cpumask: fix bug in use cpumask_var_t in irq_desc
[safe/jmp/linux-2.6] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20
21 #include "internals.h"
22
23 /*
24  * lockdep: we want to handle all irq_desc locks as a single lock-class:
25  */
26 struct lock_class_key irq_desc_lock_class;
27
28 /**
29  * handle_bad_irq - handle spurious and unhandled irqs
30  * @irq:       the interrupt number
31  * @desc:      description of the interrupt
32  *
33  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
34  */
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
36 {
37         print_irq_desc(irq, desc);
38         kstat_incr_irqs_this_cpu(irq, desc);
39         ack_bad_irq(irq);
40 }
41
42 /*
43  * Linux has a controller-independent interrupt architecture.
44  * Every controller has a 'controller-template', that is used
45  * by the main code to do the right thing. Each driver-visible
46  * interrupt source is transparently wired to the appropriate
47  * controller. Thus drivers need not be aware of the
48  * interrupt-controller.
49  *
50  * The code is designed to be easily extended with new/different
51  * interrupt controllers, without having to do assembly magic or
52  * having to touch the generic code.
53  *
54  * Controller mappings for all interrupt sources:
55  */
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
58
59 #ifdef CONFIG_SPARSE_IRQ
60 static struct irq_desc irq_desc_init = {
61         .irq        = -1,
62         .status     = IRQ_DISABLED,
63         .chip       = &no_irq_chip,
64         .handle_irq = handle_bad_irq,
65         .depth      = 1,
66         .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
67 };
68
69 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
70 {
71         unsigned long bytes;
72         char *ptr;
73         int node;
74
75         /* Compute how many bytes we need per irq and allocate them */
76         bytes = nr * sizeof(unsigned int);
77
78         node = cpu_to_node(cpu);
79         ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
80         printk(KERN_DEBUG "  alloc kstat_irqs on cpu %d node %d\n", cpu, node);
81
82         if (ptr)
83                 desc->kstat_irqs = (unsigned int *)ptr;
84 }
85
86 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
87 {
88         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
89
90         spin_lock_init(&desc->lock);
91         desc->irq = irq;
92 #ifdef CONFIG_SMP
93         desc->cpu = cpu;
94 #endif
95         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
96         init_kstat_irqs(desc, cpu, nr_cpu_ids);
97         if (!desc->kstat_irqs) {
98                 printk(KERN_ERR "can not alloc kstat_irqs\n");
99                 BUG_ON(1);
100         }
101         if (!init_alloc_desc_masks(desc, cpu, false)) {
102                 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
103                 BUG_ON(1);
104         }
105         arch_init_chip_data(desc, cpu);
106 }
107
108 /*
109  * Protect the sparse_irqs:
110  */
111 DEFINE_SPINLOCK(sparse_irq_lock);
112
113 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
114
115 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
116         [0 ... NR_IRQS_LEGACY-1] = {
117                 .irq        = -1,
118                 .status     = IRQ_DISABLED,
119                 .chip       = &no_irq_chip,
120                 .handle_irq = handle_bad_irq,
121                 .depth      = 1,
122                 .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
123         }
124 };
125
126 /* FIXME: use bootmem alloc ...*/
127 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
128
129 int __init early_irq_init(void)
130 {
131         struct irq_desc *desc;
132         int legacy_count;
133         int i;
134
135         desc = irq_desc_legacy;
136         legacy_count = ARRAY_SIZE(irq_desc_legacy);
137
138         for (i = 0; i < legacy_count; i++) {
139                 desc[i].irq = i;
140                 desc[i].kstat_irqs = kstat_irqs_legacy[i];
141                 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
142                 init_alloc_desc_masks(&desc[i], 0, true);
143                 irq_desc_ptrs[i] = desc + i;
144         }
145
146         for (i = legacy_count; i < NR_IRQS; i++)
147                 irq_desc_ptrs[i] = NULL;
148
149         return arch_early_irq_init();
150 }
151
152 struct irq_desc *irq_to_desc(unsigned int irq)
153 {
154         return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL;
155 }
156
157 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
158 {
159         struct irq_desc *desc;
160         unsigned long flags;
161         int node;
162
163         if (irq >= NR_IRQS) {
164                 printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
165                                 irq, NR_IRQS);
