hw-breakpoints: Add two reserved fields for future extensions
[safe/jmp/linux-2.6] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 #ifdef CONFIG_HAVE_HW_BREAKPOINT
22 #include <asm/hw_breakpoint.h>
23 #endif
24
25 /*
26  * User-space ABI bits:
27  */
28
29 /*
30  * attr.type
31  */
32 enum perf_type_id {
33         PERF_TYPE_HARDWARE                      = 0,
34         PERF_TYPE_SOFTWARE                      = 1,
35         PERF_TYPE_TRACEPOINT                    = 2,
36         PERF_TYPE_HW_CACHE                      = 3,
37         PERF_TYPE_RAW                           = 4,
38         PERF_TYPE_BREAKPOINT                    = 5,
39
40         PERF_TYPE_MAX,                          /* non-ABI */
41 };
42
43 /*
44  * Generalized performance event event_id types, used by the
45  * attr.event_id parameter of the sys_perf_event_open()
46  * syscall:
47  */
48 enum perf_hw_id {
49         /*
50          * Common hardware events, generalized by the kernel:
51          */
52         PERF_COUNT_HW_CPU_CYCLES                = 0,
53         PERF_COUNT_HW_INSTRUCTIONS              = 1,
54         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
55         PERF_COUNT_HW_CACHE_MISSES              = 3,
56         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
57         PERF_COUNT_HW_BRANCH_MISSES             = 5,
58         PERF_COUNT_HW_BUS_CYCLES                = 6,
59
60         PERF_COUNT_HW_MAX,                      /* non-ABI */
61 };
62
63 /*
64  * Generalized hardware cache events:
65  *
66  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
67  *       { read, write, prefetch } x
68  *       { accesses, misses }
69  */
70 enum perf_hw_cache_id {
71         PERF_COUNT_HW_CACHE_L1D                 = 0,
72         PERF_COUNT_HW_CACHE_L1I                 = 1,
73         PERF_COUNT_HW_CACHE_LL                  = 2,
74         PERF_COUNT_HW_CACHE_DTLB                = 3,
75         PERF_COUNT_HW_CACHE_ITLB                = 4,
76         PERF_COUNT_HW_CACHE_BPU                 = 5,
77
78         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82         PERF_COUNT_HW_CACHE_OP_READ             = 0,
83         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
84         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
85
86         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
91         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
92
93         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
94 };
95
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103         PERF_COUNT_SW_CPU_CLOCK                 = 0,
104         PERF_COUNT_SW_TASK_CLOCK                = 1,
105         PERF_COUNT_SW_PAGE_FAULTS               = 2,
106         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
107         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
108         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
109         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
110         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
111         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
112
113         PERF_COUNT_SW_MAX,                      /* non-ABI */
114 };
115
116 /*
117  * Bits that can be set in attr.sample_type to request information
118  * in the overflow packets.
119  */
120 enum perf_event_sample_format {
121         PERF_SAMPLE_IP                          = 1U << 0,
122         PERF_SAMPLE_TID                         = 1U << 1,
123         PERF_SAMPLE_TIME                        = 1U << 2,
124         PERF_SAMPLE_ADDR                        = 1U << 3,
125         PERF_SAMPLE_READ                        = 1U << 4,
126         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
127         PERF_SAMPLE_ID                          = 1U << 6,
128         PERF_SAMPLE_CPU                         = 1U << 7,
129         PERF_SAMPLE_PERIOD                      = 1U << 8,
130         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
131         PERF_SAMPLE_RAW                         = 1U << 10,
132
133         PERF_SAMPLE_MAX = 1U << 11,             /* non-ABI */
134 };
135
136 /*
137  * The format of the data returned by read() on a perf event fd,
138  * as specified by attr.read_format:
139  *
140  * struct read_format {
141  *      { u64           value;
142  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
143  *        { u64         time_running; } && PERF_FORMAT_RUNNING
144  *        { u64         id;           } && PERF_FORMAT_ID
145  *      } && !PERF_FORMAT_GROUP
146  *
147  *      { u64           nr;
148  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
149  *        { u64         time_running; } && PERF_FORMAT_RUNNING
150  *        { u64         value;
151  *          { u64       id;           } && PERF_FORMAT_ID
152  *        }             cntr[nr];
153  *      } && PERF_FORMAT_GROUP
154  * };
155  */
156 enum perf_event_read_format {
157         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
158         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
159         PERF_FORMAT_ID                          = 1U << 2,
160         PERF_FORMAT_GROUP                       = 1U << 3,
161
162         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
163 };
164
165 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
166
167 /*
168  * Hardware event_id to monitor via a performance monitoring event:
169  */
170 struct perf_event_attr {
171
172         /*
173          * Major type: hardware/software/tracepoint/etc.
