OMAP: OMAPFB: split omapfb.h
[safe/jmp/linux-2.6] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 #ifdef CONFIG_HAVE_HW_BREAKPOINT
22 #include <asm/hw_breakpoint.h>
23 #endif
24
25 /*
26  * User-space ABI bits:
27  */
28
29 /*
30  * attr.type
31  */
32 enum perf_type_id {
33         PERF_TYPE_HARDWARE                      = 0,
34         PERF_TYPE_SOFTWARE                      = 1,
35         PERF_TYPE_TRACEPOINT                    = 2,
36         PERF_TYPE_HW_CACHE                      = 3,
37         PERF_TYPE_RAW                           = 4,
38         PERF_TYPE_BREAKPOINT                    = 5,
39
40         PERF_TYPE_MAX,                          /* non-ABI */
41 };
42
43 /*
44  * Generalized performance event event_id types, used by the
45  * attr.event_id parameter of the sys_perf_event_open()
46  * syscall:
47  */
48 enum perf_hw_id {
49         /*
50          * Common hardware events, generalized by the kernel:
51          */
52         PERF_COUNT_HW_CPU_CYCLES                = 0,
53         PERF_COUNT_HW_INSTRUCTIONS              = 1,
54         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
55         PERF_COUNT_HW_CACHE_MISSES              = 3,
56         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
57         PERF_COUNT_HW_BRANCH_MISSES             = 5,
58         PERF_COUNT_HW_BUS_CYCLES                = 6,
59
60         PERF_COUNT_HW_MAX,                      /* non-ABI */
61 };
62
63 /*
64  * Generalized hardware cache events:
65  *
66  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
67  *       { read, write, prefetch } x
68  *       { accesses, misses }
69  */
70 enum perf_hw_cache_id {
71         PERF_COUNT_HW_CACHE_L1D                 = 0,
72         PERF_COUNT_HW_CACHE_L1I                 = 1,
73         PERF_COUNT_HW_CACHE_LL                  = 2,
74         PERF_COUNT_HW_CACHE_DTLB                = 3,
75         PERF_COUNT_HW_CACHE_ITLB                = 4,
76         PERF_COUNT_HW_CACHE_BPU                 = 5,
77
78         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82         PERF_COUNT_HW_CACHE_OP_READ             = 0,
83         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
84         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
85
86         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
91         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
92
93         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
94 };
95
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103         PERF_COUNT_SW_CPU_CLOCK                 = 0,
104         PERF_COUNT_SW_TASK_CLOCK                = 1,
105         PERF_COUNT_SW_PAGE_FAULTS               = 2,
106         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
107         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
108         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
109         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
110         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
111         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
112
113         PERF_COUNT_SW_MAX,                      /* non-ABI */
114 };
115
116 /*
117  * Bits that can be set in attr.sample_type to request information
118  * in the overflow packets.
119  */
120 enum perf_event_sample_format {
121         PERF_SAMPLE_IP                          = 1U << 0,
122         PERF_SAMPLE_TID                         = 1U << 1,
123         PERF_SAMPLE_TIME                        = 1U << 2,
124         PERF_SAMPLE_ADDR                        = 1U << 3,
125         PERF_SAMPLE_READ                        = 1U << 4,
126         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
127         PERF_SAMPLE_ID                          = 1U << 6,
128         PERF_SAMPLE_CPU                         = 1U << 7,
129         PERF_SAMPLE_PERIOD                      = 1U << 8,
130         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
131         PERF_SAMPLE_RAW                         = 1U << 10,
132
133         PERF_SAMPLE_MAX = 1U << 11,             /* non-ABI */
134 };
135
136 /*
137  * The format of the data returned by read() on a perf event fd,
138  * as specified by attr.read_format:
139  *
140  * struct read_format {
141  *      { u64           value;
142  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
143  *        { u64         time_running; } && PERF_FORMAT_RUNNING
144  *        { u64         id;           } && PERF_FORMAT_ID
145  *      } && !PERF_FORMAT_GROUP
146  *
147  *      { u64           nr;
148  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
149  *        { u64         time_running; } && PERF_FORMAT_RUNNING
150  *        { u64         value;
151  *          { u64       id;           } && PERF_FORMAT_ID
152  *        }             cntr[nr];
153  *      } && PERF_FORMAT_GROUP
154  * };
155  */
156 enum perf_event_read_format {
157         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
158         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
159         PERF_FORMAT_ID                          = 1U << 2,
160         PERF_FORMAT_GROUP                       = 1U << 3,
161
162         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
163 };
164
165 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
166
167 /*
168  * Hardware event_id to monitor via a performance monitoring event:
169  */
170 struct perf_event_attr {
171
172         /*
173          * Major type: hardware/software/tracepoint/etc.
