
1802                 hw_ops = &perf_ops_cpu_clock;
1803
1804                 if (hw_event->irq_period && hw_event->irq_period < 10000)
1805                         hw_event->irq_period = 10000;
1806                 break;
1807         case PERF_COUNT_TASK_CLOCK:
1808                 /*
1809                  * If the user instantiates this as a per-cpu counter,
1810                  * use the cpu_clock counter instead.
1811                  */
1812                 if (counter->ctx->task)
1813                         hw_ops = &perf_ops_task_clock;
1814                 else
1815                         hw_ops = &perf_ops_cpu_clock;
1816
1817                 if (hw_event->irq_period && hw_event->irq_period < 10000)
1818                         hw_event->irq_period = 10000;
1819                 break;
1820         case PERF_COUNT_PAGE_FAULTS:
1821         case PERF_COUNT_PAGE_FAULTS_MIN:
1822         case PERF_COUNT_PAGE_FAULTS_MAJ:
1823         case PERF_COUNT_CONTEXT_SWITCHES:
1824                 hw_ops = &perf_ops_generic;
1825                 break;
1826         case PERF_COUNT_CPU_MIGRATIONS:
1827                 if (!counter->hw_event.exclude_kernel)
1828                         hw_ops = &perf_ops_cpu_migrations;
1829                 break;
1830         }
1831
1832         if (hw_ops)
1833                 hwc->irq_period = hw_event->irq_period;
1834
1835         return hw_ops;
1836 }
1837
1838 /*
1839  * Allocate and initialize a counter structure
1840  */
1841 static struct perf_counter *
1842 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1843                    int cpu,
1844                    struct perf_counter_context *ctx,
1845                    struct perf_counter *group_leader,
1846                    gfp_t gfpflags)
1847 {
1848         const struct hw_perf_counter_ops *hw_ops;
1849         struct perf_counter *counter;
1850
1851         counter = kzalloc(sizeof(*counter), gfpflags);
1852         if (!counter)
1853                 return NULL;
1854
1855         /*
1856          * Single counters are their own group leaders, with an
1857          * empty sibling list:
1858          */
1859         if (!group_leader)
1860                 group_leader = counter;
1861
1862         mutex_init(&counter->mutex);
1863         INIT_LIST_HEAD(&counter->list_entry);
1864         INIT_LIST_HEAD(&counter->event_entry);
1865         INIT_LIST_HEAD(&counter->sibling_list);
1866         init_waitqueue_head(&counter->waitq);
1867
1868         INIT_LIST_HEAD(&counter->child_list);
1869
1870         counter->irqdata                = &counter->data[0];
1871         counter->usrdata                = &counter->data[1];
1872         counter->cpu                    = cpu;
1873         counter->hw_event               = *hw_event;
1874         counter->wakeup_pending         = 0;
1875         counter->group_leader           = group_leader;
1876         counter->hw_ops                 = NULL;
1877         counter->ctx                    = ctx;
1878
1879         counter->state = PERF_COUNTER_STATE_INACTIVE;
1880         if (hw_event->disabled)
1881                 counter->state = PERF_COUNTER_STATE_OFF;
1882
1883         hw_ops = NULL;
1884
1885         if (perf_event_raw(hw_event)) {
1886                 hw_ops = hw_perf_counter_init(counter);
1887                 goto done;
1888         }
1889
1890         switch (perf_event_type(hw_event)) {
1891         case PERF_TYPE_HARDWARE:
1892                 hw_ops = hw_perf_counter_init(counter);
1893                 break;
1894
1895         case PERF_TYPE_SOFTWARE:
1896                 hw_ops = sw_perf_counter_init(counter);
1897                 break;
1898
1899         case PERF_TYPE_TRACEPOINT:
1900                 hw_ops = tp_perf_counter_init(counter);
1901                 break;
1902         }
1903
1904         if (!hw_ops) {
1905                 kfree(counter);
1906                 return NULL;
1907         }
1908 done:
1909         counter->hw_ops = hw_ops;
1910
1911         return counter;
1912 }
1913
1914 /**
1915  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
1916  *
1917  * @hw_event_uptr:      event type attributes for monitoring/sampling
1918  * @pid:                target pid
1919  * @cpu:                target cpu
1920  * @group_fd:           group leader counter fd
1921  */
1922 SYSCALL_DEFINE5(perf_counter_open,
1923                 const struct perf_counter_hw_event __user *, hw_event_uptr,
1924                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
1925 {
1926         struct perf_counter *counter, *group_leader;
1927         struct perf_counter_hw_event hw_event;
