tracehook: death
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55
56 static void exit_mm(struct task_struct * tsk);
57
58 static inline int task_detached(struct task_struct *p)
59 {
60         return p->exit_signal == -1;
61 }
62
63 static void __unhash_process(struct task_struct *p)
64 {
65         nr_threads--;
66         detach_pid(p, PIDTYPE_PID);
67         if (thread_group_leader(p)) {
68                 detach_pid(p, PIDTYPE_PGID);
69                 detach_pid(p, PIDTYPE_SID);
70
71                 list_del_rcu(&p->tasks);
72                 __get_cpu_var(process_counts)--;
73         }
74         list_del_rcu(&p->thread_group);
75         list_del_init(&p->sibling);
76 }
77
78 /*
79  * This function expects the tasklist_lock write-locked.
80  */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83         struct signal_struct *sig = tsk->signal;
84         struct sighand_struct *sighand;
85
86         BUG_ON(!sig);
87         BUG_ON(!atomic_read(&sig->count));
88
89         sighand = rcu_dereference(tsk->sighand);
90         spin_lock(&sighand->siglock);
91
92         posix_cpu_timers_exit(tsk);
93         if (atomic_dec_and_test(&sig->count))
94                 posix_cpu_timers_exit_group(tsk);
95         else {
96                 /*
97                  * If there is any task waiting for the group exit
98                  * then notify it:
99                  */
100                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101                         wake_up_process(sig->group_exit_task);
102
103                 if (tsk == sig->curr_target)
104                         sig->curr_target = next_thread(tsk);
105                 /*
106                  * Accumulate here the counters for all threads but the
107                  * group leader as they die, so they can be added into
108                  * the process-wide totals when those are taken.
109                  * The group leader stays around as a zombie as long
110                  * as there are other threads.  When it gets reaped,
111                  * the exit.c code will add its counts into these totals.
112                  * We won't ever get here for the group leader, since it
113                  * will have been the last reference on the signal_struct.
114                  */
115                 sig->utime = cputime_add(sig->utime, tsk->utime);
116                 sig->stime = cputime_add(sig->stime, tsk->stime);
117                 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118                 sig->min_flt += tsk->min_flt;
119                 sig->maj_flt += tsk->maj_flt;
120                 sig->nvcsw += tsk->nvcsw;
121                 sig->nivcsw += tsk->nivcsw;
122                 sig->inblock += task_io_get_inblock(tsk);
123                 sig->oublock += task_io_get_oublock(tsk);
124 #ifdef CONFIG_TASK_XACCT
125                 sig->rchar += tsk->rchar;
126                 sig->wchar += tsk->wchar;
127                 sig->syscr += tsk->syscr;
128                 sig->syscw += tsk->syscw;
129 #endif /* CONFIG_TASK_XACCT */
130 #ifdef CONFIG_TASK_IO_ACCOUNTING
131                 sig->ioac.read_bytes += tsk->ioac.read_bytes;
132                 sig->ioac.write_bytes += tsk->ioac.write_bytes;
133                 sig->ioac.cancelled_write_bytes +=
134                                         tsk->ioac.cancelled_write_bytes;
135 #endif /* CONFIG_TASK_IO_ACCOUNTING */
136                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137                 sig = NULL; /* Marker for below. */
138         }
139
140         __unhash_process(tsk);
141
142         /*
143          * Do this under ->siglock, we can race with another thread
144          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145          */
146         flush_sigqueue(&tsk->pending);
147
148         tsk->signal = NULL;
149         tsk->sighand = NULL;
150         spin_unlock(&sighand->siglock);
151
152         __cleanup_sighand(sighand);
153         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
154         if (sig) {
155                 flush_sigqueue(&sig->shared_pending);
156                 taskstats_tgid_free(sig);
157                 __cleanup_signal(sig);
158         }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163         put_task_struct(container_of(rhp, struct task_struct, rcu));
164 }
165
166
167 void release_task(struct task_struct * p)
168 {
169         struct task_struct *leader;
170         int zap_leader;
171 repeat:
172         tracehook_prepare_release_task(p);
173         atomic_dec(&p->user->processes);
174         proc_flush_task(p);
175         write_lock_irq(&tasklist_lock);
176         tracehook_finish_release_task(p);
177         __exit_signal(p);
178
179         /*
180          * If we are the last non-leader member of the thread
181          * group, and the leader is zombie, then notify the
182          * group leader's parent process. (if it wants notification.)
183          */
184         zap_leader = 0;
185         leader = p->group_leader;
186         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
187                 BUG_ON(task_detached(leader));
188                 do_notify_parent(leader, leader->exit_signal);
189                 /*
190                  * If we were the last child thread and the leader has
191                  * exited already, and the leader's parent ignores SIGCHLD,
192                  * then we are the one who should release the leader.
193                  *
194                  * do_notify_parent() will have marked it self-reaping in
195                  * that case.
196                  */
197                 zap_leader = task_detached(leader);
198
199                 /*
200                  * This maintains the invariant that release_task()
201                  * only runs on a task in EXIT_DEAD, just for sanity.
202                  */
203                 if (zap_leader)
204                         leader->exit_state = EXIT_DEAD;
205         }
206
207         write_unlock_irq(&tasklist_lock);
208         release_thread(p);
209         call_rcu(&p->rcu, delayed_put_task_struct);
210
211         p = leader;
212         if (unlikely(zap_leader))
213                 goto repeat;
214 }
215
216 /*
217  * This checks not only the pgrp, but falls back on the pid if no
218  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
219  * without this...
220  *
221  * The caller must hold rcu lock or the tasklist lock.
222  */
223 struct pid *session_of_pgrp(struct pid *pgrp)
224 {
225         struct task_struct *p;
226         struct pid *sid = NULL;
227
228         p = pid_task(pgrp, PIDTYPE_PGID);
229         if (p == NULL)
230                 p = pid_task(pgrp, PIDTYPE_PID);
231         if (p != NULL)
232                 sid = task_session(p);
233
234         return sid;
235 }
236
237 /*
238  * Determine if a process group is "orphaned", according to the POSIX
239  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
240  * by terminal-generated stop signals.  Newly orphaned process groups are
241  * to receive a SIGHUP and a SIGCONT.
242  *
243  * "I ask you, have you ever known what it is to be an orphan?"
244  */
245 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
246 {
247         struct task_struct *p;
248
249         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
250                 if ((p == ignored_task) ||
251                     (p->exit_state && thread_group_empty(p)) ||
252                     is_global_init(p->real_parent))
253                         continue;
254
255                 if (task_pgrp(p->real_parent) != pgrp &&
256                     task_session(p->real_parent) == task_session(p))
257                         return 0;
258         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259
260         return 1;
261 }
262
263 int is_current_pgrp_orphaned(void)
264 {
265         int retval;
266
267         read_lock(&tasklist_lock);
268         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
269         read_unlock(&tasklist_lock);
270
271         return retval;
272 }
273
274 static int has_stopped_jobs(struct pid *pgrp)
275 {
276         int retval = 0;
277         struct task_struct *p;
278
279         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
280                 if (!task_is_stopped(p))
281                         continue;
282                 retval = 1;
283                 break;
284         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285         return retval;
286 }
287
288 /*
289  * Check to see if any process groups have become orphaned as
290  * a result of our exiting, and if they have any stopped jobs,
291  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292  */
293 static void
294 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295 {
296         struct pid *pgrp = task_pgrp(tsk);
297         struct task_struct *ignored_task = tsk;
298
299         if (!parent)
300                  /* exit: our father is in a different pgrp than
301                   * we are and we were the only connection outside.
