forget_original_parent: split out the un-ptrace part
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p)
65 {
66         nr_threads--;
67         detach_pid(p, PIDTYPE_PID);
68         if (thread_group_leader(p)) {
69                 detach_pid(p, PIDTYPE_PGID);
70                 detach_pid(p, PIDTYPE_SID);
71
72                 list_del_rcu(&p->tasks);
73                 __get_cpu_var(process_counts)--;
74         }
75         list_del_rcu(&p->thread_group);
76         list_del_init(&p->sibling);
77 }
78
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84         struct signal_struct *sig = tsk->signal;
85         struct sighand_struct *sighand;
86
87         BUG_ON(!sig);
88         BUG_ON(!atomic_read(&sig->count));
89
90         sighand = rcu_dereference(tsk->sighand);
91         spin_lock(&sighand->siglock);
92
93         posix_cpu_timers_exit(tsk);
94         if (atomic_dec_and_test(&sig->count))
95                 posix_cpu_timers_exit_group(tsk);
96         else {
97                 /*
98                  * If there is any task waiting for the group exit
99                  * then notify it:
100                  */
101                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
102                         wake_up_process(sig->group_exit_task);
103
104                 if (tsk == sig->curr_target)
105                         sig->curr_target = next_thread(tsk);
106                 /*
107                  * Accumulate here the counters for all threads but the
108                  * group leader as they die, so they can be added into
109                  * the process-wide totals when those are taken.
110                  * The group leader stays around as a zombie as long
111                  * as there are other threads.  When it gets reaped,
112                  * the exit.c code will add its counts into these totals.
113                  * We won't ever get here for the group leader, since it
114                  * will have been the last reference on the signal_struct.
115                  */
116                 sig->utime = cputime_add(sig->utime, task_utime(tsk));
117                 sig->stime = cputime_add(sig->stime, task_stime(tsk));
118                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
119                 sig->min_flt += tsk->min_flt;
120                 sig->maj_flt += tsk->maj_flt;
121                 sig->nvcsw += tsk->nvcsw;
122                 sig->nivcsw += tsk->nivcsw;
123                 sig->inblock += task_io_get_inblock(tsk);
124                 sig->oublock += task_io_get_oublock(tsk);
125                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
126                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127                 sig = NULL; /* Marker for below. */
128         }
129
130         __unhash_process(tsk);
131
132         /*
133          * Do this under ->siglock, we can race with another thread
134          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135          */
136         flush_sigqueue(&tsk->pending);
137
138         tsk->signal = NULL;
139         tsk->sighand = NULL;
140         spin_unlock(&sighand->siglock);
141
142         __cleanup_sighand(sighand);
143         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
144         if (sig) {
145                 flush_sigqueue(&sig->shared_pending);
146                 taskstats_tgid_free(sig);
147                 /*
148                  * Make sure ->signal can't go away under rq->lock,
149                  * see account_group_exec_runtime().
150                  */
151                 task_rq_unlock_wait(tsk);
152                 __cleanup_signal(sig);
153         }
154 }
155
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159
160         trace_sched_process_free(tsk);
161         put_task_struct(tsk);
162 }
163
164
165 void release_task(struct task_struct * p)
166 {
167         struct task_struct *leader;
168         int zap_leader;
169 repeat:
170         tracehook_prepare_release_task(p);
171         /* don't need to get the RCU readlock here - the process is dead and
172          * can't be modifying its own credentials */
173         atomic_dec(&__task_cred(p)->user->processes);
174
175         proc_flush_task(p);
176         write_lock_irq(&tasklist_lock);
177         tracehook_finish_release_task(p);
178         __exit_signal(p);
179
180         /*
181          * If we are the last non-leader member of the thread
182          * group, and the leader is zombie, then notify the
183          * group leader's parent process. (if it wants notification.)
184          */
185         zap_leader = 0;
186         leader = p->group_leader;
187         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
188                 BUG_ON(task_detached(leader));
189                 do_notify_parent(leader, leader->exit_signal);
190                 /*
191                  * If we were the last child thread and the leader has
192                  * exited already, and the leader's parent ignores SIGCHLD,
193                  * then we are the one who should release the leader.
194                  *
195                  * do_notify_parent() will have marked it self-reaping in
196                  * that case.
197                  */
198                 zap_leader = task_detached(leader);
199
200                 /*
201                  * This maintains the invariant that release_task()
202                  * only runs on a task in EXIT_DEAD, just for sanity.
203                  */
204                 if (zap_leader)
205                         leader->exit_state = EXIT_DEAD;
206         }
207
208         write_unlock_irq(&tasklist_lock);
209         release_thread(p);
210         call_rcu(&p->rcu, delayed_put_task_struct);
211
212         p = leader;
213         if (unlikely(zap_leader))
214                 goto repeat;
215 }
216
217 /*
218  * This checks not only the pgrp, but falls back on the pid if no
219  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
220  * without this...
221  *
222  * The caller must hold rcu lock or the tasklist lock.
223  */
224 struct pid *session_of_pgrp(struct pid *pgrp)
225 {
226         struct task_struct *p;
227         struct pid *sid = NULL;
228
229         p = pid_task(pgrp, PIDTYPE_PGID);
230         if (p == NULL)
231                 p = pid_task(pgrp, PIDTYPE_PID);
232         if (p != NULL)
233                 sid = task_session(p);
234
235         return sid;
236 }
237
238 /*
239  * Determine if a process group is "orphaned", according to the POSIX
240  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
241  * by terminal-generated stop signals.  Newly orphaned process groups are
242  * to receive a SIGHUP and a SIGCONT.
243  *
244  * "I ask you, have you ever known what it is to be an orphan?"
245  */
246 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
247 {
248         struct task_struct *p;
249
250         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
251                 if ((p == ignored_task) ||
252                     (p->exit_state && thread_group_empty(p)) ||
253                     is_global_init(p->real_parent))
254                         continue;
255
256                 if (task_pgrp(p->real_parent) != pgrp &&
257                     task_session(p->real_parent) == task_session(p))
258                         return 0;
259         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260
261         return 1;
262 }
263
264 int is_current_pgrp_orphaned(void)
265 {
266         int retval;
267
268         read_lock(&tasklist_lock);
269         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
270         read_unlock(&tasklist_lock);
271
272         return retval;
273 }
274
275 static int has_stopped_jobs(struct pid *pgrp)
276 {
277         int retval = 0;
278         struct task_struct *p;
279
280         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281                 if (!task_is_stopped(p))
282                         continue;
283                 retval = 1;
284                 break;
285         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
286         return retval;
287 }
288
289 /*
290  * Check to see if any process groups have become orphaned as
291  * a result of our exiting, and if they have any stopped jobs,
292  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
293  */
294 static void
295 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
296 {
297         struct pid *pgrp = task_pgrp(tsk);
298         struct task_struct *ignored_task = tsk;
299
300         if (!parent)
301                  /* exit: our father is in a different pgrp than
302                   * we are and we were the only connection outside.