1928         struct perf_counter_context *ctx;
1929         struct file *counter_file = NULL;
1930         struct file *group_file = NULL;
1931         int fput_needed = 0;
1932         int fput_needed2 = 0;
1933         int ret;
1934
1935         /* for future expandability... */
1936         if (flags)
1937                 return -EINVAL;
1938
1939         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1940                 return -EFAULT;
1941
1942         /*
1943          * Get the target context (task or percpu):
1944          */
1945         ctx = find_get_context(pid, cpu);
1946         if (IS_ERR(ctx))
1947                 return PTR_ERR(ctx);
1948
1949         /*
1950          * Look up the group leader (we will attach this counter to it):
1951          */
1952         group_leader = NULL;
1953         if (group_fd != -1) {
1954                 ret = -EINVAL;
1955                 group_file = fget_light(group_fd, &fput_needed);
1956                 if (!group_file)
1957                         goto err_put_context;
1958                 if (group_file->f_op != &perf_fops)
1959                         goto err_put_context;
1960
1961                 group_leader = group_file->private_data;
1962                 /*
1963                  * Do not allow a recursive hierarchy (this new sibling
1964                  * becoming part of another group-sibling):
1965                  */
1966                 if (group_leader->group_leader != group_leader)
1967                         goto err_put_context;
1968                 /*
1969                  * Do not allow to attach to a group in a different
1970                  * task or CPU context:
1971                  */
1972                 if (group_leader->ctx != ctx)
1973                         goto err_put_context;
1974                 /*
1975                  * Only a group leader can be exclusive or pinned
1976                  */
1977                 if (hw_event.exclusive || hw_event.pinned)
1978                         goto err_put_context;
1979         }
1980
1981         ret = -EINVAL;
1982         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
1983                                      GFP_KERNEL);
1984         if (!counter)
1985                 goto err_put_context;
1986
1987         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1988         if (ret < 0)
1989                 goto err_free_put_context;
1990
1991         counter_file = fget_light(ret, &fput_needed2);
1992         if (!counter_file)
1993                 goto err_free_put_context;
1994
1995         counter->filp = counter_file;
1996         mutex_lock(&ctx->mutex);
1997         perf_install_in_context(ctx, counter, cpu);
1998         mutex_unlock(&ctx->mutex);
1999
2000         fput_light(counter_file, fput_needed2);
2001
2002 out_fput:
2003         fput_light(group_file, fput_needed);
2004
2005         return ret;
2006
2007 err_free_put_context:
2008         kfree(counter);
2009
2010 err_put_context:
2011         put_context(ctx);
2012
2013         goto out_fput;
2014 }
2015
2016 /*
2017  * Initialize the perf_counter context in a task_struct:
2018  */
2019 static void
2020 __perf_counter_init_context(struct perf_counter_context *ctx,
2021                             struct task_struct *task)
2022 {
2023         memset(ctx, 0, sizeof(*ctx));
2024         spin_lock_init(&ctx->lock);
2025         mutex_init(&ctx->mutex);
2026         INIT_LIST_HEAD(&ctx->counter_list);
2027         INIT_LIST_HEAD(&ctx->event_list);
2028         ctx->task = task;
2029 }
2030
2031 /*
2032  * inherit a counter from parent task to child task:
2033  */
2034 static struct perf_counter *
2035 inherit_counter(struct perf_counter *parent_counter,
2036               struct task_struct *parent,
2037               struct perf_counter_context *parent_ctx,
2038               struct task_struct *child,
2039               struct perf_counter *group_leader,
2040               struct perf_counter_context *child_ctx)
2041 {
2042         struct perf_counter *child_counter;
2043
2044         /*
2045          * Instead of creating recursive hierarchies of counters,
2046          * we link inherited counters back to the original parent,
2047          * which has a filp for sure, which we use as the reference
2048          * count:
2049          */
2050         if (parent_counter->parent)
2051                 parent_counter = parent_counter->parent;
2052
2053         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2054                                            parent_counter->cpu, child_ctx,
2055                                            group_leader, GFP_KERNEL);