166                 WARN_ON(1);
167                 return NULL;
168         }
169
170         desc = irq_desc_ptrs[irq];
171         if (desc)
172                 return desc;
173
174         spin_lock_irqsave(&sparse_irq_lock, flags);
175
176         /* We have to check it to avoid races with another CPU */
177         desc = irq_desc_ptrs[irq];
178         if (desc)
179                 goto out_unlock;
180
181         node = cpu_to_node(cpu);
182         desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
183         printk(KERN_DEBUG "  alloc irq_desc for %d on cpu %d node %d\n",
184                  irq, cpu, node);
185         if (!desc) {
186                 printk(KERN_ERR "can not alloc irq_desc\n");
187                 BUG_ON(1);
188         }
189         init_one_irq_desc(irq, desc, cpu);
190
191         irq_desc_ptrs[irq] = desc;
192
193 out_unlock:
194         spin_unlock_irqrestore(&sparse_irq_lock, flags);
195
196         return desc;
197 }
198
199 #else /* !CONFIG_SPARSE_IRQ */
200
201 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
202         [0 ... NR_IRQS-1] = {
203                 .status = IRQ_DISABLED,
204                 .chip = &no_irq_chip,
205                 .handle_irq = handle_bad_irq,
206                 .depth = 1,
207                 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
208         }
209 };
210
211 int __init early_irq_init(void)
212 {
213         struct irq_desc *desc;
214         int count;
215         int i;
216
217         desc = irq_desc;
218         count = ARRAY_SIZE(irq_desc);
219
220         for (i = 0; i < count; i++) {
221                 desc[i].irq = i;
222                 init_alloc_desc_masks(&desc[i], 0, true);
223         }
224         return arch_early_irq_init();
225 }
226
227 struct irq_desc *irq_to_desc(unsigned int irq)
228 {
229         return (irq < NR_IRQS) ? irq_desc + irq : NULL;
230 }
231
232 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
233 {
234         return irq_to_desc(irq);
235 }
236 #endif /* !CONFIG_SPARSE_IRQ */
237
238 /*
239  * What should we do if we get a hw irq event on an illegal vector?
240  * Each architecture has to answer this themself.
241  */
242 static void ack_bad(unsigned int irq)
243 {
244         struct irq_desc *desc = irq_to_desc(irq);
245
246         print_irq_desc(irq, desc);
247         ack_bad_irq(irq);
248 }
249
250 /*
251  * NOP functions
252  */
253 static void noop(unsigned int irq)
254 {
255 }
256
257 static unsigned int noop_ret(unsigned int irq)
258 {
259         return 0;
260 }
261
262 /*
263  * Generic no controller implementation
264  */
265 struct irq_chip no_irq_chip = {
266         .name           = "none",
267         .startup        = noop_ret,
268         .shutdown       = noop,
269         .enable         = noop,
270         .disable        = noop,
271         .ack            = ack_bad,
272         .end            = noop,
273 };
274
275 /*
276  * Generic dummy implementation which can be used for
277  * real dumb interrupt sources
278  */
279 struct irq_chip dummy_irq_chip = {
280         .name           = "dummy",
281         .startup        = noop_ret,
282         .shutdown       = noop,
283         .enable         = noop,
284         .disable        = noop,
285         .ack            = noop,
286         .mask           = noop,
287         .unmask         = noop,
288         .end            = noop,
289 };
290
291 /*
292  * Special, empty irq handler:
293  */
294 irqreturn_t no_action(int cpl, void *dev_id)
295 {
296         return IRQ_NONE;
297 }
298
299 /**
300  * handle_IRQ_event - irq action chain handler
301  * @irq:        the interrupt number
302  * @action:     the interrupt action chain for this irq
303  *
304  * Handles the action chain of an irq event
305  */
306 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
307 {
308         irqreturn_t ret, retval = IRQ_NONE;
309         unsigned int status = 0;
310
311         if (!(action->flags & IRQF_DISABLED))
312                 local_irq_enable_in_hardirq();
313
314         do {
315                 ret = action->handler(irq, action->dev_id);
316                 if (ret == IRQ_HANDLED)
317                         status |= action->flags;
318                 retval |= ret;
319                 action = action->next;
320         } while (action);
321
322         if (status & IRQF_SAMPLE_RANDOM)
323                 add_interrupt_randomness(irq);
324         local_irq_disable();
325
326         return retval;
327 }
328
329 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
330 /**
331  * __do_IRQ - original all in one highlevel IRQ handler
332  * @irq:        the interrupt number
333  *
334  * __do_IRQ handles all normal device IRQ's (the special
335  * SMP cross-CPU interrupts have their own specific
336  * handlers).