174          */
175         __u32                   type;
176
177         /*
178          * Size of the attr structure, for fwd/bwd compat.
179          */
180         __u32                   size;
181
182         /*
183          * Type specific configuration information.
184          */
185         __u64                   config;
186
187         union {
188                 __u64           sample_period;
189                 __u64           sample_freq;
190         };
191
192         __u64                   sample_type;
193         __u64                   read_format;
194
195         __u64                   disabled       :  1, /* off by default        */
196                                 inherit        :  1, /* children inherit it   */
197                                 pinned         :  1, /* must always be on PMU */
198                                 exclusive      :  1, /* only group on PMU     */
199                                 exclude_user   :  1, /* don't count user      */
200                                 exclude_kernel :  1, /* ditto kernel          */
201                                 exclude_hv     :  1, /* ditto hypervisor      */
202                                 exclude_idle   :  1, /* don't count when idle */
203                                 mmap           :  1, /* include mmap data     */
204                                 comm           :  1, /* include comm data     */
205                                 freq           :  1, /* use freq, not period  */
206                                 inherit_stat   :  1, /* per task counts       */
207                                 enable_on_exec :  1, /* next exec enables     */
208                                 task           :  1, /* trace fork/exit       */
209                                 watermark      :  1, /* wakeup_watermark      */
210
211                                 __reserved_1   : 49;
212
213         union {
214                 __u32           wakeup_events;    /* wakeup every n events */
215                 __u32           wakeup_watermark; /* bytes before wakeup   */
216         };
217
218         union {
219                 struct { /* Hardware breakpoint info */
220                         __u64           bp_addr;
221                         __u32           bp_type;
222                         __u32           bp_len;
223                 };
224         };
225
226         __u32                   __reserved_2;
227
228         __u64                   __reserved_3;
229 };
230
231 /*
232  * Ioctls that can be done on a perf event fd:
233  */
234 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
235 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
236 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
237 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
238 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
239 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
240 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
241
242 enum perf_event_ioc_flags {
243         PERF_IOC_FLAG_GROUP             = 1U << 0,
244 };
245
246 /*
247  * Structure of the page that can be mapped via mmap
248  */
249 struct perf_event_mmap_page {
250         __u32   version;                /* version number of this structure */
251         __u32   compat_version;         /* lowest version this is compat with */
252
253         /*
254          * Bits needed to read the hw events in user-space.
255          *
256          *   u32 seq;
257          *   s64 count;
258          *
259          *   do {
260          *     seq = pc->lock;
261          *
262          *     barrier()
263          *     if (pc->index) {
264          *       count = pmc_read(pc->index - 1);
265          *       count += pc->offset;
266          *     } else
267          *       goto regular_read;
268          *
269          *     barrier();
270          *   } while (pc->lock != seq);
271          *
272          * NOTE: for obvious reason this only works on self-monitoring
273          *       processes.
274          */
275         __u32   lock;                   /* seqlock for synchronization */
276         __u32   index;                  /* hardware event identifier */
277         __s64   offset;                 /* add to hardware event value */
278         __u64   time_enabled;           /* time event active */
279         __u64   time_running;           /* time event on cpu */
280
281                 /*
282                  * Hole for extension of the self monitor capabilities
283                  */
284
285         __u64   __reserved[123];        /* align to 1k */
286
287         /*
288          * Control data for the mmap() data buffer.
