perf_counter, x86: Add mmap counter read support
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47  * perf counter paranoia level:
48  *  0 - not paranoid
49  *  1 - disallow cpu counters to unpriv
50  *  2 - disallow kernel profiling to unpriv
51  */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56         return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61         return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67  * max perf counter sample rate
68  */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74  * Lock for (sysadmin-configurable) counter reservations:
75  */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79  * Architecture provided APIs - weak aliases:
80  */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83         return NULL;
84 }
85
86 void __weak hw_perf_disable(void)               { barrier(); }
87 void __weak hw_perf_enable(void)                { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93                struct perf_cpu_context *cpuctx,
94                struct perf_counter_context *ctx, int cpu)
95 {
96         return 0;
97 }
98
99 void __weak perf_counter_print_debug(void)      { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105         __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110         return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115         __perf_disable();
116         hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121         if (__perf_enable())
122                 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132         struct perf_counter_context *ctx;
133
134         ctx = container_of(head, struct perf_counter_context, rcu_head);
135         kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140         if (atomic_dec_and_test(&ctx->refcount)) {
141                 if (ctx->parent_ctx)
142                         put_ctx(ctx->parent_ctx);
143                 if (ctx->task)
144                         put_task_struct(ctx->task);
145                 call_rcu(&ctx->rcu_head, free_ctx);
146         }
147 }
148
149 /*
150  * Get the perf_counter_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 {
157         struct perf_counter_context *ctx;
158
159         rcu_read_lock();
160  retry:
161         ctx = rcu_dereference(task->perf_counter_ctxp);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_counter_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175                         spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
194 {
195         struct perf_counter_context *ctx;
196         unsigned long flags;
197
198         ctx = perf_lock_task_context(task, &flags);
199         if (ctx) {
200                 ++ctx->pin_count;
201                 spin_unlock_irqrestore(&ctx->lock, flags);
202         }
203         return ctx;
204 }
205
206 static void perf_unpin_context(struct perf_counter_context *ctx)
207 {
208         unsigned long flags;
209
210         spin_lock_irqsave(&ctx->lock, flags);
211         --ctx->pin_count;
212         spin_unlock_irqrestore(&ctx->lock, flags);
213         put_ctx(ctx);
214 }
215
216 /*
217  * Add a counter from the lists for its context.
218  * Must be called with ctx->mutex and ctx->lock held.
219  */
220 static void
221 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223         struct perf_counter *group_leader = counter->group_leader;
224
225         /*
226          * Depending on whether it is a standalone or sibling counter,
227          * add it straight to the context's counter list, or to the group
228          * leader's sibling list:
229          */
230         if (group_leader == counter)
231                 list_add_tail(&counter->list_entry, &ctx->counter_list);
232         else {
233                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
234                 group_leader->nr_siblings++;
235         }
236
237         list_add_rcu(&counter->event_entry, &ctx->event_list);
238         ctx->nr_counters++;
239 }
240
241 /*
242  * Remove a counter from the lists for its context.
243  * Must be called with ctx->mutex and ctx->lock held.
244  */
245 static void
246 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
247 {
248         struct perf_counter *sibling, *tmp;
249
250         if (list_empty(&counter->list_entry))
251                 return;
252         ctx->nr_counters--;
253
254         list_del_init(&counter->list_entry);
255         list_del_rcu(&counter->event_entry);
256
257         if (counter->group_leader != counter)
258                 counter->group_leader->nr_siblings--;
259
260         /*
261          * If this was a group counter with sibling counters then
262          * upgrade the siblings to singleton counters by adding them
263          * to the context list directly:
264          */
265         list_for_each_entry_safe(sibling, tmp,
266                                  &counter->sibling_list, list_entry) {
267
268                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
269                 sibling->group_leader = sibling;
270         }
271 }
272
273 static void
274 counter_sched_out(struct perf_counter *counter,
275                   struct perf_cpu_context *cpuctx,
276                   struct perf_counter_context *ctx)
277 {
278         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
279                 return;
280
281         counter->state = PERF_COUNTER_STATE_INACTIVE;
282         counter->tstamp_stopped = ctx->time;
283         counter->pmu->disable(counter);
284         counter->oncpu = -1;
285
286         if (!is_software_counter(counter))
287                 cpuctx->active_oncpu--;
288         ctx->nr_active--;
289         if (counter->attr.exclusive || !cpuctx->active_oncpu)
290                 cpuctx->exclusive = 0;
291 }
292
293 static void
294 group_sched_out(struct perf_counter *group_counter,
295                 struct perf_cpu_context *cpuctx,
296                 struct perf_counter_context *ctx)
297 {
298         struct perf_counter *counter;
299
300         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
301                 return;
302
303         counter_sched_out(group_counter, cpuctx, ctx);
304
305         /*
306          * Schedule out siblings (if any):
307          */
308         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
309                 counter_sched_out(counter, cpuctx, ctx);
310
311         if (group_counter->attr.exclusive)
312                 cpuctx->exclusive = 0;
313 }
314
315 /*
316  * Cross CPU call to remove a performance counter
317  *
318  * We disable the counter on the hardware level first. After that we
319  * remove it from the context list.
320  */
321 static void __perf_counter_remove_from_context(void *info)
322 {
323         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
324         struct perf_counter *counter = info;
325         struct perf_counter_context *ctx = counter->ctx;
326
327         /*
328          * If this is a task context, we need to check whether it is
329          * the current task context of this cpu. If not it has been
330          * scheduled out before the smp call arrived.
331          */
332         if (ctx->task && cpuctx->task_ctx != ctx)
333                 return;
334
335         spin_lock(&ctx->lock);
336         /*
337          * Protect the list operation against NMI by disabling the
338          * counters on a global level.
339          */
340         perf_disable();
341
342         counter_sched_out(counter, cpuctx, ctx);
343
344         list_del_counter(counter, ctx);
345
346         if (!ctx->task) {
347                 /*
348                  * Allow more per task counters with respect to the
349                  * reservation:
350                  */
351                 cpuctx->max_pertask =
352                         min(perf_max_counters - ctx->nr_counters,
353                             perf_max_counters - perf_reserved_percpu);
354         }
355
356         perf_enable();
357         spin_unlock(&ctx->lock);
358 }
359
360
361 /*
362  * Remove the counter from a task's (or a CPU's) list of counters.
363  *
364  * Must be called with ctx->mutex held.
365  *
366  * CPU counters are removed with a smp call. For task counters we only
367  * call when the task is on a CPU.
368  *
369  * If counter->ctx is a cloned context, callers must make sure that
370  * every task struct that counter->ctx->task could possibly point to
371  * remains valid.  This is OK when called from perf_release since
372  * that only calls us on the top-level context, which can't be a clone.
373  * When called from perf_counter_exit_task, it's OK because the
374  * context has been detached from its task.
375  */
376 static void perf_counter_remove_from_context(struct perf_counter *counter)
377 {
378         struct perf_counter_context *ctx = counter->ctx;
379         struct task_struct *task = ctx->task;
380
381         if (!task) {
382                 /*
383                  * Per cpu counters are removed via an smp call and
384                  * the removal is always sucessful.
385                  */
386                 smp_call_function_single(counter->cpu,
387                                          __perf_counter_remove_from_context,
388                                          counter, 1);
389                 return;
390         }
391
392 retry:
393         task_oncpu_function_call(task, __perf_counter_remove_from_context,
394                                  counter);
395
396         spin_lock_irq(&ctx->lock);
397         /*
398          * If the context is active we need to retry the smp call.
399          */
400         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
401                 spin_unlock_irq(&ctx->lock);
402                 goto retry;
403         }
404
405         /*
406          * The lock prevents that this context is scheduled in so we
407          * can remove the counter safely, if the call above did not
408          * succeed.
409          */
410         if (!list_empty(&counter->list_entry)) {
411                 list_del_counter(counter, ctx);
412         }
413         spin_unlock_irq(&ctx->lock);
414 }
415
416 static inline u64 perf_clock(void)
417 {
418         return cpu_clock(smp_processor_id());
419 }
420
421 /*
422  * Update the record of the current time in a context.
423  */
424 static void update_context_time(struct perf_counter_context *ctx)
425 {
426         u64 now = perf_clock();
427
428         ctx->time += now - ctx->timestamp;
429         ctx->timestamp = now;
430 }
431
432 /*
433  * Update the total_time_enabled and total_time_running fields for a counter.
434  */
435 static void update_counter_times(struct perf_counter *counter)
436 {
437         struct perf_counter_context *ctx = counter->ctx;
438         u64 run_end;
439
440         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
441                 return;
442
443         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
444
445         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
446                 run_end = counter->tstamp_stopped;
447         else
448                 run_end = ctx->time;
449
450         counter->total_time_running = run_end - counter->tstamp_running;
451 }
452
453 /*
454  * Update total_time_enabled and total_time_running for all counters in a group.
455  */
456 static void update_group_times(struct perf_counter *leader)
457 {
458         struct perf_counter *counter;
459
460         update_counter_times(leader);
461         list_for_each_entry(counter, &leader->sibling_list, list_entry)
462                 update_counter_times(counter);
463 }
464
465 /*
466  * Cross CPU call to disable a performance counter
467  */
468 static void __perf_counter_disable(void *info)
469 {
470         struct perf_counter *counter = info;
471         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
472         struct perf_counter_context *ctx = counter->ctx;
473
474         /*
475          * If this is a per-task counter, need to check whether this
476          * counter's task is the current task on this cpu.
477          */
478         if (ctx->task && cpuctx->task_ctx != ctx)
479                 return;
480
481         spin_lock(&ctx->lock);
482
483         /*
484          * If the counter is on, turn it off.
485          * If it is in error state, leave it in error state.
486          */
487         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
488                 update_context_time(ctx);
489                 update_counter_times(counter);
490                 if (counter == counter->group_leader)
491                         group_sched_out(counter, cpuctx, ctx);
492                 else
493                         counter_sched_out(counter, cpuctx, ctx);
494                 counter->state = PERF_COUNTER_STATE_OFF;
495         }
496
497         spin_unlock(&ctx->lock);
498 }
499
500 /*
501  * Disable a counter.
502  *
503  * If counter->ctx is a cloned context, callers must make sure that
504  * every task struct that counter->ctx->task could possibly point to
505  * remains valid.  This condition is satisifed when called through
506  * perf_counter_for_each_child or perf_counter_for_each because they
507  * hold the top-level counter's child_mutex, so any descendant that
508  * goes to exit will block in sync_child_counter.
509  * When called from perf_pending_counter it's OK because counter->ctx
510  * is the current context on this CPU and preemption is disabled,
511  * hence we can't get into perf_counter_task_sched_out for this context.
512  */
513 static void perf_counter_disable(struct perf_counter *counter)
514 {
515         struct perf_counter_context *ctx = counter->ctx;
516         struct task_struct *task = ctx->task;
517
518         if (!task) {
519                 /*
520                  * Disable the counter on the cpu that it's on
521                  */
522                 smp_call_function_single(counter->cpu, __perf_counter_disable,
523                                          counter, 1);
524                 return;
525         }
526
527  retry:
528         task_oncpu_function_call(task, __perf_counter_disable, counter);
529
530         spin_lock_irq(&ctx->lock);
531         /*
532          * If the counter is still active, we need to retry the cross-call.
533          */
534         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
535                 spin_unlock_irq(&ctx->lock);
536                 goto retry;
537         }
538
539         /*
540          * Since we have the lock this context can't be scheduled
541          * in, so we can change the state safely.
542          */
543         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
544                 update_counter_times(counter);
545                 counter->state = PERF_COUNTER_STATE_OFF;
546         }
547
548         spin_unlock_irq(&ctx->lock);
549 }
550
551 static int
552 counter_sched_in(struct perf_counter *counter,
553                  struct perf_cpu_context *cpuctx,
554                  struct perf_counter_context *ctx,
555                  int cpu)
556 {
557         if (counter->state <= PERF_COUNTER_STATE_OFF)
558                 return 0;
559
560         counter->state = PERF_COUNTER_STATE_ACTIVE;
561         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
562         /*
563          * The new state must be visible before we turn it on in the hardware:
564          */
565         smp_wmb();
566
567         if (counter->pmu->enable(counter)) {
568                 counter->state = PERF_COUNTER_STATE_INACTIVE;
569                 counter->oncpu = -1;
570                 return -EAGAIN;
571         }
572
573         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
574
575         if (!is_software_counter(counter))
576                 cpuctx->active_oncpu++;
577         ctx->nr_active++;
578
579         if (counter->attr.exclusive)
580                 cpuctx->exclusive = 1;
581
582         return 0;
583 }
584
585 static int
586 group_sched_in(struct perf_counter *group_counter,
587                struct perf_cpu_context *cpuctx,
588                struct perf_counter_context *ctx,
589                int cpu)
590 {
591         struct perf_counter *counter, *partial_group;
592         int ret;
593
594         if (group_counter->state == PERF_COUNTER_STATE_OFF)
595                 return 0;
596
597         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
598         if (ret)
599                 return ret < 0 ? ret : 0;
600
601         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
602                 return -EAGAIN;
603
604         /*
605          * Schedule in siblings as one group (if any):
606          */
607         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
608                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
609                         partial_group = counter;
610                         goto group_error;
611                 }
612         }
613
614         return 0;
615
616 group_error:
617         /*
618          * Groups can be scheduled in as one unit only, so undo any
619          * partial group before returning:
620          */
621         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
622                 if (counter == partial_group)
623                         break;
624                 counter_sched_out(counter, cpuctx, ctx);
625         }
626         counter_sched_out(group_counter, cpuctx, ctx);
627
628         return -EAGAIN;
629 }
630
631 /*
632  * Return 1 for a group consisting entirely of software counters,
633  * 0 if the group contains any hardware counters.
634  */
635 static int is_software_only_group(struct perf_counter *leader)
636 {
637         struct perf_counter *counter;
638
639         if (!is_software_counter(leader))
640                 return 0;
641
642         list_for_each_entry(counter, &leader->sibling_list, list_entry)
643                 if (!is_software_counter(counter))
644                         return 0;
645
646         return 1;
647 }
648
649 /*
650  * Work out whether we can put this counter group on the CPU now.
651  */
652 static int group_can_go_on(struct perf_counter *counter,
653                            struct perf_cpu_context *cpuctx,
654                            int can_add_hw)
655 {
656         /*
657          * Groups consisting entirely of software counters can always go on.
658          */
659         if (is_software_only_group(counter))
660                 return 1;
661         /*
662          * If an exclusive group is already on, no other hardware
663          * counters can go on.
664          */
665         if (cpuctx->exclusive)
666                 return 0;
667         /*
668          * If this group is exclusive and there are already
669          * counters on the CPU, it can't go on.
670          */
671         if (counter->attr.exclusive && cpuctx->active_oncpu)
672                 return 0;
673         /*
674          * Otherwise, try to add it if all previous groups were able
675          * to go on.
676          */
677         return can_add_hw;
678 }
679
680 static void add_counter_to_ctx(struct perf_counter *counter,
681                                struct perf_counter_context *ctx)
682 {
683         list_add_counter(counter, ctx);
684         counter->tstamp_enabled = ctx->time;
685         counter->tstamp_running = ctx->time;
686         counter->tstamp_stopped = ctx->time;
687 }
688
689 /*
690  * Cross CPU call to install and enable a performance counter
691  *
692  * Must be called with ctx->mutex held
693  */
694 static void __perf_install_in_context(void *info)
695 {
696         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
697         struct perf_counter *counter = info;
698         struct perf_counter_context *ctx = counter->ctx;
699         struct perf_counter *leader = counter->group_leader;
700         int cpu = smp_processor_id();
701         int err;
702
703         /*
704          * If this is a task context, we need to check whether it is
705          * the current task context of this cpu. If not it has been
706          * scheduled out before the smp call arrived.