303                   */
304                 parent = tsk->real_parent;
305         else
306                 /* reparent: our child is in a different pgrp than
307                  * we are, and it was the only connection outside.
308                  */
309                 ignored_task = NULL;
310
311         if (task_pgrp(parent) != pgrp &&
312             task_session(parent) == task_session(tsk) &&
313             will_become_orphaned_pgrp(pgrp, ignored_task) &&
314             has_stopped_jobs(pgrp)) {
315                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
316                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
317         }
318 }
319
320 /**
321  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
322  *
323  * If a kernel thread is launched as a result of a system call, or if
324  * it ever exits, it should generally reparent itself to kthreadd so it
325  * isn't in the way of other processes and is correctly cleaned up on exit.
326  *
327  * The various task state such as scheduling policy and priority may have
328  * been inherited from a user process, so we reset them to sane values here.
329  *
330  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
331  */
332 static void reparent_to_kthreadd(void)
333 {
334         write_lock_irq(&tasklist_lock);
335
336         ptrace_unlink(current);
337         /* Reparent to init */
338         current->real_parent = current->parent = kthreadd_task;
339         list_move_tail(&current->sibling, &current->real_parent->children);
340
341         /* Set the exit signal to SIGCHLD so we signal init on exit */
342         current->exit_signal = SIGCHLD;
343
344         if (task_nice(current) < 0)
345                 set_user_nice(current, 0);
346         /* cpus_allowed? */
347         /* rt_priority? */
348         /* signals? */
349         memcpy(current->signal->rlim, init_task.signal->rlim,
350                sizeof(current->signal->rlim));
351
352         atomic_inc(&init_cred.usage);
353         commit_creds(&init_cred);
354         write_unlock_irq(&tasklist_lock);
355 }
356
357 void __set_special_pids(struct pid *pid)
358 {
359         struct task_struct *curr = current->group_leader;
360         pid_t nr = pid_nr(pid);
361
362         if (task_session(curr) != pid) {
363                 change_pid(curr, PIDTYPE_SID, pid);
364                 set_task_session(curr, nr);
365         }
366         if (task_pgrp(curr) != pid) {
367                 change_pid(curr, PIDTYPE_PGID, pid);
368                 set_task_pgrp(curr, nr);
369         }
370 }
371
372 static void set_special_pids(struct pid *pid)
373 {
374         write_lock_irq(&tasklist_lock);
375         __set_special_pids(pid);
376         write_unlock_irq(&tasklist_lock);
377 }
378
379 /*
380  * Let kernel threads use this to say that they
381  * allow a certain signal (since daemonize() will
382  * have disabled all of them by default).
383  */
384 int allow_signal(int sig)
385 {
386         if (!valid_signal(sig) || sig < 1)
387                 return -EINVAL;
388
389         spin_lock_irq(&current->sighand->siglock);
390         sigdelset(&current->blocked, sig);
391         if (!current->mm) {
392                 /* Kernel threads handle their own signals.
393                    Let the signal code know it'll be handled, so
394                    that they don't get converted to SIGKILL or
395                    just silently dropped */
396                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
397         }
398         recalc_sigpending();
399         spin_unlock_irq(&current->sighand->siglock);
400         return 0;
401 }
402
403 EXPORT_SYMBOL(allow_signal);
404
405 int disallow_signal(int sig)
406 {
407         if (!valid_signal(sig) || sig < 1)
408                 return -EINVAL;
409
410         spin_lock_irq(&current->sighand->siglock);
411         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412         recalc_sigpending();
413         spin_unlock_irq(&current->sighand->siglock);
414         return 0;
415 }
416
417 EXPORT_SYMBOL(disallow_signal);
418
419 /*
420  *      Put all the gunge required to become a kernel thread without
421  *      attached user resources in one place where it belongs.
422  */
423
424 void daemonize(const char *name, ...)
425 {
426         va_list args;
427         struct fs_struct *fs;
428         sigset_t blocked;
429
430         va_start(args, name);
431         vsnprintf(current->comm, sizeof(current->comm), name, args);
432         va_end(args);
433
434         /*
435          * If we were started as result of loading a module, close all of the
436          * user space pages.  We don't need them, and if we didn't close them
437          * they would be locked into memory.
438          */
439         exit_mm(current);
440         /*
441          * We don't want to have TIF_FREEZE set if the system-wide hibernation
442          * or suspend transition begins right now.
443          */
444         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
445
446         if (current->nsproxy != &init_nsproxy) {
447                 get_nsproxy(&init_nsproxy);
448                 switch_task_namespaces(current, &init_nsproxy);
449         }
450         set_special_pids(&init_struct_pid);
451         proc_clear_tty(current);
452
453         /* Block and flush all signals */
454         sigfillset(&blocked);
455         sigprocmask(SIG_BLOCK, &blocked, NULL);
456         flush_signals(current);
457
458         /* Become as one with the init task */
459
460         exit_fs(current);       /* current->fs->count--; */
461         fs = init_task.fs;
462         current->fs = fs;
463         atomic_inc(&fs->count);
464
465         exit_files(current);
466         current->files = init_task.files;
467         atomic_inc(&current->files->count);
468
469         reparent_to_kthreadd();
470 }
471
472 EXPORT_SYMBOL(daemonize);
473
474 static void close_files(struct files_struct * files)
475 {
476         int i, j;
477         struct fdtable *fdt;
478
479         j = 0;
480
481         /*
482          * It is safe to dereference the fd table without RCU or
483          * ->file_lock because this is the last reference to the
484          * files structure.
485          */
486         fdt = files_fdtable(files);
487         for (;;) {
488                 unsigned long set;
489                 i = j * __NFDBITS;
490                 if (i >= fdt->max_fds)
491                         break;
492                 set = fdt->open_fds->fds_bits[j++];
493                 while (set) {
494                         if (set & 1) {
495                                 struct file * file = xchg(&fdt->fd[i], NULL);
496                                 if (file) {
497                                         filp_close(file, files);
498                                         cond_resched();
499                                 }
500                         }
501                         i++;
502                         set >>= 1;
503                 }
504         }
505 }
506
507 struct files_struct *get_files_struct(struct task_struct *task)
508 {
509         struct files_struct *files;
510
511         task_lock(task);
512         files = task->files;
513         if (files)
514                 atomic_inc(&files->count);
515         task_unlock(task);
516
517         return files;
518 }
519
520 void put_files_struct(struct files_struct *files)
521 {
522         struct fdtable *fdt;
523
524         if (atomic_dec_and_test(&files->count)) {
525                 close_files(files);
526                 /*
527                  * Free the fd and fdset arrays if we expanded them.