289          *
290          * User-space reading the @data_head value should issue an rmb(), on
291          * SMP capable platforms, after reading this value -- see
292          * perf_event_wakeup().
293          *
294          * When the mapping is PROT_WRITE the @data_tail value should be
295          * written by userspace to reflect the last read data. In this case
296          * the kernel will not over-write unread data.
297          */
298         __u64   data_head;              /* head in the data section */
299         __u64   data_tail;              /* user-space written tail */
300 };
301
302 #define PERF_RECORD_MISC_CPUMODE_MASK           (3 << 0)
303 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN                (0 << 0)
304 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
305 #define PERF_RECORD_MISC_USER                   (2 << 0)
306 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
307
308 struct perf_event_header {
309         __u32   type;
310         __u16   misc;
311         __u16   size;
312 };
313
314 enum perf_event_type {
315
316         /*
317          * The MMAP events record the PROT_EXEC mappings so that we can
318          * correlate userspace IPs to code. They have the following structure:
319          *
320          * struct {
321          *      struct perf_event_header        header;
322          *
323          *      u32                             pid, tid;
324          *      u64                             addr;
325          *      u64                             len;
326          *      u64                             pgoff;
327          *      char                            filename[];
328          * };
329          */
330         PERF_RECORD_MMAP                        = 1,
331
332         /*
333          * struct {
334          *      struct perf_event_header        header;
335          *      u64                             id;
336          *      u64                             lost;
337          * };
338          */
339         PERF_RECORD_LOST                        = 2,
340
341         /*
342          * struct {
343          *      struct perf_event_header        header;
344          *
345          *      u32                             pid, tid;
346          *      char                            comm[];
347          * };
348          */
349         PERF_RECORD_COMM                        = 3,
350
351         /*
352          * struct {
353          *      struct perf_event_header        header;
354          *      u32                             pid, ppid;
355          *      u32                             tid, ptid;
356          *      u64                             time;
357          * };
358          */
359         PERF_RECORD_EXIT                        = 4,
360
361         /*
362          * struct {
363          *      struct perf_event_header        header;
364          *      u64                             time;
365          *      u64                             id;
366          *      u64                             stream_id;
367          * };
368          */
369         PERF_RECORD_THROTTLE            = 5,
370         PERF_RECORD_UNTHROTTLE          = 6,
371
372         /*
373          * struct {
374          *      struct perf_event_header        header;
375          *      u32                             pid, ppid;
376          *      u32                             tid, ptid;
377          *      u64                             time;
378          * };
379          */
380         PERF_RECORD_FORK                        = 7,
381
382         /*
383          * struct {
384          *      struct perf_event_header        header;
385          *      u32                             pid, tid;
386          *
387          *      struct read_format              values;
388          * };
389          */
390         PERF_RECORD_READ                        = 8,
391
392         /*
393          * struct {
394          *      struct perf_event_header        header;
395          *
396          *      { u64                   ip;       } && PERF_SAMPLE_IP
397          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
398          *      { u64                   time;     } && PERF_SAMPLE_TIME
399          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
400          *      { u64                   id;       } && PERF_SAMPLE_ID
401          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
402          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
403          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
404          *
405          *      { struct read_format    values;   } && PERF_SAMPLE_READ
406          *
407          *      { u64                   nr,
408          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
409          *
410          *      #
411          *      # The RAW record below is opaque data wrt the ABI
412          *      #
413          *      # That is, the ABI doesn't make any promises wrt to
414          *      # the stability of its content, it may vary depending
415          *      # on event, hardware, kernel version and phase of
416          *      # the moon.
