e1246ccbf89ac54ea1fa0da5a9aa242a5c842b0f
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20  *  enough at me, Linus for the original (flawed) idea, Matthew
21  *  Kirkwood for proof-of-concept implementation.
22  *
23  *  "The futexes are also cursed."
24  *  "But they come in a choice of three flavours!"
25  *
26  *  This program is free software; you can redistribute it and/or modify
27  *  it under the terms of the GNU General Public License as published by
28  *  the Free Software Foundation; either version 2 of the License, or
29  *  (at your option) any later version.
30  *
31  *  This program is distributed in the hope that it will be useful,
32  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *  GNU General Public License for more details.
35  *
36  *  You should have received a copy of the GNU General Public License
37  *  along with this program; if not, write to the Free Software
38  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <linux/module.h>
52 #include <asm/futex.h>
53
54 #include "rtmutex_common.h"
55
56 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
57
58 /*
59  * Priority Inheritance state:
60  */
61 struct futex_pi_state {
62         /*
63          * list of 'owned' pi_state instances - these have to be
64          * cleaned up in do_exit() if the task exits prematurely:
65          */
66         struct list_head list;
67
68         /*
69          * The PI object:
70          */
71         struct rt_mutex pi_mutex;
72
73         struct task_struct *owner;
74         atomic_t refcount;
75
76         union futex_key key;
77 };
78
79 /*
80  * We use this hashed waitqueue instead of a normal wait_queue_t, so
81  * we can wake only the relevant ones (hashed queues may be shared).
82  *
83  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
84  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
85  * The order of wakup is always to make the first condition true, then
86  * wake up q->waiters, then make the second condition true.
87  */
88 struct futex_q {
89         struct plist_node list;
90         wait_queue_head_t waiters;
91
92         /* Which hash list lock to use: */
93         spinlock_t *lock_ptr;
94
95         /* Key which the futex is hashed on: */
96         union futex_key key;
97
98         /* For fd, sigio sent using these: */
99         int fd;
100         struct file *filp;
101
102         /* Optional priority inheritance state: */
103         struct futex_pi_state *pi_state;
104         struct task_struct *task;
105 };
106
107 /*
108  * Split the global futex_lock into every hash list lock.
109  */
110 struct futex_hash_bucket {
111         spinlock_t lock;
112         struct plist_head chain;
113 };
114
115 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
116
117 /* Futex-fs vfsmount entry: */
118 static struct vfsmount *futex_mnt;
119
120 /*
121  * We hash on the keys returned from get_futex_key (see below).
122  */
123 static struct futex_hash_bucket *hash_futex(union futex_key *key)
124 {
125         u32 hash = jhash2((u32*)&key->both.word,
126                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
127                           key->both.offset);
128         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
129 }
130
131 /*
132  * Return 1 if two futex_keys are equal, 0 otherwise.
133  */
134 static inline int match_futex(union futex_key *key1, union futex_key *key2)
135 {
136         return (key1->both.word == key2->both.word
137                 && key1->both.ptr == key2->both.ptr
138                 && key1->both.offset == key2->both.offset);
139 }
140
141 /*
142  * Get parameters which are the keys for a futex.
143  *
144  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
145  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
146  * We can usually work out the index without swapping in the page.
147  *
148  * Returns: 0, or negative error code.
149  * The key words are stored in *key on success.
150  *
151  * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
152  */
153 int get_futex_key(u32 __user *uaddr, union futex_key *key)
154 {
155         unsigned long address = (unsigned long)uaddr;
156         struct mm_struct *mm = current->mm;
157         struct vm_area_struct *vma;
158         struct page *page;
159         int err;
160
161         /*
162          * The futex address must be "naturally" aligned.
163          */
164         key->both.offset = address % PAGE_SIZE;
165         if (unlikely((key->both.offset % sizeof(u32)) != 0))
166                 return -EINVAL;
167         address -= key->both.offset;
168
169         /*
170          * The futex is hashed differently depending on whether
171          * it's in a shared or private mapping.  So check vma first.
172          */
173         vma = find_extend_vma(mm, address);
174         if (unlikely(!vma))
175                 return -EFAULT;
176
177         /*
178          * Permissions.
179          */
180         if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
181                 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
182
183         /*
184          * Private mappings are handled in a simple way.
185          *
186          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
187          * it's a read-only handle, it's expected that futexes attach to
188          * the object not the particular process.  Therefore we use
189          * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
190          * mappings of _writable_ handles.
191          */
192         if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
193                 key->private.mm = mm;
194                 key->private.address = address;
195                 return 0;
196         }
197
198         /*
199          * Linear file mappings are also simple.
200          */
201         key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
202         key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
203         if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
204                 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
205                                      + vma->vm_pgoff);
206                 return 0;
207         }
208
209         /*
210          * We could walk the page table to read the non-linear
211          * pte, and get the page index without fetching the page
212          * from swap.  But that's a lot of code to duplicate here
213          * for a rare case, so we simply fetch the page.
214          */
215         err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
216         if (err >= 0) {
217                 key->shared.pgoff =
218                         page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
219                 put_page(page);
220                 return 0;
221         }
222         return err;
223 }
224 EXPORT_SYMBOL_GPL(get_futex_key);
225
226 /*
227  * Take a reference to the resource addressed by a key.
228  * Can be called while holding spinlocks.
229  *
230  * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
231  * function, if it is called at all.  mmap_sem keeps key->shared.inode valid.
232  */
233 inline void get_futex_key_refs(union futex_key *key)
234 {
235         if (key->both.ptr != 0) {
236                 if (key->both.offset & 1)
237                         atomic_inc(&key->shared.inode->i_count);
238                 else
239                         atomic_inc(&key->private.mm->mm_count);
240         }
241 }
242 EXPORT_SYMBOL_GPL(get_futex_key_refs);
243
244 /*
245  * Drop a reference to the resource addressed by a key.
246  * The hash bucket spinlock must not be held.
247  */
248 void drop_futex_key_refs(union futex_key *key)
249 {
250         if (key->both.ptr != 0) {
251                 if (key->both.offset & 1)
252                         iput(key->shared.inode);
253                 else
254                         mmdrop(key->private.mm);
255         }
256 }
257 EXPORT_SYMBOL_GPL(drop_futex_key_refs);
258
259 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
260 {
261         int ret;
262
263         pagefault_disable();
264         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
265         pagefault_enable();
266
267         return ret ? -EFAULT : 0;
268 }
269
270 /*
271  * Fault handling. Called with current->mm->mmap_sem held.
