sched: convert remaining old-style cpumask operators
[safe/jmp/linux-2.6] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
8 #define CLONE_VM        0x00000100      /* set if VM shared between processes */
9 #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
10 #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
11 #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD    0x00010000      /* Same thread group? */
16 #define CLONE_NEWNS     0x00020000      /* New namespace group? */
17 #define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
21 #define CLONE_DETACHED          0x00400000      /* Unused, ignored */
22 #define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
24 #define CLONE_STOPPED           0x02000000      /* Start in stopped state */
25 #define CLONE_NEWUTS            0x04000000      /* New utsname group? */
26 #define CLONE_NEWIPC            0x08000000      /* New ipcs */
27 #define CLONE_NEWUSER           0x10000000      /* New user namespace */
28 #define CLONE_NEWPID            0x20000000      /* New pid namespace */
29 #define CLONE_NEWNET            0x40000000      /* New network namespace */
30 #define CLONE_IO                0x80000000      /* Clone io context */
31
32 /*
33  * Scheduling policies
34  */
35 #define SCHED_NORMAL            0
36 #define SCHED_FIFO              1
37 #define SCHED_RR                2
38 #define SCHED_BATCH             3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE              5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45         int sched_priority;
46 };
47
48 #include <asm/param.h>  /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99
100 /*
101  * List of flags we want to share for kernel threads,
102  * if only because they are not used by them anyway.
103  */
104 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106 /*
107  * These are the constant used to fake the fixed-point load-average
108  * counting. Some notes:
109  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
110  *    a load-average precision of 10 bits integer + 11 bits fractional
111  *  - if you want to count load-averages more often, you need more
112  *    precision, or rounding will get you. With 2-second counting freq,
113  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
114  *    11 bit fractions.
115  */
116 extern unsigned long avenrun[];         /* Load averages */
117
118 #define FSHIFT          11              /* nr of bits of precision */
119 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
120 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
121 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
122 #define EXP_5           2014            /* 1/exp(5sec/5min) */
123 #define EXP_15          2037            /* 1/exp(5sec/15min) */
124
125 #define CALC_LOAD(load,exp,n) \
126         load *= exp; \
127         load += n*(FIXED_1-exp); \
128         load >>= FSHIFT;
129
130 extern unsigned long total_forks;
131 extern int nr_threads;
132 DECLARE_PER_CPU(unsigned long, process_counts);
133 extern int nr_processes(void);
134 extern unsigned long nr_running(void);
135 extern unsigned long nr_uninterruptible(void);
136 extern unsigned long nr_active(void);
137 extern unsigned long nr_iowait(void);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 extern unsigned long long time_sync_thresh;
162
163 /*
164  * Task state bitmask. NOTE! These bits are also
165  * encoded in fs/proc/array.c: get_task_state().
166  *
167  * We have two separate sets of flags: task->state
168  * is about runnability, while task->exit_state are
169  * about the task exiting. Confusing, but this way
170  * modifying one set can't modify the other one by
171  * mistake.
172  */
173 #define TASK_RUNNING            0
174 #define TASK_INTERRUPTIBLE      1
175 #define TASK_UNINTERRUPTIBLE    2
176 #define __TASK_STOPPED          4
177 #define __TASK_TRACED           8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE             16
180 #define EXIT_DEAD               32
181 /* in tsk->state again */
182 #define TASK_DEAD               64
183 #define TASK_WAKEKILL           128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197                                  __TASK_TRACED)
198
199 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task)  \
204                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value)              \
207         do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value)                \
209         set_mb((tsk)->state, (state_value))
210
211 /*
212  * set_current_state() includes a barrier so that the write of current->state
213  * is correctly serialised wrt the caller's subsequent test of whether to
214  * actually sleep:
215  *
216  *      set_current_state(TASK_UNINTERRUPTIBLE);
217  *      if (do_i_need_to_sleep())
218  *              schedule();
219  *
220  * If the caller does not need such serialisation then use __set_current_state()
221  */
222 #define __set_current_state(state_value)                        \
223         do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value)          \
225         set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233  * This serializes "schedule()" and also protects
234  * the run-queue from deletions/modifications (but
235  * _adding_ to the beginning of the run-queue has
236  * a separate lock).
237  */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern int runqueue_is_locked(void);
250 extern void task_rq_unlock_wait(struct task_struct *p);
251
252 extern cpumask_var_t nohz_cpu_mask;
253 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
254 extern int select_nohz_load_balancer(int cpu);
255 #else
256 static inline int select_nohz_load_balancer(int cpu)
257 {
258         return 0;
259 }
260 #endif
261
262 /*
263  * Only dump TASK_* tasks. (0 for all tasks)
264  */
265 extern void show_state_filter(unsigned long state_filter);
266
267 static inline void show_state(void)
268 {
269         show_state_filter(0);
270 }
271
272 extern void show_regs(struct pt_regs *);
273
274 /*
275  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
276  * task), SP is the stack pointer of the first frame that should be shown in the back
277  * trace (or NULL if the entire call-chain of the task should be shown).
278  */
279 extern void show_stack(struct task_struct *task, unsigned long *sp);
280
281 void io_schedule(void);
282 long io_schedule_timeout(long timeout);
283
284 extern void cpu_init (void);
285 extern void trap_init(void);
286 extern void account_process_tick(struct task_struct *task, int user);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289
290 extern void sched_show_task(struct task_struct *p);
291
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void touch_softlockup_watchdog(void);
295 extern void touch_all_softlockup_watchdogs(void);
296 extern unsigned int  softlockup_panic;
297 extern unsigned long sysctl_hung_task_check_count;
298 extern unsigned long sysctl_hung_task_timeout_secs;
299 extern unsigned long sysctl_hung_task_warnings;
300 extern int softlockup_thresh;
301 #else
302 static inline void softlockup_tick(void)
303 {
304 }
305 static inline void spawn_softlockup_task(void)
306 {
307 }
308 static inline void touch_softlockup_watchdog(void)
309 {
310 }
311 static inline void touch_all_softlockup_watchdogs(void)
312 {
313 }
314 #endif
315
316
317 /* Attach to any functions which should be ignored in wchan output. */
318 #define __sched         __attribute__((__section__(".sched.text")))
319
320 /* Linker adds these: start and end of __sched functions */
321 extern char __sched_text_start[], __sched_text_end[];
322
323 /* Is this address in the __sched functions? */
324 extern int in_sched_functions(unsigned long addr);
325
326 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
327 extern signed long schedule_timeout(signed long timeout);
328 extern signed long schedule_timeout_interruptible(signed long timeout);
329 extern signed long schedule_timeout_killable(signed long timeout);
330 extern signed long schedule_timeout_uninterruptible(signed long timeout);
331 asmlinkage void schedule(void);
332
333 struct nsproxy;
334 struct user_namespace;
335
336 /* Maximum number of active map areas.. This is a random (large) number */
337 #define DEFAULT_MAX_MAP_COUNT   65536
338
339 extern int sysctl_max_map_count;
340
341 #include <linux/aio.h>
342
343 extern unsigned long
344 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345                        unsigned long, unsigned long);
346 extern unsigned long
347 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348                           unsigned long len, unsigned long pgoff,
349                           unsigned long flags);
350 extern void arch_unmap_area(struct mm_struct *, unsigned long);
351 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353 #if USE_SPLIT_PTLOCKS
354 /*
355  * The mm counters are not protected by its page_table_lock,
356  * so must be incremented atomically.
357  */
358 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364 #else  /* !USE_SPLIT_PTLOCKS */
365 /*
366  * The mm counters are protected by its page_table_lock,
367  * so can be incremented directly.