174          */
175         __u32                   type;
176
177         /*
178          * Size of the attr structure, for fwd/bwd compat.
179          */
180         __u32                   size;
181
182         /*
183          * Type specific configuration information.
184          */
185         __u64                   config;
186
187         union {
188                 __u64           sample_period;
189                 __u64           sample_freq;
190         };
191
192         __u64                   sample_type;
193         __u64                   read_format;
194
195         __u64                   disabled       :  1, /* off by default        */
196                                 inherit        :  1, /* children inherit it   */
197                                 pinned         :  1, /* must always be on PMU */
198                                 exclusive      :  1, /* only group on PMU     */
199                                 exclude_user   :  1, /* don't count user      */
200                                 exclude_kernel :  1, /* ditto kernel          */
201                                 exclude_hv     :  1, /* ditto hypervisor      */
202                                 exclude_idle   :  1, /* don't count when idle */
203                                 mmap           :  1, /* include mmap data     */
204                                 comm           :  1, /* include comm data     */
205                                 freq           :  1, /* use freq, not period  */
206                                 inherit_stat   :  1, /* per task counts       */
207                                 enable_on_exec :  1, /* next exec enables     */
208                                 task           :  1, /* trace fork/exit       */
209                                 watermark      :  1, /* wakeup_watermark      */
210
211                                 __reserved_1   : 49;
212
213         union {
214                 __u32           wakeup_events;    /* wakeup every n events */
215                 __u32           wakeup_watermark; /* bytes before wakeup   */
216         };
217
218         union {
219                 struct { /* Hardware breakpoint info */
220                         __u64           bp_addr;
221                         __u32           bp_type;
222                         __u32           bp_len;
223                         __u64           __bp_reserved_1;
224                         __u64           __bp_reserved_2;
225                 };
226         };
227
228         __u32                   __reserved_2;
229
230         __u64                   __reserved_3;
231 };
232
233 /*
234  * Ioctls that can be done on a perf event fd:
235  */
236 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
237 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
238 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
239 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
240 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
241 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
242 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
243
244 enum perf_event_ioc_flags {
245         PERF_IOC_FLAG_GROUP             = 1U << 0,
246 };
247
248 /*
249  * Structure of the page that can be mapped via mmap
250  */
251 struct perf_event_mmap_page {
252         __u32   version;                /* version number of this structure */
253         __u32   compat_version;         /* lowest version this is compat with */
254
255         /*
256          * Bits needed to read the hw events in user-space.
257          *
258          *   u32 seq;
259          *   s64 count;
260          *
261          *   do {
262          *     seq = pc->lock;
263          *
264          *     barrier()
265          *     if (pc->index) {
266          *       count = pmc_read(pc->index - 1);
267          *       count += pc->offset;
268          *     } else
269          *       goto regular_read;
270          *
271          *     barrier();
272          *   } while (pc->lock != seq);
273          *
274          * NOTE: for obvious reason this only works on self-monitoring
275          *       processes.
276          */
277         __u32   lock;                   /* seqlock for synchronization */
278         __u32   index;                  /* hardware event identifier */
279         __s64   offset;                 /* add to hardware event value */
280         __u64   time_enabled;           /* time event active */
281         __u64   time_running;           /* time event on cpu */
282
283                 /*
284                  * Hole for extension of the self monitor capabilities
285                  */
286
287         __u64   __reserved[123];        /* align to 1k */
288
289         /*
290          * Control data for the mmap() data buffer.