272  */
273 static int futex_handle_fault(unsigned long address, int attempt)
274 {
275         struct vm_area_struct * vma;
276         struct mm_struct *mm = current->mm;
277
278         if (attempt > 2 || !(vma = find_vma(mm, address)) ||
279             vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
280                 return -EFAULT;
281
282         switch (handle_mm_fault(mm, vma, address, 1)) {
283         case VM_FAULT_MINOR:
284                 current->min_flt++;
285                 break;
286         case VM_FAULT_MAJOR:
287                 current->maj_flt++;
288                 break;
289         default:
290                 return -EFAULT;
291         }
292         return 0;
293 }
294
295 /*
296  * PI code:
297  */
298 static int refill_pi_state_cache(void)
299 {
300         struct futex_pi_state *pi_state;
301
302         if (likely(current->pi_state_cache))
303                 return 0;
304
305         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
306
307         if (!pi_state)
308                 return -ENOMEM;
309
310         INIT_LIST_HEAD(&pi_state->list);
311         /* pi_mutex gets initialized later */
312         pi_state->owner = NULL;
313         atomic_set(&pi_state->refcount, 1);
314
315         current->pi_state_cache = pi_state;
316
317         return 0;
318 }
319
320 static struct futex_pi_state * alloc_pi_state(void)
321 {
322         struct futex_pi_state *pi_state = current->pi_state_cache;
323
324         WARN_ON(!pi_state);
325         current->pi_state_cache = NULL;
326
327         return pi_state;
328 }
329
330 static void free_pi_state(struct futex_pi_state *pi_state)
331 {
332         if (!atomic_dec_and_test(&pi_state->refcount))
333                 return;
334
335         /*
336          * If pi_state->owner is NULL, the owner is most probably dying
337          * and has cleaned up the pi_state already
338          */
339         if (pi_state->owner) {
340                 spin_lock_irq(&pi_state->owner->pi_lock);
341                 list_del_init(&pi_state->list);
342                 spin_unlock_irq(&pi_state->owner->pi_lock);
343
344                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
345         }
346
347         if (current->pi_state_cache)
348                 kfree(pi_state);
349         else {
350                 /*
351                  * pi_state->list is already empty.
352                  * clear pi_state->owner.
353                  * refcount is at 0 - put it back to 1.
354                  */
355                 pi_state->owner = NULL;
356                 atomic_set(&pi_state->refcount, 1);
357                 current->pi_state_cache = pi_state;
358         }
359 }
360
361 /*
362  * Look up the task based on what TID userspace gave us.
363  * We dont trust it.
364  */
365 static struct task_struct * futex_find_get_task(pid_t pid)
366 {
367         struct task_struct *p;
368
369         rcu_read_lock();
370         p = find_task_by_pid(pid);
371         if (!p)
372                 goto out_unlock;
373         if ((current->euid != p->euid) && (current->euid != p->uid)) {
374                 p = NULL;
375                 goto out_unlock;
376         }
377         if (p->exit_state != 0) {
378                 p = NULL;
379                 goto out_unlock;
380         }
381         get_task_struct(p);
382 out_unlock:
383         rcu_read_unlock();
384
385         return p;
386 }
387
388 /*
389  * This task is holding PI mutexes at exit time => bad.
390  * Kernel cleans up PI-state, but userspace is likely hosed.
391  * (Robust-futex cleanup is separate and might save the day for userspace.)
392  */
393 void exit_pi_state_list(struct task_struct *curr)
394 {
395         struct list_head *next, *head = &curr->pi_state_list;
396         struct futex_pi_state *pi_state;
397         struct futex_hash_bucket *hb;
398         union futex_key key;
399
400         /*
401          * We are a ZOMBIE and nobody can enqueue itself on
402          * pi_state_list anymore, but we have to be careful
403          * versus waiters unqueueing themselves:
404          */
405         spin_lock_irq(&curr->pi_lock);
406         while (!list_empty(head)) {
407
408                 next = head->next;
409                 pi_state = list_entry(next, struct futex_pi_state, list);
410                 key = pi_state->key;
411                 hb = hash_futex(&key);
412                 spin_unlock_irq(&curr->pi_lock);
413
414                 spin_lock(&hb->lock);
415
416                 spin_lock_irq(&curr->pi_lock);
417                 /*
418                  * We dropped the pi-lock, so re-check whether this
419                  * task still owns the PI-state:
420                  */
421                 if (head->next != next) {
422                         spin_unlock(&hb->lock);
423                         continue;
424                 }
425
426                 WARN_ON(pi_state->owner != curr);
427                 WARN_ON(list_empty(&pi_state->list));
428                 list_del_init(&pi_state->list);
429                 pi_state->owner = NULL;
430                 spin_unlock_irq(&curr->pi_lock);
431
432                 rt_mutex_unlock(&pi_state->pi_mutex);
433
434                 spin_unlock(&hb->lock);
435
436                 spin_lock_irq(&curr->pi_lock);
437         }
438         spin_unlock_irq(&curr->pi_lock);
439 }
440
441 static int
442 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
443 {
444         struct futex_pi_state *pi_state = NULL;
445         struct futex_q *this, *next;
446         struct plist_head *head;
447         struct task_struct *p;
448         pid_t pid;
449
450         head = &hb->chain;
451
452         plist_for_each_entry_safe(this, next, head, list) {
453                 if (match_futex(&this->key, &me->key)) {
454                         /*
455                          * Another waiter already exists - bump up
456                          * the refcount and return its pi_state:
457                          */
458                         pi_state = this->pi_state;
459                         /*
460                          * Userspace might have messed up non PI and PI futexes
461                          */
462                         if (unlikely(!pi_state))
463                                 return -EINVAL;
464
465                         WARN_ON(!atomic_read(&pi_state->refcount));
466
467                         atomic_inc(&pi_state->refcount);
468                         me->pi_state = pi_state;
469
470                         return 0;
471                 }
472         }
473
474         /*
475          * We are the first waiter - try to look up the real owner and attach
476          * the new pi_state to it, but bail out when the owner died bit is set
477          * and TID = 0:
478          */
479         pid = uval & FUTEX_TID_MASK;
480         if (!pid && (uval & FUTEX_OWNER_DIED))
481                 return -ESRCH;
482         p = futex_find_get_task(pid);
483         if (!p)
484                 return -ESRCH;
485
486         pi_state = alloc_pi_state();
487
488         /*
489          * Initialize the pi_mutex in locked state and make 'p'
490          * the owner of it:
491          */
492         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
493
494         /* Store the key for possible exit cleanups: */
495         pi_state->key = me->key;
496
497         spin_lock_irq(&p->pi_lock);
498         WARN_ON(!list_empty(&pi_state->list));
499         list_add(&pi_state->list, &p->pi_state_list);
500         pi_state->owner = p;
501         spin_unlock_irq(&p->pi_lock);
502
503         put_task_struct(p);
504
505         me->pi_state = pi_state;
506
507         return 0;
508 }
509
510 /*
511  * The hash bucket lock must be held when this is called.
512  * Afterwards, the futex_q must not be accessed.
513  */
514 static void wake_futex(struct futex_q *q)
515 {
516         plist_del(&q->list, &q->list.plist);
517         if (q->filp)
518                 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
519         /*
520          * The lock in wake_up_all() is a crucial memory barrier after the
521          * plist_del() and also before assigning to q->lock_ptr.
522          */
523         wake_up_all(&q->waiters);
524         /*
525          * The waiting task can free the futex_q as soon as this is written,
526          * without taking any locks.  This must come last.
527          *
528          * A memory barrier is required here to prevent the following store
529          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
530          * at the end of wake_up_all() does not prevent this store from
531          * moving.