302                   */
303                 parent = tsk->real_parent;
304         else
305                 /* reparent: our child is in a different pgrp than
306                  * we are, and it was the only connection outside.
307                  */
308                 ignored_task = NULL;
309
310         if (task_pgrp(parent) != pgrp &&
311             task_session(parent) == task_session(tsk) &&
312             will_become_orphaned_pgrp(pgrp, ignored_task) &&
313             has_stopped_jobs(pgrp)) {
314                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
315                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316         }
317 }
318
319 /**
320  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
321  *
322  * If a kernel thread is launched as a result of a system call, or if
323  * it ever exits, it should generally reparent itself to kthreadd so it
324  * isn't in the way of other processes and is correctly cleaned up on exit.
325  *
326  * The various task state such as scheduling policy and priority may have
327  * been inherited from a user process, so we reset them to sane values here.
328  *
329  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
330  */
331 static void reparent_to_kthreadd(void)
332 {
333         write_lock_irq(&tasklist_lock);
334
335         ptrace_unlink(current);
336         /* Reparent to init */
337         current->real_parent = current->parent = kthreadd_task;
338         list_move_tail(&current->sibling, &current->real_parent->children);
339
340         /* Set the exit signal to SIGCHLD so we signal init on exit */
341         current->exit_signal = SIGCHLD;
342
343         if (task_nice(current) < 0)
344                 set_user_nice(current, 0);
345         /* cpus_allowed? */
346         /* rt_priority? */
347         /* signals? */
348         security_task_reparent_to_init(current);
349         memcpy(current->signal->rlim, init_task.signal->rlim,
350                sizeof(current->signal->rlim));
351         atomic_inc(&(INIT_USER->__count));
352         write_unlock_irq(&tasklist_lock);
353         switch_uid(INIT_USER);
354 }
355
356 void __set_special_pids(struct pid *pid)
357 {
358         struct task_struct *curr = current->group_leader;
359         pid_t nr = pid_nr(pid);
360
361         if (task_session(curr) != pid) {
362                 change_pid(curr, PIDTYPE_SID, pid);
363                 set_task_session(curr, nr);
364         }
365         if (task_pgrp(curr) != pid) {
366                 change_pid(curr, PIDTYPE_PGID, pid);
367                 set_task_pgrp(curr, nr);
368         }
369 }
370
371 static void set_special_pids(struct pid *pid)
372 {
373         write_lock_irq(&tasklist_lock);
374         __set_special_pids(pid);
375         write_unlock_irq(&tasklist_lock);
376 }
377
378 /*
379  * Let kernel threads use this to say that they
380  * allow a certain signal (since daemonize() will
381  * have disabled all of them by default).
382  */
383 int allow_signal(int sig)
384 {
385         if (!valid_signal(sig) || sig < 1)
386                 return -EINVAL;
387
388         spin_lock_irq(&current->sighand->siglock);
389         sigdelset(&current->blocked, sig);
390         if (!current->mm) {
391                 /* Kernel threads handle their own signals.
392                    Let the signal code know it'll be handled, so
393                    that they don't get converted to SIGKILL or
394                    just silently dropped */
395                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
396         }
397         recalc_sigpending();
398         spin_unlock_irq(&current->sighand->siglock);
399         return 0;
400 }
401
402 EXPORT_SYMBOL(allow_signal);
403
404 int disallow_signal(int sig)
405 {
406         if (!valid_signal(sig) || sig < 1)
407                 return -EINVAL;
408
409         spin_lock_irq(&current->sighand->siglock);
410         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
411         recalc_sigpending();
412         spin_unlock_irq(&current->sighand->siglock);
413         return 0;
414 }
415
416 EXPORT_SYMBOL(disallow_signal);
417
418 /*
419  *      Put all the gunge required to become a kernel thread without
420  *      attached user resources in one place where it belongs.
421  */
422
423 void daemonize(const char *name, ...)
424 {
425         va_list args;
426         struct fs_struct *fs;
427         sigset_t blocked;
428
429         va_start(args, name);
430         vsnprintf(current->comm, sizeof(current->comm), name, args);
431         va_end(args);
432
433         /*
434          * If we were started as result of loading a module, close all of the
435          * user space pages.  We don't need them, and if we didn't close them
436          * they would be locked into memory.
437          */
438         exit_mm(current);
439         /*
440          * We don't want to have TIF_FREEZE set if the system-wide hibernation
441          * or suspend transition begins right now.
442          */
443         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444
445         if (current->nsproxy != &init_nsproxy) {
446                 get_nsproxy(&init_nsproxy);
447                 switch_task_namespaces(current, &init_nsproxy);
448         }
449         set_special_pids(&init_struct_pid);
450         proc_clear_tty(current);
451
452         /* Block and flush all signals */
453         sigfillset(&blocked);
454         sigprocmask(SIG_BLOCK, &blocked, NULL);
455         flush_signals(current);
456
457         /* Become as one with the init task */
458
459         exit_fs(current);       /* current->fs->count--; */
460         fs = init_task.fs;
461         current->fs = fs;
462         atomic_inc(&fs->count);
463
464         exit_files(current);
465         current->files = init_task.files;
466         atomic_inc(&current->files->count);
467
468         reparent_to_kthreadd();
469 }
470
471 EXPORT_SYMBOL(daemonize);
472
473 static void close_files(struct files_struct * files)
474 {
475         int i, j;
476         struct fdtable *fdt;
477
478         j = 0;
479
480         /*
481          * It is safe to dereference the fd table without RCU or
482          * ->file_lock because this is the last reference to the
483          * files structure.
484          */
485         fdt = files_fdtable(files);
486         for (;;) {
487                 unsigned long set;
488                 i = j * __NFDBITS;
489                 if (i >= fdt->max_fds)
490                         break;
491                 set = fdt->open_fds->fds_bits[j++];
492                 while (set) {
493                         if (set & 1) {
494                                 struct file * file = xchg(&fdt->fd[i], NULL);
495                                 if (file) {
496                                         filp_close(file, files);
497                                         cond_resched();
498                                 }
499                         }
500                         i++;
501                         set >>= 1;
502                 }
503         }
504 }
505
506 struct files_struct *get_files_struct(struct task_struct *task)
507 {
508         struct files_struct *files;
509
510         task_lock(task);
511         files = task->files;
512         if (files)
513                 atomic_inc(&files->count);
514         task_unlock(task);
515
516         return files;
517 }
518
519 void put_files_struct(struct files_struct *files)
520 {
521         struct fdtable *fdt;
522
523         if (atomic_dec_and_test(&files->count)) {
524                 close_files(files);
525                 /*
526                  * Free the fd and fdset arrays if we expanded them.
527                  * If the fdtable was embedded, pass files for freeing
528                  * at the end of the RCU grace period. Otherwise,
529                  * you can free files immediately.