368  */
369 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370 #define get_mm_counter(mm, member) ((mm)->_##member)
371 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372 #define inc_mm_counter(mm, member) (mm)->_##member++
373 #define dec_mm_counter(mm, member) (mm)->_##member--
374
375 #endif /* !USE_SPLIT_PTLOCKS */
376
377 #define get_mm_rss(mm)                                  \
378         (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379 #define update_hiwater_rss(mm)  do {                    \
380         unsigned long _rss = get_mm_rss(mm);            \
381         if ((mm)->hiwater_rss < _rss)                   \
382                 (mm)->hiwater_rss = _rss;               \
383 } while (0)
384 #define update_hiwater_vm(mm)   do {                    \
385         if ((mm)->hiwater_vm < (mm)->total_vm)          \
386                 (mm)->hiwater_vm = (mm)->total_vm;      \
387 } while (0)
388
389 extern void set_dumpable(struct mm_struct *mm, int value);
390 extern int get_dumpable(struct mm_struct *mm);
391
392 /* mm flags */
393 /* dumpable bits */
394 #define MMF_DUMPABLE      0  /* core dump is permitted */
395 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
396 #define MMF_DUMPABLE_BITS 2
397
398 /* coredump filter bits */
399 #define MMF_DUMP_ANON_PRIVATE   2
400 #define MMF_DUMP_ANON_SHARED    3
401 #define MMF_DUMP_MAPPED_PRIVATE 4
402 #define MMF_DUMP_MAPPED_SHARED  5
403 #define MMF_DUMP_ELF_HEADERS    6
404 #define MMF_DUMP_HUGETLB_PRIVATE 7
405 #define MMF_DUMP_HUGETLB_SHARED  8
406 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
407 #define MMF_DUMP_FILTER_BITS    7
408 #define MMF_DUMP_FILTER_MASK \
409         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
410 #define MMF_DUMP_FILTER_DEFAULT \
411         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
412          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
413
414 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
415 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
416 #else
417 # define MMF_DUMP_MASK_DEFAULT_ELF      0
418 #endif
419
420 struct sighand_struct {
421         atomic_t                count;
422         struct k_sigaction      action[_NSIG];
423         spinlock_t              siglock;
424         wait_queue_head_t       signalfd_wqh;
425 };
426
427 struct pacct_struct {
428         int                     ac_flag;
429         long                    ac_exitcode;
430         unsigned long           ac_mem;
431         cputime_t               ac_utime, ac_stime;
432         unsigned long           ac_minflt, ac_majflt;
433 };
434
435 /**
436  * struct task_cputime - collected CPU time counts
437  * @utime:              time spent in user mode, in &cputime_t units
438  * @stime:              time spent in kernel mode, in &cputime_t units
439  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
440  *
441  * This structure groups together three kinds of CPU time that are
442  * tracked for threads and thread groups.  Most things considering
443  * CPU time want to group these counts together and treat all three
444  * of them in parallel.
445  */
446 struct task_cputime {
447         cputime_t utime;
448         cputime_t stime;
449         unsigned long long sum_exec_runtime;
450 };
451 /* Alternate field names when used to cache expirations. */
452 #define prof_exp        stime
453 #define virt_exp        utime
454 #define sched_exp       sum_exec_runtime
455
456 /**
457  * struct thread_group_cputime - thread group interval timer counts
458  * @totals:             thread group interval timers; substructure for
459  *                      uniprocessor kernel, per-cpu for SMP kernel.
460  *
461  * This structure contains the version of task_cputime, above, that is
462  * used for thread group CPU clock calculations.
463  */
464 struct thread_group_cputime {
465         struct task_cputime *totals;
466 };
467
468 /*
469  * NOTE! "signal_struct" does not have it's own
470  * locking, because a shared signal_struct always
471  * implies a shared sighand_struct, so locking
472  * sighand_struct is always a proper superset of
473  * the locking of signal_struct.
474  */
475 struct signal_struct {
476         atomic_t                count;
477         atomic_t                live;
478
479         wait_queue_head_t       wait_chldexit;  /* for wait4() */
480
481         /* current thread group signal load-balancing target: */
482         struct task_struct      *curr_target;
483
484         /* shared signal handling: */
485         struct sigpending       shared_pending;
486
487         /* thread group exit support */
488         int                     group_exit_code;
489         /* overloaded:
490          * - notify group_exit_task when ->count is equal to notify_count
491          * - everyone except group_exit_task is stopped during signal delivery
492          *   of fatal signals, group_exit_task processes the signal.
493          */
494         int                     notify_count;
495         struct task_struct      *group_exit_task;
496
497         /* thread group stop support, overloads group_exit_code too */
498         int                     group_stop_count;
499         unsigned int            flags; /* see SIGNAL_* flags below */
500
501         /* POSIX.1b Interval Timers */
502         struct list_head posix_timers;
503
504         /* ITIMER_REAL timer for the process */
505         struct hrtimer real_timer;
506         struct pid *leader_pid;
507         ktime_t it_real_incr;
508
509         /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
510         cputime_t it_prof_expires, it_virt_expires;
511         cputime_t it_prof_incr, it_virt_incr;
512
513         /*
514          * Thread group totals for process CPU clocks.
515          * See thread_group_cputime(), et al, for details.
516          */
517         struct thread_group_cputime cputime;
518
519         /* Earliest-expiration cache. */
520         struct task_cputime cputime_expires;
521
522         struct list_head cpu_timers[3];
523
524         /* job control IDs */
525
526         /*
527          * pgrp and session fields are deprecated.
528          * use the task_session_Xnr and task_pgrp_Xnr routines below
529          */
530
531         union {
532                 pid_t pgrp __deprecated;
533                 pid_t __pgrp;
534         };
535
536         struct pid *tty_old_pgrp;
537
538         union {
539                 pid_t session __deprecated;
540                 pid_t __session;
541         };
542
543         /* boolean value for session group leader */
544         int leader;
545
546         struct tty_struct *tty; /* NULL if no tty */
547
548         /*
549          * Cumulative resource counters for dead threads in the group,
550          * and for reaped dead child processes forked by this group.
551          * Live threads maintain their own counters and add to these
552          * in __exit_signal, except for the group leader.
553          */
554         cputime_t cutime, cstime;
555         cputime_t gtime;
556         cputime_t cgtime;
557         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
558         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
559         unsigned long inblock, oublock, cinblock, coublock;
560         struct task_io_accounting ioac;
561
562         /*
563          * We don't bother to synchronize most readers of this at all,
564          * because there is no reader checking a limit that actually needs
565          * to get both rlim_cur and rlim_max atomically, and either one
566          * alone is a single word that can safely be read normally.
567          * getrlimit/setrlimit use task_lock(current->group_leader) to
568          * protect this instead of the siglock, because they really
569          * have no need to disable irqs.
570          */
571         struct rlimit rlim[RLIM_NLIMITS];
572
573         /* keep the process-shared keyrings here so that they do the right
574          * thing in threads created with CLONE_THREAD */
575 #ifdef CONFIG_KEYS
576         struct key *session_keyring;    /* keyring inherited over fork */
577         struct key *process_keyring;    /* keyring private to this process */
578 #endif
579 #ifdef CONFIG_BSD_PROCESS_ACCT
580         struct pacct_struct pacct;      /* per-process accounting information */
581 #endif
582 #ifdef CONFIG_TASKSTATS
583         struct taskstats *stats;
584 #endif
585 #ifdef CONFIG_AUDIT
586         unsigned audit_tty;
587         struct tty_audit_buf *tty_audit_buf;
588 #endif
589 };
590
591 /* Context switch must be unlocked if interrupts are to be enabled */
592 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
593 # define __ARCH_WANT_UNLOCKED_CTXSW
594 #endif
595
596 /*
597  * Bits in flags field of signal_struct.
598  */
599 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
600 #define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
601 #define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
602 #define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
603 /*
604  * Pending notifications to parent.
605  */
606 #define SIGNAL_CLD_STOPPED      0x00000010
607 #define SIGNAL_CLD_CONTINUED    0x00000020
608 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
609
610 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
611
612 /* If true, all threads except ->group_exit_task have pending SIGKILL */
613 static inline int signal_group_exit(const struct signal_struct *sig)
614 {
615         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
616                 (sig->group_exit_task != NULL);
617 }
618
619 /*
620  * Some day this will be a full-fledged user tracking system..
621  */
622 struct user_struct {
623         atomic_t __count;       /* reference count */
624         atomic_t processes;     /* How many processes does this user have? */
625         atomic_t files;         /* How many open files does this user have? */
626         atomic_t sigpending;    /* How many pending signals does this user have? */
627 #ifdef CONFIG_INOTIFY_USER
628         atomic_t inotify_watches; /* How many inotify watches does this user have? */
629         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
630 #endif
631 #ifdef CONFIG_POSIX_MQUEUE
632         /* protected by mq_lock */
633         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
634 #endif
635         unsigned long locked_shm; /* How many pages of mlocked shm ? */
636
637 #ifdef CONFIG_KEYS
638         struct key *uid_keyring;        /* UID specific keyring */
639         struct key *session_keyring;    /* UID's default session keyring */
640 #endif
641
642         /* Hash table maintenance information */
643         struct hlist_node uidhash_node;
644         uid_t uid;
645
646 #ifdef CONFIG_USER_SCHED
647         struct task_group *tg;
648 #ifdef CONFIG_SYSFS
649         struct kobject kobj;
650         struct work_struct work;
651 #endif
652 #endif
653 };
654
655 extern int uids_sysfs_init(void);
656
657 extern struct user_struct *find_user(uid_t);
658
659 extern struct user_struct root_user;
660 #define INIT_USER (&root_user)
661
662 struct backing_dev_info;
663 struct reclaim_state;
664
665 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
666 struct sched_info {
667         /* cumulative counters */
668         unsigned long pcount;         /* # of times run on this cpu */
669         unsigned long long cpu_time,  /* time spent on the cpu */
670                            run_delay; /* time spent waiting on a runqueue */
671
672         /* timestamps */
673         unsigned long long last_arrival,/* when we last ran on a cpu */
674                            last_queued; /* when we were last queued to run */
675 #ifdef CONFIG_SCHEDSTATS
676         /* BKL stats */
677         unsigned int bkl_count;
678 #endif
679 };
680 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
681
682 #ifdef CONFIG_TASK_DELAY_ACCT
683 struct task_delay_info {
684         spinlock_t      lock;
685         unsigned int    flags;  /* Private per-task flags */
686
687         /* For each stat XXX, add following, aligned appropriately
688          *
689          * struct timespec XXX_start, XXX_end;
690          * u64 XXX_delay;
691          * u32 XXX_count;
692          *
693          * Atomicity of updates to XXX_delay, XXX_count protected by
694          * single lock above (split into XXX_lock if contention is an issue).