528                  * If the fdtable was embedded, pass files for freeing
529                  * at the end of the RCU grace period. Otherwise,
530                  * you can free files immediately.
531                  */
532                 fdt = files_fdtable(files);
533                 if (fdt != &files->fdtab)
534                         kmem_cache_free(files_cachep, files);
535                 free_fdtable(fdt);
536         }
537 }
538
539 void reset_files_struct(struct files_struct *files)
540 {
541         struct task_struct *tsk = current;
542         struct files_struct *old;
543
544         old = tsk->files;
545         task_lock(tsk);
546         tsk->files = files;
547         task_unlock(tsk);
548         put_files_struct(old);
549 }
550
551 void exit_files(struct task_struct *tsk)
552 {
553         struct files_struct * files = tsk->files;
554
555         if (files) {
556                 task_lock(tsk);
557                 tsk->files = NULL;
558                 task_unlock(tsk);
559                 put_files_struct(files);
560         }
561 }
562
563 void put_fs_struct(struct fs_struct *fs)
564 {
565         /* No need to hold fs->lock if we are killing it */
566         if (atomic_dec_and_test(&fs->count)) {
567                 path_put(&fs->root);
568                 path_put(&fs->pwd);
569                 kmem_cache_free(fs_cachep, fs);
570         }
571 }
572
573 void exit_fs(struct task_struct *tsk)
574 {
575         struct fs_struct * fs = tsk->fs;
576
577         if (fs) {
578                 task_lock(tsk);
579                 tsk->fs = NULL;
580                 task_unlock(tsk);
581                 put_fs_struct(fs);
582         }
583 }
584
585 EXPORT_SYMBOL_GPL(exit_fs);
586
587 #ifdef CONFIG_MM_OWNER
588 /*
589  * Task p is exiting and it owned mm, lets find a new owner for it
590  */
591 static inline int
592 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
593 {
594         /*
595          * If there are other users of the mm and the owner (us) is exiting
596          * we need to find a new owner to take on the responsibility.
597          */
598         if (atomic_read(&mm->mm_users) <= 1)
599                 return 0;
600         if (mm->owner != p)
601                 return 0;
602         return 1;
603 }
604
605 void mm_update_next_owner(struct mm_struct *mm)
606 {
607         struct task_struct *c, *g, *p = current;
608
609 retry:
610         if (!mm_need_new_owner(mm, p))
611                 return;
612
613         read_lock(&tasklist_lock);
614         /*
615          * Search in the children
616          */
617         list_for_each_entry(c, &p->children, sibling) {
618                 if (c->mm == mm)
619                         goto assign_new_owner;
620         }
621
622         /*
623          * Search in the siblings
624          */
625         list_for_each_entry(c, &p->parent->children, sibling) {
626                 if (c->mm == mm)
627                         goto assign_new_owner;
628         }
629
630         /*
631          * Search through everything else. We should not get
632          * here often
633          */
634         do_each_thread(g, c) {
635                 if (c->mm == mm)
636                         goto assign_new_owner;
637         } while_each_thread(g, c);
638
639         read_unlock(&tasklist_lock);
640         /*
641          * We found no owner yet mm_users > 1: this implies that we are
642          * most likely racing with swapoff (try_to_unuse()) or /proc or
643          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
644          */
645         mm->owner = NULL;
646         return;
647
648 assign_new_owner:
649         BUG_ON(c == p);
650         get_task_struct(c);
651         /*
652          * The task_lock protects c->mm from changing.
653          * We always want mm->owner->mm == mm
654          */
655         task_lock(c);
656         /*
657          * Delay read_unlock() till we have the task_lock()
658          * to ensure that c does not slip away underneath us
659          */
660         read_unlock(&tasklist_lock);
661         if (c->mm != mm) {
662                 task_unlock(c);
663                 put_task_struct(c);
664                 goto retry;
665         }
666         mm->owner = c;
667         task_unlock(c);
668         put_task_struct(c);
669 }
670 #endif /* CONFIG_MM_OWNER */
671
672 /*
673  * Turn us into a lazy TLB process if we
674  * aren't already..
675  */
676 static void exit_mm(struct task_struct * tsk)
677 {
678         struct mm_struct *mm = tsk->mm;
679         struct core_state *core_state;
680
681         mm_release(tsk, mm);
682         if (!mm)
683                 return;
684         /*
685          * Serialize with any possible pending coredump.
686          * We must hold mmap_sem around checking core_state
687          * and clearing tsk->mm.  The core-inducing thread
688          * will increment ->nr_threads for each thread in the
689          * group with ->mm != NULL.
690          */
691         down_read(&mm->mmap_sem);
692         core_state = mm->core_state;
693         if (core_state) {
694                 struct core_thread self;
695                 up_read(&mm->mmap_sem);
696
697                 self.task = tsk;
698                 self.next = xchg(&core_state->dumper.next, &self);
699                 /*
700                  * Implies mb(), the result of xchg() must be visible
701                  * to core_state->dumper.
702                  */
703                 if (atomic_dec_and_test(&core_state->nr_threads))
704                         complete(&core_state->startup);
705
706                 for (;;) {
707                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
708                         if (!self.task) /* see coredump_finish() */
709                                 break;
710                         schedule();
711                 }
712                 __set_task_state(tsk, TASK_RUNNING);
713                 down_read(&mm->mmap_sem);
714         }
715         atomic_inc(&mm->mm_count);
716         BUG_ON(mm != tsk->active_mm);
717         /* more a memory barrier than a real lock */
718         task_lock(tsk);
719         tsk->mm = NULL;
720         up_read(&mm->mmap_sem);
721         enter_lazy_tlb(mm, current);
722         /* We don't want this task to be frozen prematurely */
723         clear_freeze_flag(tsk);
724         task_unlock(tsk);
725         mm_update_next_owner(mm);
726         mmput(mm);
727 }
728
729 /* Returns nonzero if the child should be released. */
730 static int reparent_thread(struct task_struct *p, struct task_struct *father)
731 {
732         int dead;
733
734         if (p->pdeath_signal)
735                 /* We already hold the tasklist_lock here.  */
736                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
737
738         list_move_tail(&p->sibling, &p->real_parent->children);
739
740         if (task_detached(p))
741                 return 0;
742         /* If this is a threaded reparent there is no need to
743          * notify anyone anything has happened.