530                  */
531                 fdt = files_fdtable(files);
532                 if (fdt != &files->fdtab)
533                         kmem_cache_free(files_cachep, files);
534                 free_fdtable(fdt);
535         }
536 }
537
538 void reset_files_struct(struct files_struct *files)
539 {
540         struct task_struct *tsk = current;
541         struct files_struct *old;
542
543         old = tsk->files;
544         task_lock(tsk);
545         tsk->files = files;
546         task_unlock(tsk);
547         put_files_struct(old);
548 }
549
550 void exit_files(struct task_struct *tsk)
551 {
552         struct files_struct * files = tsk->files;
553
554         if (files) {
555                 task_lock(tsk);
556                 tsk->files = NULL;
557                 task_unlock(tsk);
558                 put_files_struct(files);
559         }
560 }
561
562 void put_fs_struct(struct fs_struct *fs)
563 {
564         /* No need to hold fs->lock if we are killing it */
565         if (atomic_dec_and_test(&fs->count)) {
566                 path_put(&fs->root);
567                 path_put(&fs->pwd);
568                 if (fs->altroot.dentry)
569                         path_put(&fs->altroot);
570                 kmem_cache_free(fs_cachep, fs);
571         }
572 }
573
574 void exit_fs(struct task_struct *tsk)
575 {
576         struct fs_struct * fs = tsk->fs;
577
578         if (fs) {
579                 task_lock(tsk);
580                 tsk->fs = NULL;
581                 task_unlock(tsk);
582                 put_fs_struct(fs);
583         }
584 }
585
586 EXPORT_SYMBOL_GPL(exit_fs);
587
588 #ifdef CONFIG_MM_OWNER
589 /*
590  * Task p is exiting and it owned mm, lets find a new owner for it
591  */
592 static inline int
593 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
594 {
595         /*
596          * If there are other users of the mm and the owner (us) is exiting
597          * we need to find a new owner to take on the responsibility.
598          */
599         if (!mm)
600                 return 0;
601         if (atomic_read(&mm->mm_users) <= 1)
602                 return 0;
603         if (mm->owner != p)
604                 return 0;
605         return 1;
606 }
607
608 void mm_update_next_owner(struct mm_struct *mm)
609 {
610         struct task_struct *c, *g, *p = current;
611
612 retry:
613         if (!mm_need_new_owner(mm, p))
614                 return;
615
616         read_lock(&tasklist_lock);
617         /*
618          * Search in the children
619          */
620         list_for_each_entry(c, &p->children, sibling) {
621                 if (c->mm == mm)
622                         goto assign_new_owner;
623         }
624
625         /*
626          * Search in the siblings
627          */
628         list_for_each_entry(c, &p->parent->children, sibling) {
629                 if (c->mm == mm)
630                         goto assign_new_owner;
631         }
632
633         /*
634          * Search through everything else. We should not get
635          * here often
636          */
637         do_each_thread(g, c) {
638                 if (c->mm == mm)
639                         goto assign_new_owner;
640         } while_each_thread(g, c);
641
642         read_unlock(&tasklist_lock);
643         return;
644
645 assign_new_owner:
646         BUG_ON(c == p);
647         get_task_struct(c);
648         /*
649          * The task_lock protects c->mm from changing.
650          * We always want mm->owner->mm == mm
651          */
652         task_lock(c);
653         /*
654          * Delay read_unlock() till we have the task_lock()
655          * to ensure that c does not slip away underneath us
656          */
657         read_unlock(&tasklist_lock);
658         if (c->mm != mm) {
659                 task_unlock(c);
660                 put_task_struct(c);
661                 goto retry;
662         }
663         cgroup_mm_owner_callbacks(mm->owner, c);
664         mm->owner = c;
665         task_unlock(c);
666         put_task_struct(c);
667 }
668 #endif /* CONFIG_MM_OWNER */
669
670 /*
671  * Turn us into a lazy TLB process if we
672  * aren't already..
673  */
674 static void exit_mm(struct task_struct * tsk)
675 {
676         struct mm_struct *mm = tsk->mm;
677         struct core_state *core_state;
678
679         mm_release(tsk, mm);
680         if (!mm)
681                 return;
682         /*
683          * Serialize with any possible pending coredump.
684          * We must hold mmap_sem around checking core_state
685          * and clearing tsk->mm.  The core-inducing thread
686          * will increment ->nr_threads for each thread in the
687          * group with ->mm != NULL.
688          */
689         down_read(&mm->mmap_sem);
690         core_state = mm->core_state;
691         if (core_state) {
692                 struct core_thread self;
693                 up_read(&mm->mmap_sem);
694
695                 self.task = tsk;
696                 self.next = xchg(&core_state->dumper.next, &self);
697                 /*
698                  * Implies mb(), the result of xchg() must be visible
699                  * to core_state->dumper.
700                  */
701                 if (atomic_dec_and_test(&core_state->nr_threads))
702                         complete(&core_state->startup);
703
704                 for (;;) {
705                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
706                         if (!self.task) /* see coredump_finish() */
707                                 break;
708                         schedule();
709                 }
710                 __set_task_state(tsk, TASK_RUNNING);
711                 down_read(&mm->mmap_sem);
712         }
713         atomic_inc(&mm->mm_count);
714         BUG_ON(mm != tsk->active_mm);
715         /* more a memory barrier than a real lock */
716         task_lock(tsk);
717         tsk->mm = NULL;
718         up_read(&mm->mmap_sem);
719         enter_lazy_tlb(mm, current);
720         /* We don't want this task to be frozen prematurely */
721         clear_freeze_flag(tsk);
722         task_unlock(tsk);
723         mm_update_next_owner(mm);
724         mmput(mm);
725 }
726
727 /*
728  * Return nonzero if @parent's children should reap themselves.
729  *
730  * Called with write_lock_irq(&tasklist_lock) held.
731  */
732 static int ignoring_children(struct task_struct *parent)
733 {
734         int ret;
735         struct sighand_struct *psig = parent->sighand;
736         unsigned long flags;
737         spin_lock_irqsave(&psig->siglock, flags);
738         ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
739                (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
740         spin_unlock_irqrestore(&psig->siglock, flags);
741         return ret;
742 }
743
744 /*
745  * Detach all tasks we were using ptrace on.
746  * Any that need to be release_task'd are put on the @dead list.
747  *
748  * Called with write_lock(&tasklist_lock) held.
749  */
750 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
751 {
752         struct task_struct *p, *n;
753         int ign = -1;
754
755         list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
756                 __ptrace_unlink(p);
757
758                 if (p->exit_state != EXIT_ZOMBIE)
759                         continue;
760
761                 /*
762                  * If it's a zombie, our attachedness prevented normal
763                  * parent notification or self-reaping.  Do notification
764                  * now if it would have happened earlier.  If it should
765                  * reap itself, add it to the @dead list.  We can't call
766                  * release_task() here because we already hold tasklist_lock.
767                  *
768                  * If it's our own child, there is no notification to do.
769                  * But if our normal children self-reap, then this child
770                  * was prevented by ptrace and we must reap it now.
771                  */
772                 if (!task_detached(p) && thread_group_empty(p)) {
773                         if (!same_thread_group(p->real_parent, parent))
774                                 do_notify_parent(p, p->exit_signal);
775                         else {
776                                 if (ign < 0)
777                                         ign = ignoring_children(parent);
778                                 if (ign)
779                                         p->exit_signal = -1;
780                         }
781                 }
782
783                 if (task_detached(p)) {
784                         /*
785                          * Mark it as in the process of being reaped.
