2f0970297e30e9c3e06b1c6fc3c3b7e2007d2ee4
[safe/jmp/linux-2.6] / kernel / lockdep.c
1 /*
2  * kernel/lockdep.c
3  *
4  * Runtime locking correctness validator
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
10  *
11  * this code maps all the lock dependencies as they occur in a live kernel
12  * and will warn about the following classes of locking bugs:
13  *
14  * - lock inversion scenarios
15  * - circular lock dependencies
16  * - hardirq/softirq safe/unsafe locking bugs
17  *
18  * Bugs are reported even if the current locking scenario does not cause
19  * any deadlock at this point.
20  *
21  * I.e. if anytime in the past two locks were taken in a different order,
22  * even if it happened for another task, even if those were different
23  * locks (but of the same class as this lock), this code will detect it.
24  *
25  * Thanks to Arjan van de Ven for coming up with the initial idea of
26  * mapping lock dependencies runtime.
27  */
28 #define DISABLE_BRANCH_PROFILING
29 #include <linux/mutex.h>
30 #include <linux/sched.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include <linux/proc_fs.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/stacktrace.h>
39 #include <linux/debug_locks.h>
40 #include <linux/irqflags.h>
41 #include <linux/utsname.h>
42 #include <linux/hash.h>
43 #include <linux/ftrace.h>
44 #include <linux/stringify.h>
45 #include <linux/bitops.h>
46
47 #include <asm/sections.h>
48
49 #include "lockdep_internals.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/lockdep.h>
53
54 #ifdef CONFIG_PROVE_LOCKING
55 int prove_locking = 1;
56 module_param(prove_locking, int, 0644);
57 #else
58 #define prove_locking 0
59 #endif
60
61 #ifdef CONFIG_LOCK_STAT
62 int lock_stat = 1;
63 module_param(lock_stat, int, 0644);
64 #else
65 #define lock_stat 0
66 #endif
67
68 /*
69  * lockdep_lock: protects the lockdep graph, the hashes and the
70  *               class/list/hash allocators.
71  *
72  * This is one of the rare exceptions where it's justified
73  * to use a raw spinlock - we really dont want the spinlock
74  * code to recurse back into the lockdep code...
75  */
76 static raw_spinlock_t lockdep_lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
77
78 static int graph_lock(void)
79 {
80         __raw_spin_lock(&lockdep_lock);
81         /*
82          * Make sure that if another CPU detected a bug while
83          * walking the graph we dont change it (while the other
84          * CPU is busy printing out stuff with the graph lock
85          * dropped already)
86          */
87         if (!debug_locks) {
88                 __raw_spin_unlock(&lockdep_lock);
89                 return 0;
90         }
91         /* prevent any recursions within lockdep from causing deadlocks */
92         current->lockdep_recursion++;
93         return 1;
94 }
95
96 static inline int graph_unlock(void)
97 {
98         if (debug_locks && !__raw_spin_is_locked(&lockdep_lock))
99                 return DEBUG_LOCKS_WARN_ON(1);
100
101         current->lockdep_recursion--;
102         __raw_spin_unlock(&lockdep_lock);
103         return 0;
104 }
105
106 /*
107  * Turn lock debugging off and return with 0 if it was off already,
108  * and also release the graph lock:
109  */
110 static inline int debug_locks_off_graph_unlock(void)
111 {
112         int ret = debug_locks_off();
113
114         __raw_spin_unlock(&lockdep_lock);
115
116         return ret;
117 }
118
119 static int lockdep_initialized;
120
121 unsigned long nr_list_entries;
122 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
123
124 /*
125  * All data structures here are protected by the global debug_lock.
126  *
127  * Mutex key structs only get allocated, once during bootup, and never
128  * get freed - this significantly simplifies the debugging code.
129  */
130 unsigned long nr_lock_classes;
131 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
132
133 static inline struct lock_class *hlock_class(struct held_lock *hlock)
134 {
135         if (!hlock->class_idx) {
136                 DEBUG_LOCKS_WARN_ON(1);
137                 return NULL;
138         }
139         return lock_classes + hlock->class_idx - 1;
140 }
141
142 #ifdef CONFIG_LOCK_STAT
143 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], lock_stats);
144
145 static int lock_point(unsigned long points[], unsigned long ip)
146 {
147         int i;
148
149         for (i = 0; i < LOCKSTAT_POINTS; i++) {
150                 if (points[i] == 0) {
151                         points[i] = ip;
152                         break;
153                 }
154                 if (points[i] == ip)
155                         break;
156         }
157
158         return i;
159 }
160
161 static void lock_time_inc(struct lock_time *lt, s64 time)
162 {
163         if (time > lt->max)
164                 lt->max = time;
165
166         if (time < lt->min || !lt->min)
167                 lt->min = time;
168
169         lt->total += time;
170         lt->nr++;
171 }
172
173 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
174 {
175         dst->min += src->min;
176         dst->max += src->max;
177         dst->total += src->total;
178         dst->nr += src->nr;
179 }
180
181 struct lock_class_stats lock_stats(struct lock_class *class)
182 {
183         struct lock_class_stats stats;
184         int cpu, i;
185
186         memset(&stats, 0, sizeof(struct lock_class_stats));
187         for_each_possible_cpu(cpu) {
188                 struct lock_class_stats *pcs =
189                         &per_cpu(lock_stats, cpu)[class - lock_classes];
190
191                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
192                         stats.contention_point[i] += pcs->contention_point[i];
193
194                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
195                         stats.contending_point[i] += pcs->contending_point[i];
196
197                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
198                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
199
200                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
201                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
202
203                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
204                         stats.bounces[i] += pcs->bounces[i];
205         }
206
207         return stats;
208 }
209
210 void clear_lock_stats(struct lock_class *class)
211 {
212         int cpu;
213
214         for_each_possible_cpu(cpu) {
215                 struct lock_class_stats *cpu_stats =
216                         &per_cpu(lock_stats, cpu)[class - lock_classes];
217
218                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
219         }
220         memset(class->contention_point, 0, sizeof(class->contention_point));
221         memset(class->contending_point, 0, sizeof(class->contending_point));
222 }
223
224 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
225 {
226         return &get_cpu_var(lock_stats)[class - lock_classes];
227 }
228
229 static void put_lock_stats(struct lock_class_stats *stats)
230 {
231         put_cpu_var(lock_stats);
232 }
233
234 static void lock_release_holdtime(struct held_lock *hlock)
235 {
236         struct lock_class_stats *stats;
237         s64 holdtime;
238
239         if (!lock_stat)
240                 return;
241
242         holdtime = sched_clock() - hlock->holdtime_stamp;
243
244         stats = get_lock_stats(hlock_class(hlock));
245         if (hlock->read)
246                 lock_time_inc(&stats->read_holdtime, holdtime);
247         else
248                 lock_time_inc(&stats->write_holdtime, holdtime);
249         put_lock_stats(stats);
250 }
251 #else
252 static inline void lock_release_holdtime(struct held_lock *hlock)
253 {
254 }
255 #endif
256
257 /*
258  * We keep a global list of all lock classes. The list only grows,
259  * never shrinks. The list is only accessed with the lockdep
260  * spinlock lock held.
261  */
262 LIST_HEAD(all_lock_classes);
263
264 /*
265  * The lockdep classes are in a hash-table as well, for fast lookup:
266  */
267 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
268 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
269 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
270 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
271
272 static struct list_head classhash_table[CLASSHASH_SIZE];
273
274 /*
275  * We put the lock dependency chains into a hash-table as well, to cache
276  * their existence:
277  */
278 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
279 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
280 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
281 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
282
283 static struct list_head chainhash_table[CHAINHASH_SIZE];
284
285 /*
286  * The hash key of the lock dependency chains is a hash itself too:
287  * it's a hash of all locks taken up to that lock, including that lock.
288  * It's a 64-bit hash, because it's important for the keys to be
289  * unique.
290  */
291 #define iterate_chain_key(key1, key2) \
292         (((key1) << MAX_LOCKDEP_KEYS_BITS) ^ \
293         ((key1) >> (64-MAX_LOCKDEP_KEYS_BITS)) ^ \
294         (key2))
295
296 void lockdep_off(void)
297 {
298         current->lockdep_recursion++;
299 }
300 EXPORT_SYMBOL(lockdep_off);
301
302 void lockdep_on(void)
303 {
304         current->lockdep_recursion--;
305 }
306 EXPORT_SYMBOL(lockdep_on);
307
308 /*
309  * Debugging switches:
310  */
311
312 #define VERBOSE                 0
313 #define VERY_VERBOSE            0
314
315 #if VERBOSE
316 # define HARDIRQ_VERBOSE        1
317 # define SOFTIRQ_VERBOSE        1
318 # define RECLAIM_VERBOSE        1
319 #else
320 # define HARDIRQ_VERBOSE        0
321 # define SOFTIRQ_VERBOSE        0
322 # define RECLAIM_VERBOSE        0
323 #endif
324
325 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE
326 /*
327  * Quick filtering for interesting events:
328  */
329 static int class_filter(struct lock_class *class)
330 {
331 #if 0
332         /* Example */
333         if (class->name_version == 1 &&
334                         !strcmp(class->name, "lockname"))
335                 return 1;
336         if (class->name_version == 1 &&
337                         !strcmp(class->name, "&struct->lockfield"))
338                 return 1;
339 #endif
340         /* Filter everything else. 1 would be to allow everything else */
341         return 0;
342 }
343 #endif
344
345 static int verbose(struct lock_class *class)
346 {
347 #if VERBOSE
348         return class_filter(class);
349 #endif
350         return 0;
351 }
352
353 /*
354  * Stack-trace: tightly packed array of stack backtrace
355  * addresses. Protected by the graph_lock.
356  */
357 unsigned long nr_stack_trace_entries;
358 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
359
360 static int save_trace(struct stack_trace *trace)
361 {
362         trace->nr_entries = 0;
363         trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
364         trace->entries = stack_trace + nr_stack_trace_entries;
365
366         trace->skip = 3;
367
368         save_stack_trace(trace);
369
370         /*
371          * Some daft arches put -1 at the end to indicate its a full trace.
372          *
373          * <rant> this is buggy anyway, since it takes a whole extra entry so a
374          * complete trace that maxes out the entries provided will be reported
375          * as incomplete, friggin useless </rant>
376          */
377         if (trace->entries[trace->nr_entries-1] == ULONG_MAX)
378                 trace->nr_entries--;
379
380         trace->max_entries = trace->nr_entries;
381
382         nr_stack_trace_entries += trace->nr_entries;
383
384         if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
385                 if (!debug_locks_off_graph_unlock())
386                         return 0;
387
388                 printk("BUG: MAX_STACK_TRACE_ENTRIES too low!\n");
389                 printk("turning off the locking correctness validator.\n");
390                 dump_stack();
391
392                 return 0;
393         }
394
395         return 1;
396 }
397
398 unsigned int nr_hardirq_chains;
399 unsigned int nr_softirq_chains;
400 unsigned int nr_process_chains;
401 unsigned int max_lockdep_depth;
402 unsigned int max_recursion_depth;
403
404 #ifdef CONFIG_DEBUG_LOCKDEP
405 /*
406  * We cannot printk in early bootup code. Not even early_printk()
407  * might work. So we mark any initialization errors and printk
408  * about it later on, in lockdep_info().
409  */
410 static int lockdep_init_error;
411 static unsigned long lockdep_init_trace_data[20];
412 static struct stack_trace lockdep_init_trace = {
413         .max_entries = ARRAY_SIZE(lockdep_init_trace_data),
414         .entries = lockdep_init_trace_data,
415 };
416
417 /*
418  * Various lockdep statistics:
419  */
420 atomic_t chain_lookup_hits;
421 atomic_t chain_lookup_misses;
422 atomic_t hardirqs_on_events;
423 atomic_t hardirqs_off_events;
424 atomic_t redundant_hardirqs_on;
425 atomic_t redundant_hardirqs_off;
426 atomic_t softirqs_on_events;
427 atomic_t softirqs_off_events;
428 atomic_t redundant_softirqs_on;
429 atomic_t redundant_softirqs_off;
430 atomic_t nr_unused_locks;
431 atomic_t nr_cyclic_checks;
432 atomic_t nr_cyclic_check_recursions;
433 atomic_t nr_find_usage_forwards_checks;
434 atomic_t nr_find_usage_forwards_recursions;
435 atomic_t nr_find_usage_backwards_checks;
436 atomic_t nr_find_usage_backwards_recursions;
437 #endif
438
439 /*
440  * Locking printouts:
441  */
442
443 #define __USAGE(__STATE)                                                \
444         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
445         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
446         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
447         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
448
449 static const char *usage_str[] =
450 {
451 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
452 #include "lockdep_states.h"
453 #undef LOCKDEP_STATE
454         [LOCK_USED] = "INITIAL USE",
455 };
456
457 const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
458 {
459         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
460 }
461
462 static inline unsigned long lock_flag(enum lock_usage_bit bit)
463 {
464         return 1UL << bit;
465 }
466
467 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
468 {
469         char c = '.';
470
471         if (class->usage_mask & lock_flag(bit + 2))
472                 c = '+';
473         if (class->usage_mask & lock_flag(bit)) {
474                 c = '-';
475                 if (class->usage_mask & lock_flag(bit + 2))
476                         c = '?';
477         }
478
479         return c;
480 }
481
482 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
483 {
484         int i = 0;
485
486 #define LOCKDEP_STATE(__STATE)                                          \
487         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
488         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
489 #include "lockdep_states.h"
490 #undef LOCKDEP_STATE
491
492         usage[i] = '\0';
493 }
494
495 static void print_lock_name(struct lock_class *class)
496 {
497         char str[KSYM_NAME_LEN], usage[LOCK_USAGE_CHARS];
498         const char *name;
499
500         get_usage_chars(class, usage);
501
502         name = class->name;
503         if (!name) {
504                 name = __get_key_name(class->key, str);
505                 printk(" (%s", name);
506         } else {
507                 printk(" (%s", name);
508                 if (class->name_version > 1)
509                         printk("#%d", class->name_version);
510                 if (class->subclass)
511                         printk("/%d", class->subclass);
512         }
513         printk("){%s}", usage);
514 }
515
516 static void print_lockdep_cache(struct lockdep_map *lock)
517 {
518         const char *name;
519         char str[KSYM_NAME_LEN];
520
521         name = lock->name;
522         if (!name)
523                 name = __get_key_name(lock->key->subkeys, str);
524
525         printk("%s", name);
526 }
527
528 static void print_lock(struct held_lock *hlock)
529 {
530         print_lock_name(hlock_class(hlock));
531         printk(", at: ");
532         print_ip_sym(hlock->acquire_ip);
533 }
534
535 static void lockdep_print_held_locks(struct task_struct *curr)
536 {
537         int i, depth = curr->lockdep_depth;
538
539         if (!depth) {
540                 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
541                 return;
542         }
543         printk("%d lock%s held by %s/%d:\n",
544                 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
545
546         for (i = 0; i < depth; i++) {
547                 printk(" #%d: ", i);
548                 print_lock(curr->held_locks + i);
549         }
550 }
551
552 static void print_kernel_version(void)
553 {
554         printk("%s %.*s\n", init_utsname()->release,
555                 (int)strcspn(init_utsname()->version, " "),
556                 init_utsname()->version);
557 }
558
559 static int very_verbose(struct lock_class *class)
560 {
561 #if VERY_VERBOSE
562         return class_filter(class);
563 #endif
564         return 0;
565 }
566
567 /*
568  * Is this the address of a static object:
569  */
570 static int static_obj(void *obj)
571 {
572         unsigned long start = (unsigned long) &_stext,
573                       end   = (unsigned long) &_end,
574                       addr  = (unsigned long) obj;
575 #ifdef CONFIG_SMP
576         int i;
577 #endif
578
579         /*
580          * static variable?