744          */
745         if (same_thread_group(p->real_parent, father))
746                 return 0;
747
748         /* We don't want people slaying init.  */
749         p->exit_signal = SIGCHLD;
750
751         /* If we'd notified the old parent about this child's death,
752          * also notify the new parent.
753          */
754         dead = 0;
755         if (!p->ptrace &&
756             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
757                 do_notify_parent(p, p->exit_signal);
758                 if (task_detached(p)) {
759                         p->exit_state = EXIT_DEAD;
760                         dead = 1;
761                 }
762         }
763
764         kill_orphaned_pgrp(p, father);
765
766         return dead;
767 }
768
769 /*
770  * When we die, we re-parent all our children.
771  * Try to give them to another thread in our thread
772  * group, and if no such member exists, give it to
773  * the child reaper process (ie "init") in our pid
774  * space.
775  */
776 static struct task_struct *find_new_reaper(struct task_struct *father)
777 {
778         struct pid_namespace *pid_ns = task_active_pid_ns(father);
779         struct task_struct *thread;
780
781         thread = father;
782         while_each_thread(father, thread) {
783                 if (thread->flags & PF_EXITING)
784                         continue;
785                 if (unlikely(pid_ns->child_reaper == father))
786                         pid_ns->child_reaper = thread;
787                 return thread;
788         }
789
790         if (unlikely(pid_ns->child_reaper == father)) {
791                 write_unlock_irq(&tasklist_lock);
792                 if (unlikely(pid_ns == &init_pid_ns))
793                         panic("Attempted to kill init!");
794
795                 zap_pid_ns_processes(pid_ns);
796                 write_lock_irq(&tasklist_lock);
797                 /*
798                  * We can not clear ->child_reaper or leave it alone.
799                  * There may by stealth EXIT_DEAD tasks on ->children,
800                  * forget_original_parent() must move them somewhere.
801                  */
802                 pid_ns->child_reaper = init_pid_ns.child_reaper;
803         }
804
805         return pid_ns->child_reaper;
806 }
807
808 static void forget_original_parent(struct task_struct *father)
809 {
810         struct task_struct *p, *n, *reaper;
811         LIST_HEAD(ptrace_dead);
812
813         exit_ptrace(father);
814
815         write_lock_irq(&tasklist_lock);
816         reaper = find_new_reaper(father);
817
818         list_for_each_entry_safe(p, n, &father->children, sibling) {
819                 p->real_parent = reaper;
820                 if (p->parent == father) {
821                         BUG_ON(p->ptrace);
822                         p->parent = p->real_parent;
823                 }
824                 if (reparent_thread(p, father))
825                         list_add(&p->ptrace_entry, &ptrace_dead);;
826         }
827
828         write_unlock_irq(&tasklist_lock);
829         BUG_ON(!list_empty(&father->children));
830
831         list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {
832                 list_del_init(&p->ptrace_entry);
833                 release_task(p);
834         }
835 }
836
837 /*
838  * Send signals to all our closest relatives so that they know
839  * to properly mourn us..
840  */
841 static void exit_notify(struct task_struct *tsk, int group_dead)
842 {
843         int signal;
844         void *cookie;
845
846         /*
847          * This does two things:
848          *
849          * A.  Make init inherit all the child processes
850          * B.  Check to see if any process groups have become orphaned
851          *      as a result of our exiting, and if they have any stopped
852          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
853          */
854         forget_original_parent(tsk);
855         exit_task_namespaces(tsk);
856
857         write_lock_irq(&tasklist_lock);
858         if (group_dead)
859                 kill_orphaned_pgrp(tsk->group_leader, NULL);
860
861         /* Let father know we died
862          *
863          * Thread signals are configurable, but you aren't going to use
864          * that to send signals to arbitary processes.
865          * That stops right now.
866          *
867          * If the parent exec id doesn't match the exec id we saved
868          * when we started then we know the parent has changed security
869          * domain.
870          *
871          * If our self_exec id doesn't match our parent_exec_id then
872          * we have changed execution domain as these two values started
873          * the same after a fork.
874          */
875         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
876             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
877              tsk->self_exec_id != tsk->parent_exec_id) &&
878             !capable(CAP_KILL))
879                 tsk->exit_signal = SIGCHLD;
880
881         signal = tracehook_notify_death(tsk, &cookie, group_dead);
882         if (signal >= 0)
883                 signal = do_notify_parent(tsk, signal);
884
885         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
886
887         /* mt-exec, de_thread() is waiting for us */
888         if (thread_group_leader(tsk) &&
889             tsk->signal->group_exit_task &&
890             tsk->signal->notify_count < 0)
891                 wake_up_process(tsk->signal->group_exit_task);
892
893         write_unlock_irq(&tasklist_lock);
894
895         tracehook_report_death(tsk, signal, cookie, group_dead);
896
897         /* If the process is dead, release it - nobody will wait for it */
898         if (signal == DEATH_REAP)
899                 release_task(tsk);
900 }
901
902 #ifdef CONFIG_DEBUG_STACK_USAGE
903 static void check_stack_usage(void)
904 {
905         static DEFINE_SPINLOCK(low_water_lock);
906         static int lowest_to_date = THREAD_SIZE;
907         unsigned long free;
908
909         free = stack_not_used(current);
910
911         if (free >= lowest_to_date)
912                 return;
913
914         spin_lock(&low_water_lock);
915         if (free < lowest_to_date) {
916                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
917                                 "left\n",
918                                 current->comm, free);
919                 lowest_to_date = free;
920         }
921         spin_unlock(&low_water_lock);
922 }
923 #else
924 static inline void check_stack_usage(void) {}
925 #endif
926
927 NORET_TYPE void do_exit(long code)
928 {
929         struct task_struct *tsk = current;
930         int group_dead;
931
932         profile_task_exit(tsk);
933
934         WARN_ON(atomic_read(&tsk->fs_excl));
935
936         if (unlikely(in_interrupt()))
937                 panic("Aiee, killing interrupt handler!");
938         if (unlikely(!tsk->pid))
939                 panic("Attempted to kill the idle task!");
940
941         tracehook_report_exit(&code);
942
943         /*
944          * We're taking recursive faults here in do_exit. Safest is to just
945          * leave this task alone and wait for reboot.
946          */
947         if (unlikely(tsk->flags & PF_EXITING)) {
948                 printk(KERN_ALERT
949                         "Fixing recursive fault but reboot is needed!\n");
950                 /*
951                  * We can do this unlocked here. The futex code uses
952                  * this flag just to verify whether the pi state
953                  * cleanup has been done or not. In the worst case it
954                  * loops once more. We pretend that the cleanup was
955                  * done as there is no way to return. Either the
956                  * OWNER_DIED bit is set by now or we push the blocked
957                  * task into the wait for ever nirwana as well.