2056         if (!child_counter)
2057                 return NULL;
2058
2059         /*
2060          * Link it up in the child's context:
2061          */
2062         child_counter->task = child;
2063         list_add_counter(child_counter, child_ctx);
2064         child_ctx->nr_counters++;
2065
2066         child_counter->parent = parent_counter;
2067         /*
2068          * inherit into child's child as well:
2069          */
2070         child_counter->hw_event.inherit = 1;
2071
2072         /*
2073          * Get a reference to the parent filp - we will fput it
2074          * when the child counter exits. This is safe to do because
2075          * we are in the parent and we know that the filp still
2076          * exists and has a nonzero count:
2077          */
2078         atomic_long_inc(&parent_counter->filp->f_count);
2079
2080         /*
2081          * Link this into the parent counter's child list
2082          */
2083         mutex_lock(&parent_counter->mutex);
2084         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2085
2086         /*
2087          * Make the child state follow the state of the parent counter,
2088          * not its hw_event.disabled bit.  We hold the parent's mutex,
2089          * so we won't race with perf_counter_{en,dis}able_family.
2090          */
2091         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2092                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2093         else
2094                 child_counter->state = PERF_COUNTER_STATE_OFF;
2095
2096         mutex_unlock(&parent_counter->mutex);
2097
2098         return child_counter;
2099 }
2100
2101 static int inherit_group(struct perf_counter *parent_counter,
2102               struct task_struct *parent,
2103               struct perf_counter_context *parent_ctx,
2104               struct task_struct *child,
2105               struct perf_counter_context *child_ctx)
2106 {
2107         struct perf_counter *leader;
2108         struct perf_counter *sub;
2109
2110         leader = inherit_counter(parent_counter, parent, parent_ctx,
2111                                  child, NULL, child_ctx);
2112         if (!leader)
2113                 return -ENOMEM;
2114         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2115                 if (!inherit_counter(sub, parent, parent_ctx,
2116                                      child, leader, child_ctx))
2117                         return -ENOMEM;
2118         }
2119         return 0;
2120 }
2121
2122 static void sync_child_counter(struct perf_counter *child_counter,
2123                                struct perf_counter *parent_counter)
2124 {
2125         u64 parent_val, child_val;
2126
2127         parent_val = atomic64_read(&parent_counter->count);
2128         child_val = atomic64_read(&child_counter->count);
2129
2130         /*
2131          * Add back the child's count to the parent's count:
2132          */
2133         atomic64_add(child_val, &parent_counter->count);
2134
2135         /*
2136          * Remove this counter from the parent's list
2137          */
2138         mutex_lock(&parent_counter->mutex);
2139         list_del_init(&child_counter->child_list);
2140         mutex_unlock(&parent_counter->mutex);
2141
2142         /*
2143          * Release the parent counter, if this was the last
2144          * reference to it.
2145          */
2146         fput(parent_counter->filp);
2147 }
2148
2149 static void
2150 __perf_counter_exit_task(struct task_struct *child,
2151                          struct perf_counter *child_counter,
2152                          struct perf_counter_context *child_ctx)
2153 {
2154         struct perf_counter *parent_counter;
2155         struct perf_counter *sub, *tmp;
2156
2157         /*
2158          * If we do not self-reap then we have to wait for the
2159          * child task to unschedule (it will happen for sure),
2160          * so that its counter is at its final count. (This
2161          * condition triggers rarely - child tasks usually get
2162          * off their CPU before the parent has a chance to
2163          * get this far into the reaping action)
2164          */
2165         if (child != current) {
2166                 wait_task_inactive(child, 0);
2167                 list_del_init(&child_counter->list_entry);
2168         } else {
2169                 struct perf_cpu_context *cpuctx;
2170                 unsigned long flags;
2171                 u64 perf_flags;
2172
2173                 /*
2174                  * Disable and unlink this counter.