291          *
292          * User-space reading the @data_head value should issue an rmb(), on
293          * SMP capable platforms, after reading this value -- see
294          * perf_event_wakeup().
295          *
296          * When the mapping is PROT_WRITE the @data_tail value should be
297          * written by userspace to reflect the last read data. In this case
298          * the kernel will not over-write unread data.
299          */
300         __u64   data_head;              /* head in the data section */
301         __u64   data_tail;              /* user-space written tail */
302 };
303
304 #define PERF_RECORD_MISC_CPUMODE_MASK           (3 << 0)
305 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN                (0 << 0)
306 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
307 #define PERF_RECORD_MISC_USER                   (2 << 0)
308 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
309
310 struct perf_event_header {
311         __u32   type;
312         __u16   misc;
313         __u16   size;
314 };
315
316 enum perf_event_type {
317
318         /*
319          * The MMAP events record the PROT_EXEC mappings so that we can
320          * correlate userspace IPs to code. They have the following structure:
321          *
322          * struct {
323          *      struct perf_event_header        header;
324          *
325          *      u32                             pid, tid;
326          *      u64                             addr;
327          *      u64                             len;
328          *      u64                             pgoff;
329          *      char                            filename[];
330          * };
331          */
332         PERF_RECORD_MMAP                        = 1,
333
334         /*
335          * struct {
336          *      struct perf_event_header        header;
337          *      u64                             id;
338          *      u64                             lost;
339          * };
340          */
341         PERF_RECORD_LOST                        = 2,
342
343         /*
344          * struct {
345          *      struct perf_event_header        header;
346          *
347          *      u32                             pid, tid;
348          *      char                            comm[];
349          * };
350          */
351         PERF_RECORD_COMM                        = 3,
352
353         /*
354          * struct {
355          *      struct perf_event_header        header;
356          *      u32                             pid, ppid;
357          *      u32                             tid, ptid;
358          *      u64                             time;
359          * };
360          */
361         PERF_RECORD_EXIT                        = 4,
362
363         /*
364          * struct {
365          *      struct perf_event_header        header;
366          *      u64                             time;
367          *      u64                             id;
368          *      u64                             stream_id;
369          * };
370          */
371         PERF_RECORD_THROTTLE            = 5,
372         PERF_RECORD_UNTHROTTLE          = 6,
373
374         /*
375          * struct {
376          *      struct perf_event_header        header;
377          *      u32                             pid, ppid;
378          *      u32                             tid, ptid;
379          *      u64                             time;
380          * };
381          */
382         PERF_RECORD_FORK                        = 7,
383
384         /*
385          * struct {
386          *      struct perf_event_header        header;
387          *      u32                             pid, tid;
388          *
389          *      struct read_format              values;
390          * };
391          */
392         PERF_RECORD_READ                        = 8,
393
394         /*
395          * struct {
396          *      struct perf_event_header        header;
397          *
398          *      { u64                   ip;       } && PERF_SAMPLE_IP
399          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
400          *      { u64                   time;     } && PERF_SAMPLE_TIME
401          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
402          *      { u64                   id;       } && PERF_SAMPLE_ID
403          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
404          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
405          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
406          *
407          *      { struct read_format    values;   } && PERF_SAMPLE_READ
408          *
409          *      { u64                   nr,
410          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
411          *
412          *      #
413          *      # The RAW record below is opaque data wrt the ABI
414          *      #
415          *      # That is, the ABI doesn't make any promises wrt to
416          *      # the stability of its content, it may vary depending
417          *      # on event, hardware, kernel version and phase of
418          *      # the moon.