532          */
533         smp_wmb();
534         q->lock_ptr = NULL;
535 }
536
537 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
538 {
539         struct task_struct *new_owner;
540         struct futex_pi_state *pi_state = this->pi_state;
541         u32 curval, newval;
542
543         if (!pi_state)
544                 return -EINVAL;
545
546         spin_lock(&pi_state->pi_mutex.wait_lock);
547         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
548
549         /*
550          * This happens when we have stolen the lock and the original
551          * pending owner did not enqueue itself back on the rt_mutex.
552          * Thats not a tragedy. We know that way, that a lock waiter
553          * is on the fly. We make the futex_q waiter the pending owner.
554          */
555         if (!new_owner)
556                 new_owner = this->task;
557
558         /*
559          * We pass it to the next owner. (The WAITERS bit is always
560          * kept enabled while there is PI state around. We must also
561          * preserve the owner died bit.)
562          */
563         if (!(uval & FUTEX_OWNER_DIED)) {
564                 newval = FUTEX_WAITERS | new_owner->pid;
565
566                 pagefault_disable();
567                 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
568                 pagefault_enable();
569                 if (curval == -EFAULT)
570                         return -EFAULT;
571                 if (curval != uval)
572                         return -EINVAL;
573         }
574
575         spin_lock_irq(&pi_state->owner->pi_lock);
576         WARN_ON(list_empty(&pi_state->list));
577         list_del_init(&pi_state->list);
578         spin_unlock_irq(&pi_state->owner->pi_lock);
579
580         spin_lock_irq(&new_owner->pi_lock);
581         WARN_ON(!list_empty(&pi_state->list));
582         list_add(&pi_state->list, &new_owner->pi_state_list);
583         pi_state->owner = new_owner;
584         spin_unlock_irq(&new_owner->pi_lock);
585
586         spin_unlock(&pi_state->pi_mutex.wait_lock);
587         rt_mutex_unlock(&pi_state->pi_mutex);
588
589         return 0;
590 }
591
592 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
593 {
594         u32 oldval;
595
596         /*
597          * There is no waiter, so we unlock the futex. The owner died
598          * bit has not to be preserved here. We are the owner:
599          */
600         pagefault_disable();
601         oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
602         pagefault_enable();
603
604         if (oldval == -EFAULT)
605                 return oldval;
606         if (oldval != uval)
607                 return -EAGAIN;
608
609         return 0;
610 }
611
612 /*
613  * Express the locking dependencies for lockdep:
614  */
615 static inline void
616 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
617 {
618         if (hb1 <= hb2) {
619                 spin_lock(&hb1->lock);
620                 if (hb1 < hb2)
621                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
622         } else { /* hb1 > hb2 */
623                 spin_lock(&hb2->lock);
624                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
625         }
626 }
627
628 /*
629  * Wake up all waiters hashed on the physical page that is mapped
630  * to this virtual address:
631  */
632 static int futex_wake(u32 __user *uaddr, int nr_wake)
633 {
634         struct futex_hash_bucket *hb;
635         struct futex_q *this, *next;
636         struct plist_head *head;
637         union futex_key key;
638         int ret;
639
640         down_read(&current->mm->mmap_sem);
641
642         ret = get_futex_key(uaddr, &key);
643         if (unlikely(ret != 0))
644                 goto out;
645
646         hb = hash_futex(&key);
647         spin_lock(&hb->lock);
648         head = &hb->chain;
649
650         plist_for_each_entry_safe(this, next, head, list) {
651                 if (match_futex (&this->key, &key)) {
652                         if (this->pi_state) {
653                                 ret = -EINVAL;
654                                 break;
655                         }
656                         wake_futex(this);
657                         if (++ret >= nr_wake)
658                                 break;
659                 }
660         }
661
662         spin_unlock(&hb->lock);
663 out:
664         up_read(&current->mm->mmap_sem);
665         return ret;
666 }
667
668 /*
669  * Wake up all waiters hashed on the physical page that is mapped
670  * to this virtual address:
671  */
672 static int
673 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
674               int nr_wake, int nr_wake2, int op)
675 {
676         union futex_key key1, key2;
677         struct futex_hash_bucket *hb1, *hb2;
678         struct plist_head *head;
679         struct futex_q *this, *next;
680         int ret, op_ret, attempt = 0;
681
682 retryfull:
683         down_read(&current->mm->mmap_sem);
684
685         ret = get_futex_key(uaddr1, &key1);
686         if (unlikely(ret != 0))
687                 goto out;
688         ret = get_futex_key(uaddr2, &key2);
689         if (unlikely(ret != 0))
690                 goto out;
691
692         hb1 = hash_futex(&key1);
693         hb2 = hash_futex(&key2);
694
695 retry:
696         double_lock_hb(hb1, hb2);
697
698         op_ret = futex_atomic_op_inuser(op, uaddr2);
699         if (unlikely(op_ret < 0)) {
700                 u32 dummy;
701
702                 spin_unlock(&hb1->lock);
703                 if (hb1 != hb2)
704                         spin_unlock(&hb2->lock);
705
706 #ifndef CONFIG_MMU
707                 /*
708                  * we don't get EFAULT from MMU faults if we don't have an MMU,
709                  * but we might get them from range checking
710                  */
711                 ret = op_ret;
712                 goto out;
713 #endif
714
715                 if (unlikely(op_ret != -EFAULT)) {
716                         ret = op_ret;
717                         goto out;
718                 }
719
720                 /*
721                  * futex_atomic_op_inuser needs to both read and write
722                  * *(int __user *)uaddr2, but we can't modify it
723                  * non-atomically.  Therefore, if get_user below is not
724                  * enough, we need to handle the fault ourselves, while
725                  * still holding the mmap_sem.
726                  */
727                 if (attempt++) {
728                         if (futex_handle_fault((unsigned long)uaddr2,
729                                                 attempt)) {
730                                 ret = -EFAULT;
731                                 goto out;
732                         }
733                         goto retry;
734                 }
735
736                 /*
737                  * If we would have faulted, release mmap_sem,
738                  * fault it in and start all over again.
739                  */
740                 up_read(&current->mm->mmap_sem);
741
742                 ret = get_user(dummy, uaddr2);
743                 if (ret)
744                         return ret;
745
746                 goto retryfull;
747         }
748
749         head = &hb1->chain;
750
751         plist_for_each_entry_safe(this, next, head, list) {
752                 if (match_futex (&this->key, &key1)) {
753                         wake_futex(this);
754                         if (++ret >= nr_wake)
755                                 break;
756                 }
757         }
758
759         if (op_ret > 0) {
760                 head = &hb2->chain;
761
762                 op_ret = 0;
763                 plist_for_each_entry_safe(this, next, head, list) {
764                         if (match_futex (&this->key, &key2)) {
765                                 wake_futex(this);
766                                 if (++op_ret >= nr_wake2)
767                                         break;
768                         }
769                 }
770                 ret += op_ret;
771         }
772
773         spin_unlock(&hb1->lock);
774         if (hb1 != hb2)
775                 spin_unlock(&hb2->lock);
776 out:
777         up_read(&current->mm->mmap_sem);
778         return ret;
779 }
780
781 /*
782  * Requeue all waiters hashed on one physical page to another
783  * physical page.