695          */
696
697         /*
698          * XXX_count is incremented on every XXX operation, the delay
699          * associated with the operation is added to XXX_delay.
700          * XXX_delay contains the accumulated delay time in nanoseconds.
701          */
702         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
703         u64 blkio_delay;        /* wait for sync block io completion */
704         u64 swapin_delay;       /* wait for swapin block io completion */
705         u32 blkio_count;        /* total count of the number of sync block */
706                                 /* io operations performed */
707         u32 swapin_count;       /* total count of the number of swapin block */
708                                 /* io operations performed */
709
710         struct timespec freepages_start, freepages_end;
711         u64 freepages_delay;    /* wait for memory reclaim */
712         u32 freepages_count;    /* total count of memory reclaim */
713 };
714 #endif  /* CONFIG_TASK_DELAY_ACCT */
715
716 static inline int sched_info_on(void)
717 {
718 #ifdef CONFIG_SCHEDSTATS
719         return 1;
720 #elif defined(CONFIG_TASK_DELAY_ACCT)
721         extern int delayacct_on;
722         return delayacct_on;
723 #else
724         return 0;
725 #endif
726 }
727
728 enum cpu_idle_type {
729         CPU_IDLE,
730         CPU_NOT_IDLE,
731         CPU_NEWLY_IDLE,
732         CPU_MAX_IDLE_TYPES
733 };
734
735 /*
736  * sched-domains (multiprocessor balancing) declarations:
737  */
738
739 /*
740  * Increase resolution of nice-level calculations:
741  */
742 #define SCHED_LOAD_SHIFT        10
743 #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
744
745 #define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
746
747 #ifdef CONFIG_SMP
748 #define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
749 #define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
750 #define SD_BALANCE_EXEC         4       /* Balance on exec */
751 #define SD_BALANCE_FORK         8       /* Balance on fork, clone */
752 #define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
753 #define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
754 #define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
755 #define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */
756 #define SD_POWERSAVINGS_BALANCE 256     /* Balance for power savings */
757 #define SD_SHARE_PKG_RESOURCES  512     /* Domain members share cpu pkg resources */
758 #define SD_SERIALIZE            1024    /* Only a single load balancing instance */
759 #define SD_WAKE_IDLE_FAR        2048    /* Gain latency sacrificing cache hit */
760
761 #define BALANCE_FOR_MC_POWER    \
762         (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
763
764 #define BALANCE_FOR_PKG_POWER   \
765         ((sched_mc_power_savings || sched_smt_power_savings) ?  \
766          SD_POWERSAVINGS_BALANCE : 0)
767
768 #define test_sd_parent(sd, flag)        ((sd->parent &&         \
769                                          (sd->parent->flags & flag)) ? 1 : 0)
770
771
772 struct sched_group {
773         struct sched_group *next;       /* Must be a circular list */
774
775         /*
776          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
777          * single CPU. This is read only (except for setup, hotplug CPU).
778          * Note : Never change cpu_power without recompute its reciprocal
779          */
780         unsigned int __cpu_power;
781         /*
782          * reciprocal value of cpu_power to avoid expensive divides
783          * (see include/linux/reciprocal_div.h)
784          */
785         u32 reciprocal_cpu_power;
786
787         unsigned long cpumask[];
788 };
789
790 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
791 {
792         return to_cpumask(sg->cpumask);
793 }
794
795 enum sched_domain_level {
796         SD_LV_NONE = 0,
797         SD_LV_SIBLING,
798         SD_LV_MC,
799         SD_LV_CPU,
800         SD_LV_NODE,
801         SD_LV_ALLNODES,
802         SD_LV_MAX
803 };
804
805 struct sched_domain_attr {
806         int relax_domain_level;
807 };
808
809 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
810         .relax_domain_level = -1,                       \
811 }
812
813 struct sched_domain {
814         /* These fields must be setup */
815         struct sched_domain *parent;    /* top domain must be null terminated */
816         struct sched_domain *child;     /* bottom domain must be null terminated */
817         struct sched_group *groups;     /* the balancing groups of the domain */
818         unsigned long min_interval;     /* Minimum balance interval ms */
819         unsigned long max_interval;     /* Maximum balance interval ms */
820         unsigned int busy_factor;       /* less balancing by factor if busy */
821         unsigned int imbalance_pct;     /* No balance until over watermark */
822         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
823         unsigned int busy_idx;
824         unsigned int idle_idx;
825         unsigned int newidle_idx;
826         unsigned int wake_idx;
827         unsigned int forkexec_idx;
828         int flags;                      /* See SD_* */
829         enum sched_domain_level level;
830
831         /* Runtime fields. */
832         unsigned long last_balance;     /* init to jiffies. units in jiffies */
833         unsigned int balance_interval;  /* initialise to 1. units in ms. */
834         unsigned int nr_balance_failed; /* initialise to 0 */
835
836         u64 last_update;
837
838 #ifdef CONFIG_SCHEDSTATS
839         /* load_balance() stats */
840         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
841         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
842         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
843         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
844         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
845         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
846         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
847         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
848
849         /* Active load balancing */
850         unsigned int alb_count;
851         unsigned int alb_failed;
852         unsigned int alb_pushed;
853
854         /* SD_BALANCE_EXEC stats */
855         unsigned int sbe_count;
856         unsigned int sbe_balanced;
857         unsigned int sbe_pushed;
858
859         /* SD_BALANCE_FORK stats */
860         unsigned int sbf_count;
861         unsigned int sbf_balanced;
862         unsigned int sbf_pushed;
863
864         /* try_to_wake_up() stats */
865         unsigned int ttwu_wake_remote;
866         unsigned int ttwu_move_affine;
867         unsigned int ttwu_move_balance;
868 #endif
869 #ifdef CONFIG_SCHED_DEBUG
870         char *name;
871 #endif
872
873         /* span of all CPUs in this domain */
874         unsigned long span[];
875 };
876
877 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
878 {
879         return to_cpumask(sd->span);
880 }
881
882 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
883                                     struct sched_domain_attr *dattr_new);
884 extern int arch_reinit_sched_domains(void);
885
886 #else /* CONFIG_SMP */
887
888 struct sched_domain_attr;
889
890 static inline void
891 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
892                         struct sched_domain_attr *dattr_new)
893 {
894 }
895 #endif  /* !CONFIG_SMP */
896
897 struct io_context;                      /* See blkdev.h */
898 #define NGROUPS_SMALL           32
899 #define NGROUPS_PER_BLOCK       ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
900 struct group_info {
901         int ngroups;
902         atomic_t usage;
903         gid_t small_block[NGROUPS_SMALL];
904         int nblocks;
905         gid_t *blocks[0];
906 };
907
908 /*
909  * get_group_info() must be called with the owning task locked (via task_lock())
910  * when task != current.  The reason being that the vast majority of callers are
911  * looking at current->group_info, which can not be changed except by the
912  * current task.  Changing current->group_info requires the task lock, too.