581          */
582         if ((addr >= start) && (addr < end))
583                 return 1;
584
585 #ifdef CONFIG_SMP
586         /*
587          * percpu var?
588          */
589         for_each_possible_cpu(i) {
590                 start = (unsigned long) &__per_cpu_start + per_cpu_offset(i);
591                 end   = (unsigned long) &__per_cpu_start + PERCPU_ENOUGH_ROOM
592                                         + per_cpu_offset(i);
593
594                 if ((addr >= start) && (addr < end))
595                         return 1;
596         }
597 #endif
598
599         /*
600          * module var?
601          */
602         return is_module_address(addr);
603 }
604
605 /*
606  * To make lock name printouts unique, we calculate a unique
607  * class->name_version generation counter:
608  */
609 static int count_matching_names(struct lock_class *new_class)
610 {
611         struct lock_class *class;
612         int count = 0;
613
614         if (!new_class->name)
615                 return 0;
616
617         list_for_each_entry(class, &all_lock_classes, lock_entry) {
618                 if (new_class->key - new_class->subclass == class->key)
619                         return class->name_version;
620                 if (class->name && !strcmp(class->name, new_class->name))
621                         count = max(count, class->name_version);
622         }
623
624         return count + 1;
625 }
626
627 /*
628  * Register a lock's class in the hash-table, if the class is not present
629  * yet. Otherwise we look it up. We cache the result in the lock object
630  * itself, so actual lookup of the hash should be once per lock object.
631  */
632 static inline struct lock_class *
633 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass)
634 {
635         struct lockdep_subclass_key *key;
636         struct list_head *hash_head;
637         struct lock_class *class;
638
639 #ifdef CONFIG_DEBUG_LOCKDEP
640         /*
641          * If the architecture calls into lockdep before initializing
642          * the hashes then we'll warn about it later. (we cannot printk
643          * right now)
644          */
645         if (unlikely(!lockdep_initialized)) {
646                 lockdep_init();
647                 lockdep_init_error = 1;
648                 save_stack_trace(&lockdep_init_trace);
649         }
650 #endif
651
652         /*
653          * Static locks do not have their class-keys yet - for them the key
654          * is the lock object itself:
655          */
656         if (unlikely(!lock->key))
657                 lock->key = (void *)lock;
658
659         /*
660          * NOTE: the class-key must be unique. For dynamic locks, a static
661          * lock_class_key variable is passed in through the mutex_init()
662          * (or spin_lock_init()) call - which acts as the key. For static
663          * locks we use the lock object itself as the key.
664          */
665         BUILD_BUG_ON(sizeof(struct lock_class_key) >
666                         sizeof(struct lockdep_map));
667
668         key = lock->key->subkeys + subclass;
669
670         hash_head = classhashentry(key);
671
672         /*
673          * We can walk the hash lockfree, because the hash only
674          * grows, and we are careful when adding entries to the end:
675          */
676         list_for_each_entry(class, hash_head, hash_entry) {
677                 if (class->key == key) {
678                         WARN_ON_ONCE(class->name != lock->name);
679                         return class;
680                 }
681         }
682
683         return NULL;
684 }
685
686 /*
687  * Register a lock's class in the hash-table, if the class is not present
688  * yet. Otherwise we look it up. We cache the result in the lock object
689  * itself, so actual lookup of the hash should be once per lock object.
690  */
691 static inline struct lock_class *
692 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
693 {
694         struct lockdep_subclass_key *key;
695         struct list_head *hash_head;
696         struct lock_class *class;
697         unsigned long flags;
698
699         class = look_up_lock_class(lock, subclass);
700         if (likely(class))
701                 return class;
702
703         /*
704          * Debug-check: all keys must be persistent!
705          */
706         if (!static_obj(lock->key)) {
707                 debug_locks_off();
708                 printk("INFO: trying to register non-static key.\n");
709                 printk("the code is fine but needs lockdep annotation.\n");
710                 printk("turning off the locking correctness validator.\n");
711                 dump_stack();
712
713                 return NULL;
714         }
715
716         key = lock->key->subkeys + subclass;
717         hash_head = classhashentry(key);
718
719         raw_local_irq_save(flags);
720         if (!graph_lock()) {
721                 raw_local_irq_restore(flags);
722                 return NULL;
723         }
724         /*
725          * We have to do the hash-walk again, to avoid races
726          * with another CPU:
727          */
728         list_for_each_entry(class, hash_head, hash_entry)
729                 if (class->key == key)
730                         goto out_unlock_set;
731         /*
732          * Allocate a new key from the static array, and add it to
733          * the hash:
734          */
735         if (nr_lock_classes >= MAX_LOCKDEP_KEYS) {
736                 if (!debug_locks_off_graph_unlock()) {
737                         raw_local_irq_restore(flags);
738                         return NULL;
739                 }
740                 raw_local_irq_restore(flags);
741
742                 printk("BUG: MAX_LOCKDEP_KEYS too low!\n");
743                 printk("turning off the locking correctness validator.\n");
744                 dump_stack();
745                 return NULL;
746         }
747         class = lock_classes + nr_lock_classes++;
748         debug_atomic_inc(&nr_unused_locks);
749         class->key = key;
750         class->name = lock->name;
751         class->subclass = subclass;
752         INIT_LIST_HEAD(&class->lock_entry);
753         INIT_LIST_HEAD(&class->locks_before);
754         INIT_LIST_HEAD(&class->locks_after);
755         class->name_version = count_matching_names(class);
756         /*
757          * We use RCU's safe list-add method to make
758          * parallel walking of the hash-list safe:
759          */
760         list_add_tail_rcu(&class->hash_entry, hash_head);
761         /*
762          * Add it to the global list of classes:
763          */
764         list_add_tail_rcu(&class->lock_entry, &all_lock_classes);
765
766         if (verbose(class)) {
767                 graph_unlock();
768                 raw_local_irq_restore(flags);
769
770                 printk("\nnew class %p: %s", class->key, class->name);
771                 if (class->name_version > 1)
772                         printk("#%d", class->name_version);
773                 printk("\n");
774                 dump_stack();
775
776                 raw_local_irq_save(flags);
777                 if (!graph_lock()) {
778                         raw_local_irq_restore(flags);
779                         return NULL;
780                 }
781         }
782 out_unlock_set:
783         graph_unlock();
784         raw_local_irq_restore(flags);
785
786         if (!subclass || force)
787                 lock->class_cache = class;
788
789         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
790                 return NULL;
791
792         return class;
793 }
794
795 #ifdef CONFIG_PROVE_LOCKING
796 /*
797  * Allocate a lockdep entry. (assumes the graph_lock held, returns
798  * with NULL on failure)
799  */
800 static struct lock_list *alloc_list_entry(void)
801 {
802         if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) {
803                 if (!debug_locks_off_graph_unlock())
804                         return NULL;
805
806                 printk("BUG: MAX_LOCKDEP_ENTRIES too low!\n");
807                 printk("turning off the locking correctness validator.\n");
808                 dump_stack();
809                 return NULL;
810         }
811         return list_entries + nr_list_entries++;
812 }
813
814 /*
815  * Add a new dependency to the head of the list:
816  */
817 static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
818                             struct list_head *head, unsigned long ip, int distance)
819 {
820         struct lock_list *entry;
821         /*
822          * Lock not present yet - get a new dependency struct and
823          * add it to the list:
824          */
825         entry = alloc_list_entry();
826         if (!entry)
827                 return 0;
828
829         if (!save_trace(&entry->trace))
830                 return 0;
831
832         entry->class = this;
833         entry->distance = distance;
834         /*
835          * Since we never remove from the dependency list, the list can
836          * be walked lockless by other CPUs, it's only allocation
837          * that must be protected by the spinlock. But this also means
838          * we must make new entries visible only once writes to the
839          * entry become visible - hence the RCU op:
840          */
841         list_add_tail_rcu(&entry->entry, head);
842
843         return 1;
844 }
845
846 /*For good efficiency of modular, we use power of 2*/
847 #define MAX_CIRCULAR_QUEUE_SIZE         4096UL
848 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
849
850 /* The circular_queue and helpers is used to implement the
851  * breadth-first search(BFS)algorithem, by which we can build
852  * the shortest path from the next lock to be acquired to the
853  * previous held lock if there is a circular between them.
854  * */
855 struct circular_queue {
856         unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
857         unsigned int  front, rear;
858 };
859
860 static struct circular_queue lock_cq;
861 static unsigned long bfs_accessed[BITS_TO_LONGS(MAX_LOCKDEP_ENTRIES)];
862
863 unsigned int max_bfs_queue_depth;
864
865 static inline void __cq_init(struct circular_queue *cq)
866 {
867         cq->front = cq->rear = 0;
868         bitmap_zero(bfs_accessed, MAX_LOCKDEP_ENTRIES);
869 }
870
871 static inline int __cq_empty(struct circular_queue *cq)
872 {
873         return (cq->front == cq->rear);
874 }
875
876 static inline int __cq_full(struct circular_queue *cq)
877 {
878         return ((cq->rear + 1) & CQ_MASK) == cq->front;
879 }
880
881 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
882 {
883         if (__cq_full(cq))
884                 return -1;
885
886         cq->element[cq->rear] = elem;
887         cq->rear = (cq->rear + 1) & CQ_MASK;
888         return 0;
889 }
890
891 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
892 {
893         if (__cq_empty(cq))
894                 return -1;
895
896         *elem = cq->element[cq->front];
897         cq->front = (cq->front + 1) & CQ_MASK;
898         return 0;
899 }
900
901 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
902 {
903         return (cq->rear - cq->front) & CQ_MASK;
904 }
905
906 static inline void mark_lock_accessed(struct lock_list *lock,
907                                         struct lock_list *parent)
908 {
909         unsigned long nr;
910         nr = lock - list_entries;
911         WARN_ON(nr >= nr_list_entries);
912         lock->parent = parent;
913         set_bit(nr, bfs_accessed);
914 }
915
916 static inline unsigned long lock_accessed(struct lock_list *lock)
917 {
918         unsigned long nr;
919         nr = lock - list_entries;
920         WARN_ON(nr >= nr_list_entries);
921         return test_bit(nr, bfs_accessed);
922 }
923
924 static inline struct lock_list *get_lock_parent(struct lock_list *child)
925 {
926         return child->parent;
927 }
928
929 static inline int get_lock_depth(struct lock_list *child)
930 {
931         int depth = 0;
932         struct lock_list *parent;
933
934         while ((parent = get_lock_parent(child))) {
935                 child = parent;
936                 depth++;
937         }
938         return depth;
939 }
940
941 static int __bfs(struct lock_list *source_entry,
942                  void *data,
943                  int (*match)(struct lock_list *entry, void *data),
944                  struct lock_list **target_entry,
945                  int forward)
946 {
947         struct lock_list *entry;
948         struct list_head *head;
949         struct circular_queue *cq = &lock_cq;
950         int ret = 1;
951
952         if (match(source_entry, data)) {
953                 *target_entry = source_entry;
954                 ret = 0;
955                 goto exit;
956         }
957
958         if (forward)
959                 head = &source_entry->class->locks_after;
960         else
961                 head = &source_entry->class->locks_before;
962
963         if (list_empty(head))
964                 goto exit;
965
966         __cq_init(cq);
967         __cq_enqueue(cq, (unsigned long)source_entry);
968
969         while (!__cq_empty(cq)) {
970                 struct lock_list *lock;
971
972                 __cq_dequeue(cq, (unsigned long *)&lock);
973
974                 if (!lock->class) {
975                         ret = -2;
976                         goto exit;
977                 }
978
979                 if (forward)
980                         head = &lock->class->locks_after;
981                 else
982                         head = &lock->class->locks_before;
983
984                 list_for_each_entry(entry, head, entry) {
985                         if (!lock_accessed(entry)) {
986                                 unsigned int cq_depth;
987                                 mark_lock_accessed(entry, lock);
988                                 if (match(entry, data)) {
989                                         *target_entry = entry;
990                                         ret = 0;
991                                         goto exit;
992                                 }
993
994                                 if (__cq_enqueue(cq, (unsigned long)entry)) {
995                                         ret = -1;
996                                         goto exit;
997                                 }
998                                 cq_depth = __cq_get_elem_count(cq);
999                                 if (max_bfs_queue_depth < cq_depth)
1000                                         max_bfs_queue_depth = cq_depth;
1001                         }
1002                 }
1003         }
1004 exit:
1005         return ret;
1006 }
1007
1008 static inline int __bfs_forwards(struct lock_list *src_entry,
1009                         void *data,
1010                         int (*match)(struct lock_list *entry, void *data),
1011                         struct lock_list **target_entry)
1012 {
1013         return __bfs(src_entry, data, match, target_entry, 1);
1014
1015 }
1016
1017 static inline int __bfs_backwards(struct lock_list *src_entry,
1018                         void *data,
1019                         int (*match)(struct lock_list *entry, void *data),
1020                         struct lock_list **target_entry)
1021 {
1022         return __bfs(src_entry, data, match, target_entry, 0);
1023
1024 }
1025
1026 /*
1027  * Recursive, forwards-direction lock-dependency checking, used for
1028  * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
1029  * checking.