784  */
785 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
786                          int nr_wake, int nr_requeue, u32 *cmpval)
787 {
788         union futex_key key1, key2;
789         struct futex_hash_bucket *hb1, *hb2;
790         struct plist_head *head1;
791         struct futex_q *this, *next;
792         int ret, drop_count = 0;
793
794  retry:
795         down_read(&current->mm->mmap_sem);
796
797         ret = get_futex_key(uaddr1, &key1);
798         if (unlikely(ret != 0))
799                 goto out;
800         ret = get_futex_key(uaddr2, &key2);
801         if (unlikely(ret != 0))
802                 goto out;
803
804         hb1 = hash_futex(&key1);
805         hb2 = hash_futex(&key2);
806
807         double_lock_hb(hb1, hb2);
808
809         if (likely(cmpval != NULL)) {
810                 u32 curval;
811
812                 ret = get_futex_value_locked(&curval, uaddr1);
813
814                 if (unlikely(ret)) {
815                         spin_unlock(&hb1->lock);
816                         if (hb1 != hb2)
817                                 spin_unlock(&hb2->lock);
818
819                         /*
820                          * If we would have faulted, release mmap_sem, fault
821                          * it in and start all over again.
822                          */
823                         up_read(&current->mm->mmap_sem);
824
825                         ret = get_user(curval, uaddr1);
826
827                         if (!ret)
828                                 goto retry;
829
830                         return ret;
831                 }
832                 if (curval != *cmpval) {
833                         ret = -EAGAIN;
834                         goto out_unlock;
835                 }
836         }
837
838         head1 = &hb1->chain;
839         plist_for_each_entry_safe(this, next, head1, list) {
840                 if (!match_futex (&this->key, &key1))
841                         continue;
842                 if (++ret <= nr_wake) {
843                         wake_futex(this);
844                 } else {
845                         /*
846                          * If key1 and key2 hash to the same bucket, no need to
847                          * requeue.
848                          */
849                         if (likely(head1 != &hb2->chain)) {
850                                 plist_del(&this->list, &hb1->chain);
851                                 plist_add(&this->list, &hb2->chain);
852                                 this->lock_ptr = &hb2->lock;
853 #ifdef CONFIG_DEBUG_PI_LIST
854                                 this->list.plist.lock = &hb2->lock;
855 #endif
856                         }
857                         this->key = key2;
858                         get_futex_key_refs(&key2);
859                         drop_count++;
860
861                         if (ret - nr_wake >= nr_requeue)
862                                 break;
863                 }
864         }
865
866 out_unlock:
867         spin_unlock(&hb1->lock);
868         if (hb1 != hb2)
869                 spin_unlock(&hb2->lock);
870
871         /* drop_futex_key_refs() must be called outside the spinlocks. */
872         while (--drop_count >= 0)
873                 drop_futex_key_refs(&key1);
874
875 out:
876         up_read(&current->mm->mmap_sem);
877         return ret;
878 }
879
880 /* The key must be already stored in q->key. */
881 static inline struct futex_hash_bucket *
882 queue_lock(struct futex_q *q, int fd, struct file *filp)
883 {
884         struct futex_hash_bucket *hb;
885
886         q->fd = fd;
887         q->filp = filp;
888
889         init_waitqueue_head(&q->waiters);
890
891         get_futex_key_refs(&q->key);
892         hb = hash_futex(&q->key);
893         q->lock_ptr = &hb->lock;
894
895         spin_lock(&hb->lock);
896         return hb;
897 }
898
899 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
900 {
901         int prio;
902
903         /*
904          * The priority used to register this element is
905          * - either the real thread-priority for the real-time threads
906          * (i.e. threads with a priority lower than MAX_RT_PRIO)
907          * - or MAX_RT_PRIO for non-RT threads.
908          * Thus, all RT-threads are woken first in priority order, and
909          * the others are woken last, in FIFO order.
910          */
911         prio = min(current->normal_prio, MAX_RT_PRIO);
912
913         plist_node_init(&q->list, prio);
914 #ifdef CONFIG_DEBUG_PI_LIST
915         q->list.plist.lock = &hb->lock;
916 #endif
917         plist_add(&q->list, &hb->chain);
918         q->task = current;
919         spin_unlock(&hb->lock);
920 }
921
922 static inline void
923 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
924 {
925         spin_unlock(&hb->lock);
926         drop_futex_key_refs(&q->key);
927 }
928
929 /*
930  * queue_me and unqueue_me must be called as a pair, each
931  * exactly once.  They are called with the hashed spinlock held.
932  */
933
934 /* The key must be already stored in q->key. */
935 static void queue_me(struct futex_q *q, int fd, struct file *filp)
936 {
937         struct futex_hash_bucket *hb;
938
939         hb = queue_lock(q, fd, filp);
940         __queue_me(q, hb);
941 }
942
943 /* Return 1 if we were still queued (ie. 0 means we were woken) */
944 static int unqueue_me(struct futex_q *q)
945 {
946         spinlock_t *lock_ptr;
947         int ret = 0;
948
949         /* In the common case we don't take the spinlock, which is nice. */
950  retry:
951         lock_ptr = q->lock_ptr;
952         barrier();
953         if (lock_ptr != 0) {
954                 spin_lock(lock_ptr);
955                 /*
956                  * q->lock_ptr can change between reading it and
957                  * spin_lock(), causing us to take the wrong lock.  This
958                  * corrects the race condition.
959                  *
960                  * Reasoning goes like this: if we have the wrong lock,
961                  * q->lock_ptr must have changed (maybe several times)
962                  * between reading it and the spin_lock().  It can
963                  * change again after the spin_lock() but only if it was
964                  * already changed before the spin_lock().  It cannot,
965                  * however, change back to the original value.  Therefore
966                  * we can detect whether we acquired the correct lock.
967                  */
968                 if (unlikely(lock_ptr != q->lock_ptr)) {
969                         spin_unlock(lock_ptr);
970                         goto retry;
971                 }
972                 WARN_ON(plist_node_empty(&q->list));
973                 plist_del(&q->list, &q->list.plist);
974
975                 BUG_ON(q->pi_state);
976
977                 spin_unlock(lock_ptr);
978                 ret = 1;
979         }
980
981         drop_futex_key_refs(&q->key);
982         return ret;
983 }
984
985 /*
986  * PI futexes can not be requeued and must remove themself from the
987  * hash bucket. The hash bucket lock is held on entry and dropped here.
988  */
989 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
990 {
991         WARN_ON(plist_node_empty(&q->list));
992         plist_del(&q->list, &q->list.plist);
993
994         BUG_ON(!q->pi_state);
995         free_pi_state(q->pi_state);
996         q->pi_state = NULL;
997
998         spin_unlock(&hb->lock);
999
1000         drop_futex_key_refs(&q->key);
1001 }
1002
1003 static long futex_wait_restart(struct restart_block *restart);
1004 static int futex_wait(u32 __user *uaddr, u32 val, ktime_t *abs_time)
1005 {
1006         struct task_struct *curr = current;
1007         DECLARE_WAITQUEUE(wait, curr);
1008         struct futex_hash_bucket *hb;
1009         struct futex_q q;
1010         u32 uval;
1011         int ret;
1012         struct hrtimer_sleeper t;
1013         int rem = 0;
1014
1015         q.pi_state = NULL;
1016  retry:
1017         down_read(&curr->mm->mmap_sem);
1018
1019         ret = get_futex_key(uaddr, &q.key);
1020         if (unlikely(ret != 0))
1021                 goto out_release_sem;
1022
1023         hb = queue_lock(&q, -1, NULL);
1024
1025         /*
1026          * Access the page AFTER the futex is queued.