707          * Or possibly this is the right context but it isn't
708          * on this cpu because it had no counters.
709          */
710         if (ctx->task && cpuctx->task_ctx != ctx) {
711                 if (cpuctx->task_ctx || ctx->task != current)
712                         return;
713                 cpuctx->task_ctx = ctx;
714         }
715
716         spin_lock(&ctx->lock);
717         ctx->is_active = 1;
718         update_context_time(ctx);
719
720         /*
721          * Protect the list operation against NMI by disabling the
722          * counters on a global level. NOP for non NMI based counters.
723          */
724         perf_disable();
725
726         add_counter_to_ctx(counter, ctx);
727
728         /*
729          * Don't put the counter on if it is disabled or if
730          * it is in a group and the group isn't on.
731          */
732         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
733             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
734                 goto unlock;
735
736         /*
737          * An exclusive counter can't go on if there are already active
738          * hardware counters, and no hardware counter can go on if there
739          * is already an exclusive counter on.
740          */
741         if (!group_can_go_on(counter, cpuctx, 1))
742                 err = -EEXIST;
743         else
744                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
745
746         if (err) {
747                 /*
748                  * This counter couldn't go on.  If it is in a group
749                  * then we have to pull the whole group off.
750                  * If the counter group is pinned then put it in error state.
751                  */
752                 if (leader != counter)
753                         group_sched_out(leader, cpuctx, ctx);
754                 if (leader->attr.pinned) {
755                         update_group_times(leader);
756                         leader->state = PERF_COUNTER_STATE_ERROR;
757                 }
758         }
759
760         if (!err && !ctx->task && cpuctx->max_pertask)
761                 cpuctx->max_pertask--;
762
763  unlock:
764         perf_enable();
765
766         spin_unlock(&ctx->lock);
767 }
768
769 /*
770  * Attach a performance counter to a context
771  *
772  * First we add the counter to the list with the hardware enable bit
773  * in counter->hw_config cleared.
774  *
775  * If the counter is attached to a task which is on a CPU we use a smp
776  * call to enable it in the task context. The task might have been
777  * scheduled away, but we check this in the smp call again.
778  *
779  * Must be called with ctx->mutex held.
780  */
781 static void
782 perf_install_in_context(struct perf_counter_context *ctx,
783                         struct perf_counter *counter,
784                         int cpu)
785 {
786         struct task_struct *task = ctx->task;
787
788         if (!task) {
789                 /*
790                  * Per cpu counters are installed via an smp call and
791                  * the install is always sucessful.
792                  */
793                 smp_call_function_single(cpu, __perf_install_in_context,
794                                          counter, 1);
795                 return;
796         }
797
798 retry:
799         task_oncpu_function_call(task, __perf_install_in_context,
800                                  counter);
801
802         spin_lock_irq(&ctx->lock);
803         /*
804          * we need to retry the smp call.
805          */
806         if (ctx->is_active && list_empty(&counter->list_entry)) {
807                 spin_unlock_irq(&ctx->lock);
808                 goto retry;
809         }
810
811         /*
812          * The lock prevents that this context is scheduled in so we
813          * can add the counter safely, if it the call above did not
814          * succeed.
815          */
816         if (list_empty(&counter->list_entry))
817                 add_counter_to_ctx(counter, ctx);
818         spin_unlock_irq(&ctx->lock);
819 }
820
821 /*
822  * Cross CPU call to enable a performance counter
823  */
824 static void __perf_counter_enable(void *info)
825 {
826         struct perf_counter *counter = info;
827         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
828         struct perf_counter_context *ctx = counter->ctx;
829         struct perf_counter *leader = counter->group_leader;
830         int err;
831
832         /*
833          * If this is a per-task counter, need to check whether this
834          * counter's task is the current task on this cpu.
835          */
836         if (ctx->task && cpuctx->task_ctx != ctx) {
837                 if (cpuctx->task_ctx || ctx->task != current)
838                         return;
839                 cpuctx->task_ctx = ctx;
840         }
841
842         spin_lock(&ctx->lock);
843         ctx->is_active = 1;
844         update_context_time(ctx);
845
846         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
847                 goto unlock;
848         counter->state = PERF_COUNTER_STATE_INACTIVE;
849         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
850
851         /*
852          * If the counter is in a group and isn't the group leader,
853          * then don't put it on unless the group is on.
854          */
855         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
856                 goto unlock;
857
858         if (!group_can_go_on(counter, cpuctx, 1)) {
859                 err = -EEXIST;
860         } else {
861                 perf_disable();
862                 if (counter == leader)
863                         err = group_sched_in(counter, cpuctx, ctx,
864                                              smp_processor_id());
865                 else
866                         err = counter_sched_in(counter, cpuctx, ctx,
867                                                smp_processor_id());
868                 perf_enable();
869         }
870
871         if (err) {
872                 /*
873                  * If this counter can't go on and it's part of a
874                  * group, then the whole group has to come off.
875                  */
876                 if (leader != counter)
877                         group_sched_out(leader, cpuctx, ctx);
878                 if (leader->attr.pinned) {
879                         update_group_times(leader);
880                         leader->state = PERF_COUNTER_STATE_ERROR;
881                 }
882         }
883
884  unlock:
885         spin_unlock(&ctx->lock);
886 }
887
888 /*
889  * Enable a counter.
890  *
891  * If counter->ctx is a cloned context, callers must make sure that
892  * every task struct that counter->ctx->task could possibly point to
893  * remains valid.  This condition is satisfied when called through
894  * perf_counter_for_each_child or perf_counter_for_each as described
895  * for perf_counter_disable.
896  */
897 static void perf_counter_enable(struct perf_counter *counter)
898 {
899         struct perf_counter_context *ctx = counter->ctx;
900         struct task_struct *task = ctx->task;
901
902         if (!task) {
903                 /*
904                  * Enable the counter on the cpu that it's on
905                  */
906                 smp_call_function_single(counter->cpu, __perf_counter_enable,
907                                          counter, 1);
908                 return;
909         }
910
911         spin_lock_irq(&ctx->lock);
912         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
913                 goto out;
914
915         /*
916          * If the counter is in error state, clear that first.
917          * That way, if we see the counter in error state below, we
918          * know that it has gone back into error state, as distinct
919          * from the task having been scheduled away before the
920          * cross-call arrived.
921          */
922         if (counter->state == PERF_COUNTER_STATE_ERROR)
923                 counter->state = PERF_COUNTER_STATE_OFF;
924
925  retry:
926         spin_unlock_irq(&ctx->lock);
927         task_oncpu_function_call(task, __perf_counter_enable, counter);
928
929         spin_lock_irq(&ctx->lock);
930
931         /*
932          * If the context is active and the counter is still off,
933          * we need to retry the cross-call.
934          */
935         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
936                 goto retry;
937
938         /*
939          * Since we have the lock this context can't be scheduled
940          * in, so we can change the state safely.
941          */
942         if (counter->state == PERF_COUNTER_STATE_OFF) {
943                 counter->state = PERF_COUNTER_STATE_INACTIVE;
944                 counter->tstamp_enabled =
945                         ctx->time - counter->total_time_enabled;
946         }
947  out:
948         spin_unlock_irq(&ctx->lock);
949 }
950
951 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
952 {
953         /*
954          * not supported on inherited counters
955          */
956         if (counter->attr.inherit)
957                 return -EINVAL;
958
959         atomic_add(refresh, &counter->event_limit);
960         perf_counter_enable(counter);
961
962         return 0;
963 }
964
965 void __perf_counter_sched_out(struct perf_counter_context *ctx,
966                               struct perf_cpu_context *cpuctx)
967 {
968         struct perf_counter *counter;
969
970         spin_lock(&ctx->lock);
971         ctx->is_active = 0;
972         if (likely(!ctx->nr_counters))
973                 goto out;
974         update_context_time(ctx);
975
976         perf_disable();
977         if (ctx->nr_active) {
978                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
979                         if (counter != counter->group_leader)
980                                 counter_sched_out(counter, cpuctx, ctx);
981                         else
982                                 group_sched_out(counter, cpuctx, ctx);
983                 }
984         }
985         perf_enable();
986  out:
987         spin_unlock(&ctx->lock);
988 }
989
990 /*
991  * Test whether two contexts are equivalent, i.e. whether they
992  * have both been cloned from the same version of the same context
993  * and they both have the same number of enabled counters.
994  * If the number of enabled counters is the same, then the set
995  * of enabled counters should be the same, because these are both
996  * inherited contexts, therefore we can't access individual counters
997  * in them directly with an fd; we can only enable/disable all
998  * counters via prctl, or enable/disable all counters in a family
999  * via ioctl, which will have the same effect on both contexts.
1000  */
1001 static int context_equiv(struct perf_counter_context *ctx1,
1002                          struct perf_counter_context *ctx2)
1003 {
1004         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1005                 && ctx1->parent_gen == ctx2->parent_gen
1006                 && !ctx1->pin_count && !ctx2->pin_count;
1007 }
1008
1009 /*
1010  * Called from scheduler to remove the counters of the current task,
1011  * with interrupts disabled.
1012  *
1013  * We stop each counter and update the counter value in counter->count.
1014  *
1015  * This does not protect us against NMI, but disable()
1016  * sets the disabled bit in the control field of counter _before_
1017  * accessing the counter control register. If a NMI hits, then it will
1018  * not restart the counter.
1019  */
1020 void perf_counter_task_sched_out(struct task_struct *task,
1021                                  struct task_struct *next, int cpu)
1022 {
1023         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1024         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1025         struct perf_counter_context *next_ctx;
1026         struct perf_counter_context *parent;
1027         struct pt_regs *regs;
1028         int do_switch = 1;
1029
1030         regs = task_pt_regs(task);
1031         perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1032
1033         if (likely(!ctx || !cpuctx->task_ctx))
1034                 return;
1035
1036         update_context_time(ctx);
1037
1038         rcu_read_lock();
1039         parent = rcu_dereference(ctx->parent_ctx);
1040         next_ctx = next->perf_counter_ctxp;
1041         if (parent && next_ctx &&
1042             rcu_dereference(next_ctx->parent_ctx) == parent) {
1043                 /*
1044                  * Looks like the two contexts are clones, so we might be
1045                  * able to optimize the context switch.  We lock both
1046                  * contexts and check that they are clones under the
1047                  * lock (including re-checking that neither has been
1048                  * uncloned in the meantime).  It doesn't matter which
1049                  * order we take the locks because no other cpu could
1050                  * be trying to lock both of these tasks.
1051                  */
1052                 spin_lock(&ctx->lock);
1053                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1054                 if (context_equiv(ctx, next_ctx)) {
1055                         /*
1056                          * XXX do we need a memory barrier of sorts
1057                          * wrt to rcu_dereference() of perf_counter_ctxp
1058                          */
1059                         task->perf_counter_ctxp = next_ctx;
1060                         next->perf_counter_ctxp = ctx;
1061                         ctx->task = next;
1062                         next_ctx->task = task;
1063                         do_switch = 0;
1064                 }
1065                 spin_unlock(&next_ctx->lock);
1066                 spin_unlock(&ctx->lock);
1067         }
1068         rcu_read_unlock();
1069
1070         if (do_switch) {
1071                 __perf_counter_sched_out(ctx, cpuctx);
1072                 cpuctx->task_ctx = NULL;
1073         }
1074 }
1075
1076 /*
1077  * Called with IRQs disabled
1078  */
1079 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1080 {
1081         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1082
1083         if (!cpuctx->task_ctx)
1084                 return;
1085
1086         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1087                 return;
1088
1089         __perf_counter_sched_out(ctx, cpuctx);
1090         cpuctx->task_ctx = NULL;
1091 }
1092
1093 /*
1094  * Called with IRQs disabled
1095  */
1096 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1097 {
1098         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1099 }
1100
1101 static void
1102 __perf_counter_sched_in(struct perf_counter_context *ctx,
1103                         struct perf_cpu_context *cpuctx, int cpu)
1104 {
1105         struct perf_counter *counter;
1106         int can_add_hw = 1;
1107
1108         spin_lock(&ctx->lock);
1109         ctx->is_active = 1;
1110         if (likely(!ctx->nr_counters))
1111                 goto out;
1112
1113         ctx->timestamp = perf_clock();
1114
1115         perf_disable();
1116
1117         /*
1118          * First go through the list and put on any pinned groups
1119          * in order to give them the best chance of going on.
1120          */
1121         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1122                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1123                     !counter->attr.pinned)
1124                         continue;
1125                 if (counter->cpu != -1 && counter->cpu != cpu)
1126                         continue;
1127
1128                 if (counter != counter->group_leader)
1129                         counter_sched_in(counter, cpuctx, ctx, cpu);
1130                 else {
1131                         if (group_can_go_on(counter, cpuctx, 1))
1132                                 group_sched_in(counter, cpuctx, ctx, cpu);
1133                 }
1134
1135                 /*
1136                  * If this pinned group hasn't been scheduled,
1137                  * put it in error state.
1138                  */
1139                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1140                         update_group_times(counter);
1141                         counter->state = PERF_COUNTER_STATE_ERROR;
1142                 }
1143         }
1144
1145         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1146                 /*
1147                  * Ignore counters in OFF or ERROR state, and
1148                  * ignore pinned counters since we did them already.
1149                  */
1150                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1151                     counter->attr.pinned)
1152                         continue;
1153
1154                 /*
1155                  * Listen to the 'cpu' scheduling filter constraint
1156                  * of counters:
1157                  */
1158                 if (counter->cpu != -1 && counter->cpu != cpu)
1159                         continue;
1160
1161                 if (counter != counter->group_leader) {
1162                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1163                                 can_add_hw = 0;
1164                 } else {
1165                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1166                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1167                                         can_add_hw = 0;
1168                         }
1169                 }
1170         }
1171         perf_enable();
1172  out:
1173         spin_unlock(&ctx->lock);
1174 }
1175
1176 /*
1177  * Called from scheduler to add the counters of the current task
1178  * with interrupts disabled.
1179  *
1180  * We restore the counter value and then enable it.
1181  *
1182  * This does not protect us against NMI, but enable()
1183  * sets the enabled bit in the control field of counter _before_
1184  * accessing the counter control register. If a NMI hits, then it will
1185  * keep the counter running.