1030  */
1031
1032 /*
1033  * Print a dependency chain entry (this is only done when a deadlock
1034  * has been detected):
1035  */
1036 static noinline int
1037 print_circular_bug_entry(struct lock_list *target, int depth)
1038 {
1039         if (debug_locks_silent)
1040                 return 0;
1041         printk("\n-> #%u", depth);
1042         print_lock_name(target->class);
1043         printk(":\n");
1044         print_stack_trace(&target->trace, 6);
1045
1046         return 0;
1047 }
1048
1049 /*
1050  * When a circular dependency is detected, print the
1051  * header first:
1052  */
1053 static noinline int
1054 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1055                         struct held_lock *check_src,
1056                         struct held_lock *check_tgt)
1057 {
1058         struct task_struct *curr = current;
1059
1060         if (debug_locks_silent)
1061                 return 0;
1062
1063         printk("\n=======================================================\n");
1064         printk(  "[ INFO: possible circular locking dependency detected ]\n");
1065         print_kernel_version();
1066         printk(  "-------------------------------------------------------\n");
1067         printk("%s/%d is trying to acquire lock:\n",
1068                 curr->comm, task_pid_nr(curr));
1069         print_lock(check_src);
1070         printk("\nbut task is already holding lock:\n");
1071         print_lock(check_tgt);
1072         printk("\nwhich lock already depends on the new lock.\n\n");
1073         printk("\nthe existing dependency chain (in reverse order) is:\n");
1074
1075         print_circular_bug_entry(entry, depth);
1076
1077         return 0;
1078 }
1079
1080 static inline int class_equal(struct lock_list *entry, void *data)
1081 {
1082         return entry->class == data;
1083 }
1084
1085 static noinline int print_circular_bug(struct lock_list *this,
1086                                 struct lock_list *target,
1087                                 struct held_lock *check_src,
1088                                 struct held_lock *check_tgt)
1089 {
1090         struct task_struct *curr = current;
1091         struct lock_list *parent;
1092         int depth;
1093
1094         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1095                 return 0;
1096
1097         if (!save_trace(&this->trace))
1098                 return 0;
1099
1100         depth = get_lock_depth(target);
1101
1102         print_circular_bug_header(target, depth, check_src, check_tgt);
1103
1104         parent = get_lock_parent(target);
1105
1106         while (parent) {
1107                 print_circular_bug_entry(parent, --depth);
1108                 parent = get_lock_parent(parent);
1109         }
1110
1111         printk("\nother info that might help us debug this:\n\n");
1112         lockdep_print_held_locks(curr);
1113
1114         printk("\nstack backtrace:\n");
1115         dump_stack();
1116
1117         return 0;
1118 }
1119
1120 static noinline int print_bfs_bug(int ret)
1121 {
1122         if (!debug_locks_off_graph_unlock())
1123                 return 0;
1124
1125         WARN(1, "lockdep bfs error:%d\n", ret);
1126
1127         return 0;
1128 }
1129
1130 static int noop_count(struct lock_list *entry, void *data)
1131 {
1132         (*(unsigned long *)data)++;
1133         return 0;
1134 }
1135
1136 unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1137 {
1138         unsigned long  count = 0;
1139         struct lock_list *uninitialized_var(target_entry);
1140
1141         __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1142
1143         return count;
1144 }
1145 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1146 {
1147         unsigned long ret, flags;
1148         struct lock_list this;
1149
1150         this.parent = NULL;
1151         this.class = class;
1152
1153         local_irq_save(flags);
1154         __raw_spin_lock(&lockdep_lock);
1155         ret = __lockdep_count_forward_deps(&this);
1156         __raw_spin_unlock(&lockdep_lock);
1157         local_irq_restore(flags);
1158
1159         return ret;
1160 }
1161
1162 unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1163 {
1164         unsigned long  count = 0;
1165         struct lock_list *uninitialized_var(target_entry);
1166
1167         __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1168
1169         return count;
1170 }
1171
1172 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1173 {
1174         unsigned long ret, flags;
1175         struct lock_list this;
1176
1177         this.parent = NULL;
1178         this.class = class;
1179
1180         local_irq_save(flags);
1181         __raw_spin_lock(&lockdep_lock);
1182         ret = __lockdep_count_backward_deps(&this);
1183         __raw_spin_unlock(&lockdep_lock);
1184         local_irq_restore(flags);
1185
1186         return ret;
1187 }
1188
1189 /*
1190  * Prove that the dependency graph starting at <entry> can not
1191  * lead to <target>. Print an error and return 0 if it does.
1192  */
1193 static noinline int
1194 check_noncircular(struct lock_list *root, struct lock_class *target,
1195                 struct lock_list **target_entry)
1196 {
1197         int result;
1198
1199         debug_atomic_inc(&nr_cyclic_checks);
1200
1201         result = __bfs_forwards(root, target, class_equal, target_entry);
1202
1203         return result;
1204 }
1205
1206 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
1207 /*
1208  * Forwards and backwards subgraph searching, for the purposes of
1209  * proving that two subgraphs can be connected by a new dependency
1210  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1211  */
1212
1213 static inline int usage_match(struct lock_list *entry, void *bit)
1214 {
1215         return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
1216 }
1217
1218
1219
1220 /*
1221  * Find a node in the forwards-direction dependency sub-graph starting
1222  * at @root->class that matches @bit.
1223  *
1224  * Return 0 if such a node exists in the subgraph, and put that node
1225  * into *@target_entry.
1226  *
1227  * Return 1 otherwise and keep *@target_entry unchanged.
1228  * Return <0 on error.
1229  */
1230 static int
1231 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1232                         struct lock_list **target_entry)
1233 {
1234         int result;
1235
1236         debug_atomic_inc(&nr_find_usage_forwards_checks);
1237
1238         result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1239
1240         return result;
1241 }
1242
1243 /*
1244  * Find a node in the backwards-direction dependency sub-graph starting
1245  * at @root->class that matches @bit.
1246  *
1247  * Return 0 if such a node exists in the subgraph, and put that node
1248  * into *@target_entry.
1249  *
1250  * Return 1 otherwise and keep *@target_entry unchanged.
1251  * Return <0 on error.
1252  */
1253 static int
1254 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1255                         struct lock_list **target_entry)
1256 {
1257         int result;
1258
1259         debug_atomic_inc(&nr_find_usage_backwards_checks);
1260
1261         result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1262
1263         return result;
1264 }
1265
1266 static void print_lock_class_header(struct lock_class *class, int depth)
1267 {
1268         int bit;
1269
1270         printk("%*s->", depth, "");
1271         print_lock_name(class);
1272         printk(" ops: %lu", class->ops);
1273         printk(" {\n");
1274
1275         for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1276                 if (class->usage_mask & (1 << bit)) {
1277                         int len = depth;
1278
1279                         len += printk("%*s   %s", depth, "", usage_str[bit]);
1280                         len += printk(" at:\n");
1281                         print_stack_trace(class->usage_traces + bit, len);
1282                 }
1283         }
1284         printk("%*s }\n", depth, "");
1285
1286         printk("%*s ... key      at: ",depth,"");
1287         print_ip_sym((unsigned long)class->key);
1288 }
1289
1290 /*
1291  * printk the shortest lock dependencies from @start to @end in reverse order:
1292  */
1293 static void __used
1294 print_shortest_lock_dependencies(struct lock_list *leaf,
1295                                 struct lock_list *root)
1296 {
1297         struct lock_list *entry = leaf;
1298         int depth;
1299
1300         /*compute depth from generated tree by BFS*/
1301         depth = get_lock_depth(leaf);
1302
1303         do {
1304                 print_lock_class_header(entry->class, depth);
1305                 printk("%*s ... acquired at:\n", depth, "");
1306                 print_stack_trace(&entry->trace, 2);
1307                 printk("\n");
1308
1309                 if (depth == 0 && (entry != root)) {
1310                         printk("lockdep:%s bad BFS generated tree\n", __func__);
1311                         break;
1312                 }
1313
1314                 entry = get_lock_parent(entry);
1315                 depth--;
1316         } while (entry && (depth >= 0));
1317
1318         return;
1319 }
1320
1321 static int
1322 print_bad_irq_dependency(struct task_struct *curr,
1323                          struct lock_list *prev_root,
1324                          struct lock_list *next_root,
1325                          struct lock_list *backwards_entry,
1326                          struct lock_list *forwards_entry,
1327                          struct held_lock *prev,
1328                          struct held_lock *next,
1329                          enum lock_usage_bit bit1,
1330                          enum lock_usage_bit bit2,
1331                          const char *irqclass)
1332 {
1333         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1334                 return 0;
1335
1336         printk("\n======================================================\n");
1337         printk(  "[ INFO: %s-safe -> %s-unsafe lock order detected ]\n",
1338                 irqclass, irqclass);
1339         print_kernel_version();
1340         printk(  "------------------------------------------------------\n");
1341         printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1342                 curr->comm, task_pid_nr(curr),
1343                 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1344                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1345                 curr->hardirqs_enabled,
1346                 curr->softirqs_enabled);
1347         print_lock(next);
1348
1349         printk("\nand this task is already holding:\n");
1350         print_lock(prev);
1351         printk("which would create a new lock dependency:\n");
1352         print_lock_name(hlock_class(prev));
1353         printk(" ->");
1354         print_lock_name(hlock_class(next));
1355         printk("\n");
1356
1357         printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
1358                 irqclass);
1359         print_lock_name(backwards_entry->class);
1360         printk("\n... which became %s-irq-safe at:\n", irqclass);
1361
1362         print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1363
1364         printk("\nto a %s-irq-unsafe lock:\n", irqclass);
1365         print_lock_name(forwards_entry->class);
1366         printk("\n... which became %s-irq-unsafe at:\n", irqclass);
1367         printk("...");
1368
1369         print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1370
1371         printk("\nother info that might help us debug this:\n\n");
1372         lockdep_print_held_locks(curr);
1373
1374         printk("\nthe dependencies between %s-irq-safe lock", irqclass);
1375         printk(" and the holding lock:\n");
1376         if (!save_trace(&prev_root->trace))
1377                 return 0;
1378         print_shortest_lock_dependencies(backwards_entry, prev_root);
1379
1380         printk("\nthe dependencies between the lock to be acquired");
1381         printk(" and %s-irq-unsafe lock:\n", irqclass);
1382         if (!save_trace(&next_root->trace))
1383                 return 0;
1384         print_shortest_lock_dependencies(forwards_entry, next_root);
1385
1386         printk("\nstack backtrace:\n");
1387         dump_stack();
1388
1389         return 0;
1390 }
1391
1392 static int
1393 check_usage(struct task_struct *curr, struct held_lock *prev,
1394             struct held_lock *next, enum lock_usage_bit bit_backwards,
1395             enum lock_usage_bit bit_forwards, const char *irqclass)
1396 {
1397         int ret;
1398         struct lock_list this, that;
1399         struct lock_list *uninitialized_var(target_entry);
1400         struct lock_list *uninitialized_var(target_entry1);
1401
1402         this.parent = NULL;
1403
1404         this.class = hlock_class(prev);
1405         ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1406         if (ret < 0)
1407                 return print_bfs_bug(ret);
1408         if (ret == 1)
1409                 return ret;
1410
1411         that.parent = NULL;
1412         that.class = hlock_class(next);
1413         ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1414         if (ret < 0)
1415                 return print_bfs_bug(ret);
1416         if (ret == 1)
1417                 return ret;
1418
1419         return print_bad_irq_dependency(curr, &this, &that,
1420                         target_entry, target_entry1,
1421                         prev, next,
1422                         bit_backwards, bit_forwards, irqclass);
1423 }
1424
1425 static const char *state_names[] = {
1426 #define LOCKDEP_STATE(__STATE) \
1427         __stringify(__STATE),
1428 #include "lockdep_states.h"
1429 #undef LOCKDEP_STATE
1430 };
1431
1432 static const char *state_rnames[] = {
1433 #define LOCKDEP_STATE(__STATE) \
1434         __stringify(__STATE)"-READ",
1435 #include "lockdep_states.h"
1436 #undef LOCKDEP_STATE
1437 };
1438
1439 static inline const char *state_name(enum lock_usage_bit bit)
1440 {
1441         return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2];
1442 }
1443
1444 static int exclusive_bit(int new_bit)
1445 {
1446         /*
1447          * USED_IN
1448          * USED_IN_READ
1449          * ENABLED
1450          * ENABLED_READ
1451          *
1452          * bit 0 - write/read
1453          * bit 1 - used_in/enabled
1454          * bit 2+  state
1455          */
1456
1457         int state = new_bit & ~3;
1458         int dir = new_bit & 2;
1459
1460         /*
1461          * keep state, bit flip the direction and strip read.