913  */
914 #define get_group_info(group_info) do { \
915         atomic_inc(&(group_info)->usage); \
916 } while (0)
917
918 #define put_group_info(group_info) do { \
919         if (atomic_dec_and_test(&(group_info)->usage)) \
920                 groups_free(group_info); \
921 } while (0)
922
923 extern struct group_info *groups_alloc(int gidsetsize);
924 extern void groups_free(struct group_info *group_info);
925 extern int set_current_groups(struct group_info *group_info);
926 extern int groups_search(struct group_info *group_info, gid_t grp);
927 /* access the groups "array" with this macro */
928 #define GROUP_AT(gi, i) \
929     ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
930
931 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
932 extern void prefetch_stack(struct task_struct *t);
933 #else
934 static inline void prefetch_stack(struct task_struct *t) { }
935 #endif
936
937 struct audit_context;           /* See audit.c */
938 struct mempolicy;
939 struct pipe_inode_info;
940 struct uts_namespace;
941
942 struct rq;
943 struct sched_domain;
944
945 struct sched_class {
946         const struct sched_class *next;
947
948         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
949         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
950         void (*yield_task) (struct rq *rq);
951
952         void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
953
954         struct task_struct * (*pick_next_task) (struct rq *rq);
955         void (*put_prev_task) (struct rq *rq, struct task_struct *p);
956
957 #ifdef CONFIG_SMP
958         int  (*select_task_rq)(struct task_struct *p, int sync);
959
960         unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
961                         struct rq *busiest, unsigned long max_load_move,
962                         struct sched_domain *sd, enum cpu_idle_type idle,
963                         int *all_pinned, int *this_best_prio);
964
965         int (*move_one_task) (struct rq *this_rq, int this_cpu,
966                               struct rq *busiest, struct sched_domain *sd,
967                               enum cpu_idle_type idle);
968         void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
969         void (*post_schedule) (struct rq *this_rq);
970         void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
971
972         void (*set_cpus_allowed)(struct task_struct *p,
973                                  const struct cpumask *newmask);
974
975         void (*rq_online)(struct rq *rq);
976         void (*rq_offline)(struct rq *rq);
977 #endif
978
979         void (*set_curr_task) (struct rq *rq);
980         void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
981         void (*task_new) (struct rq *rq, struct task_struct *p);
982
983         void (*switched_from) (struct rq *this_rq, struct task_struct *task,
984                                int running);
985         void (*switched_to) (struct rq *this_rq, struct task_struct *task,
986                              int running);
987         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
988                              int oldprio, int running);
989
990 #ifdef CONFIG_FAIR_GROUP_SCHED
991         void (*moved_group) (struct task_struct *p);
992 #endif
993 };
994
995 struct load_weight {
996         unsigned long weight, inv_weight;
997 };
998
999 /*
1000  * CFS stats for a schedulable entity (task, task-group etc)
1001  *
1002  * Current field usage histogram:
1003  *
1004  *     4 se->block_start
1005  *     4 se->run_node
1006  *     4 se->sleep_start
1007  *     6 se->load.weight
1008  */
1009 struct sched_entity {
1010         struct load_weight      load;           /* for load-balancing */
1011         struct rb_node          run_node;
1012         struct list_head        group_node;
1013         unsigned int            on_rq;
1014
1015         u64                     exec_start;
1016         u64                     sum_exec_runtime;
1017         u64                     vruntime;
1018         u64                     prev_sum_exec_runtime;
1019
1020         u64                     last_wakeup;
1021         u64                     avg_overlap;
1022
1023 #ifdef CONFIG_SCHEDSTATS
1024         u64                     wait_start;
1025         u64                     wait_max;
1026         u64                     wait_count;
1027         u64                     wait_sum;
1028
1029         u64                     sleep_start;
1030         u64                     sleep_max;
1031         s64                     sum_sleep_runtime;
1032
1033         u64                     block_start;
1034         u64                     block_max;
1035         u64                     exec_max;
1036         u64                     slice_max;
1037
1038         u64                     nr_migrations;
1039         u64                     nr_migrations_cold;
1040         u64                     nr_failed_migrations_affine;
1041         u64                     nr_failed_migrations_running;
1042         u64                     nr_failed_migrations_hot;
1043         u64                     nr_forced_migrations;
1044         u64                     nr_forced2_migrations;
1045
1046         u64                     nr_wakeups;
1047         u64                     nr_wakeups_sync;
1048         u64                     nr_wakeups_migrate;
1049         u64                     nr_wakeups_local;
1050         u64                     nr_wakeups_remote;
1051         u64                     nr_wakeups_affine;
1052         u64                     nr_wakeups_affine_attempts;
1053         u64                     nr_wakeups_passive;
1054         u64                     nr_wakeups_idle;
1055 #endif
1056
1057 #ifdef CONFIG_FAIR_GROUP_SCHED
1058         struct sched_entity     *parent;
1059         /* rq on which this entity is (to be) queued: */
1060         struct cfs_rq           *cfs_rq;
1061         /* rq "owned" by this entity/group: */
1062         struct cfs_rq           *my_q;
1063 #endif
1064 };
1065
1066 struct sched_rt_entity {
1067         struct list_head run_list;
1068         unsigned long timeout;
1069         unsigned int time_slice;
1070         int nr_cpus_allowed;
1071
1072         struct sched_rt_entity *back;
1073 #ifdef CONFIG_RT_GROUP_SCHED
1074         struct sched_rt_entity  *parent;
1075         /* rq on which this entity is (to be) queued: */
1076         struct rt_rq            *rt_rq;
1077         /* rq "owned" by this entity/group: */
1078         struct rt_rq            *my_q;
1079 #endif
1080 };
1081
1082 struct task_struct {
1083         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1084         void *stack;
1085         atomic_t usage;
1086         unsigned int flags;     /* per process flags, defined below */
1087         unsigned int ptrace;
1088
1089         int lock_depth;         /* BKL lock depth */
1090
1091 #ifdef CONFIG_SMP
1092 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1093         int oncpu;
1094 #endif
1095 #endif
1096
1097         int prio, static_prio, normal_prio;
1098         unsigned int rt_priority;
1099         const struct sched_class *sched_class;
1100         struct sched_entity se;
1101         struct sched_rt_entity rt;
1102
1103 #ifdef CONFIG_PREEMPT_NOTIFIERS
1104         /* list of struct preempt_notifier: */
1105         struct hlist_head preempt_notifiers;
1106 #endif
1107
1108         /*
1109          * fpu_counter contains the number of consecutive context switches
1110          * that the FPU is used. If this is over a threshold, the lazy fpu
1111          * saving becomes unlazy to save the trap. This is an unsigned char
1112          * so that after 256 times the counter wraps and the behavior turns
1113          * lazy again; this to deal with bursty apps that only use FPU for
1114          * a short time
1115          */
1116         unsigned char fpu_counter;
1117         s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1118 #ifdef CONFIG_BLK_DEV_IO_TRACE
1119         unsigned int btrace_seq;
1120 #endif
1121
1122         unsigned int policy;
1123         cpumask_t cpus_allowed;
1124
1125 #ifdef CONFIG_PREEMPT_RCU
1126         int rcu_read_lock_nesting;
1127         int rcu_flipctr_idx;
1128 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1129
1130 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1131         struct sched_info sched_info;
1132 #endif
1133
1134         struct list_head tasks;
1135
1136         struct mm_struct *mm, *active_mm;
1137
1138 /* task state */
1139         struct linux_binfmt *binfmt;
1140         int exit_state;
1141         int exit_code, exit_signal;
1142         int pdeath_signal;  /*  The signal sent when the parent dies  */
1143         /* ??? */
1144         unsigned int personality;
1145         unsigned did_exec:1;
1146         pid_t pid;
1147         pid_t tgid;
1148
1149 #ifdef CONFIG_CC_STACKPROTECTOR
1150         /* Canary value for the -fstack-protector gcc feature */
1151         unsigned long stack_canary;
1152 #endif
1153         /* 
1154          * pointers to (original) parent process, youngest child, younger sibling,
1155          * older sibling, respectively.  (p->father can be replaced with 
1156          * p->real_parent->pid)
1157          */
1158         struct task_struct *real_parent; /* real parent process */
1159         struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1160         /*
1161          * children/sibling forms the list of my natural children
1162          */
1163         struct list_head children;      /* list of my children */
1164         struct list_head sibling;       /* linkage in my parent's children list */
1165         struct task_struct *group_leader;       /* threadgroup leader */
1166
1167         /*
1168          * ptraced is the list of tasks this task is using ptrace on.
1169          * This includes both natural children and PTRACE_ATTACH targets.
