[PATCH] Avoiding mmap fragmentation
[safe/jmp/linux-2.6] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
44
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51
52 /*
53  * Protected counters by write_lock_irq(&tasklist_lock)
54  */
55 unsigned long total_forks;      /* Handle normal Linux uptimes. */
56 int nr_threads;                 /* The idle threads do not count.. */
57
58 int max_threads;                /* tunable limit on nr_threads */
59
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
61
62  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
63
64 EXPORT_SYMBOL(tasklist_lock);
65
66 int nr_processes(void)
67 {
68         int cpu;
69         int total = 0;
70
71         for_each_online_cpu(cpu)
72                 total += per_cpu(process_counts, cpu);
73
74         return total;
75 }
76
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
82
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
85
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
88
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
91
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
94
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
97
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
100
101 void free_task(struct task_struct *tsk)
102 {
103         free_thread_info(tsk->thread_info);
104         free_task_struct(tsk);
105 }
106 EXPORT_SYMBOL(free_task);
107
108 void __put_task_struct(struct task_struct *tsk)
109 {
110         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111         WARN_ON(atomic_read(&tsk->usage));
112         WARN_ON(tsk == current);
113
114         if (unlikely(tsk->audit_context))
115                 audit_free(tsk);
116         security_task_free(tsk);
117         free_uid(tsk->user);
118         put_group_info(tsk->group_info);
119
120         if (!profile_handoff_task(tsk))
121                 free_task(tsk);
122 }
123
124 void __init fork_init(unsigned long mempages)
125 {
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
129 #endif
130         /* create a slab on which task_structs can be allocated */
131         task_struct_cachep =
132                 kmem_cache_create("task_struct", sizeof(struct task_struct),
133                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
135
136         /*
137          * The default maximum number of threads is set to a safe
138          * value: the thread structures can take up at most half
139          * of memory.
140          */
141         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
142
143         /*
144          * we need to allow at least 20 threads to boot a system
145          */
146         if(max_threads < 20)
147                 max_threads = 20;
148
149         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151         init_task.signal->rlim[RLIMIT_SIGPENDING] =
152                 init_task.signal->rlim[RLIMIT_NPROC];
153 }
154
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
156 {
157         struct task_struct *tsk;
158         struct thread_info *ti;
159
160         prepare_to_copy(orig);
161
162         tsk = alloc_task_struct();
163         if (!tsk)
164                 return NULL;
165
166         ti = alloc_thread_info(tsk);
167         if (!ti) {
168                 free_task_struct(tsk);
169                 return NULL;
170         }
171
172         *ti = *orig->thread_info;
173         *tsk = *orig;
174         tsk->thread_info = ti;
175         ti->task = tsk;
176
177         /* One for us, one for whoever does the "release_task()" (usually parent) */
178         atomic_set(&tsk->usage,2);
179         return tsk;
180 }
181
182 #ifdef CONFIG_MMU
183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
184 {
185         struct vm_area_struct * mpnt, *tmp, **pprev;
186         struct rb_node **rb_link, *rb_parent;
187         int retval;
188         unsigned long charge;
189         struct mempolicy *pol;
190
191         down_write(&oldmm->mmap_sem);
192         flush_cache_mm(current->mm);
193         mm->locked_vm = 0;
194         mm->mmap = NULL;
195         mm->mmap_cache = NULL;
196         mm->free_area_cache = oldmm->mmap_base;
197         mm->cached_hole_size = ~0UL;
198         mm->map_count = 0;
199         set_mm_counter(mm, rss, 0);
200         set_mm_counter(mm, anon_rss, 0);
201         cpus_clear(mm->cpu_vm_mask);
202         mm->mm_rb = RB_ROOT;
203         rb_link = &mm->mm_rb.rb_node;
204         rb_parent = NULL;
205         pprev = &mm->mmap;
206
207         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
208                 struct file *file;
209
210                 if (mpnt->vm_flags & VM_DONTCOPY) {
211                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
212                                                         -vma_pages(mpnt));
213                         continue;
214                 }
215                 charge = 0;
216                 if (mpnt->vm_flags & VM_ACCOUNT) {
217                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
218                         if (security_vm_enough_memory(len))
219                                 goto fail_nomem;
220                         charge = len;
221                 }
222                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
223                 if (!tmp)
224                         goto fail_nomem;
225                 *tmp = *mpnt;
226                 pol = mpol_copy(vma_policy(mpnt));
227                 retval = PTR_ERR(pol);
228                 if (IS_ERR(pol))
229                         goto fail_nomem_policy;
230                 vma_set_policy(tmp, pol);
231                 tmp->vm_flags &= ~VM_LOCKED;
232                 tmp->vm_mm = mm;
233                 tmp->vm_next = NULL;
234                 anon_vma_link(tmp);
235                 file = tmp->vm_file;
236                 if (file) {
237                         struct inode *inode = file->f_dentry->d_inode;
238                         get_file(file);
239                         if (tmp->vm_flags & VM_DENYWRITE)
240                                 atomic_dec(&inode->i_writecount);
241       
242                         /* insert tmp into the share list, just after mpnt */
243                         spin_lock(&file->f_mapping->i_mmap_lock);
244                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
245                         flush_dcache_mmap_lock(file->f_mapping);
246                         vma_prio_tree_add(tmp, mpnt);
247                         flush_dcache_mmap_unlock(file->f_mapping);
248                         spin_unlock(&file->f_mapping->i_mmap_lock);
249                 }
250
251                 /*
252                  * Link in the new vma and copy the page table entries:
253                  * link in first so that swapoff can see swap entries,
254                  * and try_to_unmap_one's find_vma find the new vma.