1462          */
1463         return state | (dir ^ 2);
1464 }
1465
1466 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
1467                            struct held_lock *next, enum lock_usage_bit bit)
1468 {
1469         /*
1470          * Prove that the new dependency does not connect a hardirq-safe
1471          * lock with a hardirq-unsafe lock - to achieve this we search
1472          * the backwards-subgraph starting at <prev>, and the
1473          * forwards-subgraph starting at <next>:
1474          */
1475         if (!check_usage(curr, prev, next, bit,
1476                            exclusive_bit(bit), state_name(bit)))
1477                 return 0;
1478
1479         bit++; /* _READ */
1480
1481         /*
1482          * Prove that the new dependency does not connect a hardirq-safe-read
1483          * lock with a hardirq-unsafe lock - to achieve this we search
1484          * the backwards-subgraph starting at <prev>, and the
1485          * forwards-subgraph starting at <next>:
1486          */
1487         if (!check_usage(curr, prev, next, bit,
1488                            exclusive_bit(bit), state_name(bit)))
1489                 return 0;
1490
1491         return 1;
1492 }
1493
1494 static int
1495 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1496                 struct held_lock *next)
1497 {
1498 #define LOCKDEP_STATE(__STATE)                                          \
1499         if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \
1500                 return 0;
1501 #include "lockdep_states.h"
1502 #undef LOCKDEP_STATE
1503
1504         return 1;
1505 }
1506
1507 static void inc_chains(void)
1508 {
1509         if (current->hardirq_context)
1510                 nr_hardirq_chains++;
1511         else {
1512                 if (current->softirq_context)
1513                         nr_softirq_chains++;
1514                 else
1515                         nr_process_chains++;
1516         }
1517 }
1518
1519 #else
1520
1521 static inline int
1522 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1523                 struct held_lock *next)
1524 {
1525         return 1;
1526 }
1527
1528 static inline void inc_chains(void)
1529 {
1530         nr_process_chains++;
1531 }
1532
1533 #endif
1534
1535 static int
1536 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
1537                    struct held_lock *next)
1538 {
1539         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1540                 return 0;
1541
1542         printk("\n=============================================\n");
1543         printk(  "[ INFO: possible recursive locking detected ]\n");
1544         print_kernel_version();
1545         printk(  "---------------------------------------------\n");
1546         printk("%s/%d is trying to acquire lock:\n",
1547                 curr->comm, task_pid_nr(curr));
1548         print_lock(next);
1549         printk("\nbut task is already holding lock:\n");
1550         print_lock(prev);
1551
1552         printk("\nother info that might help us debug this:\n");
1553         lockdep_print_held_locks(curr);
1554
1555         printk("\nstack backtrace:\n");
1556         dump_stack();
1557
1558         return 0;
1559 }
1560
1561 /*
1562  * Check whether we are holding such a class already.
1563  *
1564  * (Note that this has to be done separately, because the graph cannot
1565  * detect such classes of deadlocks.)
1566  *
1567  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
1568  */
1569 static int
1570 check_deadlock(struct task_struct *curr, struct held_lock *next,
1571                struct lockdep_map *next_instance, int read)
1572 {
1573         struct held_lock *prev;
1574         struct held_lock *nest = NULL;
1575         int i;
1576
1577         for (i = 0; i < curr->lockdep_depth; i++) {
1578                 prev = curr->held_locks + i;
1579
1580                 if (prev->instance == next->nest_lock)
1581                         nest = prev;
1582
1583                 if (hlock_class(prev) != hlock_class(next))
1584                         continue;
1585
1586                 /*
1587                  * Allow read-after-read recursion of the same
1588                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
1589                  */
1590                 if ((read == 2) && prev->read)
1591                         return 2;
1592
1593                 /*
1594                  * We're holding the nest_lock, which serializes this lock's
1595                  * nesting behaviour.
1596                  */
1597                 if (nest)
1598                         return 2;
1599
1600                 return print_deadlock_bug(curr, prev, next);
1601         }
1602         return 1;
1603 }
1604
1605 /*
1606  * There was a chain-cache miss, and we are about to add a new dependency
1607  * to a previous lock. We recursively validate the following rules:
1608  *
1609  *  - would the adding of the <prev> -> <next> dependency create a
1610  *    circular dependency in the graph? [== circular deadlock]
1611  *
1612  *  - does the new prev->next dependency connect any hardirq-safe lock
1613  *    (in the full backwards-subgraph starting at <prev>) with any
1614  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
1615  *    <next>)? [== illegal lock inversion with hardirq contexts]
1616  *
1617  *  - does the new prev->next dependency connect any softirq-safe lock
1618  *    (in the full backwards-subgraph starting at <prev>) with any
1619  *    softirq-unsafe lock (in the full forwards-subgraph starting at
1620  *    <next>)? [== illegal lock inversion with softirq contexts]
1621  *
1622  * any of these scenarios could lead to a deadlock.
1623  *
1624  * Then if all the validations pass, we add the forwards and backwards
1625  * dependency.
1626  */
1627 static int
1628 check_prev_add(struct task_struct *curr, struct held_lock *prev,
1629                struct held_lock *next, int distance)
1630 {
1631         struct lock_list *entry;
1632         int ret;
1633         struct lock_list this;
1634         struct lock_list *uninitialized_var(target_entry);
1635
1636         /*
1637          * Prove that the new <prev> -> <next> dependency would not
1638          * create a circular dependency in the graph. (We do this by
1639          * forward-recursing into the graph starting at <next>, and
1640          * checking whether we can reach <prev>.)
1641          *
1642          * We are using global variables to control the recursion, to
1643          * keep the stackframe size of the recursive functions low:
1644          */
1645         this.class = hlock_class(next);
1646         this.parent = NULL;
1647         ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1648         if (unlikely(!ret))
1649                 return print_circular_bug(&this, target_entry, next, prev);
1650         else if (unlikely(ret < 0))
1651                 return print_bfs_bug(ret);
1652
1653         if (!check_prev_add_irq(curr, prev, next))
1654                 return 0;
1655
1656         /*
1657          * For recursive read-locks we do all the dependency checks,
1658          * but we dont store read-triggered dependencies (only
1659          * write-triggered dependencies). This ensures that only the
1660          * write-side dependencies matter, and that if for example a
1661          * write-lock never takes any other locks, then the reads are
1662          * equivalent to a NOP.
1663          */
1664         if (next->read == 2 || prev->read == 2)
1665                 return 1;
1666         /*
1667          * Is the <prev> -> <next> dependency already present?
1668          *
1669          * (this may occur even though this is a new chain: consider
1670          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
1671          *  chains - the second one will be new, but L1 already has
1672          *  L2 added to its dependency list, due to the first chain.)
1673          */
1674         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
1675                 if (entry->class == hlock_class(next)) {
1676                         if (distance == 1)
1677                                 entry->distance = 1;
1678                         return 2;
1679                 }
1680         }
1681
1682         /*
1683          * Ok, all validations passed, add the new lock
1684          * to the previous lock's dependency list:
1685          */
1686         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
1687                                &hlock_class(prev)->locks_after,
1688                                next->acquire_ip, distance);
1689
1690         if (!ret)
1691                 return 0;
1692
1693         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
1694                                &hlock_class(next)->locks_before,
1695                                next->acquire_ip, distance);
1696         if (!ret)
1697                 return 0;
1698
1699         /*
1700          * Debugging printouts:
1701          */
1702         if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) {
1703                 graph_unlock();
1704                 printk("\n new dependency: ");
1705                 print_lock_name(hlock_class(prev));
1706                 printk(" => ");
1707                 print_lock_name(hlock_class(next));
1708                 printk("\n");
1709                 dump_stack();
1710                 return graph_lock();
1711         }
1712         return 1;
1713 }
1714
1715 /*
1716  * Add the dependency to all directly-previous locks that are 'relevant'.
1717  * The ones that are relevant are (in increasing distance from curr):
1718  * all consecutive trylock entries and the final non-trylock entry - or
1719  * the end of this context's lock-chain - whichever comes first.
1720  */
1721 static int
1722 check_prevs_add(struct task_struct *curr, struct held_lock *next)
1723 {
1724         int depth = curr->lockdep_depth;
1725         struct held_lock *hlock;
1726
1727         /*
1728          * Debugging checks.
1729          *
1730          * Depth must not be zero for a non-head lock:
1731          */
1732         if (!depth)
1733                 goto out_bug;
1734         /*
1735          * At least two relevant locks must exist for this
1736          * to be a head:
1737          */
1738         if (curr->held_locks[depth].irq_context !=
1739                         curr->held_locks[depth-1].irq_context)
1740                 goto out_bug;
1741
1742         for (;;) {
1743                 int distance = curr->lockdep_depth - depth + 1;
1744                 hlock = curr->held_locks + depth-1;
1745                 /*
1746                  * Only non-recursive-read entries get new dependencies
1747                  * added:
1748                  */
1749                 if (hlock->read != 2) {
1750                         if (!check_prev_add(curr, hlock, next, distance))
1751                                 return 0;
1752                         /*
1753                          * Stop after the first non-trylock entry,
1754                          * as non-trylock entries have added their
1755                          * own direct dependencies already, so this
1756                          * lock is connected to them indirectly:
1757                          */
1758                         if (!hlock->trylock)
1759                                 break;
1760                 }
1761                 depth--;
1762                 /*
1763                  * End of lock-stack?
1764                  */
1765                 if (!depth)
1766                         break;
1767                 /*
1768                  * Stop the search if we cross into another context:
1769                  */
1770                 if (curr->held_locks[depth].irq_context !=
1771                                 curr->held_locks[depth-1].irq_context)
1772                         break;
1773         }
1774         return 1;
1775 out_bug:
1776         if (!debug_locks_off_graph_unlock())
1777                 return 0;
1778
1779         WARN_ON(1);
1780
1781         return 0;
1782 }
1783
1784 unsigned long nr_lock_chains;
1785 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
1786 int nr_chain_hlocks;
1787 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1788
1789 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
1790 {
1791         return lock_classes + chain_hlocks[chain->base + i];
1792 }
1793
1794 /*
1795  * Look up a dependency chain. If the key is not present yet then
1796  * add it and return 1 - in this case the new dependency chain is
1797  * validated. If the key is already hashed, return 0.
1798  * (On return with 1 graph_lock is held.)
1799  */
1800 static inline int lookup_chain_cache(struct task_struct *curr,
1801                                      struct held_lock *hlock,
1802                                      u64 chain_key)
1803 {
1804         struct lock_class *class = hlock_class(hlock);
1805         struct list_head *hash_head = chainhashentry(chain_key);
1806         struct lock_chain *chain;
1807         struct held_lock *hlock_curr, *hlock_next;
1808         int i, j, n, cn;
1809
1810         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
1811                 return 0;
1812         /*
1813          * We can walk it lock-free, because entries only get added
1814          * to the hash:
1815          */
1816         list_for_each_entry(chain, hash_head, entry) {
1817                 if (chain->chain_key == chain_key) {
1818 cache_hit:
1819                         debug_atomic_inc(&chain_lookup_hits);
1820                         if (very_verbose(class))
1821                                 printk("\nhash chain already cached, key: "
1822                                         "%016Lx tail class: [%p] %s\n",
1823                                         (unsigned long long)chain_key,
1824                                         class->key, class->name);
1825                         return 0;
1826                 }
1827         }
1828         if (very_verbose(class))
1829                 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n",
1830                         (unsigned long long)chain_key, class->key, class->name);
1831         /*
1832          * Allocate a new chain entry from the static array, and add
1833          * it to the hash:
1834          */
1835         if (!graph_lock())
1836                 return 0;
1837         /*
1838          * We have to walk the chain again locked - to avoid duplicates:
1839          */
1840         list_for_each_entry(chain, hash_head, entry) {
1841                 if (chain->chain_key == chain_key) {
1842                         graph_unlock();
1843                         goto cache_hit;
1844                 }
1845         }
1846         if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
1847                 if (!debug_locks_off_graph_unlock())
1848                         return 0;
1849
1850                 printk("BUG: MAX_LOCKDEP_CHAINS too low!\n");
1851                 printk("turning off the locking correctness validator.\n");
1852                 dump_stack();
1853                 return 0;
1854         }
1855         chain = lock_chains + nr_lock_chains++;
1856         chain->chain_key = chain_key;
1857         chain->irq_context = hlock->irq_context;
1858         /* Find the first held_lock of current chain */
1859         hlock_next = hlock;
1860         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
1861                 hlock_curr = curr->held_locks + i;
1862                 if (hlock_curr->irq_context != hlock_next->irq_context)
1863                         break;
1864                 hlock_next = hlock;
1865         }
1866         i++;
1867         chain->depth = curr->lockdep_depth + 1 - i;
1868         cn = nr_chain_hlocks;
1869         while (cn + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS) {
1870                 n = cmpxchg(&nr_chain_hlocks, cn, cn + chain->depth);
1871                 if (n == cn)
1872                         break;
1873                 cn = n;
1874         }
1875         if (likely(cn + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
1876                 chain->base = cn;
1877                 for (j = 0; j < chain->depth - 1; j++, i++) {
1878                         int lock_id = curr->held_locks[i].class_idx - 1;
1879                         chain_hlocks[chain->base + j] = lock_id;
1880                 }
1881                 chain_hlocks[chain->base + j] = class - lock_classes;
1882         }
1883         list_add_tail_rcu(&chain->entry, hash_head);
1884         debug_atomic_inc(&chain_lookup_misses);
1885         inc_chains();
1886
1887         return 1;
1888 }
1889
1890 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock,
1891                 struct held_lock *hlock, int chain_head, u64 chain_key)
1892 {
1893         /*
1894          * Trylock needs to maintain the stack of held locks, but it
1895          * does not add new dependencies, because trylock can be done
1896          * in any order.
1897          *
1898          * We look up the chain_key and do the O(N^2) check and update of
1899          * the dependencies only if this is a new dependency chain.
1900          * (If lookup_chain_cache() returns with 1 it acquires
1901          * graph_lock for us)
1902          */
1903         if (!hlock->trylock && (hlock->check == 2) &&
1904             lookup_chain_cache(curr, hlock, chain_key)) {
1905                 /*
1906                  * Check whether last held lock:
1907                  *
1908                  * - is irq-safe, if this lock is irq-unsafe
1909                  * - is softirq-safe, if this lock is hardirq-unsafe
1910                  *
1911                  * And check whether the new lock's dependency graph
1912                  * could lead back to the previous lock.