2175                  *
2176                  * Be careful about zapping the list - IRQ/NMI context
2177                  * could still be processing it:
2178                  */
2179                 curr_rq_lock_irq_save(&flags);
2180                 perf_flags = hw_perf_save_disable();
2181
2182                 cpuctx = &__get_cpu_var(perf_cpu_context);
2183
2184                 group_sched_out(child_counter, cpuctx, child_ctx);
2185
2186                 list_del_init(&child_counter->list_entry);
2187
2188                 child_ctx->nr_counters--;
2189
2190                 hw_perf_restore(perf_flags);
2191                 curr_rq_unlock_irq_restore(&flags);
2192         }
2193
2194         parent_counter = child_counter->parent;
2195         /*
2196          * It can happen that parent exits first, and has counters
2197          * that are still around due to the child reference. These
2198          * counters need to be zapped - but otherwise linger.
2199          */
2200         if (parent_counter) {
2201                 sync_child_counter(child_counter, parent_counter);
2202                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2203                                          list_entry) {
2204                         if (sub->parent) {
2205                                 sync_child_counter(sub, sub->parent);
2206                                 free_counter(sub);
2207                         }
2208                 }
2209                 free_counter(child_counter);
2210         }
2211 }
2212
2213 /*
2214  * When a child task exits, feed back counter values to parent counters.
2215  *
2216  * Note: we may be running in child context, but the PID is not hashed
2217  * anymore so new counters will not be added.
2218  */
2219 void perf_counter_exit_task(struct task_struct *child)
2220 {
2221         struct perf_counter *child_counter, *tmp;
2222         struct perf_counter_context *child_ctx;
2223
2224         child_ctx = &child->perf_counter_ctx;
2225
2226         if (likely(!child_ctx->nr_counters))
2227                 return;
2228
2229         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2230                                  list_entry)
2231                 __perf_counter_exit_task(child, child_counter, child_ctx);
2232 }
2233
2234 /*
2235  * Initialize the perf_counter context in task_struct
2236  */
2237 void perf_counter_init_task(struct task_struct *child)
2238 {
2239         struct perf_counter_context *child_ctx, *parent_ctx;
2240         struct perf_counter *counter;
2241         struct task_struct *parent = current;
2242
2243         child_ctx  =  &child->perf_counter_ctx;
2244         parent_ctx = &parent->perf_counter_ctx;
2245
2246         __perf_counter_init_context(child_ctx, child);
2247
2248         /*
2249          * This is executed from the parent task context, so inherit
2250          * counters that have been marked for cloning:
2251          */
2252
2253         if (likely(!parent_ctx->nr_counters))
2254                 return;
2255
2256         /*
2257          * Lock the parent list. No need to lock the child - not PID
2258          * hashed yet and not running, so nobody can access it.
2259          */
2260         mutex_lock(&parent_ctx->mutex);
2261
2262         /*
2263          * We dont have to disable NMIs - we are only looking at
2264          * the list, not manipulating it:
2265          */
2266         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2267                 if (!counter->hw_event.inherit)
2268                         continue;
2269
2270                 if (inherit_group(counter, parent,
2271                                   parent_ctx, child, child_ctx))
2272                         break;
2273         }
2274
2275         mutex_unlock(&parent_ctx->mutex);
2276 }
2277
2278 static void __cpuinit perf_counter_init_cpu(int cpu)
2279 {
2280         struct perf_cpu_context *cpuctx;
2281
2282         cpuctx = &per_cpu(perf_cpu_context, cpu);
2283         __perf_counter_init_context(&cpuctx->ctx, NULL);
2284
2285         mutex_lock(&perf_resource_mutex);
2286         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2287         mutex_unlock(&perf_resource_mutex);
2288
2289         hw_perf_counter_setup(cpu);
2290 }
2291
2292 #ifdef CONFIG_HOTPLUG_CPU
2293 static void __perf_counter_exit_cpu(void *info)
2294 {
2295         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2296         struct perf_counter_context *ctx = &cpuctx->ctx;
2297         struct perf_counter *counter, *tmp;
2298