1186  */
1187 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1188 {
1189         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1190         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1191
1192         if (likely(!ctx))
1193                 return;
1194         if (cpuctx->task_ctx == ctx)
1195                 return;
1196         __perf_counter_sched_in(ctx, cpuctx, cpu);
1197         cpuctx->task_ctx = ctx;
1198 }
1199
1200 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1201 {
1202         struct perf_counter_context *ctx = &cpuctx->ctx;
1203
1204         __perf_counter_sched_in(ctx, cpuctx, cpu);
1205 }
1206
1207 #define MAX_INTERRUPTS (~0ULL)
1208
1209 static void perf_log_throttle(struct perf_counter *counter, int enable);
1210 static void perf_log_period(struct perf_counter *counter, u64 period);
1211
1212 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1213 {
1214         struct hw_perf_counter *hwc = &counter->hw;
1215         u64 period, sample_period;
1216         s64 delta;
1217
1218         events *= hwc->sample_period;
1219         period = div64_u64(events, counter->attr.sample_freq);
1220
1221         delta = (s64)(period - hwc->sample_period);
1222         delta = (delta + 7) / 8; /* low pass filter */
1223
1224         sample_period = hwc->sample_period + delta;
1225
1226         if (!sample_period)
1227                 sample_period = 1;
1228
1229         perf_log_period(counter, sample_period);
1230
1231         hwc->sample_period = sample_period;
1232 }
1233
1234 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1235 {
1236         struct perf_counter *counter;
1237         struct hw_perf_counter *hwc;
1238         u64 interrupts, freq;
1239
1240         spin_lock(&ctx->lock);
1241         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1242                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1243                         continue;
1244
1245                 hwc = &counter->hw;
1246
1247                 interrupts = hwc->interrupts;
1248                 hwc->interrupts = 0;
1249
1250                 /*
1251                  * unthrottle counters on the tick
1252                  */
1253                 if (interrupts == MAX_INTERRUPTS) {
1254                         perf_log_throttle(counter, 1);
1255                         counter->pmu->unthrottle(counter);
1256                         interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1257                 }
1258
1259                 if (!counter->attr.freq || !counter->attr.sample_freq)
1260                         continue;
1261
1262                 /*
1263                  * if the specified freq < HZ then we need to skip ticks
1264                  */
1265                 if (counter->attr.sample_freq < HZ) {
1266                         freq = counter->attr.sample_freq;
1267
1268                         hwc->freq_count += freq;
1269                         hwc->freq_interrupts += interrupts;
1270
1271                         if (hwc->freq_count < HZ)
1272                                 continue;
1273
1274                         interrupts = hwc->freq_interrupts;
1275                         hwc->freq_interrupts = 0;
1276                         hwc->freq_count -= HZ;
1277                 } else
1278                         freq = HZ;
1279
1280                 perf_adjust_period(counter, freq * interrupts);
1281
1282                 /*
1283                  * In order to avoid being stalled by an (accidental) huge
1284                  * sample period, force reset the sample period if we didn't
1285                  * get any events in this freq period.
1286                  */
1287                 if (!interrupts) {
1288                         perf_disable();
1289                         counter->pmu->disable(counter);
1290                         atomic64_set(&hwc->period_left, 0);
1291                         counter->pmu->enable(counter);
1292                         perf_enable();
1293                 }
1294         }
1295         spin_unlock(&ctx->lock);
1296 }
1297
1298 /*
1299  * Round-robin a context's counters:
1300  */
1301 static void rotate_ctx(struct perf_counter_context *ctx)
1302 {
1303         struct perf_counter *counter;
1304
1305         if (!ctx->nr_counters)
1306                 return;
1307
1308         spin_lock(&ctx->lock);
1309         /*
1310          * Rotate the first entry last (works just fine for group counters too):
1311          */
1312         perf_disable();
1313         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1314                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1315                 break;
1316         }
1317         perf_enable();
1318
1319         spin_unlock(&ctx->lock);
1320 }
1321
1322 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1323 {
1324         struct perf_cpu_context *cpuctx;
1325         struct perf_counter_context *ctx;
1326
1327         if (!atomic_read(&nr_counters))
1328                 return;
1329
1330         cpuctx = &per_cpu(perf_cpu_context, cpu);
1331         ctx = curr->perf_counter_ctxp;
1332
1333         perf_ctx_adjust_freq(&cpuctx->ctx);
1334         if (ctx)
1335                 perf_ctx_adjust_freq(ctx);
1336
1337         perf_counter_cpu_sched_out(cpuctx);
1338         if (ctx)
1339                 __perf_counter_task_sched_out(ctx);
1340
1341         rotate_ctx(&cpuctx->ctx);
1342         if (ctx)
1343                 rotate_ctx(ctx);
1344
1345         perf_counter_cpu_sched_in(cpuctx, cpu);
1346         if (ctx)
1347                 perf_counter_task_sched_in(curr, cpu);
1348 }
1349
1350 /*
1351  * Cross CPU call to read the hardware counter
1352  */
1353 static void __read(void *info)
1354 {
1355         struct perf_counter *counter = info;
1356         struct perf_counter_context *ctx = counter->ctx;
1357         unsigned long flags;
1358
1359         local_irq_save(flags);
1360         if (ctx->is_active)
1361                 update_context_time(ctx);
1362         counter->pmu->read(counter);
1363         update_counter_times(counter);
1364         local_irq_restore(flags);
1365 }
1366
1367 static u64 perf_counter_read(struct perf_counter *counter)
1368 {
1369         /*
1370          * If counter is enabled and currently active on a CPU, update the
1371          * value in the counter structure:
1372          */
1373         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1374                 smp_call_function_single(counter->oncpu,
1375                                          __read, counter, 1);
1376         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1377                 update_counter_times(counter);
1378         }
1379
1380         return atomic64_read(&counter->count);
1381 }
1382
1383 /*
1384  * Initialize the perf_counter context in a task_struct:
1385  */
1386 static void
1387 __perf_counter_init_context(struct perf_counter_context *ctx,
1388                             struct task_struct *task)
1389 {
1390         memset(ctx, 0, sizeof(*ctx));
1391         spin_lock_init(&ctx->lock);
1392         mutex_init(&ctx->mutex);
1393         INIT_LIST_HEAD(&ctx->counter_list);
1394         INIT_LIST_HEAD(&ctx->event_list);
1395         atomic_set(&ctx->refcount, 1);
1396         ctx->task = task;
1397 }
1398
1399 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1400 {
1401         struct perf_counter_context *parent_ctx;
1402         struct perf_counter_context *ctx;
1403         struct perf_cpu_context *cpuctx;
1404         struct task_struct *task;
1405         unsigned long flags;
1406         int err;
1407
1408         /*
1409          * If cpu is not a wildcard then this is a percpu counter:
1410          */
1411         if (cpu != -1) {
1412                 /* Must be root to operate on a CPU counter: */
1413                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1414                         return ERR_PTR(-EACCES);
1415
1416                 if (cpu < 0 || cpu > num_possible_cpus())
1417                         return ERR_PTR(-EINVAL);
1418
1419                 /*
1420                  * We could be clever and allow to attach a counter to an
1421                  * offline CPU and activate it when the CPU comes up, but
1422                  * that's for later.
1423                  */
1424                 if (!cpu_isset(cpu, cpu_online_map))
1425                         return ERR_PTR(-ENODEV);
1426
1427                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1428                 ctx = &cpuctx->ctx;
1429                 get_ctx(ctx);
1430
1431                 return ctx;
1432         }
1433
1434         rcu_read_lock();
1435         if (!pid)
1436                 task = current;
1437         else
1438                 task = find_task_by_vpid(pid);
1439         if (task)
1440                 get_task_struct(task);
1441         rcu_read_unlock();
1442
1443         if (!task)
1444                 return ERR_PTR(-ESRCH);
1445
1446         /*
1447          * Can't attach counters to a dying task.
1448          */
1449         err = -ESRCH;
1450         if (task->flags & PF_EXITING)
1451                 goto errout;
1452
1453         /* Reuse ptrace permission checks for now. */
1454         err = -EACCES;
1455         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1456                 goto errout;
1457
1458  retry:
1459         ctx = perf_lock_task_context(task, &flags);
1460         if (ctx) {
1461                 parent_ctx = ctx->parent_ctx;
1462                 if (parent_ctx) {
1463                         put_ctx(parent_ctx);
1464                         ctx->parent_ctx = NULL;         /* no longer a clone */
1465                 }
1466                 spin_unlock_irqrestore(&ctx->lock, flags);
1467         }
1468
1469         if (!ctx) {
1470                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1471                 err = -ENOMEM;
1472                 if (!ctx)
1473                         goto errout;
1474                 __perf_counter_init_context(ctx, task);
1475                 get_ctx(ctx);
1476                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1477                         /*
1478                          * We raced with some other task; use
1479                          * the context they set.
1480                          */
1481                         kfree(ctx);
1482                         goto retry;
1483                 }
1484                 get_task_struct(task);
1485         }
1486
1487         put_task_struct(task);
1488         return ctx;
1489
1490  errout:
1491         put_task_struct(task);
1492         return ERR_PTR(err);
1493 }
1494
1495 static void free_counter_rcu(struct rcu_head *head)
1496 {
1497         struct perf_counter *counter;
1498
1499         counter = container_of(head, struct perf_counter, rcu_head);
1500         if (counter->ns)
1501                 put_pid_ns(counter->ns);
1502         kfree(counter);
1503 }
1504
1505 static void perf_pending_sync(struct perf_counter *counter);
1506
1507 static void free_counter(struct perf_counter *counter)
1508 {
1509         perf_pending_sync(counter);
1510
1511         if (!counter->parent) {
1512                 atomic_dec(&nr_counters);
1513                 if (counter->attr.mmap)
1514                         atomic_dec(&nr_mmap_counters);
1515                 if (counter->attr.comm)
1516                         atomic_dec(&nr_comm_counters);
1517         }
1518
1519         if (counter->destroy)
1520                 counter->destroy(counter);
1521
1522         put_ctx(counter->ctx);
1523         call_rcu(&counter->rcu_head, free_counter_rcu);
1524 }
1525
1526 /*
1527  * Called when the last reference to the file is gone.
1528  */
1529 static int perf_release(struct inode *inode, struct file *file)
1530 {
1531         struct perf_counter *counter = file->private_data;
1532         struct perf_counter_context *ctx = counter->ctx;
1533
1534         file->private_data = NULL;
1535
1536         WARN_ON_ONCE(ctx->parent_ctx);
1537         mutex_lock(&ctx->mutex);
1538         perf_counter_remove_from_context(counter);
1539         mutex_unlock(&ctx->mutex);
1540
1541         mutex_lock(&counter->owner->perf_counter_mutex);
1542         list_del_init(&counter->owner_entry);
1543         mutex_unlock(&counter->owner->perf_counter_mutex);
1544         put_task_struct(counter->owner);
1545
1546         free_counter(counter);
1547
1548         return 0;
1549 }
1550
1551 /*
1552  * Read the performance counter - simple non blocking version for now
1553  */
1554 static ssize_t
1555 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1556 {
1557         u64 values[4];
1558         int n;
1559
1560         /*
1561          * Return end-of-file for a read on a counter that is in
1562          * error state (i.e. because it was pinned but it couldn't be
1563          * scheduled on to the CPU at some point).
1564          */
1565         if (counter->state == PERF_COUNTER_STATE_ERROR)
1566                 return 0;
1567
1568         WARN_ON_ONCE(counter->ctx->parent_ctx);
1569         mutex_lock(&counter->child_mutex);
1570         values[0] = perf_counter_read(counter);
1571         n = 1;
1572         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1573                 values[n++] = counter->total_time_enabled +
1574                         atomic64_read(&counter->child_total_time_enabled);
1575         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1576                 values[n++] = counter->total_time_running +
1577                         atomic64_read(&counter->child_total_time_running);
1578         if (counter->attr.read_format & PERF_FORMAT_ID)
1579                 values[n++] = counter->id;
1580         mutex_unlock(&counter->child_mutex);
1581
1582         if (count < n * sizeof(u64))
1583                 return -EINVAL;
1584         count = n * sizeof(u64);
1585
1586         if (copy_to_user(buf, values, count))
1587                 return -EFAULT;
1588
1589         return count;
1590 }
1591
1592 static ssize_t
1593 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1594 {
1595         struct perf_counter *counter = file->private_data;
1596
1597         return perf_read_hw(counter, buf, count);
1598 }
1599
1600 static unsigned int perf_poll(struct file *file, poll_table *wait)
1601 {
1602         struct perf_counter *counter = file->private_data;
1603         struct perf_mmap_data *data;
1604         unsigned int events = POLL_HUP;
1605
1606         rcu_read_lock();
1607         data = rcu_dereference(counter->data);
1608         if (data)
1609                 events = atomic_xchg(&data->poll, 0);
1610         rcu_read_unlock();
1611
1612         poll_wait(file, &counter->waitq, wait);
1613
1614         return events;
1615 }
1616
1617 static void perf_counter_reset(struct perf_counter *counter)
1618 {
1619         (void)perf_counter_read(counter);
1620         atomic64_set(&counter->count, 0);
1621         perf_counter_update_userpage(counter);
1622 }
1623
1624 /*
1625  * Holding the top-level counter's child_mutex means that any
1626  * descendant process that has inherited this counter will block
1627  * in sync_child_counter if it goes to exit, thus satisfying the
1628  * task existence requirements of perf_counter_enable/disable.
1629  */
1630 static void perf_counter_for_each_child(struct perf_counter *counter,
1631                                         void (*func)(struct perf_counter *))
1632 {
1633         struct perf_counter *child;
1634
1635         WARN_ON_ONCE(counter->ctx->parent_ctx);
1636         mutex_lock(&counter->child_mutex);
1637         func(counter);
1638         list_for_each_entry(child, &counter->child_list, child_list)
1639                 func(child);
1640         mutex_unlock(&counter->child_mutex);
1641 }
1642
1643 static void perf_counter_for_each(struct perf_counter *counter,
1644                                   void (*func)(struct perf_counter *))
1645 {
1646         struct perf_counter_context *ctx = counter->ctx;
1647         struct perf_counter *sibling;
1648
1649         WARN_ON_ONCE(ctx->parent_ctx);
1650         mutex_lock(&ctx->mutex);
1651         counter = counter->group_leader;
1652
1653         perf_counter_for_each_child(counter, func);
1654         func(counter);
1655         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1656                 perf_counter_for_each_child(counter, func);
1657         mutex_unlock(&ctx->mutex);
1658 }
1659
1660 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1661 {
1662         struct perf_counter_context *ctx = counter->ctx;
1663         unsigned long size;
1664         int ret = 0;
1665         u64 value;
1666
1667         if (!counter->attr.sample_period)
1668                 return -EINVAL;
1669
1670         size = copy_from_user(&value, arg, sizeof(value));
1671         if (size != sizeof(value))
1672                 return -EFAULT;
1673
1674         if (!value)
1675                 return -EINVAL;
1676
1677         spin_lock_irq(&ctx->lock);
1678         if (counter->attr.freq) {
1679                 if (value > sysctl_perf_counter_sample_rate) {
1680                         ret = -EINVAL;
1681                         goto unlock;
1682                 }
1683
1684                 counter->attr.sample_freq = value;
1685         } else {
1686                 perf_log_period(counter, value);
1687
1688                 counter->attr.sample_period = value;
1689                 counter->hw.sample_period = value;
1690         }
1691 unlock:
1692         spin_unlock_irq(&ctx->lock);
1693
1694         return ret;
1695 }
1696
1697 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1698 {
1699         struct perf_counter *counter = file->private_data;
1700         void (*func)(struct perf_counter *);
1701         u32 flags = arg;
1702
1703         switch (cmd) {
1704         case PERF_COUNTER_IOC_ENABLE:
1705                 func = perf_counter_enable;
1706                 break;
1707         case PERF_COUNTER_IOC_DISABLE:
1708                 func = perf_counter_disable;
1709                 break;
1710         case PERF_COUNTER_IOC_RESET:
1711                 func = perf_counter_reset;
1712                 break;
1713
1714         case PERF_COUNTER_IOC_REFRESH:
1715                 return perf_counter_refresh(counter, arg);
1716
1717         case PERF_COUNTER_IOC_PERIOD:
1718                 return perf_counter_period(counter, (u64 __user *)arg);
1719
1720         default:
1721                 return -ENOTTY;
1722         }
1723
1724         if (flags & PERF_IOC_FLAG_GROUP)
1725                 perf_counter_for_each(counter, func);
1726         else
1727                 perf_counter_for_each_child(counter, func);
1728
1729         return 0;
1730 }
1731
1732 int perf_counter_task_enable(void)
1733 {
1734         struct perf_counter *counter;
1735
1736         mutex_lock(&current->perf_counter_mutex);
1737         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1738                 perf_counter_for_each_child(counter, perf_counter_enable);
1739         mutex_unlock(&current->perf_counter_mutex);
1740
1741         return 0;
1742 }
1743
1744 int perf_counter_task_disable(void)
1745 {
1746         struct perf_counter *counter;
1747
1748         mutex_lock(&current->perf_counter_mutex);
1749         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1750                 perf_counter_for_each_child(counter, perf_counter_disable);
1751         mutex_unlock(&current->perf_counter_mutex);
1752
1753         return 0;
1754 }
1755
1756 static int perf_counter_index(struct perf_counter *counter)
1757 {
1758         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1759                 return 0;
1760
1761         return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1762 }
1763
1764 /*
1765  * Callers need to ensure there can be no nesting of this function, otherwise
1766  * the seqlock logic goes bad. We can not serialize this because the arch
1767  * code calls this from NMI context.