1913                  *
1914                  * any of these scenarios could lead to a deadlock. If
1915                  * All validations
1916                  */
1917                 int ret = check_deadlock(curr, hlock, lock, hlock->read);
1918
1919                 if (!ret)
1920                         return 0;
1921                 /*
1922                  * Mark recursive read, as we jump over it when
1923                  * building dependencies (just like we jump over
1924                  * trylock entries):
1925                  */
1926                 if (ret == 2)
1927                         hlock->read = 2;
1928                 /*
1929                  * Add dependency only if this lock is not the head
1930                  * of the chain, and if it's not a secondary read-lock:
1931                  */
1932                 if (!chain_head && ret != 2)
1933                         if (!check_prevs_add(curr, hlock))
1934                                 return 0;
1935                 graph_unlock();
1936         } else
1937                 /* after lookup_chain_cache(): */
1938                 if (unlikely(!debug_locks))
1939                         return 0;
1940
1941         return 1;
1942 }
1943 #else
1944 static inline int validate_chain(struct task_struct *curr,
1945                 struct lockdep_map *lock, struct held_lock *hlock,
1946                 int chain_head, u64 chain_key)
1947 {
1948         return 1;
1949 }
1950 #endif
1951
1952 /*
1953  * We are building curr_chain_key incrementally, so double-check
1954  * it from scratch, to make sure that it's done correctly:
1955  */
1956 static void check_chain_key(struct task_struct *curr)
1957 {
1958 #ifdef CONFIG_DEBUG_LOCKDEP
1959         struct held_lock *hlock, *prev_hlock = NULL;
1960         unsigned int i, id;
1961         u64 chain_key = 0;
1962
1963         for (i = 0; i < curr->lockdep_depth; i++) {
1964                 hlock = curr->held_locks + i;
1965                 if (chain_key != hlock->prev_chain_key) {
1966                         debug_locks_off();
1967                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
1968                                 curr->lockdep_depth, i,
1969                                 (unsigned long long)chain_key,
1970                                 (unsigned long long)hlock->prev_chain_key);
1971                         return;
1972                 }
1973                 id = hlock->class_idx - 1;
1974                 if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
1975                         return;
1976
1977                 if (prev_hlock && (prev_hlock->irq_context !=
1978                                                         hlock->irq_context))
1979                         chain_key = 0;
1980                 chain_key = iterate_chain_key(chain_key, id);
1981                 prev_hlock = hlock;
1982         }
1983         if (chain_key != curr->curr_chain_key) {
1984                 debug_locks_off();
1985                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
1986                         curr->lockdep_depth, i,
1987                         (unsigned long long)chain_key,
1988                         (unsigned long long)curr->curr_chain_key);
1989         }
1990 #endif
1991 }
1992
1993 static int
1994 print_usage_bug(struct task_struct *curr, struct held_lock *this,
1995                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
1996 {
1997         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1998                 return 0;
1999
2000         printk("\n=================================\n");
2001         printk(  "[ INFO: inconsistent lock state ]\n");
2002         print_kernel_version();
2003         printk(  "---------------------------------\n");
2004
2005         printk("inconsistent {%s} -> {%s} usage.\n",
2006                 usage_str[prev_bit], usage_str[new_bit]);
2007
2008         printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
2009                 curr->comm, task_pid_nr(curr),
2010                 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
2011                 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
2012                 trace_hardirqs_enabled(curr),
2013                 trace_softirqs_enabled(curr));
2014         print_lock(this);
2015
2016         printk("{%s} state was registered at:\n", usage_str[prev_bit]);
2017         print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1);
2018
2019         print_irqtrace_events(curr);
2020         printk("\nother info that might help us debug this:\n");
2021         lockdep_print_held_locks(curr);
2022
2023         printk("\nstack backtrace:\n");
2024         dump_stack();
2025
2026         return 0;
2027 }
2028
2029 /*
2030  * Print out an error if an invalid bit is set:
2031  */
2032 static inline int
2033 valid_state(struct task_struct *curr, struct held_lock *this,
2034             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
2035 {
2036         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit)))
2037                 return print_usage_bug(curr, this, bad_bit, new_bit);
2038         return 1;
2039 }
2040
2041 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2042                      enum lock_usage_bit new_bit);
2043
2044 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
2045
2046 /*
2047  * print irq inversion bug:
2048  */
2049 static int
2050 print_irq_inversion_bug(struct task_struct *curr,
2051                         struct lock_list *root, struct lock_list *other,
2052                         struct held_lock *this, int forwards,
2053                         const char *irqclass)
2054 {
2055         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2056                 return 0;
2057
2058         printk("\n=========================================================\n");
2059         printk(  "[ INFO: possible irq lock inversion dependency detected ]\n");
2060         print_kernel_version();
2061         printk(  "---------------------------------------------------------\n");
2062         printk("%s/%d just changed the state of lock:\n",
2063                 curr->comm, task_pid_nr(curr));
2064         print_lock(this);
2065         if (forwards)
2066                 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
2067         else
2068                 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
2069         print_lock_name(other->class);
2070         printk("\n\nand interrupts could create inverse lock ordering between them.\n\n");
2071
2072         printk("\nother info that might help us debug this:\n");
2073         lockdep_print_held_locks(curr);
2074
2075         printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
2076         if (!save_trace(&root->trace))
2077                 return 0;
2078         print_shortest_lock_dependencies(other, root);
2079
2080         printk("\nstack backtrace:\n");
2081         dump_stack();
2082
2083         return 0;
2084 }
2085
2086 /*
2087  * Prove that in the forwards-direction subgraph starting at <this>
2088  * there is no lock matching <mask>:
2089  */
2090 static int
2091 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
2092                      enum lock_usage_bit bit, const char *irqclass)
2093 {
2094         int ret;
2095         struct lock_list root;
2096         struct lock_list *uninitialized_var(target_entry);
2097
2098         root.parent = NULL;
2099         root.class = hlock_class(this);
2100         ret = find_usage_forwards(&root, bit, &target_entry);
2101         if (ret < 0)
2102                 return print_bfs_bug(ret);
2103         if (ret == 1)
2104                 return ret;
2105
2106         return print_irq_inversion_bug(curr, &root, target_entry,
2107                                         this, 1, irqclass);
2108 }
2109
2110 /*
2111  * Prove that in the backwards-direction subgraph starting at <this>
2112  * there is no lock matching <mask>:
2113  */
2114 static int
2115 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
2116                       enum lock_usage_bit bit, const char *irqclass)
2117 {
2118         int ret;
2119         struct lock_list root;
2120         struct lock_list *uninitialized_var(target_entry);
2121
2122         root.parent = NULL;
2123         root.class = hlock_class(this);
2124         ret = find_usage_backwards(&root, bit, &target_entry);
2125         if (ret < 0)
2126                 return print_bfs_bug(ret);
2127         if (ret == 1)
2128                 return ret;
2129
2130         return print_irq_inversion_bug(curr, &root, target_entry,
2131                                         this, 1, irqclass);
2132 }
2133
2134 void print_irqtrace_events(struct task_struct *curr)
2135 {
2136         printk("irq event stamp: %u\n", curr->irq_events);
2137         printk("hardirqs last  enabled at (%u): ", curr->hardirq_enable_event);
2138         print_ip_sym(curr->hardirq_enable_ip);
2139         printk("hardirqs last disabled at (%u): ", curr->hardirq_disable_event);
2140         print_ip_sym(curr->hardirq_disable_ip);
2141         printk("softirqs last  enabled at (%u): ", curr->softirq_enable_event);
2142         print_ip_sym(curr->softirq_enable_ip);
2143         printk("softirqs last disabled at (%u): ", curr->softirq_disable_event);
2144         print_ip_sym(curr->softirq_disable_ip);
2145 }
2146
2147 static int HARDIRQ_verbose(struct lock_class *class)
2148 {
2149 #if HARDIRQ_VERBOSE
2150         return class_filter(class);
2151 #endif
2152         return 0;
2153 }
2154
2155 static int SOFTIRQ_verbose(struct lock_class *class)
2156 {
2157 #if SOFTIRQ_VERBOSE
2158         return class_filter(class);
2159 #endif
2160         return 0;
2161 }
2162
2163 static int RECLAIM_FS_verbose(struct lock_class *class)
2164 {
2165 #if RECLAIM_VERBOSE
2166         return class_filter(class);
2167 #endif
2168         return 0;
2169 }
2170
2171 #define STRICT_READ_CHECKS      1
2172
2173 static int (*state_verbose_f[])(struct lock_class *class) = {
2174 #define LOCKDEP_STATE(__STATE) \
2175         __STATE##_verbose,
2176 #include "lockdep_states.h"
2177 #undef LOCKDEP_STATE
2178 };
2179
2180 static inline int state_verbose(enum lock_usage_bit bit,
2181                                 struct lock_class *class)
2182 {
2183         return state_verbose_f[bit >> 2](class);
2184 }
2185
2186 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
2187                              enum lock_usage_bit bit, const char *name);
2188
2189 static int
2190 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2191                 enum lock_usage_bit new_bit)
2192 {
2193         int excl_bit = exclusive_bit(new_bit);
2194         int read = new_bit & 1;
2195         int dir = new_bit & 2;
2196
2197         /*
2198          * mark USED_IN has to look forwards -- to ensure no dependency
2199          * has ENABLED state, which would allow recursion deadlocks.
2200          *
2201          * mark ENABLED has to look backwards -- to ensure no dependee
2202          * has USED_IN state, which, again, would allow  recursion deadlocks.
2203          */
2204         check_usage_f usage = dir ?
2205                 check_usage_backwards : check_usage_forwards;
2206
2207         /*
2208          * Validate that this particular lock does not have conflicting
2209          * usage states.
2210          */
2211         if (!valid_state(curr, this, new_bit, excl_bit))
2212                 return 0;
2213
2214         /*
2215          * Validate that the lock dependencies don't have conflicting usage
2216          * states.
2217          */
2218         if ((!read || !dir || STRICT_READ_CHECKS) &&
2219                         !usage(curr, this, excl_bit, state_name(new_bit & ~1)))
2220                 return 0;
2221
2222         /*
2223          * Check for read in write conflicts
2224          */
2225         if (!read) {
2226                 if (!valid_state(curr, this, new_bit, excl_bit + 1))
2227                         return 0;
2228
2229                 if (STRICT_READ_CHECKS &&
2230                         !usage(curr, this, excl_bit + 1,
2231                                 state_name(new_bit + 1)))
2232                         return 0;
2233         }
2234
2235         if (state_verbose(new_bit, hlock_class(this)))
2236                 return 2;
2237
2238         return 1;
2239 }
2240
2241 enum mark_type {
2242 #define LOCKDEP_STATE(__STATE)  __STATE,
2243 #include "lockdep_states.h"
2244 #undef LOCKDEP_STATE
2245 };
2246
2247 /*
2248  * Mark all held locks with a usage bit:
2249  */
2250 static int
2251 mark_held_locks(struct task_struct *curr, enum mark_type mark)
2252 {
2253         enum lock_usage_bit usage_bit;
2254         struct held_lock *hlock;
2255         int i;
2256
2257         for (i = 0; i < curr->lockdep_depth; i++) {
2258                 hlock = curr->held_locks + i;
2259
2260                 usage_bit = 2 + (mark << 2); /* ENABLED */
2261                 if (hlock->read)
2262                         usage_bit += 1; /* READ */
2263
2264                 BUG_ON(usage_bit >= LOCK_USAGE_STATES);
2265
2266                 if (!mark_lock(curr, hlock, usage_bit))
2267                         return 0;
2268         }
2269
2270         return 1;
2271 }
2272
2273 /*
2274  * Debugging helper: via this flag we know that we are in
2275  * 'early bootup code', and will warn about any invalid irqs-on event:
2276  */
2277 static int early_boot_irqs_enabled;
2278
2279 void early_boot_irqs_off(void)
2280 {
2281         early_boot_irqs_enabled = 0;
2282 }
2283
2284 void early_boot_irqs_on(void)
2285 {
2286         early_boot_irqs_enabled = 1;
2287 }
2288
2289 /*
2290  * Hardirqs will be enabled:
2291  */
2292 void trace_hardirqs_on_caller(unsigned long ip)
2293 {
2294         struct task_struct *curr = current;
2295
2296         time_hardirqs_on(CALLER_ADDR0, ip);
2297
2298         if (unlikely(!debug_locks || current->lockdep_recursion))
2299                 return;
2300
2301         if (DEBUG_LOCKS_WARN_ON(unlikely(!early_boot_irqs_enabled)))
2302                 return;
2303
2304         if (unlikely(curr->hardirqs_enabled)) {
2305                 debug_atomic_inc(&redundant_hardirqs_on);
2306                 return;
2307         }
2308         /* we'll do an OFF -> ON transition: */
2309         curr->hardirqs_enabled = 1;
2310
2311         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2312                 return;
2313         if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
2314                 return;
2315         /*
2316          * We are going to turn hardirqs on, so set the
2317          * usage bit for all held locks:
2318          */
2319         if (!mark_held_locks(curr, HARDIRQ))
2320                 return;
2321         /*
2322          * If we have softirqs enabled, then set the usage
2323          * bit for all held locks. (disabled hardirqs prevented
2324          * this bit from being set before)
2325          */
2326         if (curr->softirqs_enabled)
2327                 if (!mark_held_locks(curr, SOFTIRQ))
2328                         return;
2329
2330         curr->hardirq_enable_ip = ip;
2331         curr->hardirq_enable_event = ++curr->irq_events;
2332         debug_atomic_inc(&hardirqs_on_events);
2333 }
2334 EXPORT_SYMBOL(trace_hardirqs_on_caller);
2335
2336 void trace_hardirqs_on(void)
2337 {
2338         trace_hardirqs_on_caller(CALLER_ADDR0);
2339 }
2340 EXPORT_SYMBOL(trace_hardirqs_on);
2341
2342 /*
2343  * Hardirqs were disabled:
2344  */
2345 void trace_hardirqs_off_caller(unsigned long ip)
2346 {
2347         struct task_struct *curr = current;
2348
2349         time_hardirqs_off(CALLER_ADDR0, ip);
2350