337  *
338  * This is the original x86 implementation which is used for every
339  * interrupt type.
340  */
341 unsigned int __do_IRQ(unsigned int irq)
342 {
343         struct irq_desc *desc = irq_to_desc(irq);
344         struct irqaction *action;
345         unsigned int status;
346
347         kstat_incr_irqs_this_cpu(irq, desc);
348
349         if (CHECK_IRQ_PER_CPU(desc->status)) {
350                 irqreturn_t action_ret;
351
352                 /*
353                  * No locking required for CPU-local interrupts:
354                  */
355                 if (desc->chip->ack) {
356                         desc->chip->ack(irq);
357                         /* get new one */
358                         desc = irq_remap_to_desc(irq, desc);
359                 }
360                 if (likely(!(desc->status & IRQ_DISABLED))) {
361                         action_ret = handle_IRQ_event(irq, desc->action);
362                         if (!noirqdebug)
363                                 note_interrupt(irq, desc, action_ret);
364                 }
365                 desc->chip->end(irq);
366                 return 1;
367         }
368
369         spin_lock(&desc->lock);
370         if (desc->chip->ack) {
371                 desc->chip->ack(irq);
372                 desc = irq_remap_to_desc(irq, desc);
373         }
374         /*
375          * REPLAY is when Linux resends an IRQ that was dropped earlier
376          * WAITING is used by probe to mark irqs that are being tested
377          */
378         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
379         status |= IRQ_PENDING; /* we _want_ to handle it */
380
381         /*
382          * If the IRQ is disabled for whatever reason, we cannot
383          * use the action we have.
384          */
385         action = NULL;
386         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
387                 action = desc->action;
388                 status &= ~IRQ_PENDING; /* we commit to handling */
389                 status |= IRQ_INPROGRESS; /* we are handling it */
390         }
391         desc->status = status;
392
393         /*
394          * If there is no IRQ handler or it was disabled, exit early.
395          * Since we set PENDING, if another processor is handling
396          * a different instance of this same irq, the other processor
397          * will take care of it.
398          */
399         if (unlikely(!action))
400                 goto out;
401
402         /*
403          * Edge triggered interrupts need to remember
404          * pending events.
405          * This applies to any hw interrupts that allow a second
406          * instance of the same irq to arrive while we are in do_IRQ
407          * or in the handler. But the code here only handles the _second_
408          * instance of the irq, not the third or fourth. So it is mostly
409          * useful for irq hardware that does not mask cleanly in an
410          * SMP environment.
411          */
412         for (;;) {
413                 irqreturn_t action_ret;
414
415                 spin_unlock(&desc->lock);
416
417                 action_ret = handle_IRQ_event(irq, action);
418                 if (!noirqdebug)
419                         note_interrupt(irq, desc, action_ret);
420
421                 spin_lock(&desc->lock);
422                 if (likely(!(desc->status & IRQ_PENDING)))
423                         break;
424                 desc->status &= ~IRQ_PENDING;
425         }
426         desc->status &= ~IRQ_INPROGRESS;
427
428 out:
429         /*
430          * The ->end() handler has to deal with interrupts which got
431          * disabled while the handler was running.
432          */
433         desc->chip->end(irq);
434         spin_unlock(&desc->lock);
435
436         return 1;
437 }
438 #endif
439
440 void early_init_irq_lock_class(void)
441 {
442         struct irq_desc *desc;
443         int i;
444
445         for_each_irq_desc(i, desc) {
446                 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
447         }
448 }
449
450 #ifdef CONFIG_SPARSE_IRQ
451 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
452 {
453         struct irq_desc *desc = irq_to_desc(irq);
454         return desc ? desc->kstat_irqs[cpu] : 0;
455 }
456 #endif
457 EXPORT_SYMBOL(kstat_irqs_cpu);
458