786                          */
787                         p->exit_state = EXIT_DEAD;
788                         list_add(&p->ptrace_entry, dead);
789                 }
790         }
791 }
792
793 /*
794  * Finish up exit-time ptrace cleanup.
795  *
796  * Called without locks.
797  */
798 static void ptrace_exit_finish(struct task_struct *parent,
799                                struct list_head *dead)
800 {
801         struct task_struct *p, *n;
802
803         BUG_ON(!list_empty(&parent->ptraced));
804
805         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
806                 list_del_init(&p->ptrace_entry);
807                 release_task(p);
808         }
809 }
810
811 static void reparent_thread(struct task_struct *p, struct task_struct *father)
812 {
813         if (p->pdeath_signal)
814                 /* We already hold the tasklist_lock here.  */
815                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
816
817         list_move_tail(&p->sibling, &p->real_parent->children);
818
819         /* If this is a threaded reparent there is no need to
820          * notify anyone anything has happened.
821          */
822         if (same_thread_group(p->real_parent, father))
823                 return;
824
825         /* We don't want people slaying init.  */
826         if (!task_detached(p))
827                 p->exit_signal = SIGCHLD;
828
829         /* If we'd notified the old parent about this child's death,
830          * also notify the new parent.
831          */
832         if (!ptrace_reparented(p) &&
833             p->exit_state == EXIT_ZOMBIE &&
834             !task_detached(p) && thread_group_empty(p))
835                 do_notify_parent(p, p->exit_signal);
836
837         kill_orphaned_pgrp(p, father);
838 }
839
840 /*
841  * When we die, we re-parent all our children.
842  * Try to give them to another thread in our thread
843  * group, and if no such member exists, give it to
844  * the child reaper process (ie "init") in our pid
845  * space.
846  */
847 static void forget_original_parent(struct task_struct *father)
848 {
849         struct task_struct *p, *n, *reaper = father;
850         LIST_HEAD(ptrace_dead);
851
852         write_lock_irq(&tasklist_lock);
853
854         /*
855          * First clean up ptrace if we were using it.
856          */
857         ptrace_exit(father, &ptrace_dead);
858
859         do {
860                 reaper = next_thread(reaper);
861                 if (reaper == father) {
862                         reaper = task_child_reaper(father);
863                         break;
864                 }
865         } while (reaper->flags & PF_EXITING);
866
867         list_for_each_entry_safe(p, n, &father->children, sibling) {
868                 p->real_parent = reaper;
869                 if (p->parent == father) {
870                         BUG_ON(p->ptrace);
871                         p->parent = p->real_parent;
872                 }
873                 reparent_thread(p, father);
874         }
875
876         write_unlock_irq(&tasklist_lock);
877         BUG_ON(!list_empty(&father->children));
878
879         ptrace_exit_finish(father, &ptrace_dead);
880 }
881
882 /*
883  * Send signals to all our closest relatives so that they know
884  * to properly mourn us..
885  */
886 static void exit_notify(struct task_struct *tsk, int group_dead)
887 {
888         int signal;
889         void *cookie;
890
891         /*
892          * This does two things:
893          *
894          * A.  Make init inherit all the child processes
895          * B.  Check to see if any process groups have become orphaned
896          *      as a result of our exiting, and if they have any stopped
897          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
898          */
899         forget_original_parent(tsk);
900         exit_task_namespaces(tsk);
901
902         write_lock_irq(&tasklist_lock);
903         if (group_dead)
904                 kill_orphaned_pgrp(tsk->group_leader, NULL);
905
906         /* Let father know we died
907          *
908          * Thread signals are configurable, but you aren't going to use
909          * that to send signals to arbitary processes.
910          * That stops right now.
911          *
912          * If the parent exec id doesn't match the exec id we saved
913          * when we started then we know the parent has changed security
914          * domain.
915          *
916          * If our self_exec id doesn't match our parent_exec_id then
917          * we have changed execution domain as these two values started
918          * the same after a fork.
919          */
920         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
921             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
922              tsk->self_exec_id != tsk->parent_exec_id) &&
923             !capable(CAP_KILL))
924                 tsk->exit_signal = SIGCHLD;
925
926         signal = tracehook_notify_death(tsk, &cookie, group_dead);
927         if (signal > 0)
928                 signal = do_notify_parent(tsk, signal);
929
930         tsk->exit_state = signal < 0 ? EXIT_DEAD : EXIT_ZOMBIE;
931
932         /* mt-exec, de_thread() is waiting for us */
933         if (thread_group_leader(tsk) &&
934             tsk->signal->notify_count < 0 &&
935             tsk->signal->group_exit_task)
936                 wake_up_process(tsk->signal->group_exit_task);
937
938         write_unlock_irq(&tasklist_lock);
939
940         tracehook_report_death(tsk, signal, cookie, group_dead);
941
942         /* If the process is dead, release it - nobody will wait for it */
943         if (signal < 0)
944                 release_task(tsk);
945 }
946
947 #ifdef CONFIG_DEBUG_STACK_USAGE
948 static void check_stack_usage(void)
949 {
950         static DEFINE_SPINLOCK(low_water_lock);
951         static int lowest_to_date = THREAD_SIZE;
952         unsigned long *n = end_of_stack(current);
953         unsigned long free;
954
955         while (*n == 0)
956                 n++;
957         free = (unsigned long)n - (unsigned long)end_of_stack(current);
958
959         if (free >= lowest_to_date)
960                 return;
961
962         spin_lock(&low_water_lock);
963         if (free < lowest_to_date) {
964                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
965                                 "left\n",
966                                 current->comm, free);
967                 lowest_to_date = free;
968         }
969         spin_unlock(&low_water_lock);
970 }
971 #else
972 static inline void check_stack_usage(void) {}
973 #endif
974
975 static inline void exit_child_reaper(struct task_struct *tsk)
976 {
977         if (likely(tsk->group_leader != task_child_reaper(tsk)))
978                 return;
979
980         if (tsk->nsproxy->pid_ns == &init_pid_ns)
981                 panic("Attempted to kill init!");
982
983         /*
984          * @tsk is the last thread in the 'cgroup-init' and is exiting.
985          * Terminate all remaining processes in the namespace and reap them
986          * before exiting @tsk.
987          *
988          * Note that @tsk (last thread of cgroup-init) may not necessarily
989          * be the child-reaper (i.e main thread of cgroup-init) of the
990          * namespace i.e the child_reaper may have already exited.
991          *
992          * Even after a child_reaper exits, we let it inherit orphaned children,
993          * because, pid_ns->child_reaper remains valid as long as there is
994          * at least one living sub-thread in the cgroup init.
995
996          * This living sub-thread of the cgroup-init will be notified when
997          * a child inherited by the 'child-reaper' exits (do_notify_parent()
998          * uses __group_send_sig_info()). Further, when reaping child processes,
999          * do_wait() iterates over children of all living sub threads.
1000
1001          * i.e even though 'child_reaper' thread is listed as the parent of the
1002          * orphaned children, any living sub-thread in the cgroup-init can
1003          * perform the role of the child_reaper.