1768  */
1769 void perf_counter_update_userpage(struct perf_counter *counter)
1770 {
1771         struct perf_counter_mmap_page *userpg;
1772         struct perf_mmap_data *data;
1773
1774         rcu_read_lock();
1775         data = rcu_dereference(counter->data);
1776         if (!data)
1777                 goto unlock;
1778
1779         userpg = data->user_page;
1780
1781         /*
1782          * Disable preemption so as to not let the corresponding user-space
1783          * spin too long if we get preempted.
1784          */
1785         preempt_disable();
1786         ++userpg->lock;
1787         barrier();
1788         userpg->index = perf_counter_index(counter);
1789         userpg->offset = atomic64_read(&counter->count);
1790         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1791                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1792
1793         userpg->time_enabled = counter->total_time_enabled +
1794                         atomic64_read(&counter->child_total_time_enabled);
1795
1796         userpg->time_running = counter->total_time_running +
1797                         atomic64_read(&counter->child_total_time_running);
1798
1799         barrier();
1800         ++userpg->lock;
1801         preempt_enable();
1802 unlock:
1803         rcu_read_unlock();
1804 }
1805
1806 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1807 {
1808         struct perf_counter *counter = vma->vm_file->private_data;
1809         struct perf_mmap_data *data;
1810         int ret = VM_FAULT_SIGBUS;
1811
1812         if (vmf->flags & FAULT_FLAG_MKWRITE) {
1813                 if (vmf->pgoff == 0)
1814                         ret = 0;
1815                 return ret;
1816         }
1817
1818         rcu_read_lock();
1819         data = rcu_dereference(counter->data);
1820         if (!data)
1821                 goto unlock;
1822
1823         if (vmf->pgoff == 0) {
1824                 vmf->page = virt_to_page(data->user_page);
1825         } else {
1826                 int nr = vmf->pgoff - 1;
1827
1828                 if ((unsigned)nr > data->nr_pages)
1829                         goto unlock;
1830
1831                 if (vmf->flags & FAULT_FLAG_WRITE)
1832                         goto unlock;
1833
1834                 vmf->page = virt_to_page(data->data_pages[nr]);
1835         }
1836
1837         get_page(vmf->page);
1838         vmf->page->mapping = vma->vm_file->f_mapping;
1839         vmf->page->index   = vmf->pgoff;
1840
1841         ret = 0;
1842 unlock:
1843         rcu_read_unlock();
1844
1845         return ret;
1846 }
1847
1848 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1849 {
1850         struct perf_mmap_data *data;
1851         unsigned long size;
1852         int i;
1853
1854         WARN_ON(atomic_read(&counter->mmap_count));
1855
1856         size = sizeof(struct perf_mmap_data);
1857         size += nr_pages * sizeof(void *);
1858
1859         data = kzalloc(size, GFP_KERNEL);
1860         if (!data)
1861                 goto fail;
1862
1863         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1864         if (!data->user_page)
1865                 goto fail_user_page;
1866
1867         for (i = 0; i < nr_pages; i++) {
1868                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1869                 if (!data->data_pages[i])
1870                         goto fail_data_pages;
1871         }
1872
1873         data->nr_pages = nr_pages;
1874         atomic_set(&data->lock, -1);
1875
1876         rcu_assign_pointer(counter->data, data);
1877
1878         return 0;
1879
1880 fail_data_pages:
1881         for (i--; i >= 0; i--)
1882                 free_page((unsigned long)data->data_pages[i]);
1883
1884         free_page((unsigned long)data->user_page);
1885
1886 fail_user_page:
1887         kfree(data);
1888
1889 fail:
1890         return -ENOMEM;
1891 }
1892
1893 static void perf_mmap_free_page(unsigned long addr)
1894 {
1895         struct page *page = virt_to_page(addr);
1896
1897         page->mapping = NULL;
1898         __free_page(page);
1899 }
1900
1901 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1902 {
1903         struct perf_mmap_data *data;
1904         int i;
1905
1906         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1907
1908         perf_mmap_free_page((unsigned long)data->user_page);
1909         for (i = 0; i < data->nr_pages; i++)
1910                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
1911
1912         kfree(data);
1913 }
1914
1915 static void perf_mmap_data_free(struct perf_counter *counter)
1916 {
1917         struct perf_mmap_data *data = counter->data;
1918
1919         WARN_ON(atomic_read(&counter->mmap_count));
1920
1921         rcu_assign_pointer(counter->data, NULL);
1922         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1923 }
1924
1925 static void perf_mmap_open(struct vm_area_struct *vma)
1926 {
1927         struct perf_counter *counter = vma->vm_file->private_data;
1928
1929         atomic_inc(&counter->mmap_count);
1930 }
1931
1932 static void perf_mmap_close(struct vm_area_struct *vma)
1933 {
1934         struct perf_counter *counter = vma->vm_file->private_data;
1935
1936         WARN_ON_ONCE(counter->ctx->parent_ctx);
1937         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1938                 struct user_struct *user = current_user();
1939
1940                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1941                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1942                 perf_mmap_data_free(counter);
1943                 mutex_unlock(&counter->mmap_mutex);
1944         }
1945 }
1946
1947 static struct vm_operations_struct perf_mmap_vmops = {
1948         .open           = perf_mmap_open,
1949         .close          = perf_mmap_close,
1950         .fault          = perf_mmap_fault,
1951         .page_mkwrite   = perf_mmap_fault,
1952 };
1953
1954 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1955 {
1956         struct perf_counter *counter = file->private_data;
1957         unsigned long user_locked, user_lock_limit;
1958         struct user_struct *user = current_user();
1959         unsigned long locked, lock_limit;
1960         unsigned long vma_size;
1961         unsigned long nr_pages;
1962         long user_extra, extra;
1963         int ret = 0;
1964
1965         if (!(vma->vm_flags & VM_SHARED))
1966                 return -EINVAL;
1967
1968         vma_size = vma->vm_end - vma->vm_start;
1969         nr_pages = (vma_size / PAGE_SIZE) - 1;
1970
1971         /*
1972          * If we have data pages ensure they're a power-of-two number, so we
1973          * can do bitmasks instead of modulo.
1974          */
1975         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1976                 return -EINVAL;
1977
1978         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1979                 return -EINVAL;
1980
1981         if (vma->vm_pgoff != 0)
1982                 return -EINVAL;
1983
1984         WARN_ON_ONCE(counter->ctx->parent_ctx);
1985         mutex_lock(&counter->mmap_mutex);
1986         if (atomic_inc_not_zero(&counter->mmap_count)) {
1987                 if (nr_pages != counter->data->nr_pages)
1988                         ret = -EINVAL;
1989                 goto unlock;
1990         }
1991
1992         user_extra = nr_pages + 1;
1993         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1994
1995         /*
1996          * Increase the limit linearly with more CPUs:
1997          */
1998         user_lock_limit *= num_online_cpus();
1999
2000         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2001
2002         extra = 0;
2003         if (user_locked > user_lock_limit)
2004                 extra = user_locked - user_lock_limit;
2005
2006         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2007         lock_limit >>= PAGE_SHIFT;
2008         locked = vma->vm_mm->locked_vm + extra;
2009
2010         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2011                 ret = -EPERM;
2012                 goto unlock;
2013         }
2014
2015         WARN_ON(counter->data);
2016         ret = perf_mmap_data_alloc(counter, nr_pages);
2017         if (ret)
2018                 goto unlock;
2019
2020         atomic_set(&counter->mmap_count, 1);
2021         atomic_long_add(user_extra, &user->locked_vm);
2022         vma->vm_mm->locked_vm += extra;
2023         counter->data->nr_locked = extra;
2024         if (vma->vm_flags & VM_WRITE)
2025                 counter->data->writable = 1;
2026
2027 unlock:
2028         mutex_unlock(&counter->mmap_mutex);
2029
2030         vma->vm_flags |= VM_RESERVED;
2031         vma->vm_ops = &perf_mmap_vmops;
2032
2033         return ret;
2034 }
2035
2036 static int perf_fasync(int fd, struct file *filp, int on)
2037 {
2038         struct inode *inode = filp->f_path.dentry->d_inode;
2039         struct perf_counter *counter = filp->private_data;
2040         int retval;
2041
2042         mutex_lock(&inode->i_mutex);
2043         retval = fasync_helper(fd, filp, on, &counter->fasync);
2044         mutex_unlock(&inode->i_mutex);
2045
2046         if (retval < 0)
2047                 return retval;
2048
2049         return 0;
2050 }
2051
2052 static const struct file_operations perf_fops = {
2053         .release                = perf_release,
2054         .read                   = perf_read,
2055         .poll                   = perf_poll,
2056         .unlocked_ioctl         = perf_ioctl,
2057         .compat_ioctl           = perf_ioctl,
2058         .mmap                   = perf_mmap,
2059         .fasync                 = perf_fasync,
2060 };
2061
2062 /*
2063  * Perf counter wakeup
2064  *
2065  * If there's data, ensure we set the poll() state and publish everything
2066  * to user-space before waking everybody up.
2067  */
2068
2069 void perf_counter_wakeup(struct perf_counter *counter)
2070 {
2071         wake_up_all(&counter->waitq);
2072
2073         if (counter->pending_kill) {
2074                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2075                 counter->pending_kill = 0;
2076         }
2077 }
2078
2079 /*
2080  * Pending wakeups
2081  *
2082  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2083  *
2084  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2085  * single linked list and use cmpxchg() to add entries lockless.
2086  */
2087
2088 static void perf_pending_counter(struct perf_pending_entry *entry)
2089 {
2090         struct perf_counter *counter = container_of(entry,
2091                         struct perf_counter, pending);
2092
2093         if (counter->pending_disable) {
2094                 counter->pending_disable = 0;
2095                 perf_counter_disable(counter);
2096         }
2097
2098         if (counter->pending_wakeup) {
2099                 counter->pending_wakeup = 0;
2100                 perf_counter_wakeup(counter);
2101         }
2102 }
2103
2104 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2105
2106 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2107         PENDING_TAIL,
2108 };
2109
2110 static void perf_pending_queue(struct perf_pending_entry *entry,
2111                                void (*func)(struct perf_pending_entry *))
2112 {
2113         struct perf_pending_entry **head;
2114
2115         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2116                 return;
2117
2118         entry->func = func;
2119
2120         head = &get_cpu_var(perf_pending_head);
2121
2122         do {
2123                 entry->next = *head;
2124         } while (cmpxchg(head, entry->next, entry) != entry->next);
2125
2126         set_perf_counter_pending();
2127
2128         put_cpu_var(perf_pending_head);
2129 }
2130
2131 static int __perf_pending_run(void)
2132 {
2133         struct perf_pending_entry *list;
2134         int nr = 0;
2135
2136         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2137         while (list != PENDING_TAIL) {
2138                 void (*func)(struct perf_pending_entry *);
2139                 struct perf_pending_entry *entry = list;
2140
2141                 list = list->next;
2142
2143                 func = entry->func;
2144                 entry->next = NULL;
2145                 /*
2146                  * Ensure we observe the unqueue before we issue the wakeup,
2147                  * so that we won't be waiting forever.
2148                  * -- see perf_not_pending().
2149                  */
2150                 smp_wmb();
2151
2152                 func(entry);
2153                 nr++;
2154         }
2155
2156         return nr;
2157 }
2158
2159 static inline int perf_not_pending(struct perf_counter *counter)
2160 {
2161         /*
2162          * If we flush on whatever cpu we run, there is a chance we don't
2163          * need to wait.
2164          */
2165         get_cpu();
2166         __perf_pending_run();
2167         put_cpu();
2168
2169         /*
2170          * Ensure we see the proper queue state before going to sleep
2171          * so that we do not miss the wakeup. -- see perf_pending_handle()
2172          */
2173         smp_rmb();
2174         return counter->pending.next == NULL;
2175 }
2176
2177 static void perf_pending_sync(struct perf_counter *counter)
2178 {
2179         wait_event(counter->waitq, perf_not_pending(counter));
2180 }
2181
2182 void perf_counter_do_pending(void)
2183 {
2184         __perf_pending_run();
2185 }
2186
2187 /*
2188  * Callchain support -- arch specific
2189  */
2190
2191 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2192 {
2193         return NULL;
2194 }
2195
2196 /*
2197  * Output
2198  */
2199
2200 struct perf_output_handle {
2201         struct perf_counter     *counter;
2202         struct perf_mmap_data   *data;
2203         unsigned long           head;
2204         unsigned long           offset;
2205         int                     nmi;
2206         int                     sample;
2207         int                     locked;
2208         unsigned long           flags;
2209 };
2210
2211 static bool perf_output_space(struct perf_mmap_data *data,
2212                               unsigned int offset, unsigned int head)
2213 {
2214         unsigned long tail;
2215         unsigned long mask;
2216
2217         if (!data->writable)
2218                 return true;
2219
2220         mask = (data->nr_pages << PAGE_SHIFT) - 1;
2221         /*
2222          * Userspace could choose to issue a mb() before updating the tail
2223          * pointer. So that all reads will be completed before the write is
2224          * issued.
2225          */
2226         tail = ACCESS_ONCE(data->user_page->data_tail);
2227         smp_rmb();
2228
2229         offset = (offset - tail) & mask;
2230         head   = (head   - tail) & mask;
2231
2232         if ((int)(head - offset) < 0)
2233                 return false;
2234
2235         return true;
2236 }
2237
2238 static void perf_output_wakeup(struct perf_output_handle *handle)
2239 {
2240         atomic_set(&handle->data->poll, POLL_IN);
2241
2242         if (handle->nmi) {
2243                 handle->counter->pending_wakeup = 1;
2244                 perf_pending_queue(&handle->counter->pending,
2245                                    perf_pending_counter);
2246         } else
2247                 perf_counter_wakeup(handle->counter);
2248 }
2249
2250 /*
2251  * Curious locking construct.
2252  *
2253  * We need to ensure a later event doesn't publish a head when a former
2254  * event isn't done writing. However since we need to deal with NMIs we
2255  * cannot fully serialize things.
2256  *
2257  * What we do is serialize between CPUs so we only have to deal with NMI
2258  * nesting on a single CPU.
2259  *
2260  * We only publish the head (and generate a wakeup) when the outer-most
2261  * event completes.
2262  */
2263 static void perf_output_lock(struct perf_output_handle *handle)
2264 {
2265         struct perf_mmap_data *data = handle->data;
2266         int cpu;
2267
2268         handle->locked = 0;
2269
2270         local_irq_save(handle->flags);
2271         cpu = smp_processor_id();
2272
2273         if (in_nmi() && atomic_read(&data->lock) == cpu)
2274                 return;
2275
2276         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2277                 cpu_relax();
2278
2279         handle->locked = 1;
2280 }
2281
2282 static void perf_output_unlock(struct perf_output_handle *handle)
2283 {
2284         struct perf_mmap_data *data = handle->data;
2285         unsigned long head;
2286         int cpu;
2287
2288         data->done_head = data->head;
2289
2290         if (!handle->locked)
2291                 goto out;
2292
2293 again:
2294         /*
2295          * The xchg implies a full barrier that ensures all writes are done
2296          * before we publish the new head, matched by a rmb() in userspace when
2297          * reading this position.