958                  */
959                 tsk->flags |= PF_EXITPIDONE;
960                 set_current_state(TASK_UNINTERRUPTIBLE);
961                 schedule();
962         }
963
964         exit_signals(tsk);  /* sets PF_EXITING */
965         /*
966          * tsk->flags are checked in the futex code to protect against
967          * an exiting task cleaning up the robust pi futexes.
968          */
969         smp_mb();
970         spin_unlock_wait(&tsk->pi_lock);
971
972         if (unlikely(in_atomic()))
973                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
974                                 current->comm, task_pid_nr(current),
975                                 preempt_count());
976
977         acct_update_integrals(tsk);
978
979         group_dead = atomic_dec_and_test(&tsk->signal->live);
980         if (group_dead) {
981                 hrtimer_cancel(&tsk->signal->real_timer);
982                 exit_itimers(tsk->signal);
983         }
984         acct_collect(code, group_dead);
985         if (group_dead)
986                 tty_audit_exit();
987         if (unlikely(tsk->audit_context))
988                 audit_free(tsk);
989
990         tsk->exit_code = code;
991         taskstats_exit(tsk, group_dead);
992
993         exit_mm(tsk);
994
995         if (group_dead)
996                 acct_process();
997         trace_sched_process_exit(tsk);
998
999         exit_sem(tsk);
1000         exit_files(tsk);
1001         exit_fs(tsk);
1002         check_stack_usage();
1003         exit_thread();
1004         cgroup_exit(tsk, 1);
1005
1006         if (group_dead && tsk->signal->leader)
1007                 disassociate_ctty(1);
1008
1009         module_put(task_thread_info(tsk)->exec_domain->module);
1010         if (tsk->binfmt)
1011                 module_put(tsk->binfmt->module);
1012
1013         proc_exit_connector(tsk);
1014         exit_notify(tsk, group_dead);
1015 #ifdef CONFIG_NUMA
1016         mpol_put(tsk->mempolicy);
1017         tsk->mempolicy = NULL;
1018 #endif
1019 #ifdef CONFIG_FUTEX
1020         /*
1021          * This must happen late, after the PID is not
1022          * hashed anymore:
1023          */
1024         if (unlikely(!list_empty(&tsk->pi_state_list)))
1025                 exit_pi_state_list(tsk);
1026         if (unlikely(current->pi_state_cache))
1027                 kfree(current->pi_state_cache);
1028 #endif
1029         /*
1030          * Make sure we are holding no locks:
1031          */
1032         debug_check_no_locks_held(tsk);
1033         /*
1034          * We can do this unlocked here. The futex code uses this flag
1035          * just to verify whether the pi state cleanup has been done
1036          * or not. In the worst case it loops once more.
1037          */
1038         tsk->flags |= PF_EXITPIDONE;
1039
1040         if (tsk->io_context)
1041                 exit_io_context();
1042
1043         if (tsk->splice_pipe)
1044                 __free_pipe_info(tsk->splice_pipe);
1045
1046         preempt_disable();
1047         /* causes final put_task_struct in finish_task_switch(). */
1048         tsk->state = TASK_DEAD;
1049         schedule();
1050         BUG();
1051         /* Avoid "noreturn function does return".  */
1052         for (;;)
1053                 cpu_relax();    /* For when BUG is null */
1054 }
1055
1056 EXPORT_SYMBOL_GPL(do_exit);
1057
1058 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1059 {
1060         if (comp)
1061                 complete(comp);
1062
1063         do_exit(code);
1064 }
1065
1066 EXPORT_SYMBOL(complete_and_exit);
1067
1068 SYSCALL_DEFINE1(exit, int, error_code)
1069 {
1070         do_exit((error_code&0xff)<<8);
1071 }
1072
1073 /*
1074  * Take down every thread in the group.  This is called by fatal signals
1075  * as well as by sys_exit_group (below).
1076  */
1077 NORET_TYPE void
1078 do_group_exit(int exit_code)
1079 {
1080         struct signal_struct *sig = current->signal;
1081
1082         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1083
1084         if (signal_group_exit(sig))
1085                 exit_code = sig->group_exit_code;
1086         else if (!thread_group_empty(current)) {
1087                 struct sighand_struct *const sighand = current->sighand;
1088                 spin_lock_irq(&sighand->siglock);
1089                 if (signal_group_exit(sig))
1090                         /* Another thread got here before we took the lock.  */
1091                         exit_code = sig->group_exit_code;
1092                 else {
1093                         sig->group_exit_code = exit_code;
1094                         sig->flags = SIGNAL_GROUP_EXIT;
1095                         zap_other_threads(current);
1096                 }
1097                 spin_unlock_irq(&sighand->siglock);
1098         }
1099
1100         do_exit(exit_code);
1101         /* NOTREACHED */
1102 }
1103
1104 /*
1105  * this kills every thread in the thread group. Note that any externally
1106  * wait4()-ing process will get the correct exit code - even if this
1107  * thread is not the thread group leader.
1108  */
1109 SYSCALL_DEFINE1(exit_group, int, error_code)
1110 {
1111         do_group_exit((error_code & 0xff) << 8);
1112         /* NOTREACHED */
1113         return 0;
1114 }
1115
1116 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1117 {
1118         struct pid *pid = NULL;
1119         if (type == PIDTYPE_PID)
1120                 pid = task->pids[type].pid;
1121         else if (type < PIDTYPE_MAX)
1122                 pid = task->group_leader->pids[type].pid;
1123         return pid;
1124 }
1125
1126 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1127                           struct task_struct *p)
1128 {
1129         int err;
1130
1131         if (type < PIDTYPE_MAX) {
1132                 if (task_pid_type(p, type) != pid)
1133                         return 0;
1134         }
1135
1136         /* Wait for all children (clone and not) if __WALL is set;
1137          * otherwise, wait for clone children *only* if __WCLONE is
1138          * set; otherwise, wait for non-clone children *only*.  (Note:
1139          * A "clone" child here is one that reports to its parent
1140          * using a signal other than SIGCHLD.) */
1141         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1142             && !(options & __WALL))
1143                 return 0;
1144
1145         err = security_task_wait(p);
1146         if (err)
1147                 return err;
1148
1149         return 1;
1150 }
1151
1152 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1153                                int why, int status,
1154                                struct siginfo __user *infop,
1155                                struct rusage __user *rusagep)
1156 {
1157         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1158
1159         put_task_struct(p);
1160         if (!retval)
1161                 retval = put_user(SIGCHLD, &infop->si_signo);
1162         if (!retval)
1163                 retval = put_user(0, &infop->si_errno);
1164         if (!retval)
1165                 retval = put_user((short)why, &infop->si_code);
1166         if (!retval)
1167                 retval = put_user(pid, &infop->si_pid);
1168         if (!retval)
1169                 retval = put_user(uid, &infop->si_uid);
1170         if (!retval)
1171                 retval = put_user(status, &infop->si_status);
1172         if (!retval)
1173                 retval = pid;
1174         return retval;
1175 }
1176
1177 /*
1178  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1179  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1180  * the lock and this task is uninteresting.  If we return nonzero, we have
1181  * released the lock and the system call should return.