1004          */
1005         zap_pid_ns_processes(tsk->nsproxy->pid_ns);
1006 }
1007
1008 NORET_TYPE void do_exit(long code)
1009 {
1010         struct task_struct *tsk = current;
1011         int group_dead;
1012
1013         profile_task_exit(tsk);
1014
1015         WARN_ON(atomic_read(&tsk->fs_excl));
1016
1017         if (unlikely(in_interrupt()))
1018                 panic("Aiee, killing interrupt handler!");
1019         if (unlikely(!tsk->pid))
1020                 panic("Attempted to kill the idle task!");
1021
1022         tracehook_report_exit(&code);
1023
1024         /*
1025          * We're taking recursive faults here in do_exit. Safest is to just
1026          * leave this task alone and wait for reboot.
1027          */
1028         if (unlikely(tsk->flags & PF_EXITING)) {
1029                 printk(KERN_ALERT
1030                         "Fixing recursive fault but reboot is needed!\n");
1031                 /*
1032                  * We can do this unlocked here. The futex code uses
1033                  * this flag just to verify whether the pi state
1034                  * cleanup has been done or not. In the worst case it
1035                  * loops once more. We pretend that the cleanup was
1036                  * done as there is no way to return. Either the
1037                  * OWNER_DIED bit is set by now or we push the blocked
1038                  * task into the wait for ever nirwana as well.
1039                  */
1040                 tsk->flags |= PF_EXITPIDONE;
1041                 if (tsk->io_context)
1042                         exit_io_context();
1043                 set_current_state(TASK_UNINTERRUPTIBLE);
1044                 schedule();
1045         }
1046
1047         exit_signals(tsk);  /* sets PF_EXITING */
1048         /*
1049          * tsk->flags are checked in the futex code to protect against
1050          * an exiting task cleaning up the robust pi futexes.
1051          */
1052         smp_mb();
1053         spin_unlock_wait(&tsk->pi_lock);
1054
1055         if (unlikely(in_atomic()))
1056                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1057                                 current->comm, task_pid_nr(current),
1058                                 preempt_count());
1059
1060         acct_update_integrals(tsk);
1061         if (tsk->mm) {
1062                 update_hiwater_rss(tsk->mm);
1063                 update_hiwater_vm(tsk->mm);
1064         }
1065         group_dead = atomic_dec_and_test(&tsk->signal->live);
1066         if (group_dead) {
1067                 exit_child_reaper(tsk);
1068                 hrtimer_cancel(&tsk->signal->real_timer);
1069                 exit_itimers(tsk->signal);
1070         }
1071         acct_collect(code, group_dead);
1072 #ifdef CONFIG_FUTEX
1073         if (unlikely(tsk->robust_list))
1074                 exit_robust_list(tsk);
1075 #ifdef CONFIG_COMPAT
1076         if (unlikely(tsk->compat_robust_list))
1077                 compat_exit_robust_list(tsk);
1078 #endif
1079 #endif
1080         if (group_dead)
1081                 tty_audit_exit();
1082         if (unlikely(tsk->audit_context))
1083                 audit_free(tsk);
1084
1085         tsk->exit_code = code;
1086         taskstats_exit(tsk, group_dead);
1087
1088         exit_mm(tsk);
1089
1090         if (group_dead)
1091                 acct_process();
1092         exit_sem(tsk);
1093         exit_files(tsk);
1094         exit_fs(tsk);
1095         check_stack_usage();
1096         exit_thread();
1097         cgroup_exit(tsk, 1);
1098         exit_keys(tsk);
1099
1100         if (group_dead && tsk->signal->leader)
1101                 disassociate_ctty(1);
1102
1103         module_put(task_thread_info(tsk)->exec_domain->module);
1104         if (tsk->binfmt)
1105                 module_put(tsk->binfmt->module);
1106
1107         proc_exit_connector(tsk);
1108         exit_notify(tsk, group_dead);
1109 #ifdef CONFIG_NUMA
1110         mpol_put(tsk->mempolicy);
1111         tsk->mempolicy = NULL;
1112 #endif
1113 #ifdef CONFIG_FUTEX
1114         /*
1115          * This must happen late, after the PID is not
1116          * hashed anymore:
1117          */
1118         if (unlikely(!list_empty(&tsk->pi_state_list)))
1119                 exit_pi_state_list(tsk);
1120         if (unlikely(current->pi_state_cache))
1121                 kfree(current->pi_state_cache);
1122 #endif
1123         /*
1124          * Make sure we are holding no locks:
1125          */
1126         debug_check_no_locks_held(tsk);
1127         /*
1128          * We can do this unlocked here. The futex code uses this flag
1129          * just to verify whether the pi state cleanup has been done
1130          * or not. In the worst case it loops once more.
1131          */
1132         tsk->flags |= PF_EXITPIDONE;
1133
1134         if (tsk->io_context)
1135                 exit_io_context();
1136
1137         if (tsk->splice_pipe)
1138                 __free_pipe_info(tsk->splice_pipe);
1139
1140         preempt_disable();
1141         /* causes final put_task_struct in finish_task_switch(). */
1142         tsk->state = TASK_DEAD;
1143
1144         schedule();
1145         BUG();
1146         /* Avoid "noreturn function does return".  */
1147         for (;;)
1148                 cpu_relax();    /* For when BUG is null */
1149 }
1150
1151 EXPORT_SYMBOL_GPL(do_exit);
1152
1153 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1154 {
1155         if (comp)
1156                 complete(comp);
1157
1158         do_exit(code);
1159 }
1160
1161 EXPORT_SYMBOL(complete_and_exit);
1162
1163 asmlinkage long sys_exit(int error_code)
1164 {
1165         do_exit((error_code&0xff)<<8);
1166 }
1167
1168 /*
1169  * Take down every thread in the group.  This is called by fatal signals
1170  * as well as by sys_exit_group (below).
1171  */
1172 NORET_TYPE void
1173 do_group_exit(int exit_code)
1174 {
1175         struct signal_struct *sig = current->signal;
1176
1177         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1178
1179         if (signal_group_exit(sig))
1180                 exit_code = sig->group_exit_code;
1181         else if (!thread_group_empty(current)) {
1182                 struct sighand_struct *const sighand = current->sighand;
1183                 spin_lock_irq(&sighand->siglock);
1184                 if (signal_group_exit(sig))
1185                         /* Another thread got here before we took the lock.  */
1186                         exit_code = sig->group_exit_code;
1187                 else {
1188                         sig->group_exit_code = exit_code;
1189                         sig->flags = SIGNAL_GROUP_EXIT;
1190                         zap_other_threads(current);
1191                 }
1192                 spin_unlock_irq(&sighand->siglock);
1193         }
1194
1195         do_exit(exit_code);
1196         /* NOTREACHED */
1197 }
1198
1199 /*
1200  * this kills every thread in the thread group. Note that any externally
1201  * wait4()-ing process will get the correct exit code - even if this
1202  * thread is not the thread group leader.