2298          */
2299         while ((head = atomic_long_xchg(&data->done_head, 0)))
2300                 data->user_page->data_head = head;
2301
2302         /*
2303          * NMI can happen here, which means we can miss a done_head update.
2304          */
2305
2306         cpu = atomic_xchg(&data->lock, -1);
2307         WARN_ON_ONCE(cpu != smp_processor_id());
2308
2309         /*
2310          * Therefore we have to validate we did not indeed do so.
2311          */
2312         if (unlikely(atomic_long_read(&data->done_head))) {
2313                 /*
2314                  * Since we had it locked, we can lock it again.
2315                  */
2316                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2317                         cpu_relax();
2318
2319                 goto again;
2320         }
2321
2322         if (atomic_xchg(&data->wakeup, 0))
2323                 perf_output_wakeup(handle);
2324 out:
2325         local_irq_restore(handle->flags);
2326 }
2327
2328 static void perf_output_copy(struct perf_output_handle *handle,
2329                              const void *buf, unsigned int len)
2330 {
2331         unsigned int pages_mask;
2332         unsigned int offset;
2333         unsigned int size;
2334         void **pages;
2335
2336         offset          = handle->offset;
2337         pages_mask      = handle->data->nr_pages - 1;
2338         pages           = handle->data->data_pages;
2339
2340         do {
2341                 unsigned int page_offset;
2342                 int nr;
2343
2344                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2345                 page_offset = offset & (PAGE_SIZE - 1);
2346                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2347
2348                 memcpy(pages[nr] + page_offset, buf, size);
2349
2350                 len         -= size;
2351                 buf         += size;
2352                 offset      += size;
2353         } while (len);
2354
2355         handle->offset = offset;
2356
2357         /*
2358          * Check we didn't copy past our reservation window, taking the
2359          * possible unsigned int wrap into account.
2360          */
2361         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2362 }
2363
2364 #define perf_output_put(handle, x) \
2365         perf_output_copy((handle), &(x), sizeof(x))
2366
2367 static int perf_output_begin(struct perf_output_handle *handle,
2368                              struct perf_counter *counter, unsigned int size,
2369                              int nmi, int sample)
2370 {
2371         struct perf_mmap_data *data;
2372         unsigned int offset, head;
2373         int have_lost;
2374         struct {
2375                 struct perf_event_header header;
2376                 u64                      id;
2377                 u64                      lost;
2378         } lost_event;
2379
2380         /*
2381          * For inherited counters we send all the output towards the parent.
2382          */
2383         if (counter->parent)
2384                 counter = counter->parent;
2385
2386         rcu_read_lock();
2387         data = rcu_dereference(counter->data);
2388         if (!data)
2389                 goto out;
2390
2391         handle->data    = data;
2392         handle->counter = counter;
2393         handle->nmi     = nmi;
2394         handle->sample  = sample;
2395
2396         if (!data->nr_pages)
2397                 goto fail;
2398
2399         have_lost = atomic_read(&data->lost);
2400         if (have_lost)
2401                 size += sizeof(lost_event);
2402
2403         perf_output_lock(handle);
2404
2405         do {
2406                 offset = head = atomic_long_read(&data->head);
2407                 head += size;
2408                 if (unlikely(!perf_output_space(data, offset, head)))
2409                         goto fail;
2410         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2411
2412         handle->offset  = offset;
2413         handle->head    = head;
2414
2415         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2416                 atomic_set(&data->wakeup, 1);
2417
2418         if (have_lost) {
2419                 lost_event.header.type = PERF_EVENT_LOST;
2420                 lost_event.header.misc = 0;
2421                 lost_event.header.size = sizeof(lost_event);
2422                 lost_event.id          = counter->id;
2423                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2424
2425                 perf_output_put(handle, lost_event);
2426         }
2427
2428         return 0;
2429
2430 fail:
2431         atomic_inc(&data->lost);
2432         perf_output_unlock(handle);
2433 out:
2434         rcu_read_unlock();
2435
2436         return -ENOSPC;
2437 }
2438
2439 static void perf_output_end(struct perf_output_handle *handle)
2440 {
2441         struct perf_counter *counter = handle->counter;
2442         struct perf_mmap_data *data = handle->data;
2443
2444         int wakeup_events = counter->attr.wakeup_events;
2445
2446         if (handle->sample && wakeup_events) {
2447                 int events = atomic_inc_return(&data->events);
2448                 if (events >= wakeup_events) {
2449                         atomic_sub(wakeup_events, &data->events);
2450                         atomic_set(&data->wakeup, 1);
2451                 }
2452         }
2453
2454         perf_output_unlock(handle);
2455         rcu_read_unlock();
2456 }
2457
2458 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2459 {
2460         /*
2461          * only top level counters have the pid namespace they were created in
2462          */
2463         if (counter->parent)
2464                 counter = counter->parent;
2465
2466         return task_tgid_nr_ns(p, counter->ns);
2467 }
2468
2469 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2470 {
2471         /*
2472          * only top level counters have the pid namespace they were created in
2473          */
2474         if (counter->parent)
2475                 counter = counter->parent;
2476
2477         return task_pid_nr_ns(p, counter->ns);
2478 }
2479
2480 static void perf_counter_output(struct perf_counter *counter, int nmi,
2481                                 struct perf_sample_data *data)
2482 {
2483         int ret;
2484         u64 sample_type = counter->attr.sample_type;
2485         struct perf_output_handle handle;
2486         struct perf_event_header header;
2487         u64 ip;
2488         struct {
2489                 u32 pid, tid;
2490         } tid_entry;
2491         struct {
2492                 u64 id;
2493                 u64 counter;
2494         } group_entry;
2495         struct perf_callchain_entry *callchain = NULL;
2496         int callchain_size = 0;
2497         u64 time;
2498         struct {
2499                 u32 cpu, reserved;
2500         } cpu_entry;
2501
2502         header.type = 0;
2503         header.size = sizeof(header);
2504
2505         header.misc = PERF_EVENT_MISC_OVERFLOW;
2506         header.misc |= perf_misc_flags(data->regs);
2507
2508         if (sample_type & PERF_SAMPLE_IP) {
2509                 ip = perf_instruction_pointer(data->regs);
2510                 header.type |= PERF_SAMPLE_IP;
2511                 header.size += sizeof(ip);
2512         }
2513
2514         if (sample_type & PERF_SAMPLE_TID) {
2515                 /* namespace issues */
2516                 tid_entry.pid = perf_counter_pid(counter, current);
2517                 tid_entry.tid = perf_counter_tid(counter, current);
2518
2519                 header.type |= PERF_SAMPLE_TID;
2520                 header.size += sizeof(tid_entry);
2521         }
2522
2523         if (sample_type & PERF_SAMPLE_TIME) {
2524                 /*
2525                  * Maybe do better on x86 and provide cpu_clock_nmi()
2526                  */
2527                 time = sched_clock();
2528
2529                 header.type |= PERF_SAMPLE_TIME;
2530                 header.size += sizeof(u64);
2531         }
2532
2533         if (sample_type & PERF_SAMPLE_ADDR) {
2534                 header.type |= PERF_SAMPLE_ADDR;
2535                 header.size += sizeof(u64);
2536         }
2537
2538         if (sample_type & PERF_SAMPLE_ID) {
2539                 header.type |= PERF_SAMPLE_ID;
2540                 header.size += sizeof(u64);
2541         }
2542
2543         if (sample_type & PERF_SAMPLE_CPU) {
2544                 header.type |= PERF_SAMPLE_CPU;
2545                 header.size += sizeof(cpu_entry);
2546
2547                 cpu_entry.cpu = raw_smp_processor_id();
2548         }
2549
2550         if (sample_type & PERF_SAMPLE_PERIOD) {
2551                 header.type |= PERF_SAMPLE_PERIOD;
2552                 header.size += sizeof(u64);
2553         }
2554
2555         if (sample_type & PERF_SAMPLE_GROUP) {
2556                 header.type |= PERF_SAMPLE_GROUP;
2557                 header.size += sizeof(u64) +
2558                         counter->nr_siblings * sizeof(group_entry);
2559         }
2560
2561         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2562                 callchain = perf_callchain(data->regs);
2563
2564                 if (callchain) {
2565                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2566
2567                         header.type |= PERF_SAMPLE_CALLCHAIN;
2568                         header.size += callchain_size;
2569                 }
2570         }
2571
2572         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2573         if (ret)
2574                 return;
2575
2576         perf_output_put(&handle, header);
2577
2578         if (sample_type & PERF_SAMPLE_IP)
2579                 perf_output_put(&handle, ip);
2580
2581         if (sample_type & PERF_SAMPLE_TID)
2582                 perf_output_put(&handle, tid_entry);
2583
2584         if (sample_type & PERF_SAMPLE_TIME)
2585                 perf_output_put(&handle, time);
2586
2587         if (sample_type & PERF_SAMPLE_ADDR)
2588                 perf_output_put(&handle, data->addr);
2589
2590         if (sample_type & PERF_SAMPLE_ID)
2591                 perf_output_put(&handle, counter->id);
2592
2593         if (sample_type & PERF_SAMPLE_CPU)
2594                 perf_output_put(&handle, cpu_entry);
2595
2596         if (sample_type & PERF_SAMPLE_PERIOD)
2597                 perf_output_put(&handle, data->period);
2598
2599         /*
2600          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2601          */
2602         if (sample_type & PERF_SAMPLE_GROUP) {
2603                 struct perf_counter *leader, *sub;
2604                 u64 nr = counter->nr_siblings;
2605
2606                 perf_output_put(&handle, nr);
2607
2608                 leader = counter->group_leader;
2609                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2610                         if (sub != counter)
2611                                 sub->pmu->read(sub);
2612
2613                         group_entry.id = sub->id;
2614                         group_entry.counter = atomic64_read(&sub->count);
2615
2616                         perf_output_put(&handle, group_entry);
2617                 }
2618         }
2619
2620         if (callchain)
2621                 perf_output_copy(&handle, callchain, callchain_size);
2622
2623         perf_output_end(&handle);
2624 }
2625
2626 /*
2627  * fork tracking
2628  */
2629
2630 struct perf_fork_event {
2631         struct task_struct      *task;
2632
2633         struct {
2634                 struct perf_event_header        header;
2635
2636                 u32                             pid;
2637                 u32                             ppid;
2638         } event;
2639 };
2640
2641 static void perf_counter_fork_output(struct perf_counter *counter,
2642                                      struct perf_fork_event *fork_event)
2643 {
2644         struct perf_output_handle handle;
2645         int size = fork_event->event.header.size;
2646         struct task_struct *task = fork_event->task;
2647         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2648
2649         if (ret)
2650                 return;
2651
2652         fork_event->event.pid = perf_counter_pid(counter, task);
2653         fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2654
2655         perf_output_put(&handle, fork_event->event);
2656         perf_output_end(&handle);
2657 }
2658
2659 static int perf_counter_fork_match(struct perf_counter *counter)
2660 {
2661         if (counter->attr.comm || counter->attr.mmap)
2662                 return 1;
2663
2664         return 0;
2665 }
2666
2667 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2668                                   struct perf_fork_event *fork_event)
2669 {
2670         struct perf_counter *counter;
2671
2672         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2673                 return;
2674
2675         rcu_read_lock();
2676         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2677                 if (perf_counter_fork_match(counter))
2678                         perf_counter_fork_output(counter, fork_event);
2679         }
2680         rcu_read_unlock();
2681 }
2682
2683 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2684 {
2685         struct perf_cpu_context *cpuctx;
2686         struct perf_counter_context *ctx;
2687
2688         cpuctx = &get_cpu_var(perf_cpu_context);
2689         perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2690         put_cpu_var(perf_cpu_context);
2691
2692         rcu_read_lock();
2693         /*
2694          * doesn't really matter which of the child contexts the
2695          * events ends up in.
2696          */
2697         ctx = rcu_dereference(current->perf_counter_ctxp);
2698         if (ctx)
2699                 perf_counter_fork_ctx(ctx, fork_event);
2700         rcu_read_unlock();
2701 }
2702
2703 void perf_counter_fork(struct task_struct *task)
2704 {
2705         struct perf_fork_event fork_event;
2706
2707         if (!atomic_read(&nr_comm_counters) &&
2708             !atomic_read(&nr_mmap_counters))
2709                 return;
2710
2711         fork_event = (struct perf_fork_event){
2712                 .task   = task,
2713                 .event  = {
2714                         .header = {
2715                                 .type = PERF_EVENT_FORK,
2716                                 .size = sizeof(fork_event.event),
2717                         },
2718                 },
2719         };
2720
2721         perf_counter_fork_event(&fork_event);
2722 }
2723
2724 /*
2725  * comm tracking
2726  */
2727
2728 struct perf_comm_event {
2729         struct task_struct      *task;
2730         char                    *comm;
2731         int                     comm_size;
2732
2733         struct {
2734                 struct perf_event_header        header;
2735
2736                 u32                             pid;
2737                 u32                             tid;
2738         } event;
2739 };
2740
2741 static void perf_counter_comm_output(struct perf_counter *counter,
2742                                      struct perf_comm_event *comm_event)
2743 {
2744         struct perf_output_handle handle;
2745         int size = comm_event->event.header.size;
2746         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2747
2748         if (ret)
2749                 return;
2750
2751         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2752         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2753
2754         perf_output_put(&handle, comm_event->event);
2755         perf_output_copy(&handle, comm_event->comm,
2756                                    comm_event->comm_size);
2757         perf_output_end(&handle);
2758 }
2759
2760 static int perf_counter_comm_match(struct perf_counter *counter)
2761 {
2762         if (counter->attr.comm)
2763                 return 1;
2764
2765         return 0;
2766 }
2767
2768 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2769                                   struct perf_comm_event *comm_event)
2770 {
2771         struct perf_counter *counter;
2772
2773         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2774                 return;
2775
2776         rcu_read_lock();
2777         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2778                 if (perf_counter_comm_match(counter))
2779                         perf_counter_comm_output(counter, comm_event);
2780         }
2781         rcu_read_unlock();
2782 }
2783
2784 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2785 {
2786         struct perf_cpu_context *cpuctx;
2787         struct perf_counter_context *ctx;
2788         unsigned int size;
2789         char *comm = comm_event->task->comm;
2790
2791         size = ALIGN(strlen(comm)+1, sizeof(u64));
2792
2793         comm_event->comm = comm;
2794         comm_event->comm_size = size;
2795
2796         comm_event->event.header.size = sizeof(comm_event->event) + size;
2797
2798         cpuctx = &get_cpu_var(perf_cpu_context);
2799         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2800         put_cpu_var(perf_cpu_context);
2801
2802         rcu_read_lock();
2803         /*
2804          * doesn't really matter which of the child contexts the
2805          * events ends up in.