255                  */
256                 spin_lock(&mm->page_table_lock);
257                 *pprev = tmp;
258                 pprev = &tmp->vm_next;
259
260                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
261                 rb_link = &tmp->vm_rb.rb_right;
262                 rb_parent = &tmp->vm_rb;
263
264                 mm->map_count++;
265                 retval = copy_page_range(mm, current->mm, tmp);
266                 spin_unlock(&mm->page_table_lock);
267
268                 if (tmp->vm_ops && tmp->vm_ops->open)
269                         tmp->vm_ops->open(tmp);
270
271                 if (retval)
272                         goto out;
273         }
274         retval = 0;
275
276 out:
277         flush_tlb_mm(current->mm);
278         up_write(&oldmm->mmap_sem);
279         return retval;
280 fail_nomem_policy:
281         kmem_cache_free(vm_area_cachep, tmp);
282 fail_nomem:
283         retval = -ENOMEM;
284         vm_unacct_memory(charge);
285         goto out;
286 }
287
288 static inline int mm_alloc_pgd(struct mm_struct * mm)
289 {
290         mm->pgd = pgd_alloc(mm);
291         if (unlikely(!mm->pgd))
292                 return -ENOMEM;
293         return 0;
294 }
295
296 static inline void mm_free_pgd(struct mm_struct * mm)
297 {
298         pgd_free(mm->pgd);
299 }
300 #else
301 #define dup_mmap(mm, oldmm)     (0)
302 #define mm_alloc_pgd(mm)        (0)
303 #define mm_free_pgd(mm)
304 #endif /* CONFIG_MMU */
305
306  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
307
308 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
309 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
310
311 #include <linux/init_task.h>
312
313 static struct mm_struct * mm_init(struct mm_struct * mm)
314 {
315         atomic_set(&mm->mm_users, 1);
316         atomic_set(&mm->mm_count, 1);
317         init_rwsem(&mm->mmap_sem);
318         INIT_LIST_HEAD(&mm->mmlist);
319         mm->core_waiters = 0;
320         mm->nr_ptes = 0;
321         spin_lock_init(&mm->page_table_lock);
322         rwlock_init(&mm->ioctx_list_lock);
323         mm->ioctx_list = NULL;
324         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
325         mm->free_area_cache = TASK_UNMAPPED_BASE;
326         mm->cached_hole_size = ~0UL;
327
328         if (likely(!mm_alloc_pgd(mm))) {
329                 mm->def_flags = 0;
330                 return mm;
331         }
332         free_mm(mm);
333         return NULL;
334 }
335
336 /*
337  * Allocate and initialize an mm_struct.
338  */
339 struct mm_struct * mm_alloc(void)
340 {
341         struct mm_struct * mm;
342
343         mm = allocate_mm();
344         if (mm) {
345                 memset(mm, 0, sizeof(*mm));
346                 mm = mm_init(mm);
347         }
348         return mm;
349 }
350
351 /*
352  * Called when the last reference to the mm
353  * is dropped: either by a lazy thread or by
354  * mmput. Free the page directory and the mm.
355  */
356 void fastcall __mmdrop(struct mm_struct *mm)
357 {
358         BUG_ON(mm == &init_mm);
359         mm_free_pgd(mm);
360         destroy_context(mm);
361         free_mm(mm);
362 }
363
364 /*
365  * Decrement the use count and release all resources for an mm.
366  */
367 void mmput(struct mm_struct *mm)
368 {
369         if (atomic_dec_and_test(&mm->mm_users)) {
370                 exit_aio(mm);
371                 exit_mmap(mm);
372                 if (!list_empty(&mm->mmlist)) {
373                         spin_lock(&mmlist_lock);
374                         list_del(&mm->mmlist);
375                         spin_unlock(&mmlist_lock);
376                 }
377                 put_swap_token(mm);
378                 mmdrop(mm);
379         }
380 }
381 EXPORT_SYMBOL_GPL(mmput);
382
383 /**
384  * get_task_mm - acquire a reference to the task's mm
385  *
386  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
387  * this kernel workthread has transiently adopted a user mm with use_mm,
388  * to do its AIO) is not set and if so returns a reference to it, after
389  * bumping up the use count.  User must release the mm via mmput()
390  * after use.  Typically used by /proc and ptrace.