1203  */
1204 asmlinkage void sys_exit_group(int error_code)
1205 {
1206         do_group_exit((error_code & 0xff) << 8);
1207 }
1208
1209 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1210 {
1211         struct pid *pid = NULL;
1212         if (type == PIDTYPE_PID)
1213                 pid = task->pids[type].pid;
1214         else if (type < PIDTYPE_MAX)
1215                 pid = task->group_leader->pids[type].pid;
1216         return pid;
1217 }
1218
1219 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1220                           struct task_struct *p)
1221 {
1222         int err;
1223
1224         if (type < PIDTYPE_MAX) {
1225                 if (task_pid_type(p, type) != pid)
1226                         return 0;
1227         }
1228
1229         /* Wait for all children (clone and not) if __WALL is set;
1230          * otherwise, wait for clone children *only* if __WCLONE is
1231          * set; otherwise, wait for non-clone children *only*.  (Note:
1232          * A "clone" child here is one that reports to its parent
1233          * using a signal other than SIGCHLD.) */
1234         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1235             && !(options & __WALL))
1236                 return 0;
1237
1238         err = security_task_wait(p);
1239         if (err)
1240                 return err;
1241
1242         return 1;
1243 }
1244
1245 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1246                                int why, int status,
1247                                struct siginfo __user *infop,
1248                                struct rusage __user *rusagep)
1249 {
1250         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1251
1252         put_task_struct(p);
1253         if (!retval)
1254                 retval = put_user(SIGCHLD, &infop->si_signo);
1255         if (!retval)
1256                 retval = put_user(0, &infop->si_errno);
1257         if (!retval)
1258                 retval = put_user((short)why, &infop->si_code);
1259         if (!retval)
1260                 retval = put_user(pid, &infop->si_pid);
1261         if (!retval)
1262                 retval = put_user(uid, &infop->si_uid);
1263         if (!retval)
1264                 retval = put_user(status, &infop->si_status);
1265         if (!retval)
1266                 retval = pid;
1267         return retval;
1268 }
1269
1270 /*
1271  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1272  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1273  * the lock and this task is uninteresting.  If we return nonzero, we have
1274  * released the lock and the system call should return.
1275  */
1276 static int wait_task_zombie(struct task_struct *p, int options,
1277                             struct siginfo __user *infop,
1278                             int __user *stat_addr, struct rusage __user *ru)
1279 {
1280         unsigned long state;
1281         int retval, status, traced;
1282         pid_t pid = task_pid_vnr(p);
1283
1284         if (!likely(options & WEXITED))
1285                 return 0;
1286
1287         if (unlikely(options & WNOWAIT)) {
1288                 uid_t uid = p->uid;
1289                 int exit_code = p->exit_code;
1290                 int why, status;
1291
1292                 get_task_struct(p);
1293                 read_unlock(&tasklist_lock);
1294                 if ((exit_code & 0x7f) == 0) {
1295                         why = CLD_EXITED;
1296                         status = exit_code >> 8;
1297                 } else {
1298                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1299                         status = exit_code & 0x7f;
1300                 }
1301                 return wait_noreap_copyout(p, pid, uid, why,
1302                                            status, infop, ru);
1303         }
1304
1305         /*
1306          * Try to move the task's state to DEAD
1307          * only one thread is allowed to do this:
1308          */
1309         state = xchg(&p->exit_state, EXIT_DEAD);
1310         if (state != EXIT_ZOMBIE) {
1311                 BUG_ON(state != EXIT_DEAD);
1312                 return 0;
1313         }
1314
1315         traced = ptrace_reparented(p);
1316
1317         if (likely(!traced)) {
1318                 struct signal_struct *psig;
1319                 struct signal_struct *sig;
1320
1321                 /*
1322                  * The resource counters for the group leader are in its
1323                  * own task_struct.  Those for dead threads in the group
1324                  * are in its signal_struct, as are those for the child
1325                  * processes it has previously reaped.  All these
1326                  * accumulate in the parent's signal_struct c* fields.
1327                  *
1328                  * We don't bother to take a lock here to protect these
1329                  * p->signal fields, because they are only touched by
1330                  * __exit_signal, which runs with tasklist_lock
1331                  * write-locked anyway, and so is excluded here.  We do
1332                  * need to protect the access to p->parent->signal fields,
1333                  * as other threads in the parent group can be right
1334                  * here reaping other children at the same time.
1335                  */
1336                 spin_lock_irq(&p->parent->sighand->siglock);
1337                 psig = p->parent->signal;
1338                 sig = p->signal;
1339                 psig->cutime =
1340                         cputime_add(psig->cutime,
1341                         cputime_add(p->utime,
1342                         cputime_add(sig->utime,
1343                                     sig->cutime)));
1344                 psig->cstime =
1345                         cputime_add(psig->cstime,
1346                         cputime_add(p->stime,
1347                         cputime_add(sig->stime,
1348                                     sig->cstime)));
1349                 psig->cgtime =
1350                         cputime_add(psig->cgtime,
1351                         cputime_add(p->gtime,
1352                         cputime_add(sig->gtime,
1353                                     sig->cgtime)));
1354                 psig->cmin_flt +=
1355                         p->min_flt + sig->min_flt + sig->cmin_flt;
1356                 psig->cmaj_flt +=
1357                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1358                 psig->cnvcsw +=
1359                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1360                 psig->cnivcsw +=
1361                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1362                 psig->cinblock +=
1363                         task_io_get_inblock(p) +
1364                         sig->inblock + sig->cinblock;
1365                 psig->coublock +=
1366                         task_io_get_oublock(p) +
1367                         sig->oublock + sig->coublock;
1368 #ifdef CONFIG_TASK_XACCT
1369                 psig->rchar += p->rchar + sig->rchar;
1370                 psig->wchar += p->wchar + sig->wchar;
1371                 psig->syscr += p->syscr + sig->syscr;
1372                 psig->syscw += p->syscw + sig->syscw;
1373 #endif /* CONFIG_TASK_XACCT */
1374 #ifdef CONFIG_TASK_IO_ACCOUNTING
1375                 psig->ioac.read_bytes +=
1376                         p->ioac.read_bytes + sig->ioac.read_bytes;
1377                 psig->ioac.write_bytes +=
1378                         p->ioac.write_bytes + sig->ioac.write_bytes;
1379                 psig->ioac.cancelled_write_bytes +=
1380                                 p->ioac.cancelled_write_bytes +
1381                                 sig->ioac.cancelled_write_bytes;
1382 #endif /* CONFIG_TASK_IO_ACCOUNTING */
1383                 spin_unlock_irq(&p->parent->sighand->siglock);
1384         }
1385
1386         /*
1387          * Now we are sure this task is interesting, and no other
1388          * thread can reap it because we set its state to EXIT_DEAD.
1389          */
1390         read_unlock(&tasklist_lock);
1391
1392         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1393         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1394                 ? p->signal->group_exit_code : p->exit_code;
1395         if (!retval && stat_addr)
1396                 retval = put_user(status, stat_addr);
1397         if (!retval && infop)
1398                 retval = put_user(SIGCHLD, &infop->si_signo);
1399         if (!retval && infop)
1400                 retval = put_user(0, &infop->si_errno);
1401         if (!retval && infop) {
1402                 int why;
1403
1404                 if ((status & 0x7f) == 0) {
1405                         why = CLD_EXITED;
1406                         status >>= 8;
1407                 } else {
1408                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1409                         status &= 0x7f;
1410                 }
1411                 retval = put_user((short)why, &infop->si_code);
1412                 if (!retval)
1413                         retval = put_user(status, &infop->si_status);
1414         }
1415         if (!retval && infop)
1416                 retval = put_user(pid, &infop->si_pid);
1417         if (!retval && infop)
1418                 retval = put_user(p->uid, &infop->si_uid);
1419         if (!retval)
1420                 retval = pid;
1421
1422         if (traced) {
1423                 write_lock_irq(&tasklist_lock);
1424                 /* We dropped tasklist, ptracer could die and untrace */
1425                 ptrace_unlink(p);
1426                 /*
1427                  * If this is not a detached task, notify the parent.