2806          */
2807         ctx = rcu_dereference(current->perf_counter_ctxp);
2808         if (ctx)
2809                 perf_counter_comm_ctx(ctx, comm_event);
2810         rcu_read_unlock();
2811 }
2812
2813 void perf_counter_comm(struct task_struct *task)
2814 {
2815         struct perf_comm_event comm_event;
2816
2817         if (!atomic_read(&nr_comm_counters))
2818                 return;
2819
2820         comm_event = (struct perf_comm_event){
2821                 .task   = task,
2822                 .event  = {
2823                         .header = { .type = PERF_EVENT_COMM, },
2824                 },
2825         };
2826
2827         perf_counter_comm_event(&comm_event);
2828 }
2829
2830 /*
2831  * mmap tracking
2832  */
2833
2834 struct perf_mmap_event {
2835         struct vm_area_struct   *vma;
2836
2837         const char              *file_name;
2838         int                     file_size;
2839
2840         struct {
2841                 struct perf_event_header        header;
2842
2843                 u32                             pid;
2844                 u32                             tid;
2845                 u64                             start;
2846                 u64                             len;
2847                 u64                             pgoff;
2848         } event;
2849 };
2850
2851 static void perf_counter_mmap_output(struct perf_counter *counter,
2852                                      struct perf_mmap_event *mmap_event)
2853 {
2854         struct perf_output_handle handle;
2855         int size = mmap_event->event.header.size;
2856         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2857
2858         if (ret)
2859                 return;
2860
2861         mmap_event->event.pid = perf_counter_pid(counter, current);
2862         mmap_event->event.tid = perf_counter_tid(counter, current);
2863
2864         perf_output_put(&handle, mmap_event->event);
2865         perf_output_copy(&handle, mmap_event->file_name,
2866                                    mmap_event->file_size);
2867         perf_output_end(&handle);
2868 }
2869
2870 static int perf_counter_mmap_match(struct perf_counter *counter,
2871                                    struct perf_mmap_event *mmap_event)
2872 {
2873         if (counter->attr.mmap)
2874                 return 1;
2875
2876         return 0;
2877 }
2878
2879 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2880                                   struct perf_mmap_event *mmap_event)
2881 {
2882         struct perf_counter *counter;
2883
2884         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2885                 return;
2886
2887         rcu_read_lock();
2888         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2889                 if (perf_counter_mmap_match(counter, mmap_event))
2890                         perf_counter_mmap_output(counter, mmap_event);
2891         }
2892         rcu_read_unlock();
2893 }
2894
2895 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2896 {
2897         struct perf_cpu_context *cpuctx;
2898         struct perf_counter_context *ctx;
2899         struct vm_area_struct *vma = mmap_event->vma;
2900         struct file *file = vma->vm_file;
2901         unsigned int size;
2902         char tmp[16];
2903         char *buf = NULL;
2904         const char *name;
2905
2906         if (file) {
2907                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2908                 if (!buf) {
2909                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2910                         goto got_name;
2911                 }
2912                 name = d_path(&file->f_path, buf, PATH_MAX);
2913                 if (IS_ERR(name)) {
2914                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2915                         goto got_name;
2916                 }
2917         } else {
2918                 name = arch_vma_name(mmap_event->vma);
2919                 if (name)
2920                         goto got_name;
2921
2922                 if (!vma->vm_mm) {
2923                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
2924                         goto got_name;
2925                 }
2926
2927                 name = strncpy(tmp, "//anon", sizeof(tmp));
2928                 goto got_name;
2929         }
2930
2931 got_name:
2932         size = ALIGN(strlen(name)+1, sizeof(u64));
2933
2934         mmap_event->file_name = name;
2935         mmap_event->file_size = size;
2936
2937         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2938
2939         cpuctx = &get_cpu_var(perf_cpu_context);
2940         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2941         put_cpu_var(perf_cpu_context);
2942
2943         rcu_read_lock();
2944         /*
2945          * doesn't really matter which of the child contexts the
2946          * events ends up in.
2947          */
2948         ctx = rcu_dereference(current->perf_counter_ctxp);
2949         if (ctx)
2950                 perf_counter_mmap_ctx(ctx, mmap_event);
2951         rcu_read_unlock();
2952
2953         kfree(buf);
2954 }
2955
2956 void __perf_counter_mmap(struct vm_area_struct *vma)
2957 {
2958         struct perf_mmap_event mmap_event;
2959
2960         if (!atomic_read(&nr_mmap_counters))
2961                 return;
2962
2963         mmap_event = (struct perf_mmap_event){
2964                 .vma    = vma,
2965                 .event  = {
2966                         .header = { .type = PERF_EVENT_MMAP, },
2967                         .start  = vma->vm_start,
2968                         .len    = vma->vm_end - vma->vm_start,
2969                         .pgoff  = vma->vm_pgoff,
2970                 },
2971         };
2972
2973         perf_counter_mmap_event(&mmap_event);
2974 }
2975
2976 /*
2977  * Log sample_period changes so that analyzing tools can re-normalize the
2978  * event flow.
2979  */
2980
2981 struct freq_event {
2982         struct perf_event_header        header;
2983         u64                             time;
2984         u64                             id;
2985         u64                             period;
2986 };
2987
2988 static void perf_log_period(struct perf_counter *counter, u64 period)
2989 {
2990         struct perf_output_handle handle;
2991         struct freq_event event;
2992         int ret;
2993
2994         if (counter->hw.sample_period == period)
2995                 return;
2996
2997         if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
2998                 return;
2999
3000         event = (struct freq_event) {
3001                 .header = {
3002                         .type = PERF_EVENT_PERIOD,
3003                         .misc = 0,
3004                         .size = sizeof(event),
3005                 },
3006                 .time = sched_clock(),
3007                 .id = counter->id,
3008                 .period = period,
3009         };
3010
3011         ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
3012         if (ret)
3013                 return;
3014
3015         perf_output_put(&handle, event);
3016         perf_output_end(&handle);
3017 }
3018
3019 /*
3020  * IRQ throttle logging
3021  */
3022
3023 static void perf_log_throttle(struct perf_counter *counter, int enable)
3024 {
3025         struct perf_output_handle handle;
3026         int ret;
3027
3028         struct {
3029                 struct perf_event_header        header;
3030                 u64                             time;
3031                 u64                             id;
3032         } throttle_event = {
3033                 .header = {
3034                         .type = PERF_EVENT_THROTTLE + 1,
3035                         .misc = 0,
3036                         .size = sizeof(throttle_event),
3037                 },
3038                 .time   = sched_clock(),
3039                 .id     = counter->id,
3040         };
3041
3042         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3043         if (ret)
3044                 return;
3045
3046         perf_output_put(&handle, throttle_event);
3047         perf_output_end(&handle);
3048 }
3049
3050 /*
3051  * Generic counter overflow handling, sampling.
3052  */
3053
3054 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3055                           struct perf_sample_data *data)
3056 {
3057         int events = atomic_read(&counter->event_limit);
3058         int throttle = counter->pmu->unthrottle != NULL;
3059         struct hw_perf_counter *hwc = &counter->hw;
3060         int ret = 0;
3061
3062         if (!throttle) {
3063                 hwc->interrupts++;
3064         } else {
3065                 if (hwc->interrupts != MAX_INTERRUPTS) {
3066                         hwc->interrupts++;
3067                         if (HZ * hwc->interrupts >
3068                                         (u64)sysctl_perf_counter_sample_rate) {
3069                                 hwc->interrupts = MAX_INTERRUPTS;
3070                                 perf_log_throttle(counter, 0);
3071                                 ret = 1;
3072                         }
3073                 } else {
3074                         /*
3075                          * Keep re-disabling counters even though on the previous
3076                          * pass we disabled it - just in case we raced with a
3077                          * sched-in and the counter got enabled again:
3078                          */
3079                         ret = 1;
3080                 }
3081         }
3082
3083         if (counter->attr.freq) {
3084                 u64 now = sched_clock();
3085                 s64 delta = now - hwc->freq_stamp;
3086
3087                 hwc->freq_stamp = now;
3088
3089                 if (delta > 0 && delta < TICK_NSEC)
3090                         perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3091         }
3092
3093         /*
3094          * XXX event_limit might not quite work as expected on inherited
3095          * counters
3096          */
3097
3098         counter->pending_kill = POLL_IN;
3099         if (events && atomic_dec_and_test(&counter->event_limit)) {
3100                 ret = 1;
3101                 counter->pending_kill = POLL_HUP;
3102                 if (nmi) {
3103                         counter->pending_disable = 1;
3104                         perf_pending_queue(&counter->pending,
3105                                            perf_pending_counter);
3106                 } else
3107                         perf_counter_disable(counter);
3108         }
3109
3110         perf_counter_output(counter, nmi, data);
3111         return ret;
3112 }
3113
3114 /*
3115  * Generic software counter infrastructure
3116  */
3117
3118 static void perf_swcounter_update(struct perf_counter *counter)
3119 {
3120         struct hw_perf_counter *hwc = &counter->hw;
3121         u64 prev, now;
3122         s64 delta;
3123
3124 again:
3125         prev = atomic64_read(&hwc->prev_count);
3126         now = atomic64_read(&hwc->count);
3127         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3128                 goto again;
3129
3130         delta = now - prev;
3131
3132         atomic64_add(delta, &counter->count);
3133         atomic64_sub(delta, &hwc->period_left);
3134 }
3135
3136 static void perf_swcounter_set_period(struct perf_counter *counter)
3137 {
3138         struct hw_perf_counter *hwc = &counter->hw;
3139         s64 left = atomic64_read(&hwc->period_left);
3140         s64 period = hwc->sample_period;
3141
3142         if (unlikely(left <= -period)) {
3143                 left = period;
3144                 atomic64_set(&hwc->period_left, left);
3145                 hwc->last_period = period;
3146         }
3147
3148         if (unlikely(left <= 0)) {
3149                 left += period;
3150                 atomic64_add(period, &hwc->period_left);
3151                 hwc->last_period = period;
3152         }
3153
3154         atomic64_set(&hwc->prev_count, -left);
3155         atomic64_set(&hwc->count, -left);
3156 }
3157
3158 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3159 {
3160         enum hrtimer_restart ret = HRTIMER_RESTART;
3161         struct perf_sample_data data;
3162         struct perf_counter *counter;
3163         u64 period;
3164
3165         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3166         counter->pmu->read(counter);
3167
3168         data.addr = 0;
3169         data.regs = get_irq_regs();
3170         /*
3171          * In case we exclude kernel IPs or are somehow not in interrupt
3172          * context, provide the next best thing, the user IP.
3173          */
3174         if ((counter->attr.exclude_kernel || !data.regs) &&
3175                         !counter->attr.exclude_user)
3176                 data.regs = task_pt_regs(current);
3177
3178         if (data.regs) {
3179                 if (perf_counter_overflow(counter, 0, &data))
3180                         ret = HRTIMER_NORESTART;
3181         }
3182
3183         period = max_t(u64, 10000, counter->hw.sample_period);
3184         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3185
3186         return ret;
3187 }
3188
3189 static void perf_swcounter_overflow(struct perf_counter *counter,
3190                                     int nmi, struct perf_sample_data *data)
3191 {
3192         data->period = counter->hw.last_period;
3193
3194         perf_swcounter_update(counter);
3195         perf_swcounter_set_period(counter);
3196         if (perf_counter_overflow(counter, nmi, data))
3197                 /* soft-disable the counter */
3198                 ;
3199 }
3200
3201 static int perf_swcounter_is_counting(struct perf_counter *counter)
3202 {
3203         struct perf_counter_context *ctx;
3204         unsigned long flags;
3205         int count;
3206
3207         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3208                 return 1;
3209
3210         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3211                 return 0;
3212
3213         /*
3214          * If the counter is inactive, it could be just because
3215          * its task is scheduled out, or because it's in a group
3216          * which could not go on the PMU.  We want to count in
3217          * the first case but not the second.  If the context is
3218          * currently active then an inactive software counter must
3219          * be the second case.  If it's not currently active then
3220          * we need to know whether the counter was active when the
3221          * context was last active, which we can determine by
3222          * comparing counter->tstamp_stopped with ctx->time.
3223          *
3224          * We are within an RCU read-side critical section,
3225          * which protects the existence of *ctx.
3226          */
3227         ctx = counter->ctx;
3228         spin_lock_irqsave(&ctx->lock, flags);
3229         count = 1;
3230         /* Re-check state now we have the lock */
3231         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3232             counter->ctx->is_active ||
3233             counter->tstamp_stopped < ctx->time)
3234                 count = 0;
3235         spin_unlock_irqrestore(&ctx->lock, flags);
3236         return count;
3237 }
3238
3239 static int perf_swcounter_match(struct perf_counter *counter,
3240                                 enum perf_type_id type,
3241                                 u32 event, struct pt_regs *regs)
3242 {
3243         if (!perf_swcounter_is_counting(counter))
3244                 return 0;
3245
3246         if (counter->attr.type != type)
3247                 return 0;
3248         if (counter->attr.config != event)
3249                 return 0;
3250
3251         if (regs) {
3252                 if (counter->attr.exclude_user && user_mode(regs))
3253                         return 0;
3254
3255                 if (counter->attr.exclude_kernel && !user_mode(regs))
3256                         return 0;
3257         }
3258
3259         return 1;
3260 }
3261
3262 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3263                                int nmi, struct perf_sample_data *data)
3264 {
3265         int neg = atomic64_add_negative(nr, &counter->hw.count);
3266
3267         if (counter->hw.sample_period && !neg && data->regs)
3268                 perf_swcounter_overflow(counter, nmi, data);
3269 }
3270
3271 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3272                                      enum perf_type_id type,
3273                                      u32 event, u64 nr, int nmi,
3274                                      struct perf_sample_data *data)
3275 {
3276         struct perf_counter *counter;
3277
3278         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3279                 return;
3280
3281         rcu_read_lock();
3282         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3283                 if (perf_swcounter_match(counter, type, event, data->regs))
3284                         perf_swcounter_add(counter, nr, nmi, data);
3285         }
3286         rcu_read_unlock();
3287 }
3288
3289 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3290 {
3291         if (in_nmi())
3292                 return &cpuctx->recursion[3];
3293
3294         if (in_irq())
3295                 return &cpuctx->recursion[2];
3296
3297         if (in_softirq())
3298                 return &cpuctx->recursion[1];
3299
3300         return &cpuctx->recursion[0];
3301 }
3302
3303 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3304                                     u64 nr, int nmi,
3305                                     struct perf_sample_data *data)
3306 {
3307         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3308         int *recursion = perf_swcounter_recursion_context(cpuctx);
3309         struct perf_counter_context *ctx;
3310
3311         if (*recursion)
3312                 goto out;
3313
3314         (*recursion)++;
3315         barrier();
3316
3317         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3318                                  nr, nmi, data);
3319         rcu_read_lock();
3320         /*
3321          * doesn't really matter which of the child contexts the
3322          * events ends up in.