2351         if (unlikely(!debug_locks || current->lockdep_recursion))
2352                 return;
2353
2354         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2355                 return;
2356
2357         if (curr->hardirqs_enabled) {
2358                 /*
2359                  * We have done an ON -> OFF transition:
2360                  */
2361                 curr->hardirqs_enabled = 0;
2362                 curr->hardirq_disable_ip = ip;
2363                 curr->hardirq_disable_event = ++curr->irq_events;
2364                 debug_atomic_inc(&hardirqs_off_events);
2365         } else
2366                 debug_atomic_inc(&redundant_hardirqs_off);
2367 }
2368 EXPORT_SYMBOL(trace_hardirqs_off_caller);
2369
2370 void trace_hardirqs_off(void)
2371 {
2372         trace_hardirqs_off_caller(CALLER_ADDR0);
2373 }
2374 EXPORT_SYMBOL(trace_hardirqs_off);
2375
2376 /*
2377  * Softirqs will be enabled:
2378  */
2379 void trace_softirqs_on(unsigned long ip)
2380 {
2381         struct task_struct *curr = current;
2382
2383         if (unlikely(!debug_locks))
2384                 return;
2385
2386         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2387                 return;
2388
2389         if (curr->softirqs_enabled) {
2390                 debug_atomic_inc(&redundant_softirqs_on);
2391                 return;
2392         }
2393
2394         /*
2395          * We'll do an OFF -> ON transition:
2396          */
2397         curr->softirqs_enabled = 1;
2398         curr->softirq_enable_ip = ip;
2399         curr->softirq_enable_event = ++curr->irq_events;
2400         debug_atomic_inc(&softirqs_on_events);
2401         /*
2402          * We are going to turn softirqs on, so set the
2403          * usage bit for all held locks, if hardirqs are
2404          * enabled too:
2405          */
2406         if (curr->hardirqs_enabled)
2407                 mark_held_locks(curr, SOFTIRQ);
2408 }
2409
2410 /*
2411  * Softirqs were disabled:
2412  */
2413 void trace_softirqs_off(unsigned long ip)
2414 {
2415         struct task_struct *curr = current;
2416
2417         if (unlikely(!debug_locks))
2418                 return;
2419
2420         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2421                 return;
2422
2423         if (curr->softirqs_enabled) {
2424                 /*
2425                  * We have done an ON -> OFF transition:
2426                  */
2427                 curr->softirqs_enabled = 0;
2428                 curr->softirq_disable_ip = ip;
2429                 curr->softirq_disable_event = ++curr->irq_events;
2430                 debug_atomic_inc(&softirqs_off_events);
2431                 DEBUG_LOCKS_WARN_ON(!softirq_count());
2432         } else
2433                 debug_atomic_inc(&redundant_softirqs_off);
2434 }
2435
2436 static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags)
2437 {
2438         struct task_struct *curr = current;
2439
2440         if (unlikely(!debug_locks))
2441                 return;
2442
2443         /* no reclaim without waiting on it */
2444         if (!(gfp_mask & __GFP_WAIT))
2445                 return;
2446
2447         /* this guy won't enter reclaim */
2448         if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
2449                 return;
2450
2451         /* We're only interested __GFP_FS allocations for now */
2452         if (!(gfp_mask & __GFP_FS))
2453                 return;
2454
2455         if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags)))
2456                 return;
2457
2458         mark_held_locks(curr, RECLAIM_FS);
2459 }
2460
2461 static void check_flags(unsigned long flags);
2462
2463 void lockdep_trace_alloc(gfp_t gfp_mask)
2464 {
2465         unsigned long flags;
2466
2467         if (unlikely(current->lockdep_recursion))
2468                 return;
2469
2470         raw_local_irq_save(flags);
2471         check_flags(flags);
2472         current->lockdep_recursion = 1;
2473         __lockdep_trace_alloc(gfp_mask, flags);
2474         current->lockdep_recursion = 0;
2475         raw_local_irq_restore(flags);
2476 }
2477
2478 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock)
2479 {
2480         /*
2481          * If non-trylock use in a hardirq or softirq context, then
2482          * mark the lock as used in these contexts:
2483          */
2484         if (!hlock->trylock) {
2485                 if (hlock->read) {
2486                         if (curr->hardirq_context)
2487                                 if (!mark_lock(curr, hlock,
2488                                                 LOCK_USED_IN_HARDIRQ_READ))
2489                                         return 0;
2490                         if (curr->softirq_context)
2491                                 if (!mark_lock(curr, hlock,
2492                                                 LOCK_USED_IN_SOFTIRQ_READ))
2493                                         return 0;
2494                 } else {
2495                         if (curr->hardirq_context)
2496                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
2497                                         return 0;
2498                         if (curr->softirq_context)
2499                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
2500                                         return 0;
2501                 }
2502         }
2503         if (!hlock->hardirqs_off) {
2504                 if (hlock->read) {
2505                         if (!mark_lock(curr, hlock,
2506                                         LOCK_ENABLED_HARDIRQ_READ))
2507                                 return 0;
2508                         if (curr->softirqs_enabled)
2509                                 if (!mark_lock(curr, hlock,
2510                                                 LOCK_ENABLED_SOFTIRQ_READ))
2511                                         return 0;
2512                 } else {
2513                         if (!mark_lock(curr, hlock,
2514                                         LOCK_ENABLED_HARDIRQ))
2515                                 return 0;
2516                         if (curr->softirqs_enabled)
2517                                 if (!mark_lock(curr, hlock,
2518                                                 LOCK_ENABLED_SOFTIRQ))
2519                                         return 0;
2520                 }
2521         }
2522
2523         /*
2524          * We reuse the irq context infrastructure more broadly as a general
2525          * context checking code. This tests GFP_FS recursion (a lock taken
2526          * during reclaim for a GFP_FS allocation is held over a GFP_FS
2527          * allocation).
2528          */
2529         if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) {
2530                 if (hlock->read) {
2531                         if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ))
2532                                         return 0;
2533                 } else {
2534                         if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS))
2535                                         return 0;
2536                 }
2537         }
2538
2539         return 1;
2540 }
2541
2542 static int separate_irq_context(struct task_struct *curr,
2543                 struct held_lock *hlock)
2544 {
2545         unsigned int depth = curr->lockdep_depth;
2546
2547         /*
2548          * Keep track of points where we cross into an interrupt context:
2549          */
2550         hlock->irq_context = 2*(curr->hardirq_context ? 1 : 0) +
2551                                 curr->softirq_context;
2552         if (depth) {
2553                 struct held_lock *prev_hlock;
2554
2555                 prev_hlock = curr->held_locks + depth-1;
2556                 /*
2557                  * If we cross into another context, reset the
2558                  * hash key (this also prevents the checking and the
2559                  * adding of the dependency to 'prev'):
2560                  */
2561                 if (prev_hlock->irq_context != hlock->irq_context)
2562                         return 1;
2563         }
2564         return 0;
2565 }
2566
2567 #else
2568
2569 static inline
2570 int mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2571                 enum lock_usage_bit new_bit)
2572 {
2573         WARN_ON(1);
2574         return 1;
2575 }
2576
2577 static inline int mark_irqflags(struct task_struct *curr,
2578                 struct held_lock *hlock)
2579 {
2580         return 1;
2581 }
2582
2583 static inline int separate_irq_context(struct task_struct *curr,
2584                 struct held_lock *hlock)
2585 {
2586         return 0;
2587 }
2588
2589 void lockdep_trace_alloc(gfp_t gfp_mask)
2590 {
2591 }
2592
2593 #endif
2594
2595 /*
2596  * Mark a lock with a usage bit, and validate the state transition:
2597  */
2598 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2599                              enum lock_usage_bit new_bit)
2600 {
2601         unsigned int new_mask = 1 << new_bit, ret = 1;
2602
2603         /*
2604          * If already set then do not dirty the cacheline,
2605          * nor do any checks:
2606          */
2607         if (likely(hlock_class(this)->usage_mask & new_mask))
2608                 return 1;
2609
2610         if (!graph_lock())
2611                 return 0;
2612         /*
2613          * Make sure we didnt race:
2614          */
2615         if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
2616                 graph_unlock();
2617                 return 1;
2618         }
2619
2620         hlock_class(this)->usage_mask |= new_mask;
2621
2622         if (!save_trace(hlock_class(this)->usage_traces + new_bit))
2623                 return 0;
2624
2625         switch (new_bit) {
2626 #define LOCKDEP_STATE(__STATE)                  \
2627         case LOCK_USED_IN_##__STATE:            \
2628         case LOCK_USED_IN_##__STATE##_READ:     \
2629         case LOCK_ENABLED_##__STATE:            \
2630         case LOCK_ENABLED_##__STATE##_READ:
2631 #include "lockdep_states.h"
2632 #undef LOCKDEP_STATE
2633                 ret = mark_lock_irq(curr, this, new_bit);
2634                 if (!ret)
2635                         return 0;
2636                 break;
2637         case LOCK_USED:
2638                 debug_atomic_dec(&nr_unused_locks);
2639                 break;
2640         default:
2641                 if (!debug_locks_off_graph_unlock())
2642                         return 0;
2643                 WARN_ON(1);
2644                 return 0;
2645         }
2646
2647         graph_unlock();
2648
2649         /*
2650          * We must printk outside of the graph_lock:
2651          */
2652         if (ret == 2) {
2653                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
2654                 print_lock(this);
2655                 print_irqtrace_events(curr);
2656                 dump_stack();
2657         }
2658
2659         return ret;
2660 }
2661
2662 /*
2663  * Initialize a lock instance's lock-class mapping info:
2664  */
2665 void lockdep_init_map(struct lockdep_map *lock, const char *name,
2666                       struct lock_class_key *key, int subclass)
2667 {
2668         lock->class_cache = NULL;
2669 #ifdef CONFIG_LOCK_STAT
2670         lock->cpu = raw_smp_processor_id();
2671 #endif
2672
2673         if (DEBUG_LOCKS_WARN_ON(!name)) {
2674                 lock->name = "NULL";
2675                 return;
2676         }
2677
2678         lock->name = name;
2679
2680         if (DEBUG_LOCKS_WARN_ON(!key))
2681                 return;
2682         /*
2683          * Sanity check, the lock-class key must be persistent:
2684          */
2685         if (!static_obj(key)) {
2686                 printk("BUG: key %p not in .data!\n", key);
2687                 DEBUG_LOCKS_WARN_ON(1);
2688                 return;
2689         }
2690         lock->key = key;
2691
2692         if (unlikely(!debug_locks))
2693                 return;
2694
2695         if (subclass)
2696                 register_lock_class(lock, subclass, 1);
2697 }
2698 EXPORT_SYMBOL_GPL(lockdep_init_map);
2699
2700 /*
2701  * This gets called for every mutex_lock*()/spin_lock*() operation.
2702  * We maintain the dependency maps and validate the locking attempt:
2703  */
2704 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2705                           int trylock, int read, int check, int hardirqs_off,
2706                           struct lockdep_map *nest_lock, unsigned long ip)
2707 {
2708         struct task_struct *curr = current;
2709         struct lock_class *class = NULL;
2710         struct held_lock *hlock;
2711         unsigned int depth, id;
2712         int chain_head = 0;
2713         u64 chain_key;
2714
2715         if (!prove_locking)
2716                 check = 1;
2717
2718         if (unlikely(!debug_locks))
2719                 return 0;
2720
2721         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2722                 return 0;
2723
2724         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
2725                 debug_locks_off();
2726                 printk("BUG: MAX_LOCKDEP_SUBCLASSES too low!\n");
2727                 printk("turning off the locking correctness validator.\n");
2728                 dump_stack();
2729                 return 0;
2730         }
2731
2732         if (!subclass)
2733                 class = lock->class_cache;
2734         /*
2735          * Not cached yet or subclass?
2736          */
2737         if (unlikely(!class)) {
2738                 class = register_lock_class(lock, subclass, 0);
2739                 if (!class)
2740                         return 0;
2741         }
2742         debug_atomic_inc((atomic_t *)&class->ops);
2743         if (very_verbose(class)) {
2744                 printk("\nacquire class [%p] %s", class->key, class->name);
2745                 if (class->name_version > 1)
2746                         printk("#%d", class->name_version);
2747                 printk("\n");
2748                 dump_stack();
2749         }
2750
2751         /*
2752          * Add the lock to the list of currently held locks.
2753          * (we dont increase the depth just yet, up until the
2754          * dependency checks are done)
2755          */
2756         depth = curr->lockdep_depth;
2757         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
2758                 return 0;
2759
2760         hlock = curr->held_locks + depth;
2761         if (DEBUG_LOCKS_WARN_ON(!class))
2762                 return 0;
2763         hlock->class_idx = class - lock_classes + 1;
2764         hlock->acquire_ip = ip;
2765         hlock->instance = lock;
2766         hlock->nest_lock = nest_lock;
2767         hlock->trylock = trylock;
2768         hlock->read = read;
2769         hlock->check = check;
2770         hlock->hardirqs_off = !!hardirqs_off;
2771 #ifdef CONFIG_LOCK_STAT
2772         hlock->waittime_stamp = 0;
2773         hlock->holdtime_stamp = sched_clock();
2774 #endif
2775
2776         if (check == 2 && !mark_irqflags(curr, hlock))
2777                 return 0;
2778
2779         /* mark it as used: */
2780         if (!mark_lock(curr, hlock, LOCK_USED))
2781                 return 0;
2782
2783         /*
2784          * Calculate the chain hash: it's the combined hash of all the
2785          * lock keys along the dependency chain. We save the hash value
2786          * at every step so that we can get the current hash easily
2787          * after unlock. The chain hash is then used to cache dependency
2788          * results.
2789          *
2790          * The 'key ID' is what is the most compact key value to drive
2791          * the hash, not class->key.