1027          * Order is important:
1028          *
1029          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1030          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1031          *
1032          * The basic logical guarantee of a futex is that it blocks ONLY
1033          * if cond(var) is known to be true at the time of blocking, for
1034          * any cond.  If we queued after testing *uaddr, that would open
1035          * a race condition where we could block indefinitely with
1036          * cond(var) false, which would violate the guarantee.
1037          *
1038          * A consequence is that futex_wait() can return zero and absorb
1039          * a wakeup when *uaddr != val on entry to the syscall.  This is
1040          * rare, but normal.
1041          *
1042          * We hold the mmap semaphore, so the mapping cannot have changed
1043          * since we looked it up in get_futex_key.
1044          */
1045         ret = get_futex_value_locked(&uval, uaddr);
1046
1047         if (unlikely(ret)) {
1048                 queue_unlock(&q, hb);
1049
1050                 /*
1051                  * If we would have faulted, release mmap_sem, fault it in and
1052                  * start all over again.
1053                  */
1054                 up_read(&curr->mm->mmap_sem);
1055
1056                 ret = get_user(uval, uaddr);
1057
1058                 if (!ret)
1059                         goto retry;
1060                 return ret;
1061         }
1062         ret = -EWOULDBLOCK;
1063         if (uval != val)
1064                 goto out_unlock_release_sem;
1065
1066         /* Only actually queue if *uaddr contained val.  */
1067         __queue_me(&q, hb);
1068
1069         /*
1070          * Now the futex is queued and we have checked the data, we
1071          * don't want to hold mmap_sem while we sleep.
1072          */
1073         up_read(&curr->mm->mmap_sem);
1074
1075         /*
1076          * There might have been scheduling since the queue_me(), as we
1077          * cannot hold a spinlock across the get_user() in case it
1078          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1079          * queueing ourselves into the futex hash.  This code thus has to
1080          * rely on the futex_wake() code removing us from hash when it
1081          * wakes us up.
1082          */
1083
1084         /* add_wait_queue is the barrier after __set_current_state. */
1085         __set_current_state(TASK_INTERRUPTIBLE);
1086         add_wait_queue(&q.waiters, &wait);
1087         /*
1088          * !plist_node_empty() is safe here without any lock.
1089          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1090          */
1091         if (likely(!plist_node_empty(&q.list))) {
1092                 if (!abs_time)
1093                         schedule();
1094                 else {
1095                         hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1096                         hrtimer_init_sleeper(&t, current);
1097                         t.timer.expires = *abs_time;
1098
1099                         hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1100
1101                         /*
1102                          * the timer could have already expired, in which
1103                          * case current would be flagged for rescheduling.
1104                          * Don't bother calling schedule.
1105                          */
1106                         if (likely(t.task))
1107                                 schedule();
1108
1109                         hrtimer_cancel(&t.timer);
1110
1111                         /* Flag if a timeout occured */
1112                         rem = (t.task == NULL);
1113                 }
1114         }
1115         __set_current_state(TASK_RUNNING);
1116
1117         /*
1118          * NOTE: we don't remove ourselves from the waitqueue because
1119          * we are the only user of it.
1120          */
1121
1122         /* If we were woken (and unqueued), we succeeded, whatever. */
1123         if (!unqueue_me(&q))
1124                 return 0;
1125         if (rem)
1126                 return -ETIMEDOUT;
1127
1128         /*
1129          * We expect signal_pending(current), but another thread may
1130          * have handled it for us already.
1131          */
1132         if (!abs_time)
1133                 return -ERESTARTSYS;
1134         else {
1135                 struct restart_block *restart;
1136                 restart = &current_thread_info()->restart_block;
1137                 restart->fn = futex_wait_restart;
1138                 restart->arg0 = (unsigned long)uaddr;
1139                 restart->arg1 = (unsigned long)val;
1140                 restart->arg2 = (unsigned long)abs_time;
1141                 return -ERESTART_RESTARTBLOCK;
1142         }
1143
1144  out_unlock_release_sem:
1145         queue_unlock(&q, hb);
1146
1147  out_release_sem:
1148         up_read(&curr->mm->mmap_sem);
1149         return ret;
1150 }
1151
1152
1153 static long futex_wait_restart(struct restart_block *restart)
1154 {
1155         u32 __user *uaddr = (u32 __user *)restart->arg0;
1156         u32 val = (u32)restart->arg1;
1157         ktime_t *abs_time = (ktime_t *)restart->arg2;
1158
1159         restart->fn = do_no_restart_syscall;
1160         return (long)futex_wait(uaddr, val, abs_time);
1161 }
1162
1163
1164 /*
1165  * Userspace tried a 0 -> TID atomic transition of the futex value
1166  * and failed. The kernel side here does the whole locking operation:
1167  * if there are waiters then it will block, it does PI, etc. (Due to
1168  * races the kernel might see a 0 value of the futex too.)
1169  */
1170 static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
1171                          int trylock)
1172 {
1173         struct hrtimer_sleeper timeout, *to = NULL;
1174         struct task_struct *curr = current;
1175         struct futex_hash_bucket *hb;
1176         u32 uval, newval, curval;
1177         struct futex_q q;
1178         int ret, attempt = 0;
1179
1180         if (refill_pi_state_cache())
1181                 return -ENOMEM;
1182
1183         if (time) {
1184                 to = &timeout;
1185                 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1186                 hrtimer_init_sleeper(to, current);
1187                 to->timer.expires = *time;
1188         }
1189
1190         q.pi_state = NULL;
1191  retry:
1192         down_read(&curr->mm->mmap_sem);
1193
1194         ret = get_futex_key(uaddr, &q.key);
1195         if (unlikely(ret != 0))
1196                 goto out_release_sem;
1197
1198         hb = queue_lock(&q, -1, NULL);
1199
1200  retry_locked:
1201         /*
1202          * To avoid races, we attempt to take the lock here again
1203          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1204          * the locks. It will most likely not succeed.