3323          */
3324         ctx = rcu_dereference(current->perf_counter_ctxp);
3325         if (ctx)
3326                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3327         rcu_read_unlock();
3328
3329         barrier();
3330         (*recursion)--;
3331
3332 out:
3333         put_cpu_var(perf_cpu_context);
3334 }
3335
3336 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3337                             struct pt_regs *regs, u64 addr)
3338 {
3339         struct perf_sample_data data = {
3340                 .regs = regs,
3341                 .addr = addr,
3342         };
3343
3344         do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3345 }
3346
3347 static void perf_swcounter_read(struct perf_counter *counter)
3348 {
3349         perf_swcounter_update(counter);
3350 }
3351
3352 static int perf_swcounter_enable(struct perf_counter *counter)
3353 {
3354         perf_swcounter_set_period(counter);
3355         return 0;
3356 }
3357
3358 static void perf_swcounter_disable(struct perf_counter *counter)
3359 {
3360         perf_swcounter_update(counter);
3361 }
3362
3363 static const struct pmu perf_ops_generic = {
3364         .enable         = perf_swcounter_enable,
3365         .disable        = perf_swcounter_disable,
3366         .read           = perf_swcounter_read,
3367 };
3368
3369 /*
3370  * Software counter: cpu wall time clock
3371  */
3372
3373 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3374 {
3375         int cpu = raw_smp_processor_id();
3376         s64 prev;
3377         u64 now;
3378
3379         now = cpu_clock(cpu);
3380         prev = atomic64_read(&counter->hw.prev_count);
3381         atomic64_set(&counter->hw.prev_count, now);
3382         atomic64_add(now - prev, &counter->count);
3383 }
3384
3385 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3386 {
3387         struct hw_perf_counter *hwc = &counter->hw;
3388         int cpu = raw_smp_processor_id();
3389
3390         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3391         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3392         hwc->hrtimer.function = perf_swcounter_hrtimer;
3393         if (hwc->sample_period) {
3394                 u64 period = max_t(u64, 10000, hwc->sample_period);
3395                 __hrtimer_start_range_ns(&hwc->hrtimer,
3396                                 ns_to_ktime(period), 0,
3397                                 HRTIMER_MODE_REL, 0);
3398         }
3399
3400         return 0;
3401 }
3402
3403 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3404 {
3405         if (counter->hw.sample_period)
3406                 hrtimer_cancel(&counter->hw.hrtimer);
3407         cpu_clock_perf_counter_update(counter);
3408 }
3409
3410 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3411 {
3412         cpu_clock_perf_counter_update(counter);
3413 }
3414
3415 static const struct pmu perf_ops_cpu_clock = {
3416         .enable         = cpu_clock_perf_counter_enable,
3417         .disable        = cpu_clock_perf_counter_disable,
3418         .read           = cpu_clock_perf_counter_read,
3419 };
3420
3421 /*
3422  * Software counter: task time clock
3423  */
3424
3425 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3426 {
3427         u64 prev;
3428         s64 delta;
3429
3430         prev = atomic64_xchg(&counter->hw.prev_count, now);
3431         delta = now - prev;
3432         atomic64_add(delta, &counter->count);
3433 }
3434
3435 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3436 {
3437         struct hw_perf_counter *hwc = &counter->hw;
3438         u64 now;
3439
3440         now = counter->ctx->time;
3441
3442         atomic64_set(&hwc->prev_count, now);
3443         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3444         hwc->hrtimer.function = perf_swcounter_hrtimer;
3445         if (hwc->sample_period) {
3446                 u64 period = max_t(u64, 10000, hwc->sample_period);
3447                 __hrtimer_start_range_ns(&hwc->hrtimer,
3448                                 ns_to_ktime(period), 0,
3449                                 HRTIMER_MODE_REL, 0);
3450         }
3451
3452         return 0;
3453 }
3454
3455 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3456 {
3457         if (counter->hw.sample_period)
3458                 hrtimer_cancel(&counter->hw.hrtimer);
3459         task_clock_perf_counter_update(counter, counter->ctx->time);
3460
3461 }
3462
3463 static void task_clock_perf_counter_read(struct perf_counter *counter)
3464 {
3465         u64 time;
3466
3467         if (!in_nmi()) {
3468                 update_context_time(counter->ctx);
3469                 time = counter->ctx->time;
3470         } else {
3471                 u64 now = perf_clock();
3472                 u64 delta = now - counter->ctx->timestamp;
3473                 time = counter->ctx->time + delta;
3474         }
3475
3476         task_clock_perf_counter_update(counter, time);
3477 }
3478
3479 static const struct pmu perf_ops_task_clock = {
3480         .enable         = task_clock_perf_counter_enable,
3481         .disable        = task_clock_perf_counter_disable,
3482         .read           = task_clock_perf_counter_read,
3483 };
3484
3485 #ifdef CONFIG_EVENT_PROFILE
3486 void perf_tpcounter_event(int event_id)
3487 {
3488         struct perf_sample_data data = {
3489                 .regs = get_irq_regs();
3490                 .addr = 0,
3491         };
3492
3493         if (!data.regs)
3494                 data.regs = task_pt_regs(current);
3495
3496         do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3497 }
3498 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3499
3500 extern int ftrace_profile_enable(int);
3501 extern void ftrace_profile_disable(int);
3502
3503 static void tp_perf_counter_destroy(struct perf_counter *counter)
3504 {
3505         ftrace_profile_disable(perf_event_id(&counter->attr));
3506 }
3507
3508 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3509 {
3510         int event_id = perf_event_id(&counter->attr);
3511         int ret;
3512
3513         ret = ftrace_profile_enable(event_id);
3514         if (ret)
3515                 return NULL;
3516
3517         counter->destroy = tp_perf_counter_destroy;
3518
3519         return &perf_ops_generic;
3520 }
3521 #else
3522 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3523 {
3524         return NULL;
3525 }
3526 #endif
3527
3528 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3529
3530 static void sw_perf_counter_destroy(struct perf_counter *counter)
3531 {
3532         u64 event = counter->attr.config;
3533
3534         WARN_ON(counter->parent);
3535
3536         atomic_dec(&perf_swcounter_enabled[event]);
3537 }
3538
3539 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3540 {
3541         const struct pmu *pmu = NULL;
3542         u64 event = counter->attr.config;
3543
3544         /*
3545          * Software counters (currently) can't in general distinguish
3546          * between user, kernel and hypervisor events.
3547          * However, context switches and cpu migrations are considered
3548          * to be kernel events, and page faults are never hypervisor
3549          * events.
3550          */
3551         switch (event) {
3552         case PERF_COUNT_SW_CPU_CLOCK:
3553                 pmu = &perf_ops_cpu_clock;
3554
3555                 break;
3556         case PERF_COUNT_SW_TASK_CLOCK:
3557                 /*
3558                  * If the user instantiates this as a per-cpu counter,
3559                  * use the cpu_clock counter instead.
3560                  */
3561                 if (counter->ctx->task)
3562                         pmu = &perf_ops_task_clock;
3563                 else
3564                         pmu = &perf_ops_cpu_clock;
3565
3566                 break;
3567         case PERF_COUNT_SW_PAGE_FAULTS:
3568         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3569         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3570         case PERF_COUNT_SW_CONTEXT_SWITCHES:
3571         case PERF_COUNT_SW_CPU_MIGRATIONS:
3572                 if (!counter->parent) {
3573                         atomic_inc(&perf_swcounter_enabled[event]);
3574                         counter->destroy = sw_perf_counter_destroy;
3575                 }
3576                 pmu = &perf_ops_generic;
3577                 break;
3578         }
3579
3580         return pmu;
3581 }
3582
3583 /*
3584  * Allocate and initialize a counter structure
3585  */
3586 static struct perf_counter *
3587 perf_counter_alloc(struct perf_counter_attr *attr,
3588                    int cpu,
3589                    struct perf_counter_context *ctx,
3590                    struct perf_counter *group_leader,
3591                    struct perf_counter *parent_counter,
3592                    gfp_t gfpflags)
3593 {
3594         const struct pmu *pmu;
3595         struct perf_counter *counter;
3596         struct hw_perf_counter *hwc;
3597         long err;
3598
3599         counter = kzalloc(sizeof(*counter), gfpflags);
3600         if (!counter)
3601                 return ERR_PTR(-ENOMEM);
3602
3603         /*
3604          * Single counters are their own group leaders, with an
3605          * empty sibling list:
3606          */
3607         if (!group_leader)
3608                 group_leader = counter;
3609
3610         mutex_init(&counter->child_mutex);
3611         INIT_LIST_HEAD(&counter->child_list);
3612
3613         INIT_LIST_HEAD(&counter->list_entry);
3614         INIT_LIST_HEAD(&counter->event_entry);
3615         INIT_LIST_HEAD(&counter->sibling_list);
3616         init_waitqueue_head(&counter->waitq);
3617
3618         mutex_init(&counter->mmap_mutex);
3619
3620         counter->cpu            = cpu;
3621         counter->attr           = *attr;
3622         counter->group_leader   = group_leader;
3623         counter->pmu            = NULL;
3624         counter->ctx            = ctx;
3625         counter->oncpu          = -1;
3626
3627         counter->parent         = parent_counter;
3628
3629         counter->ns             = get_pid_ns(current->nsproxy->pid_ns);
3630         counter->id             = atomic64_inc_return(&perf_counter_id);
3631
3632         counter->state          = PERF_COUNTER_STATE_INACTIVE;
3633
3634         if (attr->disabled)
3635                 counter->state = PERF_COUNTER_STATE_OFF;
3636
3637         pmu = NULL;
3638
3639         hwc = &counter->hw;
3640         hwc->sample_period = attr->sample_period;
3641         if (attr->freq && attr->sample_freq)
3642                 hwc->sample_period = 1;
3643
3644         atomic64_set(&hwc->period_left, hwc->sample_period);
3645
3646         /*
3647          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3648          */
3649         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3650                 goto done;
3651
3652         switch (attr->type) {
3653         case PERF_TYPE_RAW:
3654         case PERF_TYPE_HARDWARE:
3655         case PERF_TYPE_HW_CACHE:
3656                 pmu = hw_perf_counter_init(counter);
3657                 break;
3658
3659         case PERF_TYPE_SOFTWARE:
3660                 pmu = sw_perf_counter_init(counter);
3661                 break;
3662
3663         case PERF_TYPE_TRACEPOINT:
3664                 pmu = tp_perf_counter_init(counter);
3665                 break;
3666
3667         default:
3668                 break;
3669         }
3670 done:
3671         err = 0;
3672         if (!pmu)
3673                 err = -EINVAL;
3674         else if (IS_ERR(pmu))
3675                 err = PTR_ERR(pmu);
3676
3677         if (err) {
3678                 if (counter->ns)
3679                         put_pid_ns(counter->ns);
3680                 kfree(counter);
3681                 return ERR_PTR(err);
3682         }
3683
3684         counter->pmu = pmu;
3685
3686         if (!counter->parent) {
3687                 atomic_inc(&nr_counters);
3688                 if (counter->attr.mmap)
3689                         atomic_inc(&nr_mmap_counters);
3690                 if (counter->attr.comm)
3691                         atomic_inc(&nr_comm_counters);
3692         }
3693
3694         return counter;
3695 }
3696
3697 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3698                           struct perf_counter_attr *attr)
3699 {
3700         int ret;
3701         u32 size;
3702
3703         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3704                 return -EFAULT;
3705
3706         /*
3707          * zero the full structure, so that a short copy will be nice.
3708          */
3709         memset(attr, 0, sizeof(*attr));
3710
3711         ret = get_user(size, &uattr->size);
3712         if (ret)
3713                 return ret;
3714
3715         if (size > PAGE_SIZE)   /* silly large */
3716                 goto err_size;
3717
3718         if (!size)              /* abi compat */
3719                 size = PERF_ATTR_SIZE_VER0;
3720
3721         if (size < PERF_ATTR_SIZE_VER0)
3722                 goto err_size;
3723
3724         /*
3725          * If we're handed a bigger struct than we know of,
3726          * ensure all the unknown bits are 0.
3727          */
3728         if (size > sizeof(*attr)) {
3729                 unsigned long val;
3730                 unsigned long __user *addr;
3731                 unsigned long __user *end;
3732
3733                 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3734                                 sizeof(unsigned long));
3735                 end  = PTR_ALIGN((void __user *)uattr + size,
3736                                 sizeof(unsigned long));
3737
3738                 for (; addr < end; addr += sizeof(unsigned long)) {
3739                         ret = get_user(val, addr);
3740                         if (ret)
3741                                 return ret;
3742                         if (val)
3743                                 goto err_size;
3744                 }
3745         }
3746
3747         ret = copy_from_user(attr, uattr, size);
3748         if (ret)
3749                 return -EFAULT;
3750
3751         /*
3752          * If the type exists, the corresponding creation will verify
3753          * the attr->config.
3754          */
3755         if (attr->type >= PERF_TYPE_MAX)
3756                 return -EINVAL;
3757
3758         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3759                 return -EINVAL;
3760
3761         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3762                 return -EINVAL;
3763
3764         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3765                 return -EINVAL;
3766
3767 out:
3768         return ret;
3769
3770 err_size:
3771         put_user(sizeof(*attr), &uattr->size);
3772         ret = -E2BIG;
3773         goto out;
3774 }
3775
3776 /**
3777  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3778  *
3779  * @attr_uptr:  event type attributes for monitoring/sampling
3780  * @pid:                target pid
3781  * @cpu:                target cpu
3782  * @group_fd:           group leader counter fd
3783  */
3784 SYSCALL_DEFINE5(perf_counter_open,
3785                 struct perf_counter_attr __user *, attr_uptr,
3786                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3787 {
3788         struct perf_counter *counter, *group_leader;
3789         struct perf_counter_attr attr;
3790         struct perf_counter_context *ctx;
3791         struct file *counter_file = NULL;
3792         struct file *group_file = NULL;
3793         int fput_needed = 0;
3794         int fput_needed2 = 0;
3795         int ret;
3796
3797         /* for future expandability... */
3798         if (flags)
3799                 return -EINVAL;
3800
3801         ret = perf_copy_attr(attr_uptr, &attr);
3802         if (ret)
3803                 return ret;
3804
3805         if (!attr.exclude_kernel) {
3806                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3807                         return -EACCES;
3808         }
3809
3810         if (attr.freq) {
3811                 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3812                         return -EINVAL;
3813         }
3814
3815         /*
3816          * Get the target context (task or percpu):
3817          */
3818         ctx = find_get_context(pid, cpu);
3819         if (IS_ERR(ctx))
3820                 return PTR_ERR(ctx);
3821
3822         /*
3823          * Look up the group leader (we will attach this counter to it):
3824          */
3825         group_leader = NULL;
3826         if (group_fd != -1) {
3827                 ret = -EINVAL;
3828                 group_file = fget_light(group_fd, &fput_needed);
3829                 if (!group_file)
3830                         goto err_put_context;
3831                 if (group_file->f_op != &perf_fops)
3832                         goto err_put_context;
3833
3834                 group_leader = group_file->private_data;
3835                 /*
3836                  * Do not allow a recursive hierarchy (this new sibling
3837                  * becoming part of another group-sibling):
3838                  */
3839                 if (group_leader->group_leader != group_leader)
3840                         goto err_put_context;
3841                 /*
3842                  * Do not allow to attach to a group in a different
3843                  * task or CPU context:
3844                  */
3845                 if (group_leader->ctx != ctx)
3846                         goto err_put_context;
3847                 /*
3848                  * Only a group leader can be exclusive or pinned
3849                  */
3850                 if (attr.exclusive || attr.pinned)
3851                         goto err_put_context;
3852         }
3853
3854         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3855                                      NULL, GFP_KERNEL);
3856         ret = PTR_ERR(counter);
3857         if (IS_ERR(counter))
3858                 goto err_put_context;
3859
3860         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3861         if (ret < 0)
3862                 goto err_free_put_context;
3863
3864         counter_file = fget_light(ret, &fput_needed2);
3865         if (!counter_file)
3866                 goto err_free_put_context;
3867
3868         counter->filp = counter_file;
3869         WARN_ON_ONCE(ctx->parent_ctx);
3870         mutex_lock(&ctx->mutex);
3871         perf_install_in_context(ctx, counter, cpu);
3872         ++ctx->generation;
3873         mutex_unlock(&ctx->mutex);
3874
3875         counter->owner = current;
3876         get_task_struct(current);
3877         mutex_lock(&current->perf_counter_mutex);
3878         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3879         mutex_unlock(&current->perf_counter_mutex);
3880
3881         fput_light(counter_file, fput_needed2);
3882
3883 out_fput:
3884         fput_light(group_file, fput_needed);
3885
3886         return ret;
3887
3888 err_free_put_context:
3889         kfree(counter);
3890
3891 err_put_context:
3892         put_ctx(ctx);
3893
3894         goto out_fput;
3895 }
3896
3897 /*
3898  * inherit a counter from parent task to child task:
3899  */
3900 static struct perf_counter *
3901 inherit_counter(struct perf_counter *parent_counter,
3902               struct task_struct *parent,
3903               struct perf_counter_context *parent_ctx,
3904               struct task_struct *child,
3905               struct perf_counter *group_leader,
3906               struct perf_counter_context *child_ctx)
3907 {
3908         struct perf_counter *child_counter;
3909
3910         /*
3911          * Instead of creating recursive hierarchies of counters,
3912          * we link inherited counters back to the original parent,
3913          * which has a filp for sure, which we use as the reference
3914          * count:
3915          */
3916         if (parent_counter->parent)
3917                 parent_counter = parent_counter->parent;
3918
3919         child_counter = perf_counter_alloc(&parent_counter->attr,
3920                                            parent_counter->cpu, child_ctx,
3921                                            group_leader, parent_counter,
3922                                            GFP_KERNEL);
3923         if (IS_ERR(child_counter))
3924                 return child_counter;
3925         get_ctx(child_ctx);
3926
3927         /*
3928          * Make the child state follow the state of the parent counter,
3929          * not its attr.disabled bit.  We hold the parent's mutex,
3930          * so we won't race with perf_counter_{en, dis}able_family.
