sparseirq: move kstat_irqs from kstat to irq_desc - fix
[safe/jmp/linux-2.6] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18
19 #include "internals.h"
20
21 /*
22  * lockdep: we want to handle all irq_desc locks as a single lock-class:
23  */
24 static struct lock_class_key irq_desc_lock_class;
25
26 /**
27  * handle_bad_irq - handle spurious and unhandled irqs
28  * @irq:       the interrupt number
29  * @desc:      description of the interrupt
30  *
31  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
32  */
33 void
34 handle_bad_irq(unsigned int irq, struct irq_desc *desc)
35 {
36         print_irq_desc(irq, desc);
37 #ifdef CONFIG_HAVE_DYN_ARRAY
38         kstat_irqs_this_cpu(desc)++;
39 #else
40         kstat_irqs_this_cpu(irq)++;
41 #endif
42         ack_bad_irq(irq);
43 }
44
45 /*
46  * Linux has a controller-independent interrupt architecture.
47  * Every controller has a 'controller-template', that is used
48  * by the main code to do the right thing. Each driver-visible
49  * interrupt source is transparently wired to the appropriate
50  * controller. Thus drivers need not be aware of the
51  * interrupt-controller.
52  *
53  * The code is designed to be easily extended with new/different
54  * interrupt controllers, without having to do assembly magic or
55  * having to touch the generic code.
56  *
57  * Controller mappings for all interrupt sources:
58  */
59 int nr_irqs = NR_IRQS;
60 EXPORT_SYMBOL_GPL(nr_irqs);
61
62 #ifdef CONFIG_HAVE_DYN_ARRAY
63 static struct irq_desc irq_desc_init = {
64         .irq = -1U,
65         .status = IRQ_DISABLED,
66         .chip = &no_irq_chip,
67         .handle_irq = handle_bad_irq,
68         .depth = 1,
69         .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
70 #ifdef CONFIG_SMP
71         .affinity = CPU_MASK_ALL
72 #endif
73 };
74
75
76 static void init_one_irq_desc(struct irq_desc *desc)
77 {
78         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
79         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
80 }
81
82 extern int after_bootmem;
83 extern void *__alloc_bootmem_nopanic(unsigned long size,
84                              unsigned long align,
85                              unsigned long goal);
86
87 static void init_kstat_irqs(struct irq_desc *desc, int nr_desc, int nr)
88 {
89         unsigned long bytes, total_bytes;
90         char *ptr;
91         int i;
92         unsigned long phys;
93
94         /* Compute how many bytes we need per irq and allocate them */
95         bytes = nr * sizeof(unsigned int);
96         total_bytes = bytes * nr_desc;
97         if (after_bootmem)
98                 ptr = kzalloc(total_bytes, GFP_ATOMIC);
99         else
100                 ptr = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
101
102         if (!ptr)
103                 panic(" can not allocate kstat_irqs\n");
104
105         phys = __pa(ptr);
106         printk(KERN_DEBUG "kstat_irqs ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
107
108         for (i = 0; i < nr_desc; i++) {
109                 desc[i].kstat_irqs = (unsigned int *)ptr;
110                 ptr += bytes;
111         }
112 }
113
114 /*
115  * Protect the sparse_irqs_free freelist:
116  */
117 static DEFINE_SPINLOCK(sparse_irq_lock);
118
119 #ifdef CONFIG_HAVE_SPARSE_IRQ
120 static struct irq_desc *sparse_irqs_free;
121 struct irq_desc *sparse_irqs;
122 #endif
123
124 static void __init init_work(void *data)
125 {
126         struct dyn_array *da = data;
127         int i;
128         struct  irq_desc *desc;
129
130         desc = *da->name;
131
132         for (i = 0; i < *da->nr; i++) {
133                 init_one_irq_desc(&desc[i]);
134 #ifndef CONFIG_HAVE_SPARSE_IRQ
135                 desc[i].irq = i;
136 #endif
137         }
138
139         /* init kstat_irqs, nr_cpu_ids is ready already */
140         init_kstat_irqs(desc, *da->nr, nr_cpu_ids);