1182  */
1183 static int wait_task_zombie(struct task_struct *p, int options,
1184                             struct siginfo __user *infop,
1185                             int __user *stat_addr, struct rusage __user *ru)
1186 {
1187         unsigned long state;
1188         int retval, status, traced;
1189         pid_t pid = task_pid_vnr(p);
1190         uid_t uid = __task_cred(p)->uid;
1191
1192         if (!likely(options & WEXITED))
1193                 return 0;
1194
1195         if (unlikely(options & WNOWAIT)) {
1196                 int exit_code = p->exit_code;
1197                 int why, status;
1198
1199                 get_task_struct(p);
1200                 read_unlock(&tasklist_lock);
1201                 if ((exit_code & 0x7f) == 0) {
1202                         why = CLD_EXITED;
1203                         status = exit_code >> 8;
1204                 } else {
1205                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1206                         status = exit_code & 0x7f;
1207                 }
1208                 return wait_noreap_copyout(p, pid, uid, why,
1209                                            status, infop, ru);
1210         }
1211
1212         /*
1213          * Try to move the task's state to DEAD
1214          * only one thread is allowed to do this:
1215          */
1216         state = xchg(&p->exit_state, EXIT_DEAD);
1217         if (state != EXIT_ZOMBIE) {
1218                 BUG_ON(state != EXIT_DEAD);
1219                 return 0;
1220         }
1221
1222         traced = ptrace_reparented(p);
1223
1224         if (likely(!traced)) {
1225                 struct signal_struct *psig;
1226                 struct signal_struct *sig;
1227                 struct task_cputime cputime;
1228
1229                 /*
1230                  * The resource counters for the group leader are in its
1231                  * own task_struct.  Those for dead threads in the group
1232                  * are in its signal_struct, as are those for the child
1233                  * processes it has previously reaped.  All these
1234                  * accumulate in the parent's signal_struct c* fields.
1235                  *
1236                  * We don't bother to take a lock here to protect these
1237                  * p->signal fields, because they are only touched by
1238                  * __exit_signal, which runs with tasklist_lock
1239                  * write-locked anyway, and so is excluded here.  We do
1240                  * need to protect the access to p->parent->signal fields,
1241                  * as other threads in the parent group can be right
1242                  * here reaping other children at the same time.
1243                  *
1244                  * We use thread_group_cputime() to get times for the thread
1245                  * group, which consolidates times for all threads in the
1246                  * group including the group leader.
1247                  */
1248                 thread_group_cputime(p, &cputime);
1249                 spin_lock_irq(&p->parent->sighand->siglock);
1250                 psig = p->parent->signal;
1251                 sig = p->signal;
1252                 psig->cutime =
1253                         cputime_add(psig->cutime,
1254                         cputime_add(cputime.utime,
1255                                     sig->cutime));
1256                 psig->cstime =
1257                         cputime_add(psig->cstime,
1258                         cputime_add(cputime.stime,
1259                                     sig->cstime));
1260                 psig->cgtime =
1261                         cputime_add(psig->cgtime,
1262                         cputime_add(p->gtime,
1263                         cputime_add(sig->gtime,
1264                                     sig->cgtime)));
1265                 psig->cmin_flt +=
1266                         p->min_flt + sig->min_flt + sig->cmin_flt;
1267                 psig->cmaj_flt +=
1268                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1269                 psig->cnvcsw +=
1270                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1271                 psig->cnivcsw +=
1272                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1273                 psig->cinblock +=
1274                         task_io_get_inblock(p) +
1275                         sig->inblock + sig->cinblock;
1276                 psig->coublock +=
1277                         task_io_get_oublock(p) +
1278                         sig->oublock + sig->coublock;
1279                 task_io_accounting_add(&psig->ioac, &p->ioac);
1280                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1281                 spin_unlock_irq(&p->parent->sighand->siglock);
1282         }
1283
1284         /*
1285          * Now we are sure this task is interesting, and no other
1286          * thread can reap it because we set its state to EXIT_DEAD.
1287          */
1288         read_unlock(&tasklist_lock);
1289
1290         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1291         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1292                 ? p->signal->group_exit_code : p->exit_code;
1293         if (!retval && stat_addr)
1294                 retval = put_user(status, stat_addr);
1295         if (!retval && infop)
1296                 retval = put_user(SIGCHLD, &infop->si_signo);
1297         if (!retval && infop)
1298                 retval = put_user(0, &infop->si_errno);
1299         if (!retval && infop) {
1300                 int why;
1301
1302                 if ((status & 0x7f) == 0) {
1303                         why = CLD_EXITED;
1304                         status >>= 8;
1305                 } else {
1306                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1307                         status &= 0x7f;
1308                 }
1309                 retval = put_user((short)why, &infop->si_code);
1310                 if (!retval)
1311                         retval = put_user(status, &infop->si_status);
1312         }
1313         if (!retval && infop)
1314                 retval = put_user(pid, &infop->si_pid);
1315         if (!retval && infop)
1316                 retval = put_user(uid, &infop->si_uid);
1317         if (!retval)
1318                 retval = pid;
1319
1320         if (traced) {
1321                 write_lock_irq(&tasklist_lock);
1322                 /* We dropped tasklist, ptracer could die and untrace */
1323                 ptrace_unlink(p);
1324                 /*
1325                  * If this is not a detached task, notify the parent.
1326                  * If it's still not detached after that, don't release
1327                  * it now.
1328                  */
1329                 if (!task_detached(p)) {
1330                         do_notify_parent(p, p->exit_signal);
1331                         if (!task_detached(p)) {
1332                                 p->exit_state = EXIT_ZOMBIE;
1333                                 p = NULL;
1334                         }
1335                 }
1336                 write_unlock_irq(&tasklist_lock);
1337         }
1338         if (p != NULL)
1339                 release_task(p);
1340
1341         return retval;
1342 }
1343
1344 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1345 {
1346         if (ptrace) {
1347                 if (task_is_stopped_or_traced(p))
1348                         return &p->exit_code;
1349         } else {
1350                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1351                         return &p->signal->group_exit_code;
1352         }
1353         return NULL;
1354 }
1355
1356 /*
1357  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1358  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1359  * the lock and this task is uninteresting.  If we return nonzero, we have
1360  * released the lock and the system call should return.