1205          */
1206         newval = current->pid;
1207
1208         pagefault_disable();
1209         curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1210         pagefault_enable();
1211
1212         if (unlikely(curval == -EFAULT))
1213                 goto uaddr_faulted;
1214
1215         /* We own the lock already */
1216         if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1217                 if (!detect && 0)
1218                         force_sig(SIGKILL, current);
1219                 ret = -EDEADLK;
1220                 goto out_unlock_release_sem;
1221         }
1222
1223         /*
1224          * Surprise - we got the lock. Just return
1225          * to userspace:
1226          */
1227         if (unlikely(!curval))
1228                 goto out_unlock_release_sem;
1229
1230         uval = curval;
1231         newval = uval | FUTEX_WAITERS;
1232
1233         pagefault_disable();
1234         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1235         pagefault_enable();
1236
1237         if (unlikely(curval == -EFAULT))
1238                 goto uaddr_faulted;
1239         if (unlikely(curval != uval))
1240                 goto retry_locked;
1241
1242         /*
1243          * We dont have the lock. Look up the PI state (or create it if
1244          * we are the first waiter):
1245          */
1246         ret = lookup_pi_state(uval, hb, &q);
1247
1248         if (unlikely(ret)) {
1249                 /*
1250                  * There were no waiters and the owner task lookup
1251                  * failed. When the OWNER_DIED bit is set, then we
1252                  * know that this is a robust futex and we actually
1253                  * take the lock. This is safe as we are protected by
1254                  * the hash bucket lock. We also set the waiters bit
1255                  * unconditionally here, to simplify glibc handling of
1256                  * multiple tasks racing to acquire the lock and
1257                  * cleanup the problems which were left by the dead
1258                  * owner.
1259                  */
1260                 if (curval & FUTEX_OWNER_DIED) {
1261                         uval = newval;
1262                         newval = current->pid |
1263                                 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1264
1265                         pagefault_disable();
1266                         curval = futex_atomic_cmpxchg_inatomic(uaddr,
1267                                                                uval, newval);
1268                         pagefault_enable();
1269
1270                         if (unlikely(curval == -EFAULT))
1271                                 goto uaddr_faulted;
1272                         if (unlikely(curval != uval))
1273                                 goto retry_locked;
1274                         ret = 0;
1275                 }
1276                 goto out_unlock_release_sem;
1277         }
1278
1279         /*
1280          * Only actually queue now that the atomic ops are done:
1281          */
1282         __queue_me(&q, hb);
1283
1284         /*
1285          * Now the futex is queued and we have checked the data, we
1286          * don't want to hold mmap_sem while we sleep.
1287          */
1288         up_read(&curr->mm->mmap_sem);
1289
1290         WARN_ON(!q.pi_state);
1291         /*
1292          * Block on the PI mutex:
1293          */
1294         if (!trylock)
1295                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1296         else {
1297                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1298                 /* Fixup the trylock return value: */
1299                 ret = ret ? 0 : -EWOULDBLOCK;
1300         }
1301
1302         down_read(&curr->mm->mmap_sem);
1303         spin_lock(q.lock_ptr);
1304
1305         /*
1306          * Got the lock. We might not be the anticipated owner if we
1307          * did a lock-steal - fix up the PI-state in that case.
1308          */
1309         if (!ret && q.pi_state->owner != curr) {
1310                 u32 newtid = current->pid | FUTEX_WAITERS;
1311
1312                 /* Owner died? */
1313                 if (q.pi_state->owner != NULL) {
1314                         spin_lock_irq(&q.pi_state->owner->pi_lock);
1315                         WARN_ON(list_empty(&q.pi_state->list));
1316                         list_del_init(&q.pi_state->list);
1317                         spin_unlock_irq(&q.pi_state->owner->pi_lock);
1318                 } else
1319                         newtid |= FUTEX_OWNER_DIED;
1320
1321                 q.pi_state->owner = current;
1322
1323                 spin_lock_irq(&current->pi_lock);
1324                 WARN_ON(!list_empty(&q.pi_state->list));
1325                 list_add(&q.pi_state->list, &current->pi_state_list);
1326                 spin_unlock_irq(&current->pi_lock);
1327
1328                 /* Unqueue and drop the lock */
1329                 unqueue_me_pi(&q, hb);
1330                 up_read(&curr->mm->mmap_sem);
1331                 /*
1332                  * We own it, so we have to replace the pending owner
1333                  * TID. This must be atomic as we have preserve the
1334                  * owner died bit here.
1335                  */
1336                 ret = get_user(uval, uaddr);
1337                 while (!ret) {
1338                         newval = (uval & FUTEX_OWNER_DIED) | newtid;
1339                         curval = futex_atomic_cmpxchg_inatomic(uaddr,
1340                                                                uval, newval);
1341                         if (curval == -EFAULT)
1342                                 ret = -EFAULT;
1343                         if (curval == uval)
1344                                 break;
1345                         uval = curval;
1346                 }
1347         } else {
1348                 /*
1349                  * Catch the rare case, where the lock was released
1350                  * when we were on the way back before we locked
1351                  * the hash bucket.
1352                  */
1353                 if (ret && q.pi_state->owner == curr) {
1354                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1355                                 ret = 0;
1356                 }
1357                 /* Unqueue and drop the lock */
1358                 unqueue_me_pi(&q, hb);
1359                 up_read(&curr->mm->mmap_sem);
1360         }
1361
1362         if (!detect && ret == -EDEADLK && 0)
1363                 force_sig(SIGKILL, current);
1364
1365         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1366
1367  out_unlock_release_sem:
1368         queue_unlock(&q, hb);
1369
1370  out_release_sem:
1371         up_read(&curr->mm->mmap_sem);
1372         return ret;
1373
1374  uaddr_faulted:
1375         /*
1376          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1377          * non-atomically.  Therefore, if get_user below is not
1378          * enough, we need to handle the fault ourselves, while
1379          * still holding the mmap_sem.
1380          */
1381         if (attempt++) {
1382                 if (futex_handle_fault((unsigned long)uaddr, attempt)) {
1383                         ret = -EFAULT;
1384                         goto out_unlock_release_sem;
1385                 }
1386                 goto retry_locked;
1387         }
1388
1389         queue_unlock(&q, hb);
1390         up_read(&curr->mm->mmap_sem);
1391
1392         ret = get_user(uval, uaddr);
1393         if (!ret && (uval != -EFAULT))
1394                 goto retry;
1395
1396         return ret;
1397 }
1398
1399 /*
1400  * Userspace attempted a TID -> 0 atomic transition, and failed.
1401  * This is the in-kernel slowpath: we look up the PI state (if any),
1402  * and do the rt-mutex unlock.