417          *      #
418          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
419          *      #
420          *
421          *      { u32                   size;
422          *        char                  data[size];}&& PERF_SAMPLE_RAW
423          * };
424          */
425         PERF_RECORD_SAMPLE              = 9,
426
427         PERF_RECORD_MAX,                        /* non-ABI */
428 };
429
430 enum perf_callchain_context {
431         PERF_CONTEXT_HV                 = (__u64)-32,
432         PERF_CONTEXT_KERNEL             = (__u64)-128,
433         PERF_CONTEXT_USER               = (__u64)-512,
434
435         PERF_CONTEXT_GUEST              = (__u64)-2048,
436         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
437         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
438
439         PERF_CONTEXT_MAX                = (__u64)-4095,
440 };
441
442 #define PERF_FLAG_FD_NO_GROUP   (1U << 0)
443 #define PERF_FLAG_FD_OUTPUT     (1U << 1)
444
445 #ifdef __KERNEL__
446 /*
447  * Kernel-internal data types and definitions:
448  */
449
450 #ifdef CONFIG_PERF_EVENTS
451 # include <asm/perf_event.h>
452 #endif
453
454 #include <linux/list.h>
455 #include <linux/mutex.h>
456 #include <linux/rculist.h>
457 #include <linux/rcupdate.h>
458 #include <linux/spinlock.h>
459 #include <linux/hrtimer.h>
460 #include <linux/fs.h>
461 #include <linux/pid_namespace.h>
462 #include <linux/workqueue.h>
463 #include <asm/atomic.h>
464
465 #define PERF_MAX_STACK_DEPTH            255
466
467 struct perf_callchain_entry {
468         __u64                           nr;
469         __u64                           ip[PERF_MAX_STACK_DEPTH];
470 };
471
472 struct perf_raw_record {
473         u32                             size;
474         void                            *data;
475 };
476
477 struct task_struct;
478
479 /**
480  * struct hw_perf_event - performance event hardware details:
481  */
482 struct hw_perf_event {
483 #ifdef CONFIG_PERF_EVENTS
484         union {
485                 struct { /* hardware */
486                         u64             config;
487                         unsigned long   config_base;
488                         unsigned long   event_base;
489                         int             idx;
490                 };
491                 struct { /* software */
492                         s64             remaining;
493                         struct hrtimer  hrtimer;
494                 };
495 #ifdef CONFIG_HAVE_HW_BREAKPOINT
496                 union { /* breakpoint */
497                         struct arch_hw_breakpoint       info;
498                 };
499 #endif
500         };
501         atomic64_t                      prev_count;
502         u64                             sample_period;
503         u64                             last_period;
504         atomic64_t                      period_left;
505         u64                             interrupts;
506
507         u64                             freq_count;
508         u64                             freq_interrupts;
509         u64                             freq_stamp;
510 #endif
511 };
512
513 struct perf_event;
514
515 /**
516  * struct pmu - generic performance monitoring unit
517  */
518 struct pmu {
519         int (*enable)                   (struct perf_event *event);
520         void (*disable)                 (struct perf_event *event);
521         void (*read)                    (struct perf_event *event);
522         void (*unthrottle)              (struct perf_event *event);
523 };
524
525 /**
526  * enum perf_event_active_state - the states of a event
527  */
528 enum perf_event_active_state {
529         PERF_EVENT_STATE_ERROR          = -2,
530         PERF_EVENT_STATE_OFF            = -1,
531         PERF_EVENT_STATE_INACTIVE       =  0,
532         PERF_EVENT_STATE_ACTIVE         =  1,
533 };
534
535 struct file;
536
537 struct perf_mmap_data {
538         struct rcu_head                 rcu_head;
539 #ifdef CONFIG_PERF_USE_VMALLOC
540         struct work_struct              work;
541 #endif
542         int                             data_order;
543         int                             nr_pages;       /* nr of data pages  */
544         int                             writable;       /* are we writable   */
545         int                             nr_locked;      /* nr pages mlocked  */
546
547         atomic_t                        poll;           /* POLL_ for wakeups */
548         atomic_t                        events;         /* event_id limit       */
549
550         atomic_long_t                   head;           /* write position    */
551         atomic_long_t                   done_head;      /* completed head    */
552
553         atomic_t                        lock;           /* concurrent writes */
554         atomic_t                        wakeup;         /* needs a wakeup    */
555         atomic_t                        lost;           /* nr records lost   */
556
557         long                            watermark;      /* wakeup watermark  */
558
559         struct perf_event_mmap_page     *user_page;
560         void                            *data_pages[0];