1170          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1171          */
1172         struct list_head ptraced;
1173         struct list_head ptrace_entry;
1174
1175         /* PID/PID hash table linkage. */
1176         struct pid_link pids[PIDTYPE_MAX];
1177         struct list_head thread_group;
1178
1179         struct completion *vfork_done;          /* for vfork() */
1180         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1181         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1182
1183         cputime_t utime, stime, utimescaled, stimescaled;
1184         cputime_t gtime;
1185         cputime_t prev_utime, prev_stime;
1186         unsigned long nvcsw, nivcsw; /* context switch counts */
1187         struct timespec start_time;             /* monotonic time */
1188         struct timespec real_start_time;        /* boot based time */
1189 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1190         unsigned long min_flt, maj_flt;
1191
1192         struct task_cputime cputime_expires;
1193         struct list_head cpu_timers[3];
1194
1195 /* process credentials */
1196         uid_t uid,euid,suid,fsuid;
1197         gid_t gid,egid,sgid,fsgid;
1198         struct group_info *group_info;
1199         kernel_cap_t   cap_effective, cap_inheritable, cap_permitted, cap_bset;
1200         struct user_struct *user;
1201         unsigned securebits;
1202 #ifdef CONFIG_KEYS
1203         unsigned char jit_keyring;      /* default keyring to attach requested keys to */
1204         struct key *request_key_auth;   /* assumed request_key authority */
1205         struct key *thread_keyring;     /* keyring private to this thread */
1206 #endif
1207         char comm[TASK_COMM_LEN]; /* executable name excluding path
1208                                      - access with [gs]et_task_comm (which lock
1209                                        it with task_lock())
1210                                      - initialized normally by flush_old_exec */
1211 /* file system info */
1212         int link_count, total_link_count;
1213 #ifdef CONFIG_SYSVIPC
1214 /* ipc stuff */
1215         struct sysv_sem sysvsem;
1216 #endif
1217 #ifdef CONFIG_DETECT_SOFTLOCKUP
1218 /* hung task detection */
1219         unsigned long last_switch_timestamp;
1220         unsigned long last_switch_count;
1221 #endif
1222 /* CPU-specific state of this task */
1223         struct thread_struct thread;
1224 /* filesystem information */
1225         struct fs_struct *fs;
1226 /* open file information */
1227         struct files_struct *files;
1228 /* namespaces */
1229         struct nsproxy *nsproxy;
1230 /* signal handlers */
1231         struct signal_struct *signal;
1232         struct sighand_struct *sighand;
1233
1234         sigset_t blocked, real_blocked;
1235         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1236         struct sigpending pending;
1237
1238         unsigned long sas_ss_sp;
1239         size_t sas_ss_size;
1240         int (*notifier)(void *priv);
1241         void *notifier_data;
1242         sigset_t *notifier_mask;
1243 #ifdef CONFIG_SECURITY
1244         void *security;
1245 #endif
1246         struct audit_context *audit_context;
1247 #ifdef CONFIG_AUDITSYSCALL
1248         uid_t loginuid;
1249         unsigned int sessionid;
1250 #endif
1251         seccomp_t seccomp;
1252
1253 /* Thread group tracking */
1254         u32 parent_exec_id;
1255         u32 self_exec_id;
1256 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1257         spinlock_t alloc_lock;
1258
1259         /* Protection of the PI data structures: */
1260         spinlock_t pi_lock;
1261
1262 #ifdef CONFIG_RT_MUTEXES
1263         /* PI waiters blocked on a rt_mutex held by this task */
1264         struct plist_head pi_waiters;
1265         /* Deadlock detection and priority inheritance handling */
1266         struct rt_mutex_waiter *pi_blocked_on;
1267 #endif
1268
1269 #ifdef CONFIG_DEBUG_MUTEXES
1270         /* mutex deadlock detection */
1271         struct mutex_waiter *blocked_on;
1272 #endif
1273 #ifdef CONFIG_TRACE_IRQFLAGS
1274         unsigned int irq_events;
1275         int hardirqs_enabled;
1276         unsigned long hardirq_enable_ip;
1277         unsigned int hardirq_enable_event;
1278         unsigned long hardirq_disable_ip;
1279         unsigned int hardirq_disable_event;
1280         int softirqs_enabled;
1281         unsigned long softirq_disable_ip;
1282         unsigned int softirq_disable_event;
1283         unsigned long softirq_enable_ip;
1284         unsigned int softirq_enable_event;
1285         int hardirq_context;
1286         int softirq_context;
1287 #endif
1288 #ifdef CONFIG_LOCKDEP
1289 # define MAX_LOCK_DEPTH 48UL
1290         u64 curr_chain_key;
1291         int lockdep_depth;
1292         unsigned int lockdep_recursion;
1293         struct held_lock held_locks[MAX_LOCK_DEPTH];
1294 #endif
1295
1296 /* journalling filesystem info */
1297         void *journal_info;
1298
1299 /* stacked block device info */
1300         struct bio *bio_list, **bio_tail;
1301
1302 /* VM state */
1303         struct reclaim_state *reclaim_state;
1304
1305         struct backing_dev_info *backing_dev_info;
1306
1307         struct io_context *io_context;
1308
1309         unsigned long ptrace_message;
1310         siginfo_t *last_siginfo; /* For ptrace use.  */
1311         struct task_io_accounting ioac;
1312 #if defined(CONFIG_TASK_XACCT)
1313         u64 acct_rss_mem1;      /* accumulated rss usage */
1314         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1315         cputime_t acct_timexpd; /* stime + utime since last update */
1316 #endif
1317 #ifdef CONFIG_CPUSETS
1318         nodemask_t mems_allowed;
1319         int cpuset_mems_generation;
1320         int cpuset_mem_spread_rotor;
1321 #endif
1322 #ifdef CONFIG_CGROUPS
1323         /* Control Group info protected by css_set_lock */
1324         struct css_set *cgroups;
1325         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1326         struct list_head cg_list;
1327 #endif
1328 #ifdef CONFIG_FUTEX
1329         struct robust_list_head __user *robust_list;
1330 #ifdef CONFIG_COMPAT
1331         struct compat_robust_list_head __user *compat_robust_list;
1332 #endif
1333         struct list_head pi_state_list;
1334         struct futex_pi_state *pi_state_cache;
1335 #endif
1336 #ifdef CONFIG_NUMA
1337         struct mempolicy *mempolicy;
1338         short il_next;
1339 #endif
1340         atomic_t fs_excl;       /* holding fs exclusive resources */
1341         struct rcu_head rcu;
1342
1343         /*
1344          * cache last used pipe for splice
1345          */
1346         struct pipe_inode_info *splice_pipe;
1347 #ifdef  CONFIG_TASK_DELAY_ACCT
1348         struct task_delay_info *delays;
1349 #endif
1350 #ifdef CONFIG_FAULT_INJECTION
1351         int make_it_fail;
1352 #endif
1353         struct prop_local_single dirties;
1354 #ifdef CONFIG_LATENCYTOP
1355         int latency_record_count;
1356         struct latency_record latency_record[LT_SAVECOUNT];
1357 #endif
1358         /*
1359          * time slack values; these are used to round up poll() and
1360          * select() etc timeout values. These are in nanoseconds.
1361          */
1362         unsigned long timer_slack_ns;
1363         unsigned long default_timer_slack_ns;
1364
1365         struct list_head        *scm_work_list;
1366 #ifdef CONFIG_FUNCTION_RET_TRACER
1367         /* Index of current stored adress in ret_stack */
1368         int curr_ret_stack;
1369         /* Stack of return addresses for return function tracing */
1370         struct ftrace_ret_stack *ret_stack;
1371         /*
1372          * Number of functions that haven't been traced
1373          * because of depth overrun.
1374          */
1375         atomic_t trace_overrun;
1376 #endif
1377 };
1378
1379 /*
1380  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1381  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1382  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1383  * values are inverted: lower p->prio value means higher priority.
1384  *
1385  * The MAX_USER_RT_PRIO value allows the actual maximum
1386  * RT priority to be separate from the value exported to
1387  * user-space.  This allows kernel threads to set their
1388  * priority to a value higher than any user task. Note:
1389  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1390  */
1391
1392 #define MAX_USER_RT_PRIO        100
1393 #define MAX_RT_PRIO             MAX_USER_RT_PRIO
1394
1395 #define MAX_PRIO                (MAX_RT_PRIO + 40)
1396 #define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1397
1398 static inline int rt_prio(int prio)
1399 {
1400         if (unlikely(prio < MAX_RT_PRIO))
1401                 return 1;
1402         return 0;
1403 }
1404
1405 static inline int rt_task(struct task_struct *p)
1406 {
1407         return rt_prio(p->prio);
1408 }
1409
1410 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1411 {
1412         tsk->signal->__session = session;
1413 }
1414
1415 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1416 {
1417         tsk->signal->__pgrp = pgrp;
1418 }
1419
1420 static inline struct pid *task_pid(struct task_struct *task)
1421 {
1422         return task->pids[PIDTYPE_PID].pid;
1423 }
1424
1425 static inline struct pid *task_tgid(struct task_struct *task)
1426 {
1427         return task->group_leader->pids[PIDTYPE_PID].pid;
1428 }
1429
1430 static inline struct pid *task_pgrp(struct task_struct *task)
1431 {
1432         return task->group_leader->pids[PIDTYPE_PGID].pid;
1433 }
1434
1435 static inline struct pid *task_session(struct task_struct *task)
1436 {
1437         return task->group_leader->pids[PIDTYPE_SID].pid;
1438 }
1439
1440 struct pid_namespace;
1441
1442 /*
1443  * the helpers to get the task's different pids as they are seen
1444  * from various namespaces
1445  *
1446  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1447  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1448  *                     current.