1403  */
1404 static int futex_unlock_pi(u32 __user *uaddr)
1405 {
1406         struct futex_hash_bucket *hb;
1407         struct futex_q *this, *next;
1408         u32 uval;
1409         struct plist_head *head;
1410         union futex_key key;
1411         int ret, attempt = 0;
1412
1413 retry:
1414         if (get_user(uval, uaddr))
1415                 return -EFAULT;
1416         /*
1417          * We release only a lock we actually own:
1418          */
1419         if ((uval & FUTEX_TID_MASK) != current->pid)
1420                 return -EPERM;
1421         /*
1422          * First take all the futex related locks:
1423          */
1424         down_read(&current->mm->mmap_sem);
1425
1426         ret = get_futex_key(uaddr, &key);
1427         if (unlikely(ret != 0))
1428                 goto out;
1429
1430         hb = hash_futex(&key);
1431         spin_lock(&hb->lock);
1432
1433 retry_locked:
1434         /*
1435          * To avoid races, try to do the TID -> 0 atomic transition
1436          * again. If it succeeds then we can return without waking
1437          * anyone else up:
1438          */
1439         if (!(uval & FUTEX_OWNER_DIED)) {
1440                 pagefault_disable();
1441                 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1442                 pagefault_enable();
1443         }
1444
1445         if (unlikely(uval == -EFAULT))
1446                 goto pi_faulted;
1447         /*
1448          * Rare case: we managed to release the lock atomically,
1449          * no need to wake anyone else up:
1450          */
1451         if (unlikely(uval == current->pid))
1452                 goto out_unlock;
1453
1454         /*
1455          * Ok, other tasks may need to be woken up - check waiters
1456          * and do the wakeup if necessary:
1457          */
1458         head = &hb->chain;
1459
1460         plist_for_each_entry_safe(this, next, head, list) {
1461                 if (!match_futex (&this->key, &key))
1462                         continue;
1463                 ret = wake_futex_pi(uaddr, uval, this);
1464                 /*
1465                  * The atomic access to the futex value
1466                  * generated a pagefault, so retry the
1467                  * user-access and the wakeup:
1468                  */
1469                 if (ret == -EFAULT)
1470                         goto pi_faulted;
1471                 goto out_unlock;
1472         }
1473         /*
1474          * No waiters - kernel unlocks the futex:
1475          */
1476         if (!(uval & FUTEX_OWNER_DIED)) {
1477                 ret = unlock_futex_pi(uaddr, uval);
1478                 if (ret == -EFAULT)
1479                         goto pi_faulted;
1480         }
1481
1482 out_unlock:
1483         spin_unlock(&hb->lock);
1484 out:
1485         up_read(&current->mm->mmap_sem);
1486
1487         return ret;
1488
1489 pi_faulted:
1490         /*
1491          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1492          * non-atomically.  Therefore, if get_user below is not
1493          * enough, we need to handle the fault ourselves, while
1494          * still holding the mmap_sem.
1495          */
1496         if (attempt++) {
1497                 if (futex_handle_fault((unsigned long)uaddr, attempt)) {
1498                         ret = -EFAULT;
1499                         goto out_unlock;
1500                 }
1501                 goto retry_locked;
1502         }
1503
1504         spin_unlock(&hb->lock);
1505         up_read(&current->mm->mmap_sem);
1506
1507         ret = get_user(uval, uaddr);
1508         if (!ret && (uval != -EFAULT))
1509                 goto retry;
1510
1511         return ret;
1512 }
1513
1514 static int futex_close(struct inode *inode, struct file *filp)
1515 {
1516         struct futex_q *q = filp->private_data;
1517
1518         unqueue_me(q);
1519         kfree(q);
1520
1521         return 0;
1522 }
1523
1524 /* This is one-shot: once it's gone off you need a new fd */
1525 static unsigned int futex_poll(struct file *filp,
1526                                struct poll_table_struct *wait)
1527 {
1528         struct futex_q *q = filp->private_data;
1529         int ret = 0;
1530
1531         poll_wait(filp, &q->waiters, wait);
1532
1533         /*
1534          * plist_node_empty() is safe here without any lock.
1535          * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1536          */
1537         if (plist_node_empty(&q->list))
1538                 ret = POLLIN | POLLRDNORM;
1539
1540         return ret;
1541 }
1542
1543 static const struct file_operations futex_fops = {
1544         .release        = futex_close,
1545         .poll           = futex_poll,
1546 };
1547
1548 /*
1549  * Signal allows caller to avoid the race which would occur if they
1550  * set the sigio stuff up afterwards.
1551  */
1552 static int futex_fd(u32 __user *uaddr, int signal)
1553 {
1554         struct futex_q *q;
1555         struct file *filp;
1556         int ret, err;
1557         static unsigned long printk_interval;
1558
1559         if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1560                 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1561                         "will be removed from the kernel in June 2007\n",
1562                         current->comm);
1563         }
1564
1565         ret = -EINVAL;
1566         if (!valid_signal(signal))
1567                 goto out;
1568
1569         ret = get_unused_fd();
1570         if (ret < 0)
1571                 goto out;
1572         filp = get_empty_filp();
1573         if (!filp) {
1574                 put_unused_fd(ret);
1575                 ret = -ENFILE;
1576                 goto out;
1577         }
1578         filp->f_op = &futex_fops;
1579         filp->f_path.mnt = mntget(futex_mnt);
1580         filp->f_path.dentry = dget(futex_mnt->mnt_root);
1581         filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1582
1583         if (signal) {
1584                 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1585                 if (err < 0) {
1586                         goto error;
1587                 }
1588                 filp->f_owner.signum = signal;
1589         }
1590
1591         q = kmalloc(sizeof(*q), GFP_KERNEL);
1592         if (!q) {
1593                 err = -ENOMEM;
1594                 goto error;
1595         }
1596         q->pi_state = NULL;
1597
1598         down_read(&current->mm->mmap_sem);
1599         err = get_futex_key(uaddr, &q->key);
1600
1601         if (unlikely(err != 0)) {
1602                 up_read(&current->mm->mmap_sem);
1603                 kfree(q);
1604                 goto error;
1605         }
1606
1607         /*
1608          * queue_me() must be called before releasing mmap_sem, because
1609          * key->shared.inode needs to be referenced while holding it.
1610          */
1611         filp->private_data = q;
1612
1613         queue_me(q, ret, filp);
1614         up_read(&current->mm->mmap_sem);
1615
1616         /* Now we map fd to filp, so userspace can access it */
1617         fd_install(ret, filp);
1618 out:
1619         return ret;
1620 error:
1621         put_unused_fd(ret);
1622         put_filp(filp);
1623         ret = err;
1624         goto out;
1625 }
1626
1627 /*
1628  * Support for robust futexes: the kernel cleans up held futexes at
1629  * thread exit time.
1630  *
1631  * Implementation: user-space maintains a per-thread list of locks it
1632  * is holding. Upon do_exit(), the kernel carefully walks this list,
1633  * and marks all locks that are owned by this thread with the
1634  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1635  * always manipulated with the lock held, so the list is private and
1636  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1637  * field, to allow the kernel to clean up if the thread dies after
1638  * acquiring the lock, but just before it could have added itself to
1639  * the list. There can only be one such pending lock.