141
142 #ifdef CONFIG_HAVE_SPARSE_IRQ
143         for (i = 1; i < *da->nr; i++)
144                 desc[i-1].next = &desc[i];
145
146         sparse_irqs_free = sparse_irqs;
147         sparse_irqs = NULL;
148 #endif
149 }
150
151 #ifdef CONFIG_HAVE_SPARSE_IRQ
152 static int nr_irq_desc = 32;
153
154 static int __init parse_nr_irq_desc(char *arg)
155 {
156         if (arg)
157                 nr_irq_desc = simple_strtoul(arg, NULL, 0);
158         return 0;
159 }
160
161 early_param("nr_irq_desc", parse_nr_irq_desc);
162
163 DEFINE_DYN_ARRAY(sparse_irqs, sizeof(struct irq_desc), nr_irq_desc, PAGE_SIZE, init_work);
164
165 struct irq_desc *irq_to_desc(unsigned int irq)
166 {
167         struct irq_desc *desc;
168
169         desc = sparse_irqs;
170         while (desc) {
171                 if (desc->irq == irq)
172                         return desc;
173
174                 desc = desc->next;
175         }
176         return NULL;
177 }
178
179 struct irq_desc *irq_to_desc_alloc(unsigned int irq)
180 {
181         struct irq_desc *desc, *desc_pri;
182         unsigned long flags;
183         int count = 0;
184         int i;
185
186         desc_pri = desc = sparse_irqs;
187         while (desc) {
188                 if (desc->irq == irq)
189                         return desc;
190
191                 desc_pri = desc;
192                 desc = desc->next;
193                 count++;
194         }
195
196         spin_lock_irqsave(&sparse_irq_lock, flags);
197         /*
198          *  we run out of pre-allocate ones, allocate more
199          */
200         if (!sparse_irqs_free) {
201                 unsigned long phys;
202                 unsigned long total_bytes;
203
204                 printk(KERN_DEBUG "try to get more irq_desc %d\n", nr_irq_desc);
205
206                 total_bytes = sizeof(struct irq_desc) * nr_irq_desc;
207                 if (after_bootmem)
208                         desc = kzalloc(total_bytes, GFP_ATOMIC);
209                 else
210                         desc = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
211
212                 if (!desc)
213                         panic("please boot with nr_irq_desc= %d\n", count * 2);
214
215                 phys = __pa(desc);
216                 printk(KERN_DEBUG "irq_desc ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
217
218                 for (i = 0; i < nr_irq_desc; i++)
219                         init_one_irq_desc(&desc[i]);
220
221                 for (i = 1; i < nr_irq_desc; i++)
222                         desc[i-1].next = &desc[i];
223
224                 /* init kstat_irqs, nr_cpu_ids is ready already */
225                 init_kstat_irqs(desc, nr_irq_desc, nr_cpu_ids);
226
227                 sparse_irqs_free = desc;
228         }
229
230         desc = sparse_irqs_free;
231         sparse_irqs_free = sparse_irqs_free->next;
232         desc->next = NULL;
233         if (desc_pri)
234                 desc_pri->next = desc;
235         else
236                 sparse_irqs = desc;
237         desc->irq = irq;
238
239         spin_unlock_irqrestore(&sparse_irq_lock, flags);
240
241         printk(KERN_DEBUG "found new irq_desc for irq %d\n", desc->irq);
242 #ifdef CONFIG_HAVE_SPARSE_IRQ_DEBUG
243         {
244                 /* dump the results */
245                 struct irq_desc *desc;
246                 unsigned long phys;
247                 unsigned long bytes = sizeof(struct irq_desc);
248                 unsigned int irqx;
249
250                 printk(KERN_DEBUG "=========================== %d\n", irq);
251                 printk(KERN_DEBUG "irq_desc dump after get that for %d\n", irq);
252                 for_each_irq_desc(irqx, desc) {
253                         phys = __pa(desc);
254                         printk(KERN_DEBUG "irq_desc %d ==> [%#lx - %#lx]\n", irqx, phys, phys + bytes);