391  */
392 struct mm_struct *get_task_mm(struct task_struct *task)
393 {
394         struct mm_struct *mm;
395
396         task_lock(task);
397         mm = task->mm;
398         if (mm) {
399                 if (task->flags & PF_BORROWED_MM)
400                         mm = NULL;
401                 else
402                         atomic_inc(&mm->mm_users);
403         }
404         task_unlock(task);
405         return mm;
406 }
407 EXPORT_SYMBOL_GPL(get_task_mm);
408
409 /* Please note the differences between mmput and mm_release.
410  * mmput is called whenever we stop holding onto a mm_struct,
411  * error success whatever.
412  *
413  * mm_release is called after a mm_struct has been removed
414  * from the current process.
415  *
416  * This difference is important for error handling, when we
417  * only half set up a mm_struct for a new process and need to restore
418  * the old one.  Because we mmput the new mm_struct before
419  * restoring the old one. . .
420  * Eric Biederman 10 January 1998
421  */
422 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
423 {
424         struct completion *vfork_done = tsk->vfork_done;
425
426         /* Get rid of any cached register state */
427         deactivate_mm(tsk, mm);
428
429         /* notify parent sleeping on vfork() */
430         if (vfork_done) {
431                 tsk->vfork_done = NULL;
432                 complete(vfork_done);
433         }
434         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
435                 u32 __user * tidptr = tsk->clear_child_tid;
436                 tsk->clear_child_tid = NULL;
437
438                 /*
439                  * We don't check the error code - if userspace has
440                  * not set up a proper pointer then tough luck.
441                  */
442                 put_user(0, tidptr);
443                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
444         }
445 }
446
447 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
448 {
449         struct mm_struct * mm, *oldmm;
450         int retval;
451
452         tsk->min_flt = tsk->maj_flt = 0;
453         tsk->nvcsw = tsk->nivcsw = 0;
454
455         tsk->mm = NULL;
456         tsk->active_mm = NULL;
457
458         /*
459          * Are we cloning a kernel thread?
460          *
461          * We need to steal a active VM for that..
462          */
463         oldmm = current->mm;
464         if (!oldmm)
465                 return 0;
466
467         if (clone_flags & CLONE_VM) {
468                 atomic_inc(&oldmm->mm_users);
469                 mm = oldmm;
470                 /*
471                  * There are cases where the PTL is held to ensure no
472                  * new threads start up in user mode using an mm, which
473                  * allows optimizing out ipis; the tlb_gather_mmu code
474                  * is an example.
475                  */
476                 spin_unlock_wait(&oldmm->page_table_lock);
477                 goto good_mm;
478         }
479
480         retval = -ENOMEM;
481         mm = allocate_mm();
482         if (!mm)
483                 goto fail_nomem;
484
485         /* Copy the current MM stuff.. */
486         memcpy(mm, oldmm, sizeof(*mm));
487         if (!mm_init(mm))
488                 goto fail_nomem;
489
490         if (init_new_context(tsk,mm))
491                 goto fail_nocontext;
492
493         retval = dup_mmap(mm, oldmm);
494         if (retval)
495                 goto free_pt;
496
497         mm->hiwater_rss = get_mm_counter(mm,rss);
498         mm->hiwater_vm = mm->total_vm;
499
500 good_mm:
501         tsk->mm = mm;
502         tsk->active_mm = mm;
503         return 0;
504
505 free_pt:
506         mmput(mm);
507 fail_nomem:
508         return retval;
509
510 fail_nocontext:
511         /*
512          * If init_new_context() failed, we cannot use mmput() to free the mm
513          * because it calls destroy_context()
514          */
515         mm_free_pgd(mm);
516         free_mm(mm);
517         return retval;
518 }
519
520 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
521 {
522         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
523         /* We don't need to lock fs - think why ;-) */
524         if (fs) {
525                 atomic_set(&fs->count, 1);
526                 rwlock_init(&fs->lock);
527                 fs->umask = old->umask;
528                 read_lock(&old->lock);
529                 fs->rootmnt = mntget(old->rootmnt);
530                 fs->root = dget(old->root);
531                 fs->pwdmnt = mntget(old->pwdmnt);
532                 fs->pwd = dget(old->pwd);
533                 if (old->altroot) {
534                         fs->altrootmnt = mntget(old->altrootmnt);
535                         fs->altroot = dget(old->altroot);
536                 } else {
537                         fs->altrootmnt = NULL;
538                         fs->altroot = NULL;
539                 }
540                 read_unlock(&old->lock);
541         }
542         return fs;
543 }
544
545 struct fs_struct *copy_fs_struct(struct fs_struct *old)
546 {
547         return __copy_fs_struct(old);
548 }
549
550 EXPORT_SYMBOL_GPL(copy_fs_struct);
551
552 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
553 {
554         if (clone_flags & CLONE_FS) {
555                 atomic_inc(&current->fs->count);
556                 return 0;
557         }
558         tsk->fs = __copy_fs_struct(current->fs);
559         if (!tsk->fs)
560                 return -ENOMEM;
561         return 0;
562 }
563
564 static int count_open_files(struct files_struct *files, int size)
565 {
566         int i;
567
568         /* Find the last open fd */
569         for (i = size/(8*sizeof(long)); i > 0; ) {
570                 if (files->open_fds->fds_bits[--i])
571                         break;
572         }
573         i = (i+1) * 8 * sizeof(long);
574         return i;
575 }
576
577 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
578 {
579         struct files_struct *oldf, *newf;
580         struct file **old_fds, **new_fds;
581         int open_files, size, i, error = 0, expand;
582
583         /*
584          * A background process may not have any files ...