419          *      #
420          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
421          *      #
422          *
423          *      { u32                   size;
424          *        char                  data[size];}&& PERF_SAMPLE_RAW
425          * };
426          */
427         PERF_RECORD_SAMPLE              = 9,
428
429         PERF_RECORD_MAX,                        /* non-ABI */
430 };
431
432 enum perf_callchain_context {
433         PERF_CONTEXT_HV                 = (__u64)-32,
434         PERF_CONTEXT_KERNEL             = (__u64)-128,
435         PERF_CONTEXT_USER               = (__u64)-512,
436
437         PERF_CONTEXT_GUEST              = (__u64)-2048,
438         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
439         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
440
441         PERF_CONTEXT_MAX                = (__u64)-4095,
442 };
443
444 #define PERF_FLAG_FD_NO_GROUP   (1U << 0)
445 #define PERF_FLAG_FD_OUTPUT     (1U << 1)
446
447 #ifdef __KERNEL__
448 /*
449  * Kernel-internal data types and definitions:
450  */
451
452 #ifdef CONFIG_PERF_EVENTS
453 # include <asm/perf_event.h>
454 #endif
455
456 #include <linux/list.h>
457 #include <linux/mutex.h>
458 #include <linux/rculist.h>
459 #include <linux/rcupdate.h>
460 #include <linux/spinlock.h>
461 #include <linux/hrtimer.h>
462 #include <linux/fs.h>
463 #include <linux/pid_namespace.h>
464 #include <linux/workqueue.h>
465 #include <asm/atomic.h>
466
467 #define PERF_MAX_STACK_DEPTH            255
468
469 struct perf_callchain_entry {
470         __u64                           nr;
471         __u64                           ip[PERF_MAX_STACK_DEPTH];
472 };
473
474 struct perf_raw_record {
475         u32                             size;
476         void                            *data;
477 };
478
479 struct task_struct;
480
481 /**
482  * struct hw_perf_event - performance event hardware details:
483  */
484 struct hw_perf_event {
485 #ifdef CONFIG_PERF_EVENTS
486         union {
487                 struct { /* hardware */
488                         u64             config;
489                         unsigned long   config_base;
490                         unsigned long   event_base;
491                         int             idx;
492                 };
493                 struct { /* software */
494                         s64             remaining;
495                         struct hrtimer  hrtimer;
496                 };
497 #ifdef CONFIG_HAVE_HW_BREAKPOINT
498                 union { /* breakpoint */
499                         struct arch_hw_breakpoint       info;
500                 };
501 #endif
502         };
503         atomic64_t                      prev_count;
504         u64                             sample_period;
505         u64                             last_period;
506         atomic64_t                      period_left;
507         u64                             interrupts;
508
509         u64                             freq_count;
510         u64                             freq_interrupts;
511         u64                             freq_stamp;
512 #endif
513 };
514
515 struct perf_event;
516
517 /**
518  * struct pmu - generic performance monitoring unit
519  */
520 struct pmu {
521         int (*enable)                   (struct perf_event *event);
522         void (*disable)                 (struct perf_event *event);
523         void (*read)                    (struct perf_event *event);
524         void (*unthrottle)              (struct perf_event *event);
525 };
526
527 /**
528  * enum perf_event_active_state - the states of a event
529  */
530 enum perf_event_active_state {
531         PERF_EVENT_STATE_ERROR          = -2,
532         PERF_EVENT_STATE_OFF            = -1,
533         PERF_EVENT_STATE_INACTIVE       =  0,
534         PERF_EVENT_STATE_ACTIVE         =  1,
535 };
536
537 struct file;
538
539 struct perf_mmap_data {
540         struct rcu_head                 rcu_head;
541 #ifdef CONFIG_PERF_USE_VMALLOC
542         struct work_struct              work;
543 #endif
544         int                             data_order;
545         int                             nr_pages;       /* nr of data pages  */
546         int                             writable;       /* are we writable   */
547         int                             nr_locked;      /* nr pages mlocked  */
548
549         atomic_t                        poll;           /* POLL_ for wakeups */
550         atomic_t                        events;         /* event_id limit       */
551
552         atomic_long_t                   head;           /* write position    */
553         atomic_long_t                   done_head;      /* completed head    */
554
555         atomic_t                        lock;           /* concurrent writes */
556         atomic_t                        wakeup;         /* needs a wakeup    */
557         atomic_t                        lost;           /* nr records lost   */
558
559         long                            watermark;      /* wakeup watermark  */
560
561         struct perf_event_mmap_page     *user_page;
562         void                            *data_pages[0];