2299         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2300                 __perf_counter_remove_from_context(counter);
2301 }
2302 static void perf_counter_exit_cpu(int cpu)
2303 {
2304         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2305         struct perf_counter_context *ctx = &cpuctx->ctx;
2306
2307         mutex_lock(&ctx->mutex);
2308         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2309         mutex_unlock(&ctx->mutex);
2310 }
2311 #else
2312 static inline void perf_counter_exit_cpu(int cpu) { }
2313 #endif
2314
2315 static int __cpuinit
2316 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2317 {
2318         unsigned int cpu = (long)hcpu;
2319
2320         switch (action) {
2321
2322         case CPU_UP_PREPARE:
2323         case CPU_UP_PREPARE_FROZEN:
2324                 perf_counter_init_cpu(cpu);
2325                 break;
2326
2327         case CPU_DOWN_PREPARE:
2328         case CPU_DOWN_PREPARE_FROZEN:
2329                 perf_counter_exit_cpu(cpu);
2330                 break;
2331
2332         default:
2333                 break;
2334         }
2335
2336         return NOTIFY_OK;
2337 }
2338
2339 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2340         .notifier_call          = perf_cpu_notify,
2341 };
2342
2343 static int __init perf_counter_init(void)
2344 {
2345         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2346                         (void *)(long)smp_processor_id());
2347         register_cpu_notifier(&perf_cpu_nb);
2348
2349         return 0;
2350 }
2351 early_initcall(perf_counter_init);
2352
2353 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2354 {
2355         return sprintf(buf, "%d\n", perf_reserved_percpu);
2356 }
2357
2358 static ssize_t
2359 perf_set_reserve_percpu(struct sysdev_class *class,
2360                         const char *buf,
2361                         size_t count)
2362 {
2363         struct perf_cpu_context *cpuctx;
2364         unsigned long val;
2365         int err, cpu, mpt;
2366
2367         err = strict_strtoul(buf, 10, &val);
2368         if (err)
2369                 return err;
2370         if (val > perf_max_counters)
2371                 return -EINVAL;
2372
2373         mutex_lock(&perf_resource_mutex);
2374         perf_reserved_percpu = val;
2375         for_each_online_cpu(cpu) {
2376                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2377                 spin_lock_irq(&cpuctx->ctx.lock);
2378                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2379                           perf_max_counters - perf_reserved_percpu);
2380                 cpuctx->max_pertask = mpt;
2381                 spin_unlock_irq(&cpuctx->ctx.lock);
2382         }
2383         mutex_unlock(&perf_resource_mutex);
2384
2385         return count;
2386 }
2387
2388 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2389 {
2390         return sprintf(buf, "%d\n", perf_overcommit);
2391 }
2392
2393 static ssize_t
2394 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2395 {
2396         unsigned long val;
2397         int err;
2398
2399         err = strict_strtoul(buf, 10, &val);
2400         if (err)
2401                 return err;
2402         if (val > 1)
2403                 return -EINVAL;
2404
2405         mutex_lock(&perf_resource_mutex);
2406         perf_overcommit = val;
2407         mutex_unlock(&perf_resource_mutex);
2408
2409         return count;
2410 }
2411
2412 static SYSDEV_CLASS_ATTR(
2413                                 reserve_percpu,
2414                                 0644,
2415                                 perf_show_reserve_percpu,
2416                                 perf_set_reserve_percpu
2417                         );
2418
2419 static SYSDEV_CLASS_ATTR(
2420                                 overcommit,
2421                                 0644,
2422                                 perf_show_overcommit,
2423                                 perf_set_overcommit
2424                         );
2425
2426 static struct attribute *perfclass_attrs[] = {
2427         &attr_reserve_percpu.attr,
2428         &attr_overcommit.attr,
2429         NULL
2430 };
2431
2432 static struct attribute_group perfclass_attr_group = {
2433         .attrs                  = perfclass_attrs,
2434         .name                   = "perf_counters",
2435 };
2436
2437 static int __init perf_counter_sysfs_init(void)
2438 {
2439         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2440                                   &perfclass_attr_group);
2441 }
2442 device_initcall(perf_counter_sysfs_init);