561 };
562
563 struct perf_pending_entry {
564         struct perf_pending_entry *next;
565         void (*func)(struct perf_pending_entry *);
566 };
567
568 typedef void (*perf_callback_t)(struct perf_event *, void *);
569
570 struct perf_sample_data;
571
572 /**
573  * struct perf_event - performance event kernel representation:
574  */
575 struct perf_event {
576 #ifdef CONFIG_PERF_EVENTS
577         struct list_head                group_entry;
578         struct list_head                event_entry;
579         struct list_head                sibling_list;
580         int                             nr_siblings;
581         struct perf_event               *group_leader;
582         struct perf_event               *output;
583         const struct pmu                *pmu;
584
585         enum perf_event_active_state    state;
586         atomic64_t                      count;
587
588         /*
589          * These are the total time in nanoseconds that the event
590          * has been enabled (i.e. eligible to run, and the task has
591          * been scheduled in, if this is a per-task event)
592          * and running (scheduled onto the CPU), respectively.
593          *
594          * They are computed from tstamp_enabled, tstamp_running and
595          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
596          */
597         u64                             total_time_enabled;
598         u64                             total_time_running;
599
600         /*
601          * These are timestamps used for computing total_time_enabled
602          * and total_time_running when the event is in INACTIVE or
603          * ACTIVE state, measured in nanoseconds from an arbitrary point
604          * in time.
605          * tstamp_enabled: the notional time when the event was enabled
606          * tstamp_running: the notional time when the event was scheduled on
607          * tstamp_stopped: in INACTIVE state, the notional time when the
608          *      event was scheduled off.
609          */
610         u64                             tstamp_enabled;
611         u64                             tstamp_running;
612         u64                             tstamp_stopped;
613
614         struct perf_event_attr          attr;
615         struct hw_perf_event            hw;
616
617         struct perf_event_context       *ctx;
618         struct file                     *filp;
619
620         /*
621          * These accumulate total time (in nanoseconds) that children
622          * events have been enabled and running, respectively.
623          */
624         atomic64_t                      child_total_time_enabled;
625         atomic64_t                      child_total_time_running;
626
627         /*
628          * Protect attach/detach and child_list:
629          */
630         struct mutex                    child_mutex;
631         struct list_head                child_list;
632         struct perf_event               *parent;
633
634         int                             oncpu;
635         int                             cpu;
636
637         struct list_head                owner_entry;
638         struct task_struct              *owner;
639
640         /* mmap bits */
641         struct mutex                    mmap_mutex;
642         atomic_t                        mmap_count;
643         struct perf_mmap_data           *data;
644
645         /* poll related */
646         wait_queue_head_t               waitq;
647         struct fasync_struct            *fasync;
648
649         /* delayed work for NMIs and such */
650         int                             pending_wakeup;
651         int                             pending_kill;
652         int                             pending_disable;
653         struct perf_pending_entry       pending;
654
655         atomic_t                        event_limit;
656
657         void (*destroy)(struct perf_event *);
658         struct rcu_head                 rcu_head;
659
660         struct pid_namespace            *ns;
661         u64                             id;
662
663         void (*overflow_handler)(struct perf_event *event,
664                         int nmi, struct perf_sample_data *data,
665                         struct pt_regs *regs);
666
667 #ifdef CONFIG_EVENT_PROFILE
668         struct event_filter             *filter;
669 #endif
670
671         perf_callback_t                 callback;
672
673         perf_callback_t                 event_callback;
674
675 #endif /* CONFIG_PERF_EVENTS */
676 };
677
678 /**
679  * struct perf_event_context - event context structure
680  *
681  * Used as a container for task events and CPU events as well:
682  */
683 struct perf_event_context {
684         /*
685          * Protect the states of the events in the list,
686          * nr_active, and the list:
687          */
688         spinlock_t                      lock;
689         /*
690          * Protect the list of events.  Locking either mutex or lock
691          * is sufficient to ensure the list doesn't change; to change
692          * the list you need to lock both the mutex and the spinlock.