585          */
586         oldf = current->files;
587         if (!oldf)
588                 goto out;
589
590         if (clone_flags & CLONE_FILES) {
591                 atomic_inc(&oldf->count);
592                 goto out;
593         }
594
595         /*
596          * Note: we may be using current for both targets (See exec.c)
597          * This works because we cache current->files (old) as oldf. Don't
598          * break this.
599          */
600         tsk->files = NULL;
601         error = -ENOMEM;
602         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
603         if (!newf) 
604                 goto out;
605
606         atomic_set(&newf->count, 1);
607
608         spin_lock_init(&newf->file_lock);
609         newf->next_fd       = 0;
610         newf->max_fds       = NR_OPEN_DEFAULT;
611         newf->max_fdset     = __FD_SETSIZE;
612         newf->close_on_exec = &newf->close_on_exec_init;
613         newf->open_fds      = &newf->open_fds_init;
614         newf->fd            = &newf->fd_array[0];
615
616         spin_lock(&oldf->file_lock);
617
618         open_files = count_open_files(oldf, oldf->max_fdset);
619         expand = 0;
620
621         /*
622          * Check whether we need to allocate a larger fd array or fd set.
623          * Note: we're not a clone task, so the open count won't  change.
624          */
625         if (open_files > newf->max_fdset) {
626                 newf->max_fdset = 0;
627                 expand = 1;
628         }
629         if (open_files > newf->max_fds) {
630                 newf->max_fds = 0;
631                 expand = 1;
632         }
633
634         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
635         if (expand) {
636                 spin_unlock(&oldf->file_lock);
637                 spin_lock(&newf->file_lock);
638                 error = expand_files(newf, open_files-1);
639                 spin_unlock(&newf->file_lock);
640                 if (error < 0)
641                         goto out_release;
642                 spin_lock(&oldf->file_lock);
643         }
644
645         old_fds = oldf->fd;
646         new_fds = newf->fd;
647
648         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
649         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
650
651         for (i = open_files; i != 0; i--) {
652                 struct file *f = *old_fds++;
653                 if (f) {
654                         get_file(f);
655                 } else {
656                         /*
657                          * The fd may be claimed in the fd bitmap but not yet
658                          * instantiated in the files array if a sibling thread
659                          * is partway through open().  So make sure that this
660                          * fd is available to the new process.
661                          */
662                         FD_CLR(open_files - i, newf->open_fds);
663                 }
664                 *new_fds++ = f;
665         }
666         spin_unlock(&oldf->file_lock);
667
668         /* compute the remainder to be cleared */
669         size = (newf->max_fds - open_files) * sizeof(struct file *);
670
671         /* This is long word aligned thus could use a optimized version */ 
672         memset(new_fds, 0, size); 
673
674         if (newf->max_fdset > open_files) {
675                 int left = (newf->max_fdset-open_files)/8;
676                 int start = open_files / (8 * sizeof(unsigned long));
677
678                 memset(&newf->open_fds->fds_bits[start], 0, left);
679                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
680         }
681
682         tsk->files = newf;
683         error = 0;
684 out:
685         return error;
686
687 out_release:
688         free_fdset (newf->close_on_exec, newf->max_fdset);
689         free_fdset (newf->open_fds, newf->max_fdset);
690         free_fd_array(newf->fd, newf->max_fds);
691         kmem_cache_free(files_cachep, newf);
692         goto out;
693 }
694
695 /*
696  *      Helper to unshare the files of the current task.
697  *      We don't want to expose copy_files internals to
698  *      the exec layer of the kernel.