1449  * task_xid_nr_ns()  : id seen from the ns specified;
1450  *
1451  * set_task_vxid()   : assigns a virtual id to a task;
1452  *
1453  * see also pid_nr() etc in include/linux/pid.h
1454  */
1455
1456 static inline pid_t task_pid_nr(struct task_struct *tsk)
1457 {
1458         return tsk->pid;
1459 }
1460
1461 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1462
1463 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1464 {
1465         return pid_vnr(task_pid(tsk));
1466 }
1467
1468
1469 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1470 {
1471         return tsk->tgid;
1472 }
1473
1474 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1475
1476 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1477 {
1478         return pid_vnr(task_tgid(tsk));
1479 }
1480
1481
1482 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1483 {
1484         return tsk->signal->__pgrp;
1485 }
1486
1487 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1488
1489 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1490 {
1491         return pid_vnr(task_pgrp(tsk));
1492 }
1493
1494
1495 static inline pid_t task_session_nr(struct task_struct *tsk)
1496 {
1497         return tsk->signal->__session;
1498 }
1499
1500 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1501
1502 static inline pid_t task_session_vnr(struct task_struct *tsk)
1503 {
1504         return pid_vnr(task_session(tsk));
1505 }
1506
1507
1508 /**
1509  * pid_alive - check that a task structure is not stale
1510  * @p: Task structure to be checked.
1511  *
1512  * Test if a process is not yet dead (at most zombie state)
1513  * If pid_alive fails, then pointers within the task structure
1514  * can be stale and must not be dereferenced.
1515  */
1516 static inline int pid_alive(struct task_struct *p)
1517 {
1518         return p->pids[PIDTYPE_PID].pid != NULL;
1519 }
1520
1521 /**
1522  * is_global_init - check if a task structure is init
1523  * @tsk: Task structure to be checked.
1524  *
1525  * Check if a task structure is the first user space task the kernel created.
1526  */
1527 static inline int is_global_init(struct task_struct *tsk)
1528 {
1529         return tsk->pid == 1;
1530 }
1531
1532 /*
1533  * is_container_init:
1534  * check whether in the task is init in its own pid namespace.
1535  */
1536 extern int is_container_init(struct task_struct *tsk);
1537
1538 extern struct pid *cad_pid;
1539
1540 extern void free_task(struct task_struct *tsk);
1541 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1542
1543 extern void __put_task_struct(struct task_struct *t);
1544
1545 static inline void put_task_struct(struct task_struct *t)
1546 {
1547         if (atomic_dec_and_test(&t->usage))
1548                 __put_task_struct(t);
1549 }
1550
1551 extern cputime_t task_utime(struct task_struct *p);
1552 extern cputime_t task_stime(struct task_struct *p);
1553 extern cputime_t task_gtime(struct task_struct *p);
1554
1555 /*
1556  * Per process flags
1557  */
1558 #define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1559                                         /* Not implemented yet, only for 486*/
1560 #define PF_STARTING     0x00000002      /* being created */
1561 #define PF_EXITING      0x00000004      /* getting shut down */
1562 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1563 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1564 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1565 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1566 #define PF_DUMPCORE     0x00000200      /* dumped core */
1567 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1568 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1569 #define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1570 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1571 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1572 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1573 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1574 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1575 #define PF_SWAPOFF      0x00080000      /* I am in swapoff */
1576 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1577 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1578 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1579 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1580 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1581 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1582 #define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1583 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1584 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1585 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1586 #define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1587
1588 /*
1589  * Only the _current_ task can read/write to tsk->flags, but other
1590  * tasks can access tsk->flags in readonly mode for example
1591  * with tsk_used_math (like during threaded core dumping).
1592  * There is however an exception to this rule during ptrace
1593  * or during fork: the ptracer task is allowed to write to the
1594  * child->flags of its traced child (same goes for fork, the parent
1595  * can write to the child->flags), because we're guaranteed the
1596  * child is not running and in turn not changing child->flags
1597  * at the same time the parent does it.
1598  */
1599 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1600 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1601 #define clear_used_math() clear_stopped_child_used_math(current)
1602 #define set_used_math() set_stopped_child_used_math(current)
1603 #define conditional_stopped_child_used_math(condition, child) \
1604         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1605 #define conditional_used_math(condition) \
1606         conditional_stopped_child_used_math(condition, current)
1607 #define copy_to_stopped_child_used_math(child) \
1608         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1609 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1610 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1611 #define used_math() tsk_used_math(current)
1612
1613 #ifdef CONFIG_SMP
1614 extern int set_cpus_allowed_ptr(struct task_struct *p,
1615                                 const struct cpumask *new_mask);
1616 #else
1617 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1618                                        const struct cpumask *new_mask)
1619 {
1620         if (!cpumask_test_cpu(0, new_mask))
1621                 return -EINVAL;
1622         return 0;
1623 }
1624 #endif
1625 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1626 {
1627         return set_cpus_allowed_ptr(p, &new_mask);
1628 }
1629
1630 extern unsigned long long sched_clock(void);
1631
1632 extern void sched_clock_init(void);
1633 extern u64 sched_clock_cpu(int cpu);
1634
1635 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1636 static inline void sched_clock_tick(void)
1637 {
1638 }
1639
1640 static inline void sched_clock_idle_sleep_event(void)
1641 {
1642 }
1643
1644 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1645 {
1646 }
1647 #else
1648 extern void sched_clock_tick(void);
1649 extern void sched_clock_idle_sleep_event(void);
1650 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1651 #endif
1652
1653 /*
1654  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1655  * clock constructed from sched_clock():
1656  */
1657 extern unsigned long long cpu_clock(int cpu);
1658
1659 extern unsigned long long
1660 task_sched_runtime(struct task_struct *task);
1661 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1662
1663 /* sched_exec is called by processes performing an exec */
1664 #ifdef CONFIG_SMP
1665 extern void sched_exec(void);
1666 #else
1667 #define sched_exec()   {}
1668 #endif
1669
1670 extern void sched_clock_idle_sleep_event(void);
1671 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1672
1673 #ifdef CONFIG_HOTPLUG_CPU
1674 extern void idle_task_exit(void);
1675 #else
1676 static inline void idle_task_exit(void) {}
1677 #endif
1678
1679 extern void sched_idle_next(void);
1680
1681 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1682 extern void wake_up_idle_cpu(int cpu);
1683 #else
1684 static inline void wake_up_idle_cpu(int cpu) { }
1685 #endif
1686
1687 #ifdef CONFIG_SCHED_DEBUG
1688 extern unsigned int sysctl_sched_latency;
1689 extern unsigned int sysctl_sched_min_granularity;
1690 extern unsigned int sysctl_sched_wakeup_granularity;
1691 extern unsigned int sysctl_sched_child_runs_first;
1692 extern unsigned int sysctl_sched_features;
1693 extern unsigned int sysctl_sched_migration_cost;
1694 extern unsigned int sysctl_sched_nr_migrate;
1695 extern unsigned int sysctl_sched_shares_ratelimit;
1696 extern unsigned int sysctl_sched_shares_thresh;
1697
1698 int sched_nr_latency_handler(struct ctl_table *table, int write,
1699                 struct file *file, void __user *buffer, size_t *length,
1700                 loff_t *ppos);
1701 #endif
1702 extern unsigned int sysctl_sched_rt_period;
1703 extern int sysctl_sched_rt_runtime;
1704
1705 int sched_rt_handler(struct ctl_table *table, int write,
1706                 struct file *filp, void __user *buffer, size_t *lenp,
1707                 loff_t *ppos);
1708
1709 extern unsigned int sysctl_sched_compat_yield;
1710
1711 #ifdef CONFIG_RT_MUTEXES
1712 extern int rt_mutex_getprio(struct task_struct *p);
1713 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1714 extern void rt_mutex_adjust_pi(struct task_struct *p);
1715 #else
1716 static inline int rt_mutex_getprio(struct task_struct *p)
1717 {
1718         return p->normal_prio;
1719 }
1720 # define rt_mutex_adjust_pi(p)          do { } while (0)
1721 #endif
1722
1723 extern void set_user_nice(struct task_struct *p, long nice);
1724 extern int task_prio(const struct task_struct *p);
1725 extern int task_nice(const struct task_struct *p);
1726 extern int can_nice(const struct task_struct *p, const int nice);
1727 extern int task_curr(const struct task_struct *p);
1728 extern int idle_cpu(int cpu);
1729 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1730 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1731                                       struct sched_param *);
1732 extern struct task_struct *idle_task(int cpu);
1733 extern struct task_struct *curr_task(int cpu);
1734 extern void set_curr_task(int cpu, struct task_struct *p);
1735
1736 void yield(void);
1737
1738 /*
1739  * The default (Linux) execution domain.