693          */
694         struct mutex                    mutex;
695
696         struct list_head                group_list;
697         struct list_head                event_list;
698         int                             nr_events;
699         int                             nr_active;
700         int                             is_active;
701         int                             nr_stat;
702         atomic_t                        refcount;
703         struct task_struct              *task;
704
705         /*
706          * Context clock, runs when context enabled.
707          */
708         u64                             time;
709         u64                             timestamp;
710
711         /*
712          * These fields let us detect when two contexts have both
713          * been cloned (inherited) from a common ancestor.
714          */
715         struct perf_event_context       *parent_ctx;
716         u64                             parent_gen;
717         u64                             generation;
718         int                             pin_count;
719         struct rcu_head                 rcu_head;
720 };
721
722 /**
723  * struct perf_event_cpu_context - per cpu event context structure
724  */
725 struct perf_cpu_context {
726         struct perf_event_context       ctx;
727         struct perf_event_context       *task_ctx;
728         int                             active_oncpu;
729         int                             max_pertask;
730         int                             exclusive;
731
732         /*
733          * Recursion avoidance:
734          *
735          * task, softirq, irq, nmi context
736          */
737         int                             recursion[4];
738 };
739
740 struct perf_output_handle {
741         struct perf_event               *event;
742         struct perf_mmap_data           *data;
743         unsigned long                   head;
744         unsigned long                   offset;
745         int                             nmi;
746         int                             sample;
747         int                             locked;
748 };
749
750 #ifdef CONFIG_PERF_EVENTS
751
752 /*
753  * Set by architecture code:
754  */
755 extern int perf_max_events;
756
757 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
758
759 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
760 extern void perf_event_task_sched_out(struct task_struct *task,
761                                         struct task_struct *next, int cpu);
762 extern void perf_event_task_tick(struct task_struct *task, int cpu);
763 extern int perf_event_init_task(struct task_struct *child);
764 extern void perf_event_exit_task(struct task_struct *child);
765 extern void perf_event_free_task(struct task_struct *task);
766 extern void set_perf_event_pending(void);
767 extern void perf_event_do_pending(void);
768 extern void perf_event_print_debug(void);
769 extern void __perf_disable(void);
770 extern bool __perf_enable(void);
771 extern void perf_disable(void);
772 extern void perf_enable(void);
773 extern int perf_event_task_disable(void);
774 extern int perf_event_task_enable(void);
775 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
776                struct perf_cpu_context *cpuctx,
777                struct perf_event_context *ctx, int cpu);
778 extern void perf_event_update_userpage(struct perf_event *event);
779 extern int perf_event_release_kernel(struct perf_event *event);
780 extern struct perf_event *
781 perf_event_create_kernel_counter(struct perf_event_attr *attr,
782                                 int cpu,
783                                 pid_t pid,
784                                 perf_callback_t callback);
785 extern u64 perf_event_read_value(struct perf_event *event,
786                                  u64 *enabled, u64 *running);
787
788 struct perf_sample_data {
789         u64                             type;
790
791         u64                             ip;
792         struct {
793                 u32     pid;
794                 u32     tid;
795         }                               tid_entry;
796         u64                             time;
797         u64                             addr;
798         u64                             id;
799         u64                             stream_id;
800         struct {
801                 u32     cpu;
802                 u32     reserved;
803         }                               cpu_entry;
804         u64                             period;
805         struct perf_callchain_entry     *callchain;
806         struct perf_raw_record          *raw;
807 };
808
809 extern void perf_output_sample(struct perf_output_handle *handle,
810                                struct perf_event_header *header,