699  */
700
701 int unshare_files(void)
702 {
703         struct files_struct *files  = current->files;
704         int rc;
705
706         if(!files)
707                 BUG();
708
709         /* This can race but the race causes us to copy when we don't
710            need to and drop the copy */
711         if(atomic_read(&files->count) == 1)
712         {
713                 atomic_inc(&files->count);
714                 return 0;
715         }
716         rc = copy_files(0, current);
717         if(rc)
718                 current->files = files;
719         return rc;
720 }
721
722 EXPORT_SYMBOL(unshare_files);
723
724 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
725 {
726         struct sighand_struct *sig;
727
728         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
729                 atomic_inc(&current->sighand->count);
730                 return 0;
731         }
732         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
733         tsk->sighand = sig;
734         if (!sig)
735                 return -ENOMEM;
736         spin_lock_init(&sig->siglock);
737         atomic_set(&sig->count, 1);
738         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
739         return 0;
740 }
741
742 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
743 {
744         struct signal_struct *sig;
745         int ret;
746
747         if (clone_flags & CLONE_THREAD) {
748                 atomic_inc(&current->signal->count);
749                 atomic_inc(&current->signal->live);
750                 return 0;
751         }
752         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
753         tsk->signal = sig;
754         if (!sig)
755                 return -ENOMEM;
756
757         ret = copy_thread_group_keys(tsk);
758         if (ret < 0) {
759                 kmem_cache_free(signal_cachep, sig);
760                 return ret;
761         }
762
763         atomic_set(&sig->count, 1);
764         atomic_set(&sig->live, 1);
765         init_waitqueue_head(&sig->wait_chldexit);
766         sig->flags = 0;
767         sig->group_exit_code = 0;
768         sig->group_exit_task = NULL;
769         sig->group_stop_count = 0;
770         sig->curr_target = NULL;
771         init_sigpending(&sig->shared_pending);
772         INIT_LIST_HEAD(&sig->posix_timers);
773
774         sig->it_real_value = sig->it_real_incr = 0;
775         sig->real_timer.function = it_real_fn;
776         sig->real_timer.data = (unsigned long) tsk;
777         init_timer(&sig->real_timer);
778
779         sig->it_virt_expires = cputime_zero;
780         sig->it_virt_incr = cputime_zero;
781         sig->it_prof_expires = cputime_zero;
782         sig->it_prof_incr = cputime_zero;
783
784         sig->tty = current->signal->tty;
785         sig->pgrp = process_group(current);
786         sig->session = current->signal->session;
787         sig->leader = 0;        /* session leadership doesn't inherit */
788         sig->tty_old_pgrp = 0;
789
790         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
791         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
792         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
793         sig->sched_time = 0;
794         INIT_LIST_HEAD(&sig->cpu_timers[0]);
795         INIT_LIST_HEAD(&sig->cpu_timers[1]);
796         INIT_LIST_HEAD(&sig->cpu_timers[2]);
797
798         task_lock(current->group_leader);
799         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
800         task_unlock(current->group_leader);
801
802         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
803                 /*
804                  * New sole thread in the process gets an expiry time
805                  * of the whole CPU time limit.
806                  */
807                 tsk->it_prof_expires =
808                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
809         }
810
811         return 0;
812 }
813
814 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
815 {
816         unsigned long new_flags = p->flags;
817
818         new_flags &= ~PF_SUPERPRIV;
819         new_flags |= PF_FORKNOEXEC;
820         if (!(clone_flags & CLONE_PTRACE))
821                 p->ptrace = 0;
822         p->flags = new_flags;
823 }
824
825 asmlinkage long sys_set_tid_address(int __user *tidptr)
826 {
827         current->clear_child_tid = tidptr;
828
829         return current->pid;
830 }
831
832 /*
833  * This creates a new process as a copy of the old one,
834  * but does not actually start it yet.
835  *
836  * It copies the registers, and all the appropriate
837  * parts of the process environment (as per the clone
838  * flags). The actual kick-off is left to the caller.
839  */
840 static task_t *copy_process(unsigned long clone_flags,
841                                  unsigned long stack_start,
842                                  struct pt_regs *regs,
843                                  unsigned long stack_size,
844                                  int __user *parent_tidptr,
845                                  int __user *child_tidptr,
846                                  int pid)
847 {
848         int retval;
849         struct task_struct *p = NULL;
850
851         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
852                 return ERR_PTR(-EINVAL);
853
854         /*
855          * Thread groups must share signals as well, and detached threads
856          * can only be started up within the thread group.
857          */
858         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
859                 return ERR_PTR(-EINVAL);
860
861         /*
862          * Shared signal handlers imply shared VM. By way of the above,
863          * thread groups also imply shared VM. Blocking this case allows
864          * for various simplifications in other code.