3931          */
3932         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3933                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3934         else
3935                 child_counter->state = PERF_COUNTER_STATE_OFF;
3936
3937         if (parent_counter->attr.freq)
3938                 child_counter->hw.sample_period = parent_counter->hw.sample_period;
3939
3940         /*
3941          * Link it up in the child's context:
3942          */
3943         add_counter_to_ctx(child_counter, child_ctx);
3944
3945         /*
3946          * Get a reference to the parent filp - we will fput it
3947          * when the child counter exits. This is safe to do because
3948          * we are in the parent and we know that the filp still
3949          * exists and has a nonzero count:
3950          */
3951         atomic_long_inc(&parent_counter->filp->f_count);
3952
3953         /*
3954          * Link this into the parent counter's child list
3955          */
3956         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3957         mutex_lock(&parent_counter->child_mutex);
3958         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3959         mutex_unlock(&parent_counter->child_mutex);
3960
3961         return child_counter;
3962 }
3963
3964 static int inherit_group(struct perf_counter *parent_counter,
3965               struct task_struct *parent,
3966               struct perf_counter_context *parent_ctx,
3967               struct task_struct *child,
3968               struct perf_counter_context *child_ctx)
3969 {
3970         struct perf_counter *leader;
3971         struct perf_counter *sub;
3972         struct perf_counter *child_ctr;
3973
3974         leader = inherit_counter(parent_counter, parent, parent_ctx,
3975                                  child, NULL, child_ctx);
3976         if (IS_ERR(leader))
3977                 return PTR_ERR(leader);
3978         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3979                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3980                                             child, leader, child_ctx);
3981                 if (IS_ERR(child_ctr))
3982                         return PTR_ERR(child_ctr);
3983         }
3984         return 0;
3985 }
3986
3987 static void sync_child_counter(struct perf_counter *child_counter,
3988                                struct perf_counter *parent_counter)
3989 {
3990         u64 child_val;
3991
3992         child_val = atomic64_read(&child_counter->count);
3993
3994         /*
3995          * Add back the child's count to the parent's count:
3996          */
3997         atomic64_add(child_val, &parent_counter->count);
3998         atomic64_add(child_counter->total_time_enabled,
3999                      &parent_counter->child_total_time_enabled);
4000         atomic64_add(child_counter->total_time_running,
4001                      &parent_counter->child_total_time_running);
4002
4003         /*
4004          * Remove this counter from the parent's list
4005          */
4006         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4007         mutex_lock(&parent_counter->child_mutex);
4008         list_del_init(&child_counter->child_list);
4009         mutex_unlock(&parent_counter->child_mutex);
4010
4011         /*
4012          * Release the parent counter, if this was the last
4013          * reference to it.
4014          */
4015         fput(parent_counter->filp);
4016 }
4017
4018 static void
4019 __perf_counter_exit_task(struct perf_counter *child_counter,
4020                          struct perf_counter_context *child_ctx)
4021 {
4022         struct perf_counter *parent_counter;
4023
4024         update_counter_times(child_counter);
4025         perf_counter_remove_from_context(child_counter);
4026
4027         parent_counter = child_counter->parent;
4028         /*
4029          * It can happen that parent exits first, and has counters
4030          * that are still around due to the child reference. These
4031          * counters need to be zapped - but otherwise linger.
4032          */
4033         if (parent_counter) {
4034                 sync_child_counter(child_counter, parent_counter);
4035                 free_counter(child_counter);
4036         }
4037 }
4038
4039 /*
4040  * When a child task exits, feed back counter values to parent counters.
4041  */
4042 void perf_counter_exit_task(struct task_struct *child)
4043 {
4044         struct perf_counter *child_counter, *tmp;
4045         struct perf_counter_context *child_ctx;
4046         unsigned long flags;
4047
4048         if (likely(!child->perf_counter_ctxp))
4049                 return;
4050
4051         local_irq_save(flags);
4052         /*
4053          * We can't reschedule here because interrupts are disabled,
4054          * and either child is current or it is a task that can't be
4055          * scheduled, so we are now safe from rescheduling changing
4056          * our context.
4057          */
4058         child_ctx = child->perf_counter_ctxp;
4059         __perf_counter_task_sched_out(child_ctx);
4060
4061         /*
4062          * Take the context lock here so that if find_get_context is
4063          * reading child->perf_counter_ctxp, we wait until it has
4064          * incremented the context's refcount before we do put_ctx below.
4065          */
4066         spin_lock(&child_ctx->lock);
4067         child->perf_counter_ctxp = NULL;
4068         if (child_ctx->parent_ctx) {
4069                 /*
4070                  * This context is a clone; unclone it so it can't get
4071                  * swapped to another process while we're removing all
4072                  * the counters from it.
4073                  */
4074                 put_ctx(child_ctx->parent_ctx);
4075                 child_ctx->parent_ctx = NULL;
4076         }
4077         spin_unlock(&child_ctx->lock);
4078         local_irq_restore(flags);
4079
4080         /*
4081          * We can recurse on the same lock type through:
4082          *
4083          *   __perf_counter_exit_task()
4084          *     sync_child_counter()
4085          *       fput(parent_counter->filp)
4086          *         perf_release()
4087          *           mutex_lock(&ctx->mutex)
4088          *
4089          * But since its the parent context it won't be the same instance.
4090          */
4091         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4092
4093 again:
4094         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4095                                  list_entry)
4096                 __perf_counter_exit_task(child_counter, child_ctx);
4097
4098         /*
4099          * If the last counter was a group counter, it will have appended all
4100          * its siblings to the list, but we obtained 'tmp' before that which
4101          * will still point to the list head terminating the iteration.
4102          */
4103         if (!list_empty(&child_ctx->counter_list))
4104                 goto again;
4105
4106         mutex_unlock(&child_ctx->mutex);
4107
4108         put_ctx(child_ctx);
4109 }
4110
4111 /*
4112  * free an unexposed, unused context as created by inheritance by
4113  * init_task below, used by fork() in case of fail.
4114  */
4115 void perf_counter_free_task(struct task_struct *task)
4116 {
4117         struct perf_counter_context *ctx = task->perf_counter_ctxp;
4118         struct perf_counter *counter, *tmp;
4119
4120         if (!ctx)
4121                 return;
4122
4123         mutex_lock(&ctx->mutex);
4124 again:
4125         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4126                 struct perf_counter *parent = counter->parent;
4127
4128                 if (WARN_ON_ONCE(!parent))
4129                         continue;
4130
4131                 mutex_lock(&parent->child_mutex);
4132                 list_del_init(&counter->child_list);
4133                 mutex_unlock(&parent->child_mutex);
4134
4135                 fput(parent->filp);
4136
4137                 list_del_counter(counter, ctx);
4138                 free_counter(counter);
4139         }
4140
4141         if (!list_empty(&ctx->counter_list))
4142                 goto again;
4143
4144         mutex_unlock(&ctx->mutex);
4145
4146         put_ctx(ctx);
4147 }
4148
4149 /*
4150  * Initialize the perf_counter context in task_struct
4151  */
4152 int perf_counter_init_task(struct task_struct *child)
4153 {
4154         struct perf_counter_context *child_ctx, *parent_ctx;
4155         struct perf_counter_context *cloned_ctx;
4156         struct perf_counter *counter;
4157         struct task_struct *parent = current;
4158         int inherited_all = 1;
4159         int ret = 0;
4160
4161         child->perf_counter_ctxp = NULL;
4162
4163         mutex_init(&child->perf_counter_mutex);
4164         INIT_LIST_HEAD(&child->perf_counter_list);
4165
4166         if (likely(!parent->perf_counter_ctxp))
4167                 return 0;
4168
4169         /*
4170          * This is executed from the parent task context, so inherit
4171          * counters that have been marked for cloning.
4172          * First allocate and initialize a context for the child.
4173          */
4174
4175         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4176         if (!child_ctx)
4177                 return -ENOMEM;
4178
4179         __perf_counter_init_context(child_ctx, child);
4180         child->perf_counter_ctxp = child_ctx;
4181         get_task_struct(child);
4182
4183         /*
4184          * If the parent's context is a clone, pin it so it won't get
4185          * swapped under us.
4186          */
4187         parent_ctx = perf_pin_task_context(parent);
4188
4189         /*
4190          * No need to check if parent_ctx != NULL here; since we saw
4191          * it non-NULL earlier, the only reason for it to become NULL
4192          * is if we exit, and since we're currently in the middle of
4193          * a fork we can't be exiting at the same time.
4194          */
4195
4196         /*
4197          * Lock the parent list. No need to lock the child - not PID
4198          * hashed yet and not running, so nobody can access it.
4199          */
4200         mutex_lock(&parent_ctx->mutex);
4201
4202         /*
4203          * We dont have to disable NMIs - we are only looking at
4204          * the list, not manipulating it:
4205          */
4206         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4207                 if (counter != counter->group_leader)
4208                         continue;
4209
4210                 if (!counter->attr.inherit) {
4211                         inherited_all = 0;
4212                         continue;
4213                 }
4214
4215                 ret = inherit_group(counter, parent, parent_ctx,
4216                                              child, child_ctx);
4217                 if (ret) {
4218                         inherited_all = 0;
4219                         break;
4220                 }
4221         }
4222
4223         if (inherited_all) {
4224                 /*
4225                  * Mark the child context as a clone of the parent
4226                  * context, or of whatever the parent is a clone of.
4227                  * Note that if the parent is a clone, it could get
4228                  * uncloned at any point, but that doesn't matter
4229                  * because the list of counters and the generation
4230                  * count can't have changed since we took the mutex.
4231                  */
4232                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4233                 if (cloned_ctx) {
4234                         child_ctx->parent_ctx = cloned_ctx;
4235                         child_ctx->parent_gen = parent_ctx->parent_gen;
4236                 } else {
4237                         child_ctx->parent_ctx = parent_ctx;
4238                         child_ctx->parent_gen = parent_ctx->generation;
4239                 }
4240                 get_ctx(child_ctx->parent_ctx);
4241         }
4242
4243         mutex_unlock(&parent_ctx->mutex);
4244
4245         perf_unpin_context(parent_ctx);
4246
4247         return ret;
4248 }
4249
4250 static void __cpuinit perf_counter_init_cpu(int cpu)
4251 {
4252         struct perf_cpu_context *cpuctx;
4253
4254         cpuctx = &per_cpu(perf_cpu_context, cpu);
4255         __perf_counter_init_context(&cpuctx->ctx, NULL);
4256
4257         spin_lock(&perf_resource_lock);
4258         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4259         spin_unlock(&perf_resource_lock);
4260
4261         hw_perf_counter_setup(cpu);
4262 }
4263
4264 #ifdef CONFIG_HOTPLUG_CPU
4265 static void __perf_counter_exit_cpu(void *info)
4266 {
4267         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4268         struct perf_counter_context *ctx = &cpuctx->ctx;
4269         struct perf_counter *counter, *tmp;
4270
4271         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4272                 __perf_counter_remove_from_context(counter);
4273 }
4274 static void perf_counter_exit_cpu(int cpu)
4275 {
4276         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4277         struct perf_counter_context *ctx = &cpuctx->ctx;
4278
4279         mutex_lock(&ctx->mutex);
4280         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4281         mutex_unlock(&ctx->mutex);
4282 }
4283 #else
4284 static inline void perf_counter_exit_cpu(int cpu) { }
4285 #endif
4286
4287 static int __cpuinit
4288 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4289 {
4290         unsigned int cpu = (long)hcpu;
4291
4292         switch (action) {
4293
4294         case CPU_UP_PREPARE:
4295         case CPU_UP_PREPARE_FROZEN:
4296                 perf_counter_init_cpu(cpu);
4297                 break;
4298
4299         case CPU_DOWN_PREPARE:
4300         case CPU_DOWN_PREPARE_FROZEN:
4301                 perf_counter_exit_cpu(cpu);
4302                 break;
4303
4304         default:
4305                 break;
4306         }
4307
4308         return NOTIFY_OK;
4309 }
4310
4311 /*
4312  * This has to have a higher priority than migration_notifier in sched.c.
4313  */
4314 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4315         .notifier_call          = perf_cpu_notify,
4316         .priority               = 20,
4317 };
4318
4319 void __init perf_counter_init(void)
4320 {
4321         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4322                         (void *)(long)smp_processor_id());
4323         register_cpu_notifier(&perf_cpu_nb);
4324 }
4325
4326 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4327 {
4328         return sprintf(buf, "%d\n", perf_reserved_percpu);
4329 }
4330
4331 static ssize_t
4332 perf_set_reserve_percpu(struct sysdev_class *class,
4333                         const char *buf,
4334                         size_t count)
4335 {
4336         struct perf_cpu_context *cpuctx;
4337         unsigned long val;
4338         int err, cpu, mpt;
4339
4340         err = strict_strtoul(buf, 10, &val);
4341         if (err)
4342                 return err;
4343         if (val > perf_max_counters)
4344                 return -EINVAL;
4345
4346         spin_lock(&perf_resource_lock);
4347         perf_reserved_percpu = val;
4348         for_each_online_cpu(cpu) {
4349                 cpuctx = &per_cpu(perf_cpu_context, cpu);
4350                 spin_lock_irq(&cpuctx->ctx.lock);
4351                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4352                           perf_max_counters - perf_reserved_percpu);
4353                 cpuctx->max_pertask = mpt;
4354                 spin_unlock_irq(&cpuctx->ctx.lock);
4355         }
4356         spin_unlock(&perf_resource_lock);
4357
4358         return count;
4359 }
4360
4361 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4362 {
4363         return sprintf(buf, "%d\n", perf_overcommit);
4364 }
4365
4366 static ssize_t
4367 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4368 {
4369         unsigned long val;
4370         int err;
4371
4372         err = strict_strtoul(buf, 10, &val);
4373         if (err)
4374                 return err;
4375         if (val > 1)
4376                 return -EINVAL;
4377
4378         spin_lock(&perf_resource_lock);
4379         perf_overcommit = val;
4380         spin_unlock(&perf_resource_lock);
4381
4382         return count;
4383 }
4384
4385 static SYSDEV_CLASS_ATTR(
4386                                 reserve_percpu,
4387                                 0644,
4388                                 perf_show_reserve_percpu,
4389                                 perf_set_reserve_percpu
4390                         );
4391
4392 static SYSDEV_CLASS_ATTR(
4393                                 overcommit,
4394                                 0644,
4395                                 perf_show_overcommit,
4396                                 perf_set_overcommit
4397                         );
4398
4399 static struct attribute *perfclass_attrs[] = {
4400         &attr_reserve_percpu.attr,
4401         &attr_overcommit.attr,
4402         NULL
4403 };
4404
4405 static struct attribute_group perfclass_attr_group = {
4406         .attrs                  = perfclass_attrs,
4407         .name                   = "perf_counters",
4408 };
4409
4410 static int __init perf_counter_sysfs_init(void)
4411 {
4412         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4413                                   &perfclass_attr_group);
4414 }
4415 device_initcall(perf_counter_sysfs_init);