1361  */
1362 static int wait_task_stopped(int ptrace, struct task_struct *p,
1363                              int options, struct siginfo __user *infop,
1364                              int __user *stat_addr, struct rusage __user *ru)
1365 {
1366         int retval, exit_code, *p_code, why;
1367         uid_t uid = 0; /* unneeded, required by compiler */
1368         pid_t pid;
1369
1370         if (!(options & WUNTRACED))
1371                 return 0;
1372
1373         exit_code = 0;
1374         spin_lock_irq(&p->sighand->siglock);
1375
1376         p_code = task_stopped_code(p, ptrace);
1377         if (unlikely(!p_code))
1378                 goto unlock_sig;
1379
1380         exit_code = *p_code;
1381         if (!exit_code)
1382                 goto unlock_sig;
1383
1384         if (!unlikely(options & WNOWAIT))
1385                 *p_code = 0;
1386
1387         /* don't need the RCU readlock here as we're holding a spinlock */
1388         uid = __task_cred(p)->uid;
1389 unlock_sig:
1390         spin_unlock_irq(&p->sighand->siglock);
1391         if (!exit_code)
1392                 return 0;
1393
1394         /*
1395          * Now we are pretty sure this task is interesting.
1396          * Make sure it doesn't get reaped out from under us while we
1397          * give up the lock and then examine it below.  We don't want to
1398          * keep holding onto the tasklist_lock while we call getrusage and
1399          * possibly take page faults for user memory.
1400          */
1401         get_task_struct(p);
1402         pid = task_pid_vnr(p);
1403         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1404         read_unlock(&tasklist_lock);
1405
1406         if (unlikely(options & WNOWAIT))
1407                 return wait_noreap_copyout(p, pid, uid,
1408                                            why, exit_code,
1409                                            infop, ru);
1410
1411         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1412         if (!retval && stat_addr)
1413                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1414         if (!retval && infop)
1415                 retval = put_user(SIGCHLD, &infop->si_signo);
1416         if (!retval && infop)
1417                 retval = put_user(0, &infop->si_errno);
1418         if (!retval && infop)
1419                 retval = put_user((short)why, &infop->si_code);
1420         if (!retval && infop)
1421                 retval = put_user(exit_code, &infop->si_status);
1422         if (!retval && infop)
1423                 retval = put_user(pid, &infop->si_pid);
1424         if (!retval && infop)
1425                 retval = put_user(uid, &infop->si_uid);
1426         if (!retval)
1427                 retval = pid;
1428         put_task_struct(p);
1429
1430         BUG_ON(!retval);
1431         return retval;
1432 }
1433
1434 /*
1435  * Handle do_wait work for one task in a live, non-stopped state.
1436  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1437  * the lock and this task is uninteresting.  If we return nonzero, we have
1438  * released the lock and the system call should return.
1439  */
1440 static int wait_task_continued(struct task_struct *p, int options,
1441                                struct siginfo __user *infop,
1442                                int __user *stat_addr, struct rusage __user *ru)
1443 {
1444         int retval;
1445         pid_t pid;
1446         uid_t uid;
1447
1448         if (!unlikely(options & WCONTINUED))
1449                 return 0;
1450
1451         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1452                 return 0;
1453
1454         spin_lock_irq(&p->sighand->siglock);
1455         /* Re-check with the lock held.  */
1456         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1457                 spin_unlock_irq(&p->sighand->siglock);
1458                 return 0;
1459         }
1460         if (!unlikely(options & WNOWAIT))
1461                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1462         uid = __task_cred(p)->uid;
1463         spin_unlock_irq(&p->sighand->siglock);
1464
1465         pid = task_pid_vnr(p);
1466         get_task_struct(p);
1467         read_unlock(&tasklist_lock);
1468
1469         if (!infop) {
1470                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1471                 put_task_struct(p);
1472                 if (!retval && stat_addr)
1473                         retval = put_user(0xffff, stat_addr);
1474                 if (!retval)
1475                         retval = pid;
1476         } else {
1477                 retval = wait_noreap_copyout(p, pid, uid,
1478                                              CLD_CONTINUED, SIGCONT,
1479                                              infop, ru);
1480                 BUG_ON(retval == 0);
1481         }
1482
1483         return retval;
1484 }
1485
1486 /*
1487  * Consider @p for a wait by @parent.
1488  *
1489  * -ECHILD should be in *@notask_error before the first call.
1490  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1491  * Returns zero if the search for a child should continue;
1492  * then *@notask_error is 0 if @p is an eligible child,
1493  * or another error from security_task_wait(), or still -ECHILD.
1494  */
1495 static int wait_consider_task(struct task_struct *parent, int ptrace,
1496                               struct task_struct *p, int *notask_error,
1497                               enum pid_type type, struct pid *pid, int options,
1498                               struct siginfo __user *infop,
1499                               int __user *stat_addr, struct rusage __user *ru)
1500 {
1501         int ret = eligible_child(type, pid, options, p);
1502         if (!ret)
1503                 return ret;
1504
1505         if (unlikely(ret < 0)) {
1506                 /*
1507                  * If we have not yet seen any eligible child,
1508                  * then let this error code replace -ECHILD.
1509                  * A permission error will give the user a clue
1510                  * to look for security policy problems, rather
1511                  * than for mysterious wait bugs.
1512                  */
1513                 if (*notask_error)
1514                         *notask_error = ret;
1515         }
1516
1517         if (likely(!ptrace) && unlikely(p->ptrace)) {
1518                 /*
1519                  * This child is hidden by ptrace.
1520                  * We aren't allowed to see it now, but eventually we will.
1521                  */
1522                 *notask_error = 0;
1523                 return 0;
1524         }
1525
1526         if (p->exit_state == EXIT_DEAD)
1527                 return 0;
1528
1529         /*
1530          * We don't reap group leaders with subthreads.
1531          */
1532         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1533                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1534
1535         /*
1536          * It's stopped or running now, so it might
1537          * later continue, exit, or stop again.
1538          */
1539         *notask_error = 0;
1540
1541         if (task_stopped_code(p, ptrace))
1542                 return wait_task_stopped(ptrace, p, options,
1543                                          infop, stat_addr, ru);
1544
1545         return wait_task_continued(p, options, infop, stat_addr, ru);
1546 }
1547
1548 /*
1549  * Do the work of do_wait() for one thread in the group, @tsk.
1550  *
1551  * -ECHILD should be in *@notask_error before the first call.