1740  */
1741 extern struct exec_domain       default_exec_domain;
1742
1743 union thread_union {
1744         struct thread_info thread_info;
1745         unsigned long stack[THREAD_SIZE/sizeof(long)];
1746 };
1747
1748 #ifndef __HAVE_ARCH_KSTACK_END
1749 static inline int kstack_end(void *addr)
1750 {
1751         /* Reliable end of stack detection:
1752          * Some APM bios versions misalign the stack
1753          */
1754         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1755 }
1756 #endif
1757
1758 extern union thread_union init_thread_union;
1759 extern struct task_struct init_task;
1760
1761 extern struct   mm_struct init_mm;
1762
1763 extern struct pid_namespace init_pid_ns;
1764
1765 /*
1766  * find a task by one of its numerical ids
1767  *
1768  * find_task_by_pid_type_ns():
1769  *      it is the most generic call - it finds a task by all id,
1770  *      type and namespace specified
1771  * find_task_by_pid_ns():
1772  *      finds a task by its pid in the specified namespace
1773  * find_task_by_vpid():
1774  *      finds a task by its virtual pid
1775  *
1776  * see also find_vpid() etc in include/linux/pid.h
1777  */
1778
1779 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1780                 struct pid_namespace *ns);
1781
1782 extern struct task_struct *find_task_by_vpid(pid_t nr);
1783 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1784                 struct pid_namespace *ns);
1785
1786 extern void __set_special_pids(struct pid *pid);
1787
1788 /* per-UID process charging. */
1789 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1790 static inline struct user_struct *get_uid(struct user_struct *u)
1791 {
1792         atomic_inc(&u->__count);
1793         return u;
1794 }
1795 extern void free_uid(struct user_struct *);
1796 extern void switch_uid(struct user_struct *);
1797 extern void release_uids(struct user_namespace *ns);
1798
1799 #include <asm/current.h>
1800
1801 extern void do_timer(unsigned long ticks);
1802
1803 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1804 extern int wake_up_process(struct task_struct *tsk);
1805 extern void wake_up_new_task(struct task_struct *tsk,
1806                                 unsigned long clone_flags);
1807 #ifdef CONFIG_SMP
1808  extern void kick_process(struct task_struct *tsk);
1809 #else
1810  static inline void kick_process(struct task_struct *tsk) { }
1811 #endif
1812 extern void sched_fork(struct task_struct *p, int clone_flags);
1813 extern void sched_dead(struct task_struct *p);
1814
1815 extern int in_group_p(gid_t);
1816 extern int in_egroup_p(gid_t);
1817
1818 extern void proc_caches_init(void);
1819 extern void flush_signals(struct task_struct *);
1820 extern void ignore_signals(struct task_struct *);
1821 extern void flush_signal_handlers(struct task_struct *, int force_default);
1822 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1823
1824 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1825 {
1826         unsigned long flags;
1827         int ret;
1828
1829         spin_lock_irqsave(&tsk->sighand->siglock, flags);
1830         ret = dequeue_signal(tsk, mask, info);
1831         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1832
1833         return ret;
1834 }       
1835
1836 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1837                               sigset_t *mask);
1838 extern void unblock_all_signals(void);
1839 extern void release_task(struct task_struct * p);
1840 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1841 extern int force_sigsegv(int, struct task_struct *);
1842 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1843 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1844 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1845 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1846 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1847 extern int kill_pid(struct pid *pid, int sig, int priv);
1848 extern int kill_proc_info(int, struct siginfo *, pid_t);
1849 extern int do_notify_parent(struct task_struct *, int);
1850 extern void force_sig(int, struct task_struct *);
1851 extern void force_sig_specific(int, struct task_struct *);
1852 extern int send_sig(int, struct task_struct *, int);
1853 extern void zap_other_threads(struct task_struct *p);
1854 extern struct sigqueue *sigqueue_alloc(void);
1855 extern void sigqueue_free(struct sigqueue *);
1856 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1857 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1858 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1859
1860 static inline int kill_cad_pid(int sig, int priv)
1861 {
1862         return kill_pid(cad_pid, sig, priv);
1863 }
1864
1865 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
1866 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1867 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
1868 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1869
1870 static inline int is_si_special(const struct siginfo *info)
1871 {
1872         return info <= SEND_SIG_FORCED;
1873 }
1874
1875 /* True if we are on the alternate signal stack.  */
1876
1877 static inline int on_sig_stack(unsigned long sp)
1878 {
1879         return (sp - current->sas_ss_sp < current->sas_ss_size);
1880 }
1881
1882 static inline int sas_ss_flags(unsigned long sp)
1883 {
1884         return (current->sas_ss_size == 0 ? SS_DISABLE
1885                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1886 }
1887
1888 /*
1889  * Routines for handling mm_structs
1890  */
1891 extern struct mm_struct * mm_alloc(void);
1892
1893 /* mmdrop drops the mm and the page tables */
1894 extern void __mmdrop(struct mm_struct *);
1895 static inline void mmdrop(struct mm_struct * mm)
1896 {
1897         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1898                 __mmdrop(mm);
1899 }
1900
1901 /* mmput gets rid of the mappings and all user-space */
1902 extern void mmput(struct mm_struct *);
1903 /* Grab a reference to a task's mm, if it is not already going away */
1904 extern struct mm_struct *get_task_mm(struct task_struct *task);
1905 /* Remove the current tasks stale references to the old mm_struct */
1906 extern void mm_release(struct task_struct *, struct mm_struct *);
1907 /* Allocate a new mm structure and copy contents from tsk->mm */
1908 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1909
1910 extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1911 extern void flush_thread(void);
1912 extern void exit_thread(void);
1913
1914 extern void exit_files(struct task_struct *);
1915 extern void __cleanup_signal(struct signal_struct *);
1916 extern void __cleanup_sighand(struct sighand_struct *);
1917
1918 extern void exit_itimers(struct signal_struct *);
1919 extern void flush_itimer_signals(void);
1920
1921 extern NORET_TYPE void do_group_exit(int);
1922
1923 extern void daemonize(const char *, ...);
1924 extern int allow_signal(int);
1925 extern int disallow_signal(int);
1926
1927 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1928 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1929 struct task_struct *fork_idle(int);
1930
1931 extern void set_task_comm(struct task_struct *tsk, char *from);
1932 extern char *get_task_comm(char *to, struct task_struct *tsk);
1933
1934 #ifdef CONFIG_SMP
1935 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1936 #else
1937 static inline unsigned long wait_task_inactive(struct task_struct *p,
1938                                                long match_state)
1939 {
1940         return 1;
1941 }
1942 #endif
1943
1944 #define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1945
1946 #define for_each_process(p) \
1947         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1948
1949 /*
1950  * Careful: do_each_thread/while_each_thread is a double loop so
1951  *          'break' will not work as expected - use goto instead.
1952  */
1953 #define do_each_thread(g, t) \
1954         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1955
1956 #define while_each_thread(g, t) \
1957         while ((t = next_thread(t)) != g)
1958
1959 /* de_thread depends on thread_group_leader not being a pid based check */
1960 #define thread_group_leader(p)  (p == p->group_leader)
1961
1962 /* Do to the insanities of de_thread it is possible for a process
1963  * to have the pid of the thread group leader without actually being
1964  * the thread group leader.  For iteration through the pids in proc
1965  * all we care about is that we have a task with the appropriate
1966  * pid, we don't actually care if we have the right task.
1967  */
1968 static inline int has_group_leader_pid(struct task_struct *p)
1969 {
1970         return p->pid == p->tgid;
1971 }
1972
1973 static inline
1974 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1975 {
1976         return p1->tgid == p2->tgid;
1977 }
1978
1979 static inline struct task_struct *next_thread(const struct task_struct *p)
1980 {
1981         return list_entry(rcu_dereference(p->thread_group.next),
1982                           struct task_struct, thread_group);
1983 }
1984
1985 static inline int thread_group_empty(struct task_struct *p)
1986 {
1987         return list_empty(&p->thread_group);
1988 }
1989
1990 #define delay_group_leader(p) \
1991                 (thread_group_leader(p) && !thread_group_empty(p))
1992
1993 /*
1994  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1995  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1996  * pins the final release of task.io_context.  Also protects ->cpuset and
1997  * ->cgroup.subsys[].
