irq: use WARN() instead of WARN_ON().
[safe/jmp/linux-2.6] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20
21 #include "internals.h"
22
23 /*
24  * lockdep: we want to handle all irq_desc locks as a single lock-class:
25  */
26 struct lock_class_key irq_desc_lock_class;
27
28 /**
29  * handle_bad_irq - handle spurious and unhandled irqs
30  * @irq:       the interrupt number
31  * @desc:      description of the interrupt
32  *
33  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
34  */
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
36 {
37         print_irq_desc(irq, desc);
38         kstat_incr_irqs_this_cpu(irq, desc);
39         ack_bad_irq(irq);
40 }
41
42 /*
43  * Linux has a controller-independent interrupt architecture.
44  * Every controller has a 'controller-template', that is used
45  * by the main code to do the right thing. Each driver-visible
46  * interrupt source is transparently wired to the appropriate
47  * controller. Thus drivers need not be aware of the
48  * interrupt-controller.
49  *
50  * The code is designed to be easily extended with new/different
51  * interrupt controllers, without having to do assembly magic or
52  * having to touch the generic code.
53  *
54  * Controller mappings for all interrupt sources:
55  */
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
58
59 #ifdef CONFIG_SPARSE_IRQ
60 static struct irq_desc irq_desc_init = {
61         .irq        = -1,
62         .status     = IRQ_DISABLED,
63         .chip       = &no_irq_chip,
64         .handle_irq = handle_bad_irq,
65         .depth      = 1,
66         .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
67 };
68
69 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
70 {
71         unsigned long bytes;
72         char *ptr;
73         int node;
74
75         /* Compute how many bytes we need per irq and allocate them */
76         bytes = nr * sizeof(unsigned int);
77
78         node = cpu_to_node(cpu);
79         ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
80         printk(KERN_DEBUG "  alloc kstat_irqs on cpu %d node %d\n", cpu, node);
81
82         if (ptr)
83                 desc->kstat_irqs = (unsigned int *)ptr;
84 }
85
86 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
87 {
88         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
89
90         spin_lock_init(&desc->lock);
91         desc->irq = irq;
92 #ifdef CONFIG_SMP
93         desc->cpu = cpu;
94 #endif
95         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
96         init_kstat_irqs(desc, cpu, nr_cpu_ids);
97         if (!desc->kstat_irqs) {
98                 printk(KERN_ERR "can not alloc kstat_irqs\n");
99                 BUG_ON(1);
100         }
101         if (!init_alloc_desc_masks(desc, cpu, false)) {
102                 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
103                 BUG_ON(1);
104         }
105         arch_init_chip_data(desc, cpu);
106 }
107
108 /*
109  * Protect the sparse_irqs:
110  */
111 DEFINE_SPINLOCK(sparse_irq_lock);
112
113 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
114
115 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
116         [0 ... NR_IRQS_LEGACY-1] = {
117                 .irq        = -1,
118                 .status     = IRQ_DISABLED,
119                 .chip       = &no_irq_chip,
120                 .handle_irq = handle_bad_irq,
121                 .depth      = 1,
122                 .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
123         }
124 };
125
126 /* FIXME: use bootmem alloc ...*/
127 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
128
129 int __init early_irq_init(void)
130 {
131         struct irq_desc *desc;
132         int legacy_count;
133         int i;
134
135         printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
136
137         desc = irq_desc_legacy;
138         legacy_count = ARRAY_SIZE(irq_desc_legacy);
139
140         for (i = 0; i < legacy_count; i++) {
141                 desc[i].irq = i;
142                 desc[i].kstat_irqs = kstat_irqs_legacy[i];
143                 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
144                 init_alloc_desc_masks(&desc[i], 0, true);
145                 irq_desc_ptrs[i] = desc + i;
146         }
147
148         for (i = legacy_count; i < nr_irqs; i++)
149                 irq_desc_ptrs[i] = NULL;
150
151         return arch_early_irq_init();
152 }
153
154 struct irq_desc *irq_to_desc(unsigned int irq)
155 {
156         return (irq < nr_irqs) ? irq_desc_ptrs[irq] : NULL;
157 }
158
159 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
160 {
161         struct irq_desc *desc;
162         unsigned long flags;
163         int node;
164
165         if (irq >= nr_irqs) {
166                 WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
167                         irq, nr_irqs);