1428                  * If it's still not detached after that, don't release
1429                  * it now.
1430                  */
1431                 if (!task_detached(p)) {
1432                         do_notify_parent(p, p->exit_signal);
1433                         if (!task_detached(p)) {
1434                                 p->exit_state = EXIT_ZOMBIE;
1435                                 p = NULL;
1436                         }
1437                 }
1438                 write_unlock_irq(&tasklist_lock);
1439         }
1440         if (p != NULL)
1441                 release_task(p);
1442
1443         return retval;
1444 }
1445
1446 /*
1447  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1448  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1449  * the lock and this task is uninteresting.  If we return nonzero, we have
1450  * released the lock and the system call should return.
1451  */
1452 static int wait_task_stopped(int ptrace, struct task_struct *p,
1453                              int options, struct siginfo __user *infop,
1454                              int __user *stat_addr, struct rusage __user *ru)
1455 {
1456         int retval, exit_code, why;
1457         uid_t uid = 0; /* unneeded, required by compiler */
1458         pid_t pid;
1459
1460         if (!(options & WUNTRACED))
1461                 return 0;
1462
1463         exit_code = 0;
1464         spin_lock_irq(&p->sighand->siglock);
1465
1466         if (unlikely(!task_is_stopped_or_traced(p)))
1467                 goto unlock_sig;
1468
1469         if (!ptrace && p->signal->group_stop_count > 0)
1470                 /*
1471                  * A group stop is in progress and this is the group leader.
1472                  * We won't report until all threads have stopped.
1473                  */
1474                 goto unlock_sig;
1475
1476         exit_code = p->exit_code;
1477         if (!exit_code)
1478                 goto unlock_sig;
1479
1480         if (!unlikely(options & WNOWAIT))
1481                 p->exit_code = 0;
1482
1483         uid = p->uid;
1484 unlock_sig:
1485         spin_unlock_irq(&p->sighand->siglock);
1486         if (!exit_code)
1487                 return 0;
1488
1489         /*
1490          * Now we are pretty sure this task is interesting.
1491          * Make sure it doesn't get reaped out from under us while we
1492          * give up the lock and then examine it below.  We don't want to
1493          * keep holding onto the tasklist_lock while we call getrusage and
1494          * possibly take page faults for user memory.
1495          */
1496         get_task_struct(p);
1497         pid = task_pid_vnr(p);
1498         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1499         read_unlock(&tasklist_lock);
1500
1501         if (unlikely(options & WNOWAIT))
1502                 return wait_noreap_copyout(p, pid, uid,
1503                                            why, exit_code,
1504                                            infop, ru);
1505
1506         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1507         if (!retval && stat_addr)
1508                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1509         if (!retval && infop)
1510                 retval = put_user(SIGCHLD, &infop->si_signo);
1511         if (!retval && infop)
1512                 retval = put_user(0, &infop->si_errno);
1513         if (!retval && infop)
1514                 retval = put_user((short)why, &infop->si_code);
1515         if (!retval && infop)
1516                 retval = put_user(exit_code, &infop->si_status);
1517         if (!retval && infop)
1518                 retval = put_user(pid, &infop->si_pid);
1519         if (!retval && infop)
1520                 retval = put_user(uid, &infop->si_uid);
1521         if (!retval)
1522                 retval = pid;
1523         put_task_struct(p);
1524
1525         BUG_ON(!retval);
1526         return retval;
1527 }
1528
1529 /*
1530  * Handle do_wait work for one task in a live, non-stopped state.
1531  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1532  * the lock and this task is uninteresting.  If we return nonzero, we have
1533  * released the lock and the system call should return.
1534  */
1535 static int wait_task_continued(struct task_struct *p, int options,
1536                                struct siginfo __user *infop,
1537                                int __user *stat_addr, struct rusage __user *ru)
1538 {
1539         int retval;
1540         pid_t pid;
1541         uid_t uid;
1542
1543         if (!unlikely(options & WCONTINUED))
1544                 return 0;
1545
1546         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1547                 return 0;
1548
1549         spin_lock_irq(&p->sighand->siglock);
1550         /* Re-check with the lock held.  */
1551         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1552                 spin_unlock_irq(&p->sighand->siglock);
1553                 return 0;
1554         }
1555         if (!unlikely(options & WNOWAIT))
1556                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1557         spin_unlock_irq(&p->sighand->siglock);
1558
1559         pid = task_pid_vnr(p);
1560         uid = p->uid;
1561         get_task_struct(p);
1562         read_unlock(&tasklist_lock);
1563
1564         if (!infop) {
1565                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1566                 put_task_struct(p);
1567                 if (!retval && stat_addr)
1568                         retval = put_user(0xffff, stat_addr);
1569                 if (!retval)
1570                         retval = pid;
1571         } else {
1572                 retval = wait_noreap_copyout(p, pid, uid,
1573                                              CLD_CONTINUED, SIGCONT,
1574                                              infop, ru);
1575                 BUG_ON(retval == 0);
1576         }
1577
1578         return retval;
1579 }
1580
1581 /*
1582  * Consider @p for a wait by @parent.
1583  *
1584  * -ECHILD should be in *@notask_error before the first call.
1585  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1586  * Returns zero if the search for a child should continue;
1587  * then *@notask_error is 0 if @p is an eligible child,
1588  * or another error from security_task_wait(), or still -ECHILD.
1589  */
1590 static int wait_consider_task(struct task_struct *parent, int ptrace,
1591                               struct task_struct *p, int *notask_error,
1592                               enum pid_type type, struct pid *pid, int options,
1593                               struct siginfo __user *infop,
1594                               int __user *stat_addr, struct rusage __user *ru)
1595 {
1596         int ret = eligible_child(type, pid, options, p);
1597         if (!ret)
1598                 return ret;
1599
1600         if (unlikely(ret < 0)) {
1601                 /*
1602                  * If we have not yet seen any eligible child,
1603                  * then let this error code replace -ECHILD.
1604                  * A permission error will give the user a clue
1605                  * to look for security policy problems, rather
1606                  * than for mysterious wait bugs.
1607                  */
1608                 if (*notask_error)
1609                         *notask_error = ret;
1610         }
1611
1612         if (likely(!ptrace) && unlikely(p->ptrace)) {
1613                 /*
1614                  * This child is hidden by ptrace.
1615                  * We aren't allowed to see it now, but eventually we will.
1616                  */
1617                 *notask_error = 0;
1618                 return 0;
1619         }
1620
1621         if (p->exit_state == EXIT_DEAD)
1622                 return 0;
1623
1624         /*
1625          * We don't reap group leaders with subthreads.