563 };
564
565 struct perf_pending_entry {
566         struct perf_pending_entry *next;
567         void (*func)(struct perf_pending_entry *);
568 };
569
570 typedef void (*perf_callback_t)(struct perf_event *, void *);
571
572 struct perf_sample_data;
573
574 /**
575  * struct perf_event - performance event kernel representation:
576  */
577 struct perf_event {
578 #ifdef CONFIG_PERF_EVENTS
579         struct list_head                group_entry;
580         struct list_head                event_entry;
581         struct list_head                sibling_list;
582         int                             nr_siblings;
583         struct perf_event               *group_leader;
584         struct perf_event               *output;
585         const struct pmu                *pmu;
586
587         enum perf_event_active_state    state;
588         atomic64_t                      count;
589
590         /*
591          * These are the total time in nanoseconds that the event
592          * has been enabled (i.e. eligible to run, and the task has
593          * been scheduled in, if this is a per-task event)
594          * and running (scheduled onto the CPU), respectively.
595          *
596          * They are computed from tstamp_enabled, tstamp_running and
597          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
598          */
599         u64                             total_time_enabled;
600         u64                             total_time_running;
601
602         /*
603          * These are timestamps used for computing total_time_enabled
604          * and total_time_running when the event is in INACTIVE or
605          * ACTIVE state, measured in nanoseconds from an arbitrary point
606          * in time.
607          * tstamp_enabled: the notional time when the event was enabled
608          * tstamp_running: the notional time when the event was scheduled on
609          * tstamp_stopped: in INACTIVE state, the notional time when the
610          *      event was scheduled off.
611          */
612         u64                             tstamp_enabled;
613         u64                             tstamp_running;
614         u64                             tstamp_stopped;
615
616         struct perf_event_attr          attr;
617         struct hw_perf_event            hw;
618
619         struct perf_event_context       *ctx;
620         struct file                     *filp;
621
622         /*
623          * These accumulate total time (in nanoseconds) that children
624          * events have been enabled and running, respectively.
625          */
626         atomic64_t                      child_total_time_enabled;
627         atomic64_t                      child_total_time_running;
628
629         /*
630          * Protect attach/detach and child_list:
631          */
632         struct mutex                    child_mutex;
633         struct list_head                child_list;
634         struct perf_event               *parent;
635
636         int                             oncpu;
637         int                             cpu;
638
639         struct list_head                owner_entry;
640         struct task_struct              *owner;
641
642         /* mmap bits */
643         struct mutex                    mmap_mutex;
644         atomic_t                        mmap_count;
645         struct perf_mmap_data           *data;
646
647         /* poll related */
648         wait_queue_head_t               waitq;
649         struct fasync_struct            *fasync;
650
651         /* delayed work for NMIs and such */
652         int                             pending_wakeup;
653         int                             pending_kill;
654         int                             pending_disable;
655         struct perf_pending_entry       pending;
656
657         atomic_t                        event_limit;
658
659         void (*destroy)(struct perf_event *);
660         struct rcu_head                 rcu_head;
661
662         struct pid_namespace            *ns;
663         u64                             id;
664
665         void (*overflow_handler)(struct perf_event *event,
666                         int nmi, struct perf_sample_data *data,
667                         struct pt_regs *regs);
668
669 #ifdef CONFIG_EVENT_PROFILE
670         struct event_filter             *filter;
671 #endif
672
673         perf_callback_t                 callback;
674
675         perf_callback_t                 event_callback;
676
677 #endif /* CONFIG_PERF_EVENTS */
678 };
679
680 /**
681  * struct perf_event_context - event context structure
682  *
683  * Used as a container for task events and CPU events as well:
684  */
685 struct perf_event_context {
686         /*
687          * Protect the states of the events in the list,
688          * nr_active, and the list:
689          */
690         spinlock_t                      lock;
691         /*
692          * Protect the list of events.  Locking either mutex or lock
693          * is sufficient to ensure the list doesn't change; to change
694          * the list you need to lock both the mutex and the spinlock.