168                 return NULL;
169         }
170
171         desc = irq_desc_ptrs[irq];
172         if (desc)
173                 return desc;
174
175         spin_lock_irqsave(&sparse_irq_lock, flags);
176
177         /* We have to check it to avoid races with another CPU */
178         desc = irq_desc_ptrs[irq];
179         if (desc)
180                 goto out_unlock;
181
182         node = cpu_to_node(cpu);
183         desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
184         printk(KERN_DEBUG "  alloc irq_desc for %d on cpu %d node %d\n",
185                  irq, cpu, node);
186         if (!desc) {
187                 printk(KERN_ERR "can not alloc irq_desc\n");
188                 BUG_ON(1);
189         }
190         init_one_irq_desc(irq, desc, cpu);
191
192         irq_desc_ptrs[irq] = desc;
193
194 out_unlock:
195         spin_unlock_irqrestore(&sparse_irq_lock, flags);
196
197         return desc;
198 }
199
200 #else /* !CONFIG_SPARSE_IRQ */
201
202 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
203         [0 ... NR_IRQS-1] = {
204                 .status = IRQ_DISABLED,
205                 .chip = &no_irq_chip,
206                 .handle_irq = handle_bad_irq,
207                 .depth = 1,
208                 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
209         }
210 };
211
212 int __init early_irq_init(void)
213 {
214         struct irq_desc *desc;
215         int count;
216         int i;
217
218         printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
219
220         desc = irq_desc;
221         count = ARRAY_SIZE(irq_desc);
222
223         for (i = 0; i < count; i++) {
224                 desc[i].irq = i;
225                 init_alloc_desc_masks(&desc[i], 0, true);
226         }
227         return arch_early_irq_init();
228 }
229
230 struct irq_desc *irq_to_desc(unsigned int irq)
231 {
232         return (irq < NR_IRQS) ? irq_desc + irq : NULL;
233 }
234
235 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
236 {
237         return irq_to_desc(irq);
238 }
239 #endif /* !CONFIG_SPARSE_IRQ */
240
241 /*
242  * What should we do if we get a hw irq event on an illegal vector?
243  * Each architecture has to answer this themself.
244  */
245 static void ack_bad(unsigned int irq)
246 {
247         struct irq_desc *desc = irq_to_desc(irq);
248
249         print_irq_desc(irq, desc);
250         ack_bad_irq(irq);
251 }
252
253 /*
254  * NOP functions
255  */
256 static void noop(unsigned int irq)
257 {
258 }
259
260 static unsigned int noop_ret(unsigned int irq)
261 {
262         return 0;
263 }
264
265 /*
266  * Generic no controller implementation
267  */
268 struct irq_chip no_irq_chip = {
269         .name           = "none",
270         .startup        = noop_ret,
271         .shutdown       = noop,
272         .enable         = noop,
273         .disable        = noop,
274         .ack            = ack_bad,
275         .end            = noop,
276 };
277
278 /*
279  * Generic dummy implementation which can be used for
280  * real dumb interrupt sources
281  */
282 struct irq_chip dummy_irq_chip = {
283         .name           = "dummy",
284         .startup        = noop_ret,
285         .shutdown       = noop,
286         .enable         = noop,
287         .disable        = noop,
288         .ack            = noop,
289         .mask           = noop,
290         .unmask         = noop,
291         .end            = noop,
292 };
293
294 /*
295  * Special, empty irq handler:
296  */
297 irqreturn_t no_action(int cpl, void *dev_id)
298 {
299         return IRQ_NONE;
300 }
301
302 /**
303  * handle_IRQ_event - irq action chain handler
304  * @irq:        the interrupt number
305  * @action:     the interrupt action chain for this irq
306  *
307  * Handles the action chain of an irq event
308  */
309 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
310 {
311         irqreturn_t ret, retval = IRQ_NONE;
312         unsigned int status = 0;
313
314         if (!(action->flags & IRQF_DISABLED))
315                 local_irq_enable_in_hardirq();
316
317         do {
318                 ret = action->handler(irq, action->dev_id);
319                 if (ret == IRQ_HANDLED)
320                         status |= action->flags;
321                 retval |= ret;
322                 action = action->next;
323         } while (action);
324
325         if (status & IRQF_SAMPLE_RANDOM)
326                 add_interrupt_randomness(irq);
327         local_irq_disable();
328
329         return retval;
330 }
331
332 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
333 /**
334  * __do_IRQ - original all in one highlevel IRQ handler
335  * @irq:        the interrupt number
336  *
337  * __do_IRQ handles all normal device IRQ's (the special
338  * SMP cross-CPU interrupts have their own specific
339  * handlers).