811                                struct perf_sample_data *data,
812                                struct perf_event *event);
813 extern void perf_prepare_sample(struct perf_event_header *header,
814                                 struct perf_sample_data *data,
815                                 struct perf_event *event,
816                                 struct pt_regs *regs);
817
818 extern int perf_event_overflow(struct perf_event *event, int nmi,
819                                  struct perf_sample_data *data,
820                                  struct pt_regs *regs);
821
822 /*
823  * Return 1 for a software event, 0 for a hardware event
824  */
825 static inline int is_software_event(struct perf_event *event)
826 {
827         return (event->attr.type != PERF_TYPE_RAW) &&
828                 (event->attr.type != PERF_TYPE_HARDWARE) &&
829                 (event->attr.type != PERF_TYPE_HW_CACHE);
830 }
831
832 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
833
834 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
835
836 static inline void
837 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
838 {
839         if (atomic_read(&perf_swevent_enabled[event_id]))
840                 __perf_sw_event(event_id, nr, nmi, regs, addr);
841 }
842
843 extern void __perf_event_mmap(struct vm_area_struct *vma);
844
845 static inline void perf_event_mmap(struct vm_area_struct *vma)
846 {
847         if (vma->vm_flags & VM_EXEC)
848                 __perf_event_mmap(vma);
849 }
850
851 extern void perf_event_comm(struct task_struct *tsk);
852 extern void perf_event_fork(struct task_struct *tsk);
853
854 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
855
856 extern int sysctl_perf_event_paranoid;
857 extern int sysctl_perf_event_mlock;
858 extern int sysctl_perf_event_sample_rate;
859
860 extern void perf_event_init(void);
861 extern void perf_tp_event(int event_id, u64 addr, u64 count,
862                                  void *record, int entry_size);
863 extern void perf_bp_event(struct perf_event *event, void *data);
864
865 #ifndef perf_misc_flags
866 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_RECORD_MISC_USER : \
867                                  PERF_RECORD_MISC_KERNEL)
868 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
869 #endif
870
871 extern int perf_output_begin(struct perf_output_handle *handle,
872                              struct perf_event *event, unsigned int size,
873                              int nmi, int sample);
874 extern void perf_output_end(struct perf_output_handle *handle);
875 extern void perf_output_copy(struct perf_output_handle *handle,
876                              const void *buf, unsigned int len);
877 extern int perf_swevent_get_recursion_context(void);
878 extern void perf_swevent_put_recursion_context(int rctx);
879 #else
880 static inline void
881 perf_event_task_sched_in(struct task_struct *task, int cpu)             { }
882 static inline void
883 perf_event_task_sched_out(struct task_struct *task,
884                             struct task_struct *next, int cpu)          { }
885 static inline void
886 perf_event_task_tick(struct task_struct *task, int cpu)                 { }
887 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
888 static inline void perf_event_exit_task(struct task_struct *child)      { }
889 static inline void perf_event_free_task(struct task_struct *task)       { }
890 static inline void perf_event_do_pending(void)                          { }
891 static inline void perf_event_print_debug(void)                         { }
892 static inline void perf_disable(void)                                   { }
893 static inline void perf_enable(void)                                    { }
894 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
895 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
896
897 static inline void
898 perf_sw_event(u32 event_id, u64 nr, int nmi,
899                      struct pt_regs *regs, u64 addr)                    { }
900 static inline void
901 perf_bp_event(struct perf_event *event, void *data)             { }
902
903 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
904 static inline void perf_event_comm(struct task_struct *tsk)             { }
905 static inline void perf_event_fork(struct task_struct *tsk)             { }
906 static inline void perf_event_init(void)                                { }
907 static inline int  perf_swevent_get_recursion_context(void)  { return -1; }
908 static inline void perf_swevent_put_recursion_context(int rctx)         { }
909
910 #endif
911
912 #define perf_output_put(handle, x) \
913         perf_output_copy((handle), &(x), sizeof(x))
914
915 #endif /* __KERNEL__ */
916 #endif /* _LINUX_PERF_EVENT_H */