695          */
696         struct mutex                    mutex;
697
698         struct list_head                group_list;
699         struct list_head                event_list;
700         int                             nr_events;
701         int                             nr_active;
702         int                             is_active;
703         int                             nr_stat;
704         atomic_t                        refcount;
705         struct task_struct              *task;
706
707         /*
708          * Context clock, runs when context enabled.
709          */
710         u64                             time;
711         u64                             timestamp;
712
713         /*
714          * These fields let us detect when two contexts have both
715          * been cloned (inherited) from a common ancestor.
716          */
717         struct perf_event_context       *parent_ctx;
718         u64                             parent_gen;
719         u64                             generation;
720         int                             pin_count;
721         struct rcu_head                 rcu_head;
722 };
723
724 /**
725  * struct perf_event_cpu_context - per cpu event context structure
726  */
727 struct perf_cpu_context {
728         struct perf_event_context       ctx;
729         struct perf_event_context       *task_ctx;
730         int                             active_oncpu;
731         int                             max_pertask;
732         int                             exclusive;
733
734         /*
735          * Recursion avoidance:
736          *
737          * task, softirq, irq, nmi context
738          */
739         int                             recursion[4];
740 };
741
742 struct perf_output_handle {
743         struct perf_event               *event;
744         struct perf_mmap_data           *data;
745         unsigned long                   head;
746         unsigned long                   offset;
747         int                             nmi;
748         int                             sample;
749         int                             locked;
750 };
751
752 #ifdef CONFIG_PERF_EVENTS
753
754 /*
755  * Set by architecture code:
756  */
757 extern int perf_max_events;
758
759 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
760
761 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
762 extern void perf_event_task_sched_out(struct task_struct *task,
763                                         struct task_struct *next, int cpu);
764 extern void perf_event_task_tick(struct task_struct *task, int cpu);
765 extern int perf_event_init_task(struct task_struct *child);
766 extern void perf_event_exit_task(struct task_struct *child);
767 extern void perf_event_free_task(struct task_struct *task);
768 extern void set_perf_event_pending(void);
769 extern void perf_event_do_pending(void);
770 extern void perf_event_print_debug(void);
771 extern void __perf_disable(void);
772 extern bool __perf_enable(void);
773 extern void perf_disable(void);
774 extern void perf_enable(void);
775 extern int perf_event_task_disable(void);
776 extern int perf_event_task_enable(void);
777 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
778                struct perf_cpu_context *cpuctx,
779                struct perf_event_context *ctx, int cpu);
780 extern void perf_event_update_userpage(struct perf_event *event);
781 extern int perf_event_release_kernel(struct perf_event *event);
782 extern struct perf_event *
783 perf_event_create_kernel_counter(struct perf_event_attr *attr,
784                                 int cpu,
785                                 pid_t pid,
786                                 perf_callback_t callback);
787 extern u64 perf_event_read_value(struct perf_event *event,
788                                  u64 *enabled, u64 *running);
789
790 struct perf_sample_data {
791         u64                             type;
792
793         u64                             ip;
794         struct {
795                 u32     pid;
796                 u32     tid;
797         }                               tid_entry;
798         u64                             time;
799         u64                             addr;
800         u64                             id;
801         u64                             stream_id;
802         struct {
803                 u32     cpu;
804                 u32     reserved;
805         }                               cpu_entry;
806         u64                             period;
807         struct perf_callchain_entry     *callchain;
808         struct perf_raw_record          *raw;
809 };
810
811 extern void perf_output_sample(struct perf_output_handle *handle,
812                                struct perf_event_header *header,