1640  */
1641
1642 /**
1643  * sys_set_robust_list - set the robust-futex list head of a task
1644  * @head: pointer to the list-head
1645  * @len: length of the list-head, as userspace expects
1646  */
1647 asmlinkage long
1648 sys_set_robust_list(struct robust_list_head __user *head,
1649                     size_t len)
1650 {
1651         /*
1652          * The kernel knows only one size for now:
1653          */
1654         if (unlikely(len != sizeof(*head)))
1655                 return -EINVAL;
1656
1657         current->robust_list = head;
1658
1659         return 0;
1660 }
1661
1662 /**
1663  * sys_get_robust_list - get the robust-futex list head of a task
1664  * @pid: pid of the process [zero for current task]
1665  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1666  * @len_ptr: pointer to a length field, the kernel fills in the header size
1667  */
1668 asmlinkage long
1669 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1670                     size_t __user *len_ptr)
1671 {
1672         struct robust_list_head __user *head;
1673         unsigned long ret;
1674
1675         if (!pid)
1676                 head = current->robust_list;
1677         else {
1678                 struct task_struct *p;
1679
1680                 ret = -ESRCH;
1681                 rcu_read_lock();
1682                 p = find_task_by_pid(pid);
1683                 if (!p)
1684                         goto err_unlock;
1685                 ret = -EPERM;
1686                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1687                                 !capable(CAP_SYS_PTRACE))
1688                         goto err_unlock;
1689                 head = p->robust_list;
1690                 rcu_read_unlock();
1691         }
1692
1693         if (put_user(sizeof(*head), len_ptr))
1694                 return -EFAULT;
1695         return put_user(head, head_ptr);
1696
1697 err_unlock:
1698         rcu_read_unlock();
1699
1700         return ret;
1701 }
1702
1703 /*
1704  * Process a futex-list entry, check whether it's owned by the
1705  * dying task, and do notification if so:
1706  */
1707 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1708 {
1709         u32 uval, nval, mval;
1710
1711 retry:
1712         if (get_user(uval, uaddr))
1713                 return -1;
1714
1715         if ((uval & FUTEX_TID_MASK) == curr->pid) {
1716                 /*
1717                  * Ok, this dying thread is truly holding a futex
1718                  * of interest. Set the OWNER_DIED bit atomically
1719                  * via cmpxchg, and if the value had FUTEX_WAITERS
1720                  * set, wake up a waiter (if any). (We have to do a
1721                  * futex_wake() even if OWNER_DIED is already set -
1722                  * to handle the rare but possible case of recursive
1723                  * thread-death.) The rest of the cleanup is done in
1724                  * userspace.
1725                  */
1726                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1727                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1728
1729                 if (nval == -EFAULT)
1730                         return -1;
1731
1732                 if (nval != uval)
1733                         goto retry;
1734
1735                 /*
1736                  * Wake robust non-PI futexes here. The wakeup of
1737                  * PI futexes happens in exit_pi_state():
1738                  */
1739                 if (!pi) {
1740                         if (uval & FUTEX_WAITERS)
1741                                 futex_wake(uaddr, 1);
1742                 }
1743         }
1744         return 0;
1745 }
1746
1747 /*
1748  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1749  */
1750 static inline int fetch_robust_entry(struct robust_list __user **entry,
1751                                      struct robust_list __user * __user *head,
1752                                      int *pi)
1753 {
1754         unsigned long uentry;
1755
1756         if (get_user(uentry, (unsigned long __user *)head))
1757                 return -EFAULT;
1758
1759         *entry = (void __user *)(uentry & ~1UL);
1760         *pi = uentry & 1;
1761
1762         return 0;
1763 }
1764
1765 /*
1766  * Walk curr->robust_list (very carefully, it's a userspace list!)
1767  * and mark any locks found there dead, and notify any waiters.
1768  *
1769  * We silently return on any sign of list-walking problem.
1770  */
1771 void exit_robust_list(struct task_struct *curr)
1772 {
1773         struct robust_list_head __user *head = curr->robust_list;
1774         struct robust_list __user *entry, *pending;
1775         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1776         unsigned long futex_offset;
1777
1778         /*
1779          * Fetch the list head (which was registered earlier, via
1780          * sys_set_robust_list()):
1781          */
1782         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1783                 return;
1784         /*
1785          * Fetch the relative futex offset:
1786          */
1787         if (get_user(futex_offset, &head->futex_offset))
1788                 return;
1789         /*
1790          * Fetch any possibly pending lock-add first, and handle it
1791          * if it exists:
1792          */
1793         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1794                 return;
1795
1796         if (pending)
1797                 handle_futex_death((void __user *)pending + futex_offset, curr, pip);
1798
1799         while (entry != &head->list) {
1800                 /*
1801                  * A pending lock might already be on the list, so
1802                  * don't process it twice:
1803                  */
1804                 if (entry != pending)
1805                         if (handle_futex_death((void __user *)entry + futex_offset,
1806                                                 curr, pi))
1807                                 return;
1808                 /*
1809                  * Fetch the next entry in the list:
1810                  */
1811                 if (fetch_robust_entry(&entry, &entry->next, &pi))
1812                         return;
1813                 /*
1814                  * Avoid excessively long or circular lists:
1815                  */
1816                 if (!--limit)
1817                         break;
1818
1819                 cond_resched();
1820         }
1821 }
1822
1823 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1824                 u32 __user *uaddr2, u32 val2, u32 val3)
1825 {
1826         int ret;
1827
1828         switch (op) {
1829         case FUTEX_WAIT:
1830                 ret = futex_wait(uaddr, val, timeout);
1831                 break;
1832         case FUTEX_WAKE:
1833                 ret = futex_wake(uaddr, val);
1834                 break;
1835         case FUTEX_FD:
1836                 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1837                 ret = futex_fd(uaddr, val);
1838                 break;
1839         case FUTEX_REQUEUE:
1840                 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1841                 break;
1842         case FUTEX_CMP_REQUEUE:
1843                 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1844                 break;
1845         case FUTEX_WAKE_OP:
1846                 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1847                 break;
1848         case FUTEX_LOCK_PI:
1849                 ret = futex_lock_pi(uaddr, val, timeout, 0);
1850                 break;
1851         case FUTEX_UNLOCK_PI:
1852                 ret = futex_unlock_pi(uaddr);
1853                 break;
1854         case FUTEX_TRYLOCK_PI:
1855                 ret = futex_lock_pi(uaddr, 0, timeout, 1);
1856                 break;
1857         default:
1858                 ret = -ENOSYS;
1859         }
1860         return ret;
1861 }
1862
1863
1864 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1865                           struct timespec __user *utime, u32 __user *uaddr2,
1866                           u32 val3)
1867 {
1868         struct timespec ts;
1869         ktime_t t, *tp = NULL;
1870         u32 val2 = 0;
1871
1872         if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1873                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1874                         return -EFAULT;
1875                 if (!timespec_valid(&ts))
1876                         return -EINVAL;
1877
1878                 t = timespec_to_ktime(ts);
1879                 if (op == FUTEX_WAIT)
1880                         t = ktime_add(ktime_get(), t);
1881                 tp = &t;
1882         }
1883         /*
1884          * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1885          */
1886         if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1887                 val2 = (u32) (unsigned long) utime;
1888
1889         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1890 }
1891
1892 static int futexfs_get_sb(struct file_system_type *fs_type,
1893                           int flags, const char *dev_name, void *data,
1894                           struct vfsmount *mnt)
1895 {
1896         return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1897 }
1898
1899 static struct file_system_type futex_fs_type = {
1900         .name           = "futexfs",
1901         .get_sb         = futexfs_get_sb,
1902         .kill_sb        = kill_anon_super,
1903 };
1904
1905 static int __init init(void)
1906 {
1907         int i = register_filesystem(&futex_fs_type);
1908
1909         if (i)
1910                 return i;
1911
1912         futex_mnt = kern_mount(&futex_fs_type);
1913         if (IS_ERR(futex_mnt)) {
1914                 unregister_filesystem(&futex_fs_type);
1915                 return PTR_ERR(futex_mnt);
1916         }
1917
1918         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1919                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
1920                 spin_lock_init(&futex_queues[i].lock);
1921         }
1922         return 0;
1923 }
1924 __initcall(init);