cpumask, irq: non-x86 build failures
[safe/jmp/linux-2.6] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20 #include <linux/bootmem.h>
21
22 #include "internals.h"
23
24 /*
25  * lockdep: we want to handle all irq_desc locks as a single lock-class:
26  */
27 struct lock_class_key irq_desc_lock_class;
28
29 /**
30  * handle_bad_irq - handle spurious and unhandled irqs
31  * @irq:       the interrupt number
32  * @desc:      description of the interrupt
33  *
34  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35  */
36 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
37 {
38         print_irq_desc(irq, desc);
39         kstat_incr_irqs_this_cpu(irq, desc);
40         ack_bad_irq(irq);
41 }
42
43 /*
44  * Linux has a controller-independent interrupt architecture.
45  * Every controller has a 'controller-template', that is used
46  * by the main code to do the right thing. Each driver-visible
47  * interrupt source is transparently wired to the appropriate
48  * controller. Thus drivers need not be aware of the
49  * interrupt-controller.
50  *
51  * The code is designed to be easily extended with new/different
52  * interrupt controllers, without having to do assembly magic or
53  * having to touch the generic code.
54  *
55  * Controller mappings for all interrupt sources:
56  */
57 int nr_irqs = NR_IRQS;
58 EXPORT_SYMBOL_GPL(nr_irqs);
59
60 #ifdef CONFIG_SPARSE_IRQ
61
62 #ifndef max_nr_irqs
63 #define max_nr_irqs(nr_cpus)    NR_IRQS
64 #endif
65
66 static struct irq_desc irq_desc_init = {
67         .irq        = -1,
68         .status     = IRQ_DISABLED,
69         .chip       = &no_irq_chip,
70         .handle_irq = handle_bad_irq,
71         .depth      = 1,
72         .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
73 };
74
75 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
76 {
77         unsigned long bytes;
78         char *ptr;
79         int node;
80
81         /* Compute how many bytes we need per irq and allocate them */
82         bytes = nr * sizeof(unsigned int);
83
84         node = cpu_to_node(cpu);
85         ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
86         printk(KERN_DEBUG "  alloc kstat_irqs on cpu %d node %d\n", cpu, node);
87
88         if (ptr)
89                 desc->kstat_irqs = (unsigned int *)ptr;
90 }
91
92 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
93 {
94         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
95
96         spin_lock_init(&desc->lock);
97         desc->irq = irq;
98 #ifdef CONFIG_SMP
99         desc->cpu = cpu;
100 #endif
101         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
102         init_kstat_irqs(desc, cpu, nr_cpu_ids);
103         if (!desc->kstat_irqs) {
104                 printk(KERN_ERR "can not alloc kstat_irqs\n");
105                 BUG_ON(1);
106         }
107         if (!init_alloc_desc_masks(desc, cpu, false)) {
108                 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
109                 BUG_ON(1);
110         }
111         arch_init_chip_data(desc, cpu);
112 }
113
114 /*
115  * Protect the sparse_irqs:
116  */
117 DEFINE_SPINLOCK(sparse_irq_lock);
118
119 struct irq_desc **irq_desc_ptrs __read_mostly;
120
121 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
122         [0 ... NR_IRQS_LEGACY-1] = {
123                 .irq        = -1,
124                 .status     = IRQ_DISABLED,
125                 .chip       = &no_irq_chip,
126                 .handle_irq = handle_bad_irq,
127                 .depth      = 1,
128                 .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
129         }
130 };
131
132 static unsigned int *kstat_irqs_legacy;
133
134 int __init early_irq_init(void)
135 {
136         struct irq_desc *desc;
137         int legacy_count;
138         int i;
139
140         /* initialize nr_irqs based on nr_cpu_ids */
141         nr_irqs = max_nr_irqs(nr_cpu_ids);
142
143         printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
144
145         desc = irq_desc_legacy;
146         legacy_count = ARRAY_SIZE(irq_desc_legacy);
147
148         /* allocate irq_desc_ptrs array based on nr_irqs */
149         irq_desc_ptrs = alloc_bootmem(nr_irqs * sizeof(void *));
150
151         /* allocate based on nr_cpu_ids */
152         /* FIXME: invert kstat_irgs, and it'd be a per_cpu_alloc'd thing */
153         kstat_irqs_legacy = alloc_bootmem(NR_IRQS_LEGACY * nr_cpu_ids *
154                                           sizeof(int));
155
156         for (i = 0; i < legacy_count; i++) {
157                 desc[i].irq = i;
158                 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
159                 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
160                 init_alloc_desc_masks(&desc[i], 0, true);
161                 irq_desc_ptrs[i] = desc + i;
162         }
163
164         for (i = legacy_count; i < nr_irqs; i++)
165                 irq_desc_ptrs[i] = NULL;
166
167         return arch_early_irq_init();
168 }
169
170 struct irq_desc *irq_to_desc(unsigned int irq)
171 {
172         if (irq_desc_ptrs && irq < nr_irqs)
173                 return irq_desc_ptrs[irq];
174
175         return NULL;