2792          */
2793         id = class - lock_classes;
2794         if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
2795                 return 0;
2796
2797         chain_key = curr->curr_chain_key;
2798         if (!depth) {
2799                 if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
2800                         return 0;
2801                 chain_head = 1;
2802         }
2803
2804         hlock->prev_chain_key = chain_key;
2805         if (separate_irq_context(curr, hlock)) {
2806                 chain_key = 0;
2807                 chain_head = 1;
2808         }
2809         chain_key = iterate_chain_key(chain_key, id);
2810
2811         if (!validate_chain(curr, lock, hlock, chain_head, chain_key))
2812                 return 0;
2813
2814         curr->curr_chain_key = chain_key;
2815         curr->lockdep_depth++;
2816         check_chain_key(curr);
2817 #ifdef CONFIG_DEBUG_LOCKDEP
2818         if (unlikely(!debug_locks))
2819                 return 0;
2820 #endif
2821         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
2822                 debug_locks_off();
2823                 printk("BUG: MAX_LOCK_DEPTH too low!\n");
2824                 printk("turning off the locking correctness validator.\n");
2825                 dump_stack();
2826                 return 0;
2827         }
2828
2829         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
2830                 max_lockdep_depth = curr->lockdep_depth;
2831
2832         return 1;
2833 }
2834
2835 static int
2836 print_unlock_inbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
2837                            unsigned long ip)
2838 {
2839         if (!debug_locks_off())
2840                 return 0;
2841         if (debug_locks_silent)
2842                 return 0;
2843
2844         printk("\n=====================================\n");
2845         printk(  "[ BUG: bad unlock balance detected! ]\n");
2846         printk(  "-------------------------------------\n");
2847         printk("%s/%d is trying to release lock (",
2848                 curr->comm, task_pid_nr(curr));
2849         print_lockdep_cache(lock);
2850         printk(") at:\n");
2851         print_ip_sym(ip);
2852         printk("but there are no more locks to release!\n");
2853         printk("\nother info that might help us debug this:\n");
2854         lockdep_print_held_locks(curr);
2855
2856         printk("\nstack backtrace:\n");
2857         dump_stack();
2858
2859         return 0;
2860 }
2861
2862 /*
2863  * Common debugging checks for both nested and non-nested unlock:
2864  */
2865 static int check_unlock(struct task_struct *curr, struct lockdep_map *lock,
2866                         unsigned long ip)
2867 {
2868         if (unlikely(!debug_locks))
2869                 return 0;
2870         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2871                 return 0;
2872
2873         if (curr->lockdep_depth <= 0)
2874                 return print_unlock_inbalance_bug(curr, lock, ip);
2875
2876         return 1;
2877 }
2878
2879 static int
2880 __lock_set_class(struct lockdep_map *lock, const char *name,
2881                  struct lock_class_key *key, unsigned int subclass,
2882                  unsigned long ip)
2883 {
2884         struct task_struct *curr = current;
2885         struct held_lock *hlock, *prev_hlock;
2886         struct lock_class *class;
2887         unsigned int depth;
2888         int i;
2889
2890         depth = curr->lockdep_depth;
2891         if (DEBUG_LOCKS_WARN_ON(!depth))
2892                 return 0;
2893
2894         prev_hlock = NULL;
2895         for (i = depth-1; i >= 0; i--) {
2896                 hlock = curr->held_locks + i;
2897                 /*
2898                  * We must not cross into another context:
2899                  */
2900                 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
2901                         break;
2902                 if (hlock->instance == lock)
2903                         goto found_it;
2904                 prev_hlock = hlock;
2905         }
2906         return print_unlock_inbalance_bug(curr, lock, ip);
2907
2908 found_it:
2909         lockdep_init_map(lock, name, key, 0);
2910         class = register_lock_class(lock, subclass, 0);
2911         hlock->class_idx = class - lock_classes + 1;
2912
2913         curr->lockdep_depth = i;
2914         curr->curr_chain_key = hlock->prev_chain_key;
2915
2916         for (; i < depth; i++) {
2917                 hlock = curr->held_locks + i;
2918                 if (!__lock_acquire(hlock->instance,
2919                         hlock_class(hlock)->subclass, hlock->trylock,
2920                                 hlock->read, hlock->check, hlock->hardirqs_off,
2921                                 hlock->nest_lock, hlock->acquire_ip))
2922                         return 0;
2923         }
2924
2925         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
2926                 return 0;
2927         return 1;
2928 }
2929
2930 /*
2931  * Remove the lock to the list of currently held locks in a
2932  * potentially non-nested (out of order) manner. This is a
2933  * relatively rare operation, as all the unlock APIs default
2934  * to nested mode (which uses lock_release()):
2935  */
2936 static int
2937 lock_release_non_nested(struct task_struct *curr,
2938                         struct lockdep_map *lock, unsigned long ip)
2939 {
2940         struct held_lock *hlock, *prev_hlock;
2941         unsigned int depth;
2942         int i;
2943
2944         /*
2945          * Check whether the lock exists in the current stack
2946          * of held locks:
2947          */
2948         depth = curr->lockdep_depth;
2949         if (DEBUG_LOCKS_WARN_ON(!depth))
2950                 return 0;
2951
2952         prev_hlock = NULL;
2953         for (i = depth-1; i >= 0; i--) {
2954                 hlock = curr->held_locks + i;
2955                 /*
2956                  * We must not cross into another context:
2957                  */
2958                 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
2959                         break;
2960                 if (hlock->instance == lock)
2961                         goto found_it;
2962                 prev_hlock = hlock;
2963         }
2964         return print_unlock_inbalance_bug(curr, lock, ip);
2965
2966 found_it:
2967         lock_release_holdtime(hlock);
2968
2969         /*
2970          * We have the right lock to unlock, 'hlock' points to it.
2971          * Now we remove it from the stack, and add back the other
2972          * entries (if any), recalculating the hash along the way:
2973          */
2974         curr->lockdep_depth = i;
2975         curr->curr_chain_key = hlock->prev_chain_key;
2976
2977         for (i++; i < depth; i++) {
2978                 hlock = curr->held_locks + i;
2979                 if (!__lock_acquire(hlock->instance,
2980                         hlock_class(hlock)->subclass, hlock->trylock,
2981                                 hlock->read, hlock->check, hlock->hardirqs_off,
2982                                 hlock->nest_lock, hlock->acquire_ip))
2983                         return 0;
2984         }
2985
2986         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1))
2987                 return 0;
2988         return 1;
2989 }
2990
2991 /*
2992  * Remove the lock to the list of currently held locks - this gets
2993  * called on mutex_unlock()/spin_unlock*() (or on a failed
2994  * mutex_lock_interruptible()). This is done for unlocks that nest
2995  * perfectly. (i.e. the current top of the lock-stack is unlocked)
2996  */
2997 static int lock_release_nested(struct task_struct *curr,
2998                                struct lockdep_map *lock, unsigned long ip)
2999 {
3000         struct held_lock *hlock;
3001         unsigned int depth;
3002
3003         /*
3004          * Pop off the top of the lock stack:
3005          */
3006         depth = curr->lockdep_depth - 1;
3007         hlock = curr->held_locks + depth;
3008
3009         /*
3010          * Is the unlock non-nested:
3011          */
3012         if (hlock->instance != lock)
3013                 return lock_release_non_nested(curr, lock, ip);
3014         curr->lockdep_depth--;
3015
3016         if (DEBUG_LOCKS_WARN_ON(!depth && (hlock->prev_chain_key != 0)))
3017                 return 0;
3018
3019         curr->curr_chain_key = hlock->prev_chain_key;
3020
3021         lock_release_holdtime(hlock);
3022
3023 #ifdef CONFIG_DEBUG_LOCKDEP
3024         hlock->prev_chain_key = 0;
3025         hlock->class_idx = 0;
3026         hlock->acquire_ip = 0;
3027         hlock->irq_context = 0;
3028 #endif
3029         return 1;
3030 }
3031
3032 /*
3033  * Remove the lock to the list of currently held locks - this gets
3034  * called on mutex_unlock()/spin_unlock*() (or on a failed
3035  * mutex_lock_interruptible()). This is done for unlocks that nest
3036  * perfectly. (i.e. the current top of the lock-stack is unlocked)
3037  */
3038 static void
3039 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
3040 {
3041         struct task_struct *curr = current;
3042
3043         if (!check_unlock(curr, lock, ip))
3044                 return;
3045
3046         if (nested) {
3047                 if (!lock_release_nested(curr, lock, ip))
3048                         return;
3049         } else {
3050                 if (!lock_release_non_nested(curr, lock, ip))
3051                         return;
3052         }
3053
3054         check_chain_key(curr);
3055 }
3056
3057 /*
3058  * Check whether we follow the irq-flags state precisely:
3059  */
3060 static void check_flags(unsigned long flags)
3061 {
3062 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \
3063     defined(CONFIG_TRACE_IRQFLAGS)
3064         if (!debug_locks)
3065                 return;
3066
3067         if (irqs_disabled_flags(flags)) {
3068                 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
3069                         printk("possible reason: unannotated irqs-off.\n");
3070                 }
3071         } else {
3072                 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
3073                         printk("possible reason: unannotated irqs-on.\n");
3074                 }
3075         }
3076
3077         /*
3078          * We dont accurately track softirq state in e.g.
3079          * hardirq contexts (such as on 4KSTACKS), so only
3080          * check if not in hardirq contexts:
3081          */
3082         if (!hardirq_count()) {
3083                 if (softirq_count())
3084                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
3085                 else
3086                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
3087         }
3088
3089         if (!debug_locks)
3090                 print_irqtrace_events(current);
3091 #endif
3092 }
3093
3094 void lock_set_class(struct lockdep_map *lock, const char *name,
3095                     struct lock_class_key *key, unsigned int subclass,
3096                     unsigned long ip)
3097 {
3098         unsigned long flags;
3099
3100         if (unlikely(current->lockdep_recursion))
3101                 return;
3102
3103         raw_local_irq_save(flags);
3104         current->lockdep_recursion = 1;
3105         check_flags(flags);
3106         if (__lock_set_class(lock, name, key, subclass, ip))
3107                 check_chain_key(current);
3108         current->lockdep_recursion = 0;
3109         raw_local_irq_restore(flags);
3110 }
3111 EXPORT_SYMBOL_GPL(lock_set_class);
3112
3113 /*
3114  * We are not always called with irqs disabled - do that here,
3115  * and also avoid lockdep recursion:
3116  */
3117 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3118                           int trylock, int read, int check,
3119                           struct lockdep_map *nest_lock, unsigned long ip)
3120 {
3121         unsigned long flags;
3122
3123         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
3124
3125         if (unlikely(current->lockdep_recursion))
3126                 return;
3127
3128         raw_local_irq_save(flags);
3129         check_flags(flags);
3130
3131         current->lockdep_recursion = 1;
3132         __lock_acquire(lock, subclass, trylock, read, check,
3133                        irqs_disabled_flags(flags), nest_lock, ip);
3134         current->lockdep_recursion = 0;
3135         raw_local_irq_restore(flags);
3136 }
3137 EXPORT_SYMBOL_GPL(lock_acquire);
3138
3139 void lock_release(struct lockdep_map *lock, int nested,
3140                           unsigned long ip)
3141 {
3142         unsigned long flags;
3143
3144         trace_lock_release(lock, nested, ip);
3145
3146         if (unlikely(current->lockdep_recursion))
3147                 return;
3148
3149         raw_local_irq_save(flags);
3150         check_flags(flags);
3151         current->lockdep_recursion = 1;
3152         __lock_release(lock, nested, ip);
3153         current->lockdep_recursion = 0;
3154         raw_local_irq_restore(flags);
3155 }
3156 EXPORT_SYMBOL_GPL(lock_release);
3157
3158 void lockdep_set_current_reclaim_state(gfp_t gfp_mask)
3159 {
3160         current->lockdep_reclaim_gfp = gfp_mask;
3161 }
3162
3163 void lockdep_clear_current_reclaim_state(void)
3164 {
3165         current->lockdep_reclaim_gfp = 0;
3166 }
3167
3168 #ifdef CONFIG_LOCK_STAT
3169 static int
3170 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
3171                            unsigned long ip)
3172 {
3173         if (!debug_locks_off())
3174                 return 0;
3175         if (debug_locks_silent)
3176                 return 0;
3177
3178         printk("\n=================================\n");
3179         printk(  "[ BUG: bad contention detected! ]\n");
3180         printk(  "---------------------------------\n");
3181         printk("%s/%d is trying to contend lock (",
3182                 curr->comm, task_pid_nr(curr));
3183         print_lockdep_cache(lock);
3184         printk(") at:\n");
3185         print_ip_sym(ip);
3186         printk("but there are no locks held!\n");
3187         printk("\nother info that might help us debug this:\n");
3188         lockdep_print_held_locks(curr);
3189
3190         printk("\nstack backtrace:\n");
3191         dump_stack();
3192
3193         return 0;
3194 }
3195
3196 static void
3197 __lock_contended(struct lockdep_map *lock, unsigned long ip)
3198 {
3199         struct task_struct *curr = current;
3200         struct held_lock *hlock, *prev_hlock;
3201         struct lock_class_stats *stats;
3202         unsigned int depth;
3203         int i, contention_point, contending_point;
3204
3205         depth = curr->lockdep_depth;
3206         if (DEBUG_LOCKS_WARN_ON(!depth))
3207                 return;
3208
3209         prev_hlock = NULL;
3210         for (i = depth-1; i >= 0; i--) {
3211                 hlock = curr->held_locks + i;
3212                 /*
3213                  * We must not cross into another context:
3214                  */
3215                 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3216                         break;
3217                 if (hlock->instance == lock)
3218                         goto found_it;
3219                 prev_hlock = hlock;
3220         }
3221         print_lock_contention_bug(curr, lock, ip);
3222         return;
3223
3224 found_it:
3225         hlock->waittime_stamp = sched_clock();
3226
3227         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
3228         contending_point = lock_point(hlock_class(hlock)->contending_point,
3229                                       lock->ip);
3230
3231         stats = get_lock_stats(hlock_class(hlock));
3232         if (contention_point < LOCKSTAT_POINTS)
3233                 stats->contention_point[contention_point]++;
3234         if (contending_point < LOCKSTAT_POINTS)
3235                 stats->contending_point[contending_point]++;
3236         if (lock->cpu != smp_processor_id())
3237                 stats->bounces[bounce_contended + !!hlock->read]++;
3238         put_lock_stats(stats);
3239 }
3240
3241 static void