1552  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1553  * Returns zero if the search for a child should continue; then
1554  * *@notask_error is 0 if there were any eligible children,
1555  * or another error from security_task_wait(), or still -ECHILD.
1556  */
1557 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1558                           enum pid_type type, struct pid *pid, int options,
1559                           struct siginfo __user *infop, int __user *stat_addr,
1560                           struct rusage __user *ru)
1561 {
1562         struct task_struct *p;
1563
1564         list_for_each_entry(p, &tsk->children, sibling) {
1565                 /*
1566                  * Do not consider detached threads.
1567                  */
1568                 if (!task_detached(p)) {
1569                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1570                                                      type, pid, options,
1571                                                      infop, stat_addr, ru);
1572                         if (ret)
1573                                 return ret;
1574                 }
1575         }
1576
1577         return 0;
1578 }
1579
1580 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1581                           enum pid_type type, struct pid *pid, int options,
1582                           struct siginfo __user *infop, int __user *stat_addr,
1583                           struct rusage __user *ru)
1584 {
1585         struct task_struct *p;
1586
1587         /*
1588          * Traditionally we see ptrace'd stopped tasks regardless of options.
1589          */
1590         options |= WUNTRACED;
1591
1592         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1593                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1594                                              type, pid, options,
1595                                              infop, stat_addr, ru);
1596                 if (ret)
1597                         return ret;
1598         }
1599
1600         return 0;
1601 }
1602
1603 static long do_wait(enum pid_type type, struct pid *pid, int options,
1604                     struct siginfo __user *infop, int __user *stat_addr,
1605                     struct rusage __user *ru)
1606 {
1607         DECLARE_WAITQUEUE(wait, current);
1608         struct task_struct *tsk;
1609         int retval;
1610
1611         trace_sched_process_wait(pid);
1612
1613         add_wait_queue(&current->signal->wait_chldexit,&wait);
1614 repeat:
1615         /*
1616          * If there is nothing that can match our critiera just get out.
1617          * We will clear @retval to zero if we see any child that might later
1618          * match our criteria, even if we are not able to reap it yet.
1619          */
1620         retval = -ECHILD;
1621         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1622                 goto end;
1623
1624         current->state = TASK_INTERRUPTIBLE;
1625         read_lock(&tasklist_lock);
1626         tsk = current;
1627         do {
1628                 int tsk_result = do_wait_thread(tsk, &retval,
1629                                                 type, pid, options,
1630                                                 infop, stat_addr, ru);
1631                 if (!tsk_result)
1632                         tsk_result = ptrace_do_wait(tsk, &retval,
1633                                                     type, pid, options,
1634                                                     infop, stat_addr, ru);
1635                 if (tsk_result) {
1636                         /*
1637                          * tasklist_lock is unlocked and we have a final result.
1638                          */
1639                         retval = tsk_result;
1640                         goto end;
1641                 }
1642
1643                 if (options & __WNOTHREAD)
1644                         break;
1645                 tsk = next_thread(tsk);
1646                 BUG_ON(tsk->signal != current->signal);
1647         } while (tsk != current);
1648         read_unlock(&tasklist_lock);
1649
1650         if (!retval && !(options & WNOHANG)) {
1651                 retval = -ERESTARTSYS;
1652                 if (!signal_pending(current)) {
1653                         schedule();
1654                         goto repeat;
1655                 }
1656         }
1657
1658 end:
1659         current->state = TASK_RUNNING;
1660         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1661         if (infop) {
1662                 if (retval > 0)
1663                         retval = 0;
1664                 else {
1665                         /*
1666                          * For a WNOHANG return, clear out all the fields
1667                          * we would set so the user can easily tell the
1668                          * difference.
1669                          */
1670                         if (!retval)
1671                                 retval = put_user(0, &infop->si_signo);
1672                         if (!retval)
1673                                 retval = put_user(0, &infop->si_errno);
1674                         if (!retval)
1675                                 retval = put_user(0, &infop->si_code);
1676                         if (!retval)
1677                                 retval = put_user(0, &infop->si_pid);
1678                         if (!retval)
1679                                 retval = put_user(0, &infop->si_uid);
1680                         if (!retval)
1681                                 retval = put_user(0, &infop->si_status);
1682                 }
1683         }
1684         return retval;
1685 }
1686
1687 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1688                 infop, int, options, struct rusage __user *, ru)
1689 {
1690         struct pid *pid = NULL;
1691         enum pid_type type;
1692         long ret;
1693
1694         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1695                 return -EINVAL;
1696         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1697                 return -EINVAL;
1698
1699         switch (which) {
1700         case P_ALL:
1701                 type = PIDTYPE_MAX;
1702                 break;
1703         case P_PID:
1704                 type = PIDTYPE_PID;
1705                 if (upid <= 0)
1706                         return -EINVAL;
1707                 break;
1708         case P_PGID:
1709                 type = PIDTYPE_PGID;
1710                 if (upid <= 0)
1711                         return -EINVAL;
1712                 break;
1713         default:
1714                 return -EINVAL;
1715         }
1716
1717         if (type < PIDTYPE_MAX)
1718                 pid = find_get_pid(upid);
1719         ret = do_wait(type, pid, options, infop, NULL, ru);
1720         put_pid(pid);
1721
1722         /* avoid REGPARM breakage on x86: */
1723         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1724         return ret;
1725 }
1726
1727 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1728                 int, options, struct rusage __user *, ru)
1729 {
1730         struct pid *pid = NULL;
1731         enum pid_type type;
1732         long ret;
1733
1734         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1735                         __WNOTHREAD|__WCLONE|__WALL))
1736                 return -EINVAL;
1737
1738         if (upid == -1)
1739                 type = PIDTYPE_MAX;
1740         else if (upid < 0) {
1741                 type = PIDTYPE_PGID;
1742                 pid = find_get_pid(-upid);
1743         } else if (upid == 0) {
1744                 type = PIDTYPE_PGID;
1745                 pid = get_pid(task_pgrp(current));
1746         } else /* upid > 0 */ {
1747                 type = PIDTYPE_PID;
1748                 pid = find_get_pid(upid);
1749         }
1750
1751         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1752         put_pid(pid);
1753
1754         /* avoid REGPARM breakage on x86: */
1755         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1756         return ret;
1757 }
1758
1759 #ifdef __ARCH_WANT_SYS_WAITPID
1760
1761 /*
1762  * sys_waitpid() remains for compatibility. waitpid() should be
1763  * implemented by calling sys_wait4() from libc.a.
1764  */
1765 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1766 {
1767         return sys_wait4(pid, stat_addr, options, NULL);
1768 }
1769
1770 #endif