176 }
177
178 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
179 {
180         struct irq_desc *desc;
181         unsigned long flags;
182         int node;
183
184         if (irq >= nr_irqs) {
185                 WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
186                         irq, nr_irqs);
187                 return NULL;
188         }
189
190         desc = irq_desc_ptrs[irq];
191         if (desc)
192                 return desc;
193
194         spin_lock_irqsave(&sparse_irq_lock, flags);
195
196         /* We have to check it to avoid races with another CPU */
197         desc = irq_desc_ptrs[irq];
198         if (desc)
199                 goto out_unlock;
200
201         node = cpu_to_node(cpu);
202         desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
203         printk(KERN_DEBUG "  alloc irq_desc for %d on cpu %d node %d\n",
204                  irq, cpu, node);
205         if (!desc) {
206                 printk(KERN_ERR "can not alloc irq_desc\n");
207                 BUG_ON(1);
208         }
209         init_one_irq_desc(irq, desc, cpu);
210
211         irq_desc_ptrs[irq] = desc;
212
213 out_unlock:
214         spin_unlock_irqrestore(&sparse_irq_lock, flags);
215
216         return desc;
217 }
218
219 #else /* !CONFIG_SPARSE_IRQ */
220
221 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
222         [0 ... NR_IRQS-1] = {
223                 .status = IRQ_DISABLED,
224                 .chip = &no_irq_chip,
225                 .handle_irq = handle_bad_irq,
226                 .depth = 1,
227                 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
228         }
229 };
230
231 int __init early_irq_init(void)
232 {
233         struct irq_desc *desc;
234         int count;
235         int i;
236
237         printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
238
239         desc = irq_desc;
240         count = ARRAY_SIZE(irq_desc);
241
242         for (i = 0; i < count; i++) {
243                 desc[i].irq = i;
244                 init_alloc_desc_masks(&desc[i], 0, true);
245         }
246         return arch_early_irq_init();
247 }
248
249 struct irq_desc *irq_to_desc(unsigned int irq)
250 {
251         return (irq < NR_IRQS) ? irq_desc + irq : NULL;
252 }
253
254 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
255 {
256         return irq_to_desc(irq);
257 }
258 #endif /* !CONFIG_SPARSE_IRQ */
259
260 /*
261  * What should we do if we get a hw irq event on an illegal vector?
262  * Each architecture has to answer this themself.
263  */
264 static void ack_bad(unsigned int irq)
265 {
266         struct irq_desc *desc = irq_to_desc(irq);
267
268         print_irq_desc(irq, desc);
269         ack_bad_irq(irq);
270 }
271
272 /*
273  * NOP functions
274  */
275 static void noop(unsigned int irq)
276 {
277 }
278
279 static unsigned int noop_ret(unsigned int irq)
280 {
281         return 0;
282 }
283
284 /*
285  * Generic no controller implementation
286  */
287 struct irq_chip no_irq_chip = {
288         .name           = "none",
289         .startup        = noop_ret,
290         .shutdown       = noop,
291         .enable         = noop,
292         .disable        = noop,
293         .ack            = ack_bad,
294         .end            = noop,
295 };
296
297 /*
298  * Generic dummy implementation which can be used for
299  * real dumb interrupt sources
300  */
301 struct irq_chip dummy_irq_chip = {
302         .name           = "dummy",
303         .startup        = noop_ret,
304         .shutdown       = noop,
305         .enable         = noop,
306         .disable        = noop,
307         .ack            = noop,
308         .mask           = noop,
309         .unmask         = noop,
310         .end            = noop,
311 };
312
313 /*
314  * Special, empty irq handler:
315  */
316 irqreturn_t no_action(int cpl, void *dev_id)
317 {
318         return IRQ_NONE;
319 }
320
321 /**
322  * handle_IRQ_event - irq action chain handler
323  * @irq:        the interrupt number
324  * @action:     the interrupt action chain for this irq
325  *
326  * Handles the action chain of an irq event
327  */
328 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
329 {
330         irqreturn_t ret, retval = IRQ_NONE;
331         unsigned int status = 0;
332
333         if (!(action->flags & IRQF_DISABLED))
334                 local_irq_enable_in_hardirq();
335
336         do {
337                 ret = action->handler(irq, action->dev_id);
338                 if (ret == IRQ_HANDLED)
339                         status |= action->flags;
340                 retval |= ret;
341                 action = action->next;
342         } while (action);
343
344         if (status & IRQF_SAMPLE_RANDOM)
345                 add_interrupt_randomness(irq);
346         local_irq_disable();
347
348         return retval;
349 }
350
351 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
352 /**
353  * __do_IRQ - original all in one highlevel IRQ handler
354  * @irq:        the interrupt number
355  *
356  * __do_IRQ handles all normal device IRQ's (the special
357  * SMP cross-CPU interrupts have their own specific
358  * handlers).