255                 }
256                 printk(KERN_DEBUG "===========================\n");
257         }
258 #endif
259         return desc;
260 }
261 #else
262 struct irq_desc *irq_desc;
263 DEFINE_DYN_ARRAY(irq_desc, sizeof(struct irq_desc), nr_irqs, PAGE_SIZE, init_work);
264
265 #endif
266
267 #else
268
269 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
270         [0 ... NR_IRQS-1] = {
271                 .status = IRQ_DISABLED,
272                 .chip = &no_irq_chip,
273                 .handle_irq = handle_bad_irq,
274                 .depth = 1,
275                 .lock = __SPIN_LOCK_UNLOCKED(sparse_irqs->lock),
276 #ifdef CONFIG_SMP
277                 .affinity = CPU_MASK_ALL
278 #endif
279         }
280 };
281
282 #endif
283
284 #ifndef CONFIG_HAVE_SPARSE_IRQ
285 struct irq_desc *irq_to_desc(unsigned int irq)
286 {
287         if (irq < nr_irqs)
288                 return &irq_desc[irq];
289
290         return NULL;
291 }
292 struct irq_desc *irq_to_desc_alloc(unsigned int irq)
293 {
294         return irq_to_desc(irq);
295 }
296 #endif
297
298 /*
299  * What should we do if we get a hw irq event on an illegal vector?
300  * Each architecture has to answer this themself.
301  */
302 static void ack_bad(unsigned int irq)
303 {
304         struct irq_desc *desc;
305
306         desc = irq_to_desc(irq);
307         print_irq_desc(irq, desc);
308         ack_bad_irq(irq);
309 }
310
311 /*
312  * NOP functions
313  */
314 static void noop(unsigned int irq)
315 {
316 }
317
318 static unsigned int noop_ret(unsigned int irq)
319 {
320         return 0;
321 }
322
323 /*
324  * Generic no controller implementation
325  */
326 struct irq_chip no_irq_chip = {
327         .name           = "none",
328         .startup        = noop_ret,
329         .shutdown       = noop,
330         .enable         = noop,
331         .disable        = noop,
332         .ack            = ack_bad,
333         .end            = noop,
334 };
335
336 /*
337  * Generic dummy implementation which can be used for
338  * real dumb interrupt sources
339  */
340 struct irq_chip dummy_irq_chip = {
341         .name           = "dummy",
342         .startup        = noop_ret,
343         .shutdown       = noop,
344         .enable         = noop,
345         .disable        = noop,
346         .ack            = noop,
347         .mask           = noop,
348         .unmask         = noop,
349         .end            = noop,
350 };
351
352 /*
353  * Special, empty irq handler:
354  */
355 irqreturn_t no_action(int cpl, void *dev_id)
356 {
357         return IRQ_NONE;
358 }
359
360 /**
361  * handle_IRQ_event - irq action chain handler
362  * @irq:        the interrupt number
363  * @action:     the interrupt action chain for this irq
364  *
365  * Handles the action chain of an irq event
366  */
367 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
368 {
369         irqreturn_t ret, retval = IRQ_NONE;
370         unsigned int status = 0;
371
372         if (!(action->flags & IRQF_DISABLED))
373                 local_irq_enable_in_hardirq();
374
375         do {
376                 ret = action->handler(irq, action->dev_id);
377                 if (ret == IRQ_HANDLED)
378                         status |= action->flags;
379                 retval |= ret;
380                 action = action->next;
381         } while (action);
382
383         if (status & IRQF_SAMPLE_RANDOM)
384                 add_interrupt_randomness(irq);
385         local_irq_disable();
386
387         return retval;
388 }
389
390 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
391 /**
392  * __do_IRQ - original all in one highlevel IRQ handler
393  * @irq:        the interrupt number
394  *
395  * __do_IRQ handles all normal device IRQ's (the special
396  * SMP cross-CPU interrupts have their own specific
397  * handlers).