3242 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
3243 {
3244         struct task_struct *curr = current;
3245         struct held_lock *hlock, *prev_hlock;
3246         struct lock_class_stats *stats;
3247         unsigned int depth;
3248         u64 now;
3249         s64 waittime = 0;
3250         int i, cpu;
3251
3252         depth = curr->lockdep_depth;
3253         if (DEBUG_LOCKS_WARN_ON(!depth))
3254                 return;
3255
3256         prev_hlock = NULL;
3257         for (i = depth-1; i >= 0; i--) {
3258                 hlock = curr->held_locks + i;
3259                 /*
3260                  * We must not cross into another context:
3261                  */
3262                 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3263                         break;
3264                 if (hlock->instance == lock)
3265                         goto found_it;
3266                 prev_hlock = hlock;
3267         }
3268         print_lock_contention_bug(curr, lock, _RET_IP_);
3269         return;
3270
3271 found_it:
3272         cpu = smp_processor_id();
3273         if (hlock->waittime_stamp) {
3274                 now = sched_clock();
3275                 waittime = now - hlock->waittime_stamp;
3276                 hlock->holdtime_stamp = now;
3277         }
3278
3279         trace_lock_acquired(lock, ip, waittime);
3280
3281         stats = get_lock_stats(hlock_class(hlock));
3282         if (waittime) {
3283                 if (hlock->read)
3284                         lock_time_inc(&stats->read_waittime, waittime);
3285                 else
3286                         lock_time_inc(&stats->write_waittime, waittime);
3287         }
3288         if (lock->cpu != cpu)
3289                 stats->bounces[bounce_acquired + !!hlock->read]++;
3290         put_lock_stats(stats);
3291
3292         lock->cpu = cpu;
3293         lock->ip = ip;
3294 }
3295
3296 void lock_contended(struct lockdep_map *lock, unsigned long ip)
3297 {
3298         unsigned long flags;
3299
3300         trace_lock_contended(lock, ip);
3301
3302         if (unlikely(!lock_stat))
3303                 return;
3304
3305         if (unlikely(current->lockdep_recursion))
3306                 return;
3307
3308         raw_local_irq_save(flags);
3309         check_flags(flags);
3310         current->lockdep_recursion = 1;
3311         __lock_contended(lock, ip);
3312         current->lockdep_recursion = 0;
3313         raw_local_irq_restore(flags);
3314 }
3315 EXPORT_SYMBOL_GPL(lock_contended);
3316
3317 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
3318 {
3319         unsigned long flags;
3320
3321         if (unlikely(!lock_stat))
3322                 return;
3323
3324         if (unlikely(current->lockdep_recursion))
3325                 return;
3326
3327         raw_local_irq_save(flags);
3328         check_flags(flags);
3329         current->lockdep_recursion = 1;
3330         __lock_acquired(lock, ip);
3331         current->lockdep_recursion = 0;
3332         raw_local_irq_restore(flags);
3333 }
3334 EXPORT_SYMBOL_GPL(lock_acquired);
3335 #endif
3336
3337 /*
3338  * Used by the testsuite, sanitize the validator state
3339  * after a simulated failure:
3340  */
3341
3342 void lockdep_reset(void)
3343 {
3344         unsigned long flags;
3345         int i;
3346
3347         raw_local_irq_save(flags);
3348         current->curr_chain_key = 0;
3349         current->lockdep_depth = 0;
3350         current->lockdep_recursion = 0;
3351         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
3352         nr_hardirq_chains = 0;
3353         nr_softirq_chains = 0;
3354         nr_process_chains = 0;
3355         debug_locks = 1;
3356         for (i = 0; i < CHAINHASH_SIZE; i++)
3357                 INIT_LIST_HEAD(chainhash_table + i);
3358         raw_local_irq_restore(flags);
3359 }
3360
3361 static void zap_class(struct lock_class *class)
3362 {
3363         int i;
3364
3365         /*
3366          * Remove all dependencies this lock is
3367          * involved in:
3368          */
3369         for (i = 0; i < nr_list_entries; i++) {
3370                 if (list_entries[i].class == class)
3371                         list_del_rcu(&list_entries[i].entry);
3372         }
3373         /*
3374          * Unhash the class and remove it from the all_lock_classes list:
3375          */
3376         list_del_rcu(&class->hash_entry);
3377         list_del_rcu(&class->lock_entry);
3378
3379         class->key = NULL;
3380 }
3381
3382 static inline int within(const void *addr, void *start, unsigned long size)
3383 {
3384         return addr >= start && addr < start + size;
3385 }
3386
3387 void lockdep_free_key_range(void *start, unsigned long size)
3388 {
3389         struct lock_class *class, *next;
3390         struct list_head *head;
3391         unsigned long flags;
3392         int i;
3393         int locked;
3394
3395         raw_local_irq_save(flags);
3396         locked = graph_lock();
3397
3398         /*
3399          * Unhash all classes that were created by this module:
3400          */
3401         for (i = 0; i < CLASSHASH_SIZE; i++) {
3402                 head = classhash_table + i;
3403                 if (list_empty(head))
3404                         continue;
3405                 list_for_each_entry_safe(class, next, head, hash_entry) {
3406                         if (within(class->key, start, size))
3407                                 zap_class(class);
3408                         else if (within(class->name, start, size))
3409                                 zap_class(class);
3410                 }
3411         }
3412
3413         if (locked)
3414                 graph_unlock();
3415         raw_local_irq_restore(flags);
3416 }
3417
3418 void lockdep_reset_lock(struct lockdep_map *lock)
3419 {
3420         struct lock_class *class, *next;
3421         struct list_head *head;
3422         unsigned long flags;
3423         int i, j;
3424         int locked;
3425
3426         raw_local_irq_save(flags);
3427
3428         /*
3429          * Remove all classes this lock might have:
3430          */
3431         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
3432                 /*
3433                  * If the class exists we look it up and zap it:
3434                  */
3435                 class = look_up_lock_class(lock, j);
3436                 if (class)
3437                         zap_class(class);
3438         }
3439         /*
3440          * Debug check: in the end all mapped classes should
3441          * be gone.
3442          */
3443         locked = graph_lock();
3444         for (i = 0; i < CLASSHASH_SIZE; i++) {
3445                 head = classhash_table + i;
3446                 if (list_empty(head))
3447                         continue;
3448                 list_for_each_entry_safe(class, next, head, hash_entry) {
3449                         if (unlikely(class == lock->class_cache)) {
3450                                 if (debug_locks_off_graph_unlock())
3451                                         WARN_ON(1);
3452                                 goto out_restore;
3453                         }
3454                 }
3455         }
3456         if (locked)
3457                 graph_unlock();
3458
3459 out_restore:
3460         raw_local_irq_restore(flags);
3461 }
3462
3463 void lockdep_init(void)
3464 {
3465         int i;
3466
3467         /*
3468          * Some architectures have their own start_kernel()
3469          * code which calls lockdep_init(), while we also
3470          * call lockdep_init() from the start_kernel() itself,
3471          * and we want to initialize the hashes only once:
3472          */
3473         if (lockdep_initialized)
3474                 return;
3475
3476         for (i = 0; i < CLASSHASH_SIZE; i++)
3477                 INIT_LIST_HEAD(classhash_table + i);
3478
3479         for (i = 0; i < CHAINHASH_SIZE; i++)
3480                 INIT_LIST_HEAD(chainhash_table + i);
3481
3482         lockdep_initialized = 1;
3483 }
3484
3485 void __init lockdep_info(void)
3486 {
3487         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
3488
3489         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
3490         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
3491         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
3492         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
3493         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
3494         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
3495         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
3496
3497         printk(" memory used by lock dependency info: %lu kB\n",
3498                 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS +
3499                 sizeof(struct list_head) * CLASSHASH_SIZE +
3500                 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
3501                 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
3502                 sizeof(struct list_head) * CHAINHASH_SIZE) / 1024
3503 #ifdef CONFIG_PROVE_LOCKING
3504                 + sizeof(struct circular_queue) + sizeof(bfs_accessed)
3505 #endif
3506                 );
3507
3508         printk(" per task-struct memory footprint: %lu bytes\n",
3509                 sizeof(struct held_lock) * MAX_LOCK_DEPTH);
3510
3511 #ifdef CONFIG_DEBUG_LOCKDEP
3512         if (lockdep_init_error) {
3513                 printk("WARNING: lockdep init error! Arch code didn't call lockdep_init() early enough?\n");
3514                 printk("Call stack leading to lockdep invocation was:\n");
3515                 print_stack_trace(&lockdep_init_trace, 0);
3516         }
3517 #endif
3518 }
3519
3520 static void
3521 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
3522                      const void *mem_to, struct held_lock *hlock)
3523 {
3524         if (!debug_locks_off())
3525                 return;
3526         if (debug_locks_silent)
3527                 return;
3528
3529         printk("\n=========================\n");
3530         printk(  "[ BUG: held lock freed! ]\n");
3531         printk(  "-------------------------\n");
3532         printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
3533                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
3534         print_lock(hlock);
3535         lockdep_print_held_locks(curr);
3536
3537         printk("\nstack backtrace:\n");
3538         dump_stack();
3539 }
3540
3541 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
3542                                 const void* lock_from, unsigned long lock_len)
3543 {
3544         return lock_from + lock_len <= mem_from ||
3545                 mem_from + mem_len <= lock_from;
3546 }
3547
3548 /*
3549  * Called when kernel memory is freed (or unmapped), or if a lock
3550  * is destroyed or reinitialized - this code checks whether there is
3551  * any held lock in the memory range of <from> to <to>:
3552  */
3553 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
3554 {
3555         struct task_struct *curr = current;
3556         struct held_lock *hlock;
3557         unsigned long flags;
3558         int i;
3559
3560         if (unlikely(!debug_locks))
3561                 return;
3562
3563         local_irq_save(flags);
3564         for (i = 0; i < curr->lockdep_depth; i++) {
3565                 hlock = curr->held_locks + i;
3566
3567                 if (not_in_range(mem_from, mem_len, hlock->instance,
3568                                         sizeof(*hlock->instance)))
3569                         continue;
3570
3571                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
3572                 break;
3573         }
3574         local_irq_restore(flags);
3575 }
3576 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
3577
3578 static void print_held_locks_bug(struct task_struct *curr)
3579 {
3580         if (!debug_locks_off())
3581                 return;
3582         if (debug_locks_silent)
3583                 return;
3584
3585         printk("\n=====================================\n");
3586         printk(  "[ BUG: lock held at task exit time! ]\n");
3587         printk(  "-------------------------------------\n");
3588         printk("%s/%d is exiting with locks still held!\n",
3589                 curr->comm, task_pid_nr(curr));
3590         lockdep_print_held_locks(curr);
3591
3592         printk("\nstack backtrace:\n");
3593         dump_stack();
3594 }
3595
3596 void debug_check_no_locks_held(struct task_struct *task)
3597 {
3598         if (unlikely(task->lockdep_depth > 0))
3599                 print_held_locks_bug(task);
3600 }
3601
3602 void debug_show_all_locks(void)
3603 {
3604         struct task_struct *g, *p;
3605         int count = 10;
3606         int unlock = 1;
3607
3608         if (unlikely(!debug_locks)) {
3609                 printk("INFO: lockdep is turned off.\n");
3610                 return;
3611         }
3612         printk("\nShowing all locks held in the system:\n");
3613
3614         /*
3615          * Here we try to get the tasklist_lock as hard as possible,
3616          * if not successful after 2 seconds we ignore it (but keep
3617          * trying). This is to enable a debug printout even if a
3618          * tasklist_lock-holding task deadlocks or crashes.
3619          */
3620 retry:
3621         if (!read_trylock(&tasklist_lock)) {
3622                 if (count == 10)
3623                         printk("hm, tasklist_lock locked, retrying... ");
3624                 if (count) {
3625                         count--;
3626                         printk(" #%d", 10-count);
3627                         mdelay(200);
3628                         goto retry;
3629                 }
3630                 printk(" ignoring it.\n");
3631                 unlock = 0;
3632         } else {
3633                 if (count != 10)
3634                         printk(KERN_CONT " locked it.\n");
3635         }
3636
3637         do_each_thread(g, p) {
3638                 /*
3639                  * It's not reliable to print a task's held locks
3640                  * if it's not sleeping (or if it's not the current
3641                  * task):
3642                  */
3643                 if (p->state == TASK_RUNNING && p != current)
3644                         continue;
3645                 if (p->lockdep_depth)
3646                         lockdep_print_held_locks(p);
3647                 if (!unlock)
3648                         if (read_trylock(&tasklist_lock))
3649                                 unlock = 1;
3650         } while_each_thread(g, p);
3651
3652         printk("\n");
3653         printk("=============================================\n\n");
3654
3655         if (unlock)
3656                 read_unlock(&tasklist_lock);
3657 }
3658 EXPORT_SYMBOL_GPL(debug_show_all_locks);
3659
3660 /*
3661  * Careful: only use this function if you are sure that
3662  * the task cannot run in parallel!
3663  */
3664 void __debug_show_held_locks(struct task_struct *task)
3665 {
3666         if (unlikely(!debug_locks)) {
3667                 printk("INFO: lockdep is turned off.\n");
3668                 return;
3669         }
3670         lockdep_print_held_locks(task);
3671 }
3672 EXPORT_SYMBOL_GPL(__debug_show_held_locks);
3673
3674 void debug_show_held_locks(struct task_struct *task)
3675 {
3676                 __debug_show_held_locks(task);
3677 }
3678 EXPORT_SYMBOL_GPL(debug_show_held_locks);
3679
3680 void lockdep_sys_exit(void)
3681 {
3682         struct task_struct *curr = current;
3683
3684         if (unlikely(curr->lockdep_depth)) {
3685                 if (!debug_locks_off())
3686                         return;
3687                 printk("\n================================================\n");
3688                 printk(  "[ BUG: lock held when returning to user space! ]\n");
3689                 printk(  "------------------------------------------------\n");
3690                 printk("%s/%d is leaving the kernel with locks still held!\n",
3691                                 curr->comm, curr->pid);
3692                 lockdep_print_held_locks(curr);
3693         }
3694 }