359  *
360  * This is the original x86 implementation which is used for every
361  * interrupt type.
362  */
363 unsigned int __do_IRQ(unsigned int irq)
364 {
365         struct irq_desc *desc = irq_to_desc(irq);
366         struct irqaction *action;
367         unsigned int status;
368
369         kstat_incr_irqs_this_cpu(irq, desc);
370
371         if (CHECK_IRQ_PER_CPU(desc->status)) {
372                 irqreturn_t action_ret;
373
374                 /*
375                  * No locking required for CPU-local interrupts:
376                  */
377                 if (desc->chip->ack) {
378                         desc->chip->ack(irq);
379                         /* get new one */
380                         desc = irq_remap_to_desc(irq, desc);
381                 }
382                 if (likely(!(desc->status & IRQ_DISABLED))) {
383                         action_ret = handle_IRQ_event(irq, desc->action);
384                         if (!noirqdebug)
385                                 note_interrupt(irq, desc, action_ret);
386                 }
387                 desc->chip->end(irq);
388                 return 1;
389         }
390
391         spin_lock(&desc->lock);
392         if (desc->chip->ack) {
393                 desc->chip->ack(irq);
394                 desc = irq_remap_to_desc(irq, desc);
395         }
396         /*
397          * REPLAY is when Linux resends an IRQ that was dropped earlier
398          * WAITING is used by probe to mark irqs that are being tested
399          */
400         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
401         status |= IRQ_PENDING; /* we _want_ to handle it */
402
403         /*
404          * If the IRQ is disabled for whatever reason, we cannot
405          * use the action we have.
406          */
407         action = NULL;
408         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
409                 action = desc->action;
410                 status &= ~IRQ_PENDING; /* we commit to handling */
411                 status |= IRQ_INPROGRESS; /* we are handling it */
412         }
413         desc->status = status;
414
415         /*
416          * If there is no IRQ handler or it was disabled, exit early.
417          * Since we set PENDING, if another processor is handling
418          * a different instance of this same irq, the other processor
419          * will take care of it.
420          */
421         if (unlikely(!action))
422                 goto out;
423
424         /*
425          * Edge triggered interrupts need to remember
426          * pending events.
427          * This applies to any hw interrupts that allow a second
428          * instance of the same irq to arrive while we are in do_IRQ
429          * or in the handler. But the code here only handles the _second_
430          * instance of the irq, not the third or fourth. So it is mostly
431          * useful for irq hardware that does not mask cleanly in an
432          * SMP environment.
433          */
434         for (;;) {
435                 irqreturn_t action_ret;
436
437                 spin_unlock(&desc->lock);
438
439                 action_ret = handle_IRQ_event(irq, action);
440                 if (!noirqdebug)
441                         note_interrupt(irq, desc, action_ret);
442
443                 spin_lock(&desc->lock);
444                 if (likely(!(desc->status & IRQ_PENDING)))
445                         break;
446                 desc->status &= ~IRQ_PENDING;
447         }
448         desc->status &= ~IRQ_INPROGRESS;
449
450 out:
451         /*
452          * The ->end() handler has to deal with interrupts which got
453          * disabled while the handler was running.
454          */
455         desc->chip->end(irq);
456         spin_unlock(&desc->lock);
457
458         return 1;
459 }
460 #endif
461
462 void early_init_irq_lock_class(void)
463 {
464         struct irq_desc *desc;
465         int i;
466
467         for_each_irq_desc(i, desc) {
468                 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
469         }
470 }
471
472 #ifdef CONFIG_SPARSE_IRQ
473 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
474 {
475         struct irq_desc *desc = irq_to_desc(irq);
476         return desc ? desc->kstat_irqs[cpu] : 0;
477 }
478 #endif
479 EXPORT_SYMBOL(kstat_irqs_cpu);
480