1998  *
1999  * Nests both inside and outside of read_lock(&tasklist_lock).
2000  * It must not be nested with write_lock_irq(&tasklist_lock),
2001  * neither inside nor outside.
2002  */
2003 static inline void task_lock(struct task_struct *p)
2004 {
2005         spin_lock(&p->alloc_lock);
2006 }
2007
2008 static inline void task_unlock(struct task_struct *p)
2009 {
2010         spin_unlock(&p->alloc_lock);
2011 }
2012
2013 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2014                                                         unsigned long *flags);
2015
2016 static inline void unlock_task_sighand(struct task_struct *tsk,
2017                                                 unsigned long *flags)
2018 {
2019         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2020 }
2021
2022 #ifndef __HAVE_THREAD_FUNCTIONS
2023
2024 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2025 #define task_stack_page(task)   ((task)->stack)
2026
2027 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2028 {
2029         *task_thread_info(p) = *task_thread_info(org);
2030         task_thread_info(p)->task = p;
2031 }
2032
2033 static inline unsigned long *end_of_stack(struct task_struct *p)
2034 {
2035         return (unsigned long *)(task_thread_info(p) + 1);
2036 }
2037
2038 #endif
2039
2040 static inline int object_is_on_stack(void *obj)
2041 {
2042         void *stack = task_stack_page(current);
2043
2044         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2045 }
2046
2047 extern void thread_info_cache_init(void);
2048
2049 /* set thread flags in other task's structures
2050  * - see asm/thread_info.h for TIF_xxxx flags available
2051  */
2052 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2053 {
2054         set_ti_thread_flag(task_thread_info(tsk), flag);
2055 }
2056
2057 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2058 {
2059         clear_ti_thread_flag(task_thread_info(tsk), flag);
2060 }
2061
2062 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2063 {
2064         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2065 }
2066
2067 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2068 {
2069         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2070 }
2071
2072 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2073 {
2074         return test_ti_thread_flag(task_thread_info(tsk), flag);
2075 }
2076
2077 static inline void set_tsk_need_resched(struct task_struct *tsk)
2078 {
2079         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2080 }
2081
2082 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2083 {
2084         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2085 }
2086
2087 static inline int test_tsk_need_resched(struct task_struct *tsk)
2088 {
2089         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2090 }
2091
2092 static inline int signal_pending(struct task_struct *p)
2093 {
2094         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2095 }
2096
2097 extern int __fatal_signal_pending(struct task_struct *p);
2098
2099 static inline int fatal_signal_pending(struct task_struct *p)
2100 {
2101         return signal_pending(p) && __fatal_signal_pending(p);
2102 }
2103
2104 static inline int signal_pending_state(long state, struct task_struct *p)
2105 {
2106         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2107                 return 0;
2108         if (!signal_pending(p))
2109                 return 0;
2110
2111         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2112 }
2113
2114 static inline int need_resched(void)
2115 {
2116         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2117 }
2118
2119 /*
2120  * cond_resched() and cond_resched_lock(): latency reduction via
2121  * explicit rescheduling in places that are safe. The return
2122  * value indicates whether a reschedule was done in fact.
2123  * cond_resched_lock() will drop the spinlock before scheduling,
2124  * cond_resched_softirq() will enable bhs before scheduling.
2125  */
2126 extern int _cond_resched(void);
2127 #ifdef CONFIG_PREEMPT_BKL
2128 static inline int cond_resched(void)
2129 {
2130         return 0;
2131 }
2132 #else
2133 static inline int cond_resched(void)
2134 {
2135         return _cond_resched();
2136 }
2137 #endif
2138 extern int cond_resched_lock(spinlock_t * lock);
2139 extern int cond_resched_softirq(void);
2140 static inline int cond_resched_bkl(void)
2141 {
2142         return _cond_resched();
2143 }
2144
2145 /*
2146  * Does a critical section need to be broken due to another
2147  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2148  * but a general need for low latency)
2149  */
2150 static inline int spin_needbreak(spinlock_t *lock)
2151 {
2152 #ifdef CONFIG_PREEMPT
2153         return spin_is_contended(lock);
2154 #else
2155         return 0;
2156 #endif
2157 }
2158
2159 /*
2160  * Thread group CPU time accounting.
2161  */
2162
2163 extern int thread_group_cputime_alloc(struct task_struct *);
2164 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2165
2166 static inline void thread_group_cputime_init(struct signal_struct *sig)
2167 {
2168         sig->cputime.totals = NULL;
2169 }
2170
2171 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2172 {
2173         if (curr->signal->cputime.totals)
2174                 return 0;
2175         return thread_group_cputime_alloc(curr);
2176 }
2177
2178 static inline void thread_group_cputime_free(struct signal_struct *sig)
2179 {
2180         free_percpu(sig->cputime.totals);
2181 }
2182
2183 /*
2184  * Reevaluate whether the task has signals pending delivery.
2185  * Wake the task if so.
2186  * This is required every time the blocked sigset_t changes.
2187  * callers must hold sighand->siglock.
2188  */
2189 extern void recalc_sigpending_and_wake(struct task_struct *t);
2190 extern void recalc_sigpending(void);
2191
2192 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2193
2194 /*
2195  * Wrappers for p->thread_info->cpu access. No-op on UP.
2196  */
2197 #ifdef CONFIG_SMP
2198
2199 static inline unsigned int task_cpu(const struct task_struct *p)
2200 {
2201         return task_thread_info(p)->cpu;
2202 }
2203
2204 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2205
2206 #else
2207
2208 static inline unsigned int task_cpu(const struct task_struct *p)
2209 {
2210         return 0;
2211 }
2212
2213 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2214 {
2215 }
2216
2217 #endif /* CONFIG_SMP */
2218
2219 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2220
2221 #ifdef CONFIG_TRACING
2222 extern void
2223 __trace_special(void *__tr, void *__data,
2224                 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2225 #else
2226 static inline void
2227 __trace_special(void *__tr, void *__data,
2228                 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2229 {
2230 }
2231 #endif
2232
2233 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2234 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2235
2236 extern int sched_mc_power_savings, sched_smt_power_savings;
2237
2238 extern void normalize_rt_tasks(void);
2239
2240 #ifdef CONFIG_GROUP_SCHED
2241
2242 extern struct task_group init_task_group;
2243 #ifdef CONFIG_USER_SCHED
2244 extern struct task_group root_task_group;
2245 #endif
2246
2247 extern struct task_group *sched_create_group(struct task_group *parent);
2248 extern void sched_destroy_group(struct task_group *tg);
2249 extern void sched_move_task(struct task_struct *tsk);
2250 #ifdef CONFIG_FAIR_GROUP_SCHED
2251 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2252 extern unsigned long sched_group_shares(struct task_group *tg);
2253 #endif
2254 #ifdef CONFIG_RT_GROUP_SCHED
2255 extern int sched_group_set_rt_runtime(struct task_group *tg,
2256                                       long rt_runtime_us);
2257 extern long sched_group_rt_runtime(struct task_group *tg);
2258 extern int sched_group_set_rt_period(struct task_group *tg,
2259                                       long rt_period_us);
2260 extern long sched_group_rt_period(struct task_group *tg);
2261 #endif
2262 #endif
2263
2264 #ifdef CONFIG_TASK_XACCT
2265 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2266 {
2267         tsk->ioac.rchar += amt;
2268 }
2269
2270 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2271 {
2272         tsk->ioac.wchar += amt;
2273 }
2274
2275 static inline void inc_syscr(struct task_struct *tsk)
2276 {
2277         tsk->ioac.syscr++;
2278 }
2279
2280 static inline void inc_syscw(struct task_struct *tsk)
2281 {
2282         tsk->ioac.syscw++;
2283 }
2284 #else
2285 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2286 {
2287 }
2288
2289 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2290 {
2291 }
2292
2293 static inline void inc_syscr(struct task_struct *tsk)
2294 {
2295 }
2296
2297 static inline void inc_syscw(struct task_struct *tsk)
2298 {
2299 }
2300 #endif
2301
2302 #ifndef TASK_SIZE_OF
2303 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2304 #endif
2305
2306 #ifdef CONFIG_MM_OWNER
2307 extern void mm_update_next_owner(struct mm_struct *mm);
2308 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2309 #else
2310 static inline void mm_update_next_owner(struct mm_struct *mm)
2311 {
2312 }
2313
2314 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2315 {
2316 }
2317 #endif /* CONFIG_MM_OWNER */
2318
2319 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2320
2321 #endif /* __KERNEL__ */
2322
2323 #endif