1626          */
1627         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1628                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1629
1630         /*
1631          * It's stopped or running now, so it might
1632          * later continue, exit, or stop again.
1633          */
1634         *notask_error = 0;
1635
1636         if (task_is_stopped_or_traced(p))
1637                 return wait_task_stopped(ptrace, p, options,
1638                                          infop, stat_addr, ru);
1639
1640         return wait_task_continued(p, options, infop, stat_addr, ru);
1641 }
1642
1643 /*
1644  * Do the work of do_wait() for one thread in the group, @tsk.
1645  *
1646  * -ECHILD should be in *@notask_error before the first call.
1647  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1648  * Returns zero if the search for a child should continue; then
1649  * *@notask_error is 0 if there were any eligible children,
1650  * or another error from security_task_wait(), or still -ECHILD.
1651  */
1652 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1653                           enum pid_type type, struct pid *pid, int options,
1654                           struct siginfo __user *infop, int __user *stat_addr,
1655                           struct rusage __user *ru)
1656 {
1657         struct task_struct *p;
1658
1659         list_for_each_entry(p, &tsk->children, sibling) {
1660                 /*
1661                  * Do not consider detached threads.
1662                  */
1663                 if (!task_detached(p)) {
1664                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1665                                                      type, pid, options,
1666                                                      infop, stat_addr, ru);
1667                         if (ret)
1668                                 return ret;
1669                 }
1670         }
1671
1672         return 0;
1673 }
1674
1675 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1676                           enum pid_type type, struct pid *pid, int options,
1677                           struct siginfo __user *infop, int __user *stat_addr,
1678                           struct rusage __user *ru)
1679 {
1680         struct task_struct *p;
1681
1682         /*
1683          * Traditionally we see ptrace'd stopped tasks regardless of options.
1684          */
1685         options |= WUNTRACED;
1686
1687         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1688                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1689                                              type, pid, options,
1690                                              infop, stat_addr, ru);
1691                 if (ret)
1692                         return ret;
1693         }
1694
1695         return 0;
1696 }
1697
1698 static long do_wait(enum pid_type type, struct pid *pid, int options,
1699                     struct siginfo __user *infop, int __user *stat_addr,
1700                     struct rusage __user *ru)
1701 {
1702         DECLARE_WAITQUEUE(wait, current);
1703         struct task_struct *tsk;
1704         int retval;
1705
1706         add_wait_queue(&current->signal->wait_chldexit,&wait);
1707 repeat:
1708         /*
1709          * If there is nothing that can match our critiera just get out.
1710          * We will clear @retval to zero if we see any child that might later
1711          * match our criteria, even if we are not able to reap it yet.
1712          */
1713         retval = -ECHILD;
1714         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1715                 goto end;
1716
1717         current->state = TASK_INTERRUPTIBLE;
1718         read_lock(&tasklist_lock);
1719         tsk = current;
1720         do {
1721                 int tsk_result = do_wait_thread(tsk, &retval,
1722                                                 type, pid, options,
1723                                                 infop, stat_addr, ru);
1724                 if (!tsk_result)
1725                         tsk_result = ptrace_do_wait(tsk, &retval,
1726                                                     type, pid, options,
1727                                                     infop, stat_addr, ru);
1728                 if (tsk_result) {
1729                         /*
1730                          * tasklist_lock is unlocked and we have a final result.
1731                          */
1732                         retval = tsk_result;
1733                         goto end;
1734                 }
1735
1736                 if (options & __WNOTHREAD)
1737                         break;
1738                 tsk = next_thread(tsk);
1739                 BUG_ON(tsk->signal != current->signal);
1740         } while (tsk != current);
1741         read_unlock(&tasklist_lock);
1742
1743         if (!retval && !(options & WNOHANG)) {
1744                 retval = -ERESTARTSYS;
1745                 if (!signal_pending(current)) {
1746                         schedule();
1747                         goto repeat;
1748                 }
1749         }
1750
1751 end:
1752         current->state = TASK_RUNNING;
1753         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1754         if (infop) {
1755                 if (retval > 0)
1756                         retval = 0;
1757                 else {
1758                         /*
1759                          * For a WNOHANG return, clear out all the fields
1760                          * we would set so the user can easily tell the
1761                          * difference.
1762                          */
1763                         if (!retval)
1764                                 retval = put_user(0, &infop->si_signo);
1765                         if (!retval)
1766                                 retval = put_user(0, &infop->si_errno);
1767                         if (!retval)
1768                                 retval = put_user(0, &infop->si_code);
1769                         if (!retval)
1770                                 retval = put_user(0, &infop->si_pid);
1771                         if (!retval)
1772                                 retval = put_user(0, &infop->si_uid);
1773                         if (!retval)
1774                                 retval = put_user(0, &infop->si_status);
1775                 }
1776         }
1777         return retval;
1778 }
1779
1780 asmlinkage long sys_waitid(int which, pid_t upid,
1781                            struct siginfo __user *infop, int options,
1782                            struct rusage __user *ru)
1783 {
1784         struct pid *pid = NULL;
1785         enum pid_type type;
1786         long ret;
1787
1788         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1789                 return -EINVAL;
1790         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1791                 return -EINVAL;
1792
1793         switch (which) {
1794         case P_ALL:
1795                 type = PIDTYPE_MAX;
1796                 break;
1797         case P_PID:
1798                 type = PIDTYPE_PID;
1799                 if (upid <= 0)
1800                         return -EINVAL;
1801                 break;
1802         case P_PGID:
1803                 type = PIDTYPE_PGID;
1804                 if (upid <= 0)
1805                         return -EINVAL;
1806                 break;
1807         default:
1808                 return -EINVAL;
1809         }
1810
1811         if (type < PIDTYPE_MAX)
1812                 pid = find_get_pid(upid);
1813         ret = do_wait(type, pid, options, infop, NULL, ru);
1814         put_pid(pid);
1815
1816         /* avoid REGPARM breakage on x86: */
1817         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1818         return ret;
1819 }
1820
1821 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1822                           int options, struct rusage __user *ru)
1823 {
1824         struct pid *pid = NULL;
1825         enum pid_type type;
1826         long ret;
1827
1828         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1829                         __WNOTHREAD|__WCLONE|__WALL))
1830                 return -EINVAL;
1831
1832         if (upid == -1)
1833                 type = PIDTYPE_MAX;
1834         else if (upid < 0) {
1835                 type = PIDTYPE_PGID;
1836                 pid = find_get_pid(-upid);
1837         } else if (upid == 0) {
1838                 type = PIDTYPE_PGID;
1839                 pid = get_pid(task_pgrp(current));
1840         } else /* upid > 0 */ {
1841                 type = PIDTYPE_PID;
1842                 pid = find_get_pid(upid);
1843         }
1844
1845         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1846         put_pid(pid);
1847
1848         /* avoid REGPARM breakage on x86: */
1849         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1850         return ret;
1851 }
1852
1853 #ifdef __ARCH_WANT_SYS_WAITPID
1854
1855 /*
1856  * sys_waitpid() remains for compatibility. waitpid() should be
1857  * implemented by calling sys_wait4() from libc.a.
1858  */
1859 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1860 {
1861         return sys_wait4(pid, stat_addr, options, NULL);
1862 }
1863
1864 #endif