813                                struct perf_sample_data *data,
814                                struct perf_event *event);
815 extern void perf_prepare_sample(struct perf_event_header *header,
816                                 struct perf_sample_data *data,
817                                 struct perf_event *event,
818                                 struct pt_regs *regs);
819
820 extern int perf_event_overflow(struct perf_event *event, int nmi,
821                                  struct perf_sample_data *data,
822                                  struct pt_regs *regs);
823
824 /*
825  * Return 1 for a software event, 0 for a hardware event
826  */
827 static inline int is_software_event(struct perf_event *event)
828 {
829         return (event->attr.type != PERF_TYPE_RAW) &&
830                 (event->attr.type != PERF_TYPE_HARDWARE) &&
831                 (event->attr.type != PERF_TYPE_HW_CACHE);
832 }
833
834 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
835
836 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
837
838 static inline void
839 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
840 {
841         if (atomic_read(&perf_swevent_enabled[event_id]))
842                 __perf_sw_event(event_id, nr, nmi, regs, addr);
843 }
844
845 extern void __perf_event_mmap(struct vm_area_struct *vma);
846
847 static inline void perf_event_mmap(struct vm_area_struct *vma)
848 {
849         if (vma->vm_flags & VM_EXEC)
850                 __perf_event_mmap(vma);
851 }
852
853 extern void perf_event_comm(struct task_struct *tsk);
854 extern void perf_event_fork(struct task_struct *tsk);
855
856 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
857
858 extern int sysctl_perf_event_paranoid;
859 extern int sysctl_perf_event_mlock;
860 extern int sysctl_perf_event_sample_rate;
861
862 extern void perf_event_init(void);
863 extern void perf_tp_event(int event_id, u64 addr, u64 count,
864                                  void *record, int entry_size);
865 extern void perf_bp_event(struct perf_event *event, void *data);
866
867 #ifndef perf_misc_flags
868 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_RECORD_MISC_USER : \
869                                  PERF_RECORD_MISC_KERNEL)
870 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
871 #endif
872
873 extern int perf_output_begin(struct perf_output_handle *handle,
874                              struct perf_event *event, unsigned int size,
875                              int nmi, int sample);
876 extern void perf_output_end(struct perf_output_handle *handle);
877 extern void perf_output_copy(struct perf_output_handle *handle,
878                              const void *buf, unsigned int len);
879 extern int perf_swevent_get_recursion_context(void);
880 extern void perf_swevent_put_recursion_context(int rctx);
881 #else
882 static inline void
883 perf_event_task_sched_in(struct task_struct *task, int cpu)             { }
884 static inline void
885 perf_event_task_sched_out(struct task_struct *task,
886                             struct task_struct *next, int cpu)          { }
887 static inline void
888 perf_event_task_tick(struct task_struct *task, int cpu)                 { }
889 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
890 static inline void perf_event_exit_task(struct task_struct *child)      { }
891 static inline void perf_event_free_task(struct task_struct *task)       { }
892 static inline void perf_event_do_pending(void)                          { }
893 static inline void perf_event_print_debug(void)                         { }
894 static inline void perf_disable(void)                                   { }
895 static inline void perf_enable(void)                                    { }
896 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
897 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
898
899 static inline void
900 perf_sw_event(u32 event_id, u64 nr, int nmi,
901                      struct pt_regs *regs, u64 addr)                    { }
902 static inline void
903 perf_bp_event(struct perf_event *event, void *data)             { }
904
905 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
906 static inline void perf_event_comm(struct task_struct *tsk)             { }
907 static inline void perf_event_fork(struct task_struct *tsk)             { }
908 static inline void perf_event_init(void)                                { }
909 static inline int  perf_swevent_get_recursion_context(void)  { return -1; }
910 static inline void perf_swevent_put_recursion_context(int rctx)         { }
911
912 #endif
913
914 #define perf_output_put(handle, x) \
915         perf_output_copy((handle), &(x), sizeof(x))
916
917 #endif /* __KERNEL__ */
918 #endif /* _LINUX_PERF_EVENT_H */