865          */
866         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
867                 return ERR_PTR(-EINVAL);
868
869         retval = security_task_create(clone_flags);
870         if (retval)
871                 goto fork_out;
872
873         retval = -ENOMEM;
874         p = dup_task_struct(current);
875         if (!p)
876                 goto fork_out;
877
878         retval = -EAGAIN;
879         if (atomic_read(&p->user->processes) >=
880                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
881                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
882                                 p->user != &root_user)
883                         goto bad_fork_free;
884         }
885
886         atomic_inc(&p->user->__count);
887         atomic_inc(&p->user->processes);
888         get_group_info(p->group_info);
889
890         /*
891          * If multiple threads are within copy_process(), then this check
892          * triggers too late. This doesn't hurt, the check is only there
893          * to stop root fork bombs.
894          */
895         if (nr_threads >= max_threads)
896                 goto bad_fork_cleanup_count;
897
898         if (!try_module_get(p->thread_info->exec_domain->module))
899                 goto bad_fork_cleanup_count;
900
901         if (p->binfmt && !try_module_get(p->binfmt->module))
902                 goto bad_fork_cleanup_put_domain;
903
904         p->did_exec = 0;
905         copy_flags(clone_flags, p);
906         p->pid = pid;
907         retval = -EFAULT;
908         if (clone_flags & CLONE_PARENT_SETTID)
909                 if (put_user(p->pid, parent_tidptr))
910                         goto bad_fork_cleanup;
911
912         p->proc_dentry = NULL;
913
914         INIT_LIST_HEAD(&p->children);
915         INIT_LIST_HEAD(&p->sibling);
916         p->vfork_done = NULL;
917         spin_lock_init(&p->alloc_lock);
918         spin_lock_init(&p->proc_lock);
919
920         clear_tsk_thread_flag(p, TIF_SIGPENDING);
921         init_sigpending(&p->pending);
922
923         p->utime = cputime_zero;
924         p->stime = cputime_zero;
925         p->sched_time = 0;
926         p->rchar = 0;           /* I/O counter: bytes read */
927         p->wchar = 0;           /* I/O counter: bytes written */
928         p->syscr = 0;           /* I/O counter: read syscalls */
929         p->syscw = 0;           /* I/O counter: write syscalls */
930         acct_clear_integrals(p);
931
932         p->it_virt_expires = cputime_zero;
933         p->it_prof_expires = cputime_zero;
934         p->it_sched_expires = 0;
935         INIT_LIST_HEAD(&p->cpu_timers[0]);
936         INIT_LIST_HEAD(&p->cpu_timers[1]);
937         INIT_LIST_HEAD(&p->cpu_timers[2]);
938
939         p->lock_depth = -1;             /* -1 = no lock */
940         do_posix_clock_monotonic_gettime(&p->start_time);
941         p->security = NULL;
942         p->io_context = NULL;
943         p->io_wait = NULL;
944         p->audit_context = NULL;
945 #ifdef CONFIG_NUMA
946         p->mempolicy = mpol_copy(p->mempolicy);
947         if (IS_ERR(p->mempolicy)) {
948                 retval = PTR_ERR(p->mempolicy);
949                 p->mempolicy = NULL;
950                 goto bad_fork_cleanup;
951         }
952 #endif
953
954         p->tgid = p->pid;
955         if (clone_flags & CLONE_THREAD)
956                 p->tgid = current->tgid;
957
958         if ((retval = security_task_alloc(p)))
959                 goto bad_fork_cleanup_policy;
960         if ((retval = audit_alloc(p)))
961                 goto bad_fork_cleanup_security;
962         /* copy all the process information */
963         if ((retval = copy_semundo(clone_flags, p)))
964                 goto bad_fork_cleanup_audit;
965         if ((retval = copy_files(clone_flags, p)))
966                 goto bad_fork_cleanup_semundo;
967         if ((retval = copy_fs(clone_flags, p)))
968                 goto bad_fork_cleanup_files;
969         if ((retval = copy_sighand(clone_flags, p)))
970                 goto bad_fork_cleanup_fs;
971         if ((retval = copy_signal(clone_flags, p)))
972                 goto bad_fork_cleanup_sighand;
973         if ((retval = copy_mm(clone_flags, p)))
974                 goto bad_fork_cleanup_signal;
975         if ((retval = copy_keys(clone_flags, p)))
976                 goto bad_fork_cleanup_mm;
977         if ((retval = copy_namespace(clone_flags, p)))
978                 goto bad_fork_cleanup_keys;
979         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
980         if (retval)
981                 goto bad_fork_cleanup_namespace;
982
983         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
984         /*
985          * Clear TID on mm_release()?
986          */
987         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
988
989         /*
990          * Syscall tracing should be turned off in the child regardless
991          * of CLONE_PTRACE.
992          */
993         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
994
995         /* Our parent execution domain becomes current domain
996            These must match for thread signalling to apply */
997            
998         p->parent_exec_id = p->self_exec_id;
999
1000         /* ok, now we should be set up.. */
1001         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1002         p->pdeath_signal = 0;
1003         p->exit_state = 0;
1004
1005         /* Perform scheduler related setup */
1006         sched_fork(p);
1007
1008         /*
1009          * Ok, make it visible to the rest of the system.