398  *
399  * This is the original x86 implementation which is used for every
400  * interrupt type.
401  */
402 unsigned int __do_IRQ(unsigned int irq)
403 {
404         struct irq_desc *desc = irq_to_desc(irq);
405         struct irqaction *action;
406         unsigned int status;
407
408 #ifdef CONFIG_HAVE_DYN_ARRAY
409         kstat_irqs_this_cpu(desc)++;
410 #else
411         kstat_irqs_this_cpu(irq)++;
412 #endif
413         if (CHECK_IRQ_PER_CPU(desc->status)) {
414                 irqreturn_t action_ret;
415
416                 /*
417                  * No locking required for CPU-local interrupts:
418                  */
419                 if (desc->chip->ack)
420                         desc->chip->ack(irq);
421                 if (likely(!(desc->status & IRQ_DISABLED))) {
422                         action_ret = handle_IRQ_event(irq, desc->action);
423                         if (!noirqdebug)
424                                 note_interrupt(irq, desc, action_ret);
425                 }
426                 desc->chip->end(irq);
427                 return 1;
428         }
429
430         spin_lock(&desc->lock);
431         if (desc->chip->ack)
432                 desc->chip->ack(irq);
433         /*
434          * REPLAY is when Linux resends an IRQ that was dropped earlier
435          * WAITING is used by probe to mark irqs that are being tested
436          */
437         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
438         status |= IRQ_PENDING; /* we _want_ to handle it */
439
440         /*
441          * If the IRQ is disabled for whatever reason, we cannot
442          * use the action we have.
443          */
444         action = NULL;
445         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
446                 action = desc->action;
447                 status &= ~IRQ_PENDING; /* we commit to handling */
448                 status |= IRQ_INPROGRESS; /* we are handling it */
449         }
450         desc->status = status;
451
452         /*
453          * If there is no IRQ handler or it was disabled, exit early.
454          * Since we set PENDING, if another processor is handling
455          * a different instance of this same irq, the other processor
456          * will take care of it.
457          */
458         if (unlikely(!action))
459                 goto out;
460
461         /*
462          * Edge triggered interrupts need to remember
463          * pending events.
464          * This applies to any hw interrupts that allow a second
465          * instance of the same irq to arrive while we are in do_IRQ
466          * or in the handler. But the code here only handles the _second_
467          * instance of the irq, not the third or fourth. So it is mostly
468          * useful for irq hardware that does not mask cleanly in an
469          * SMP environment.
470          */
471         for (;;) {
472                 irqreturn_t action_ret;
473
474                 spin_unlock(&desc->lock);
475
476                 action_ret = handle_IRQ_event(irq, action);
477                 if (!noirqdebug)
478                         note_interrupt(irq, desc, action_ret);
479
480                 spin_lock(&desc->lock);
481                 if (likely(!(desc->status & IRQ_PENDING)))
482                         break;
483                 desc->status &= ~IRQ_PENDING;
484         }
485         desc->status &= ~IRQ_INPROGRESS;
486
487 out:
488         /*
489          * The ->end() handler has to deal with interrupts which got
490          * disabled while the handler was running.
491          */
492         desc->chip->end(irq);
493         spin_unlock(&desc->lock);
494
495         return 1;
496 }
497 #endif
498
499
500 #ifdef CONFIG_TRACE_IRQFLAGS
501 void early_init_irq_lock_class(void)
502 {
503 #ifndef CONFIG_HAVE_DYN_ARRAY
504         int i;
505
506         for (i = 0; i < nr_irqs; i++)
507                 lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class);
508 #endif
509 }
510 #endif
511
512 #ifdef CONFIG_HAVE_DYN_ARRAY
513 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
514 {
515         struct irq_desc *desc = irq_to_desc(irq);
516         return desc->kstat_irqs[cpu];
517 }
518 #endif
519 EXPORT_SYMBOL(kstat_irqs_cpu);
520