340  *
341  * This is the original x86 implementation which is used for every
342  * interrupt type.
343  */
344 unsigned int __do_IRQ(unsigned int irq)
345 {
346         struct irq_desc *desc = irq_to_desc(irq);
347         struct irqaction *action;
348         unsigned int status;
349
350         kstat_incr_irqs_this_cpu(irq, desc);
351
352         if (CHECK_IRQ_PER_CPU(desc->status)) {
353                 irqreturn_t action_ret;
354
355                 /*
356                  * No locking required for CPU-local interrupts:
357                  */
358                 if (desc->chip->ack) {
359                         desc->chip->ack(irq);
360                         /* get new one */
361                         desc = irq_remap_to_desc(irq, desc);
362                 }
363                 if (likely(!(desc->status & IRQ_DISABLED))) {
364                         action_ret = handle_IRQ_event(irq, desc->action);
365                         if (!noirqdebug)
366                                 note_interrupt(irq, desc, action_ret);
367                 }
368                 desc->chip->end(irq);
369                 return 1;
370         }
371
372         spin_lock(&desc->lock);
373         if (desc->chip->ack) {
374                 desc->chip->ack(irq);
375                 desc = irq_remap_to_desc(irq, desc);
376         }
377         /*
378          * REPLAY is when Linux resends an IRQ that was dropped earlier
379          * WAITING is used by probe to mark irqs that are being tested
380          */
381         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
382         status |= IRQ_PENDING; /* we _want_ to handle it */
383
384         /*
385          * If the IRQ is disabled for whatever reason, we cannot
386          * use the action we have.
387          */
388         action = NULL;
389         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
390                 action = desc->action;
391                 status &= ~IRQ_PENDING; /* we commit to handling */
392                 status |= IRQ_INPROGRESS; /* we are handling it */
393         }
394         desc->status = status;
395
396         /*
397          * If there is no IRQ handler or it was disabled, exit early.
398          * Since we set PENDING, if another processor is handling
399          * a different instance of this same irq, the other processor
400          * will take care of it.
401          */
402         if (unlikely(!action))
403                 goto out;
404
405         /*
406          * Edge triggered interrupts need to remember
407          * pending events.
408          * This applies to any hw interrupts that allow a second
409          * instance of the same irq to arrive while we are in do_IRQ
410          * or in the handler. But the code here only handles the _second_
411          * instance of the irq, not the third or fourth. So it is mostly
412          * useful for irq hardware that does not mask cleanly in an
413          * SMP environment.
414          */
415         for (;;) {
416                 irqreturn_t action_ret;
417
418                 spin_unlock(&desc->lock);
419
420                 action_ret = handle_IRQ_event(irq, action);
421                 if (!noirqdebug)
422                         note_interrupt(irq, desc, action_ret);
423
424                 spin_lock(&desc->lock);
425                 if (likely(!(desc->status & IRQ_PENDING)))
426                         break;
427                 desc->status &= ~IRQ_PENDING;
428         }
429         desc->status &= ~IRQ_INPROGRESS;
430
431 out:
432         /*
433          * The ->end() handler has to deal with interrupts which got
434          * disabled while the handler was running.
435          */
436         desc->chip->end(irq);
437         spin_unlock(&desc->lock);
438
439         return 1;
440 }
441 #endif
442
443 void early_init_irq_lock_class(void)
444 {
445         struct irq_desc *desc;
446         int i;
447
448         for_each_irq_desc(i, desc) {
449                 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
450         }
451 }
452
453 #ifdef CONFIG_SPARSE_IRQ
454 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
455 {
456         struct irq_desc *desc = irq_to_desc(irq);
457         return desc ? desc->kstat_irqs[cpu] : 0;
458 }
459 #endif
460 EXPORT_SYMBOL(kstat_irqs_cpu);
461