1010          * We dont wake it up yet.
1011          */
1012         p->group_leader = p;
1013         INIT_LIST_HEAD(&p->ptrace_children);
1014         INIT_LIST_HEAD(&p->ptrace_list);
1015
1016         /* Need tasklist lock for parent etc handling! */
1017         write_lock_irq(&tasklist_lock);
1018
1019         /*
1020          * The task hasn't been attached yet, so cpus_allowed mask cannot
1021          * have changed. The cpus_allowed mask of the parent may have
1022          * changed after it was copied first time, and it may then move to
1023          * another CPU - so we re-copy it here and set the child's CPU to
1024          * the parent's CPU. This avoids alot of nasty races.
1025          */
1026         p->cpus_allowed = current->cpus_allowed;
1027         set_task_cpu(p, smp_processor_id());
1028
1029         /*
1030          * Check for pending SIGKILL! The new thread should not be allowed
1031          * to slip out of an OOM kill. (or normal SIGKILL.)
1032          */
1033         if (sigismember(&current->pending.signal, SIGKILL)) {
1034                 write_unlock_irq(&tasklist_lock);
1035                 retval = -EINTR;
1036                 goto bad_fork_cleanup_namespace;
1037         }
1038
1039         /* CLONE_PARENT re-uses the old parent */
1040         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1041                 p->real_parent = current->real_parent;
1042         else
1043                 p->real_parent = current;
1044         p->parent = p->real_parent;
1045
1046         if (clone_flags & CLONE_THREAD) {
1047                 spin_lock(&current->sighand->siglock);
1048                 /*
1049                  * Important: if an exit-all has been started then
1050                  * do not create this new thread - the whole thread
1051                  * group is supposed to exit anyway.
1052                  */
1053                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1054                         spin_unlock(&current->sighand->siglock);
1055                         write_unlock_irq(&tasklist_lock);
1056                         retval = -EAGAIN;
1057                         goto bad_fork_cleanup_namespace;
1058                 }
1059                 p->group_leader = current->group_leader;
1060
1061                 if (current->signal->group_stop_count > 0) {
1062                         /*
1063                          * There is an all-stop in progress for the group.
1064                          * We ourselves will stop as soon as we check signals.
1065                          * Make the new thread part of that group stop too.
1066                          */
1067                         current->signal->group_stop_count++;
1068                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1069                 }
1070
1071                 if (!cputime_eq(current->signal->it_virt_expires,
1072                                 cputime_zero) ||
1073                     !cputime_eq(current->signal->it_prof_expires,
1074                                 cputime_zero) ||
1075                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1076                     !list_empty(&current->signal->cpu_timers[0]) ||
1077                     !list_empty(&current->signal->cpu_timers[1]) ||
1078                     !list_empty(&current->signal->cpu_timers[2])) {
1079                         /*
1080                          * Have child wake up on its first tick to check
1081                          * for process CPU timers.
1082                          */
1083                         p->it_prof_expires = jiffies_to_cputime(1);
1084                 }
1085
1086                 spin_unlock(&current->sighand->siglock);
1087         }
1088
1089         SET_LINKS(p);
1090         if (unlikely(p->ptrace & PT_PTRACED))
1091                 __ptrace_link(p, current->parent);
1092
1093         cpuset_fork(p);
1094
1095         attach_pid(p, PIDTYPE_PID, p->pid);
1096         attach_pid(p, PIDTYPE_TGID, p->tgid);
1097         if (thread_group_leader(p)) {
1098                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1099                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1100                 if (p->pid)
1101                         __get_cpu_var(process_counts)++;
1102         }
1103
1104         nr_threads++;
1105         total_forks++;
1106         write_unlock_irq(&tasklist_lock);
1107         retval = 0;
1108
1109 fork_out:
1110         if (retval)
1111                 return ERR_PTR(retval);
1112         return p;
1113
1114 bad_fork_cleanup_namespace:
1115         exit_namespace(p);
1116 bad_fork_cleanup_keys:
1117         exit_keys(p);
1118 bad_fork_cleanup_mm:
1119         if (p->mm)
1120                 mmput(p->mm);
1121 bad_fork_cleanup_signal:
1122         exit_signal(p);
1123 bad_fork_cleanup_sighand:
1124         exit_sighand(p);
1125 bad_fork_cleanup_fs:
1126         exit_fs(p); /* blocking */
1127 bad_fork_cleanup_files:
1128         exit_files(p); /* blocking */
1129 bad_fork_cleanup_semundo:
1130         exit_sem(p);
1131 bad_fork_cleanup_audit:
1132         audit_free(p);
1133 bad_fork_cleanup_security:
1134         security_task_free(p);
1135 bad_fork_cleanup_policy:
1136 #ifdef CONFIG_NUMA
1137         mpol_free(p->mempolicy);
1138 #endif
1139 bad_fork_cleanup:
1140         if (p->binfmt)
1141                 module_put(p->binfmt->module);
1142 bad_fork_cleanup_put_domain:
1143         module_put(p->thread_info->exec_domain->module);
1144 bad_fork_cleanup_count:
1145         put_group_info(p->group_info);
1146         atomic_dec(&p->user->processes);
1147         free_uid(p->user);
1148 bad_fork_free:
1149         free_task(p);
1150         goto fork_out;
1151 }
1152
1153 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1154 {
1155         memset(regs, 0, sizeof(struct pt_regs));
1156         return regs;
1157 }
1158
1159 task_t * __devinit fork_idle(int cpu)
1160 {
1161         task_t *task;
1162         struct pt_regs regs;
1163
1164         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1165         if (!task)
1166                 return ERR_PTR(-ENOMEM);
1167         init_idle(task, cpu);
1168         unhash_process(task);
1169         return task;
1170 }
1171
1172 static inline int fork_traceflag (unsigned clone_flags)
1173 {
1174         if (clone_flags & CLONE_UNTRACED)
1175                 return 0;
1176         else if (clone_flags & CLONE_VFORK) {
1177                 if (current->ptrace & PT_TRACE_VFORK)
1178                         return PTRACE_EVENT_VFORK;
1179         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1180                 if (current->ptrace & PT_TRACE_CLONE)
1181                         return PTRACE_EVENT_CLONE;
1182         } else if (current->ptrace & PT_TRACE_FORK)
1183                 return PTRACE_EVENT_FORK;
1184
1185         return 0;
1186 }
1187
1188 /*
1189  *  Ok, this is the main fork-routine.
1190  *
1191  * It copies the process, and if successful kick-starts
1192  * it and waits for it to finish using the VM if required.
1193  */
1194 long do_fork(unsigned long clone_flags,
1195               unsigned long stack_start,
1196               struct pt_regs *regs,
1197               unsigned long stack_size,
1198               int __user *parent_tidptr,
1199               int __user *child_tidptr)
1200 {
1201         struct task_struct *p;
1202         int trace = 0;
1203         long pid = alloc_pidmap();
1204
1205         if (pid < 0)
1206                 return -EAGAIN;
1207         if (unlikely(current->ptrace)) {
1208                 trace = fork_traceflag (clone_flags);
1209                 if (trace)
1210                         clone_flags |= CLONE_PTRACE;
1211         }
1212
1213         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1214         /*
1215          * Do this prior waking up the new thread - the thread pointer
1216          * might get invalid after that point, if the thread exits quickly.
1217          */
1218         if (!IS_ERR(p)) {
1219                 struct completion vfork;
1220
1221                 if (clone_flags & CLONE_VFORK) {
1222                         p->vfork_done = &vfork;
1223                         init_completion(&vfork);
1224                 }
1225
1226                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1227                         /*
1228                          * We'll start up with an immediate SIGSTOP.
1229                          */
1230                         sigaddset(&p->pending.signal, SIGSTOP);
1231                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1232                 }
1233
1234                 if (!(clone_flags & CLONE_STOPPED))
1235                         wake_up_new_task(p, clone_flags);
1236                 else
1237                         p->state = TASK_STOPPED;
1238
1239                 if (unlikely (trace)) {
1240                         current->ptrace_message = pid;
1241                         ptrace_notify ((trace << 8) | SIGTRAP);
1242                 }
1243
1244                 if (clone_flags & CLONE_VFORK) {
1245                         wait_for_completion(&vfork);
1246                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1247                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1248                 }
1249         } else {
1250                 free_pidmap(pid);
1251                 pid = PTR_ERR(p);
1252         }
1253         return pid;
1254 }
1255
1256 void __init proc_caches_init(void)
1257 {
1258         sighand_cachep = kmem_cache_create("sighand_cache",
1259                         sizeof(struct sighand_struct), 0,
1260                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1261         signal_cachep = kmem_cache_create("signal_cache",
1262                         sizeof(struct signal_struct), 0,
1263                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1264         files_cachep = kmem_cache_create("files_cache", 
1265                         sizeof(struct files_struct), 0,
1266                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1267         fs_cachep = kmem_cache_create("fs_cache", 
1268                         sizeof(struct fs_struct), 0,
1269                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1270         vm_area_cachep = kmem_cache_create("vm_area_struct",
1271                         sizeof(struct vm_area_struct), 0,
1272                         SLAB_PANIC, NULL, NULL);
1273         mm_cachep = kmem_cache_create("mm_struct",
1274                         sizeof(struct mm_struct), 0,
1275                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1276 }