Merge branch 'writeback-for-2.6.34' into nfs-for-2.6.34
[safe/jmp/linux-2.6] / fs / xfs / xfs_mount.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 #include "xfs_trace.h"
48
49
50 STATIC void     xfs_unmountfs_wait(xfs_mount_t *);
51
52
53 #ifdef HAVE_PERCPU_SB
54 STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
55                                                 int);
56 STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
57                                                 int);
58 STATIC int      xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59                                                 int64_t, int);
60 STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61
62 #else
63
64 #define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c)           do { } while (0)
67
68 #endif
69
70 static const struct {
71         short offset;
72         short type;     /* 0 = integer
73                          * 1 = binary / string (no translation)
74                          */
75 } xfs_sb_info[] = {
76     { offsetof(xfs_sb_t, sb_magicnum),   0 },
77     { offsetof(xfs_sb_t, sb_blocksize),  0 },
78     { offsetof(xfs_sb_t, sb_dblocks),    0 },
79     { offsetof(xfs_sb_t, sb_rblocks),    0 },
80     { offsetof(xfs_sb_t, sb_rextents),   0 },
81     { offsetof(xfs_sb_t, sb_uuid),       1 },
82     { offsetof(xfs_sb_t, sb_logstart),   0 },
83     { offsetof(xfs_sb_t, sb_rootino),    0 },
84     { offsetof(xfs_sb_t, sb_rbmino),     0 },
85     { offsetof(xfs_sb_t, sb_rsumino),    0 },
86     { offsetof(xfs_sb_t, sb_rextsize),   0 },
87     { offsetof(xfs_sb_t, sb_agblocks),   0 },
88     { offsetof(xfs_sb_t, sb_agcount),    0 },
89     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
90     { offsetof(xfs_sb_t, sb_logblocks),  0 },
91     { offsetof(xfs_sb_t, sb_versionnum), 0 },
92     { offsetof(xfs_sb_t, sb_sectsize),   0 },
93     { offsetof(xfs_sb_t, sb_inodesize),  0 },
94     { offsetof(xfs_sb_t, sb_inopblock),  0 },
95     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
96     { offsetof(xfs_sb_t, sb_blocklog),   0 },
97     { offsetof(xfs_sb_t, sb_sectlog),    0 },
98     { offsetof(xfs_sb_t, sb_inodelog),   0 },
99     { offsetof(xfs_sb_t, sb_inopblog),   0 },
100     { offsetof(xfs_sb_t, sb_agblklog),   0 },
101     { offsetof(xfs_sb_t, sb_rextslog),   0 },
102     { offsetof(xfs_sb_t, sb_inprogress), 0 },
103     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
104     { offsetof(xfs_sb_t, sb_icount),     0 },
105     { offsetof(xfs_sb_t, sb_ifree),      0 },
106     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
107     { offsetof(xfs_sb_t, sb_frextents),  0 },
108     { offsetof(xfs_sb_t, sb_uquotino),   0 },
109     { offsetof(xfs_sb_t, sb_gquotino),   0 },
110     { offsetof(xfs_sb_t, sb_qflags),     0 },
111     { offsetof(xfs_sb_t, sb_flags),      0 },
112     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
113     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114     { offsetof(xfs_sb_t, sb_unit),       0 },
115     { offsetof(xfs_sb_t, sb_width),      0 },
116     { offsetof(xfs_sb_t, sb_dirblklog),  0 },
117     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118     { offsetof(xfs_sb_t, sb_logsectsize),0 },
119     { offsetof(xfs_sb_t, sb_logsunit),   0 },
120     { offsetof(xfs_sb_t, sb_features2),  0 },
121     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122     { sizeof(xfs_sb_t),                  0 }
123 };
124
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
128
129 /*
130  * See if the UUID is unique among mounted XFS filesystems.
131  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132  */
133 STATIC int
134 xfs_uuid_mount(
135         struct xfs_mount        *mp)
136 {
137         uuid_t                  *uuid = &mp->m_sb.sb_uuid;
138         int                     hole, i;
139
140         if (mp->m_flags & XFS_MOUNT_NOUUID)
141                 return 0;
142
143         if (uuid_is_nil(uuid)) {
144                 cmn_err(CE_WARN,
145                         "XFS: Filesystem %s has nil UUID - can't mount",
146                         mp->m_fsname);
147                 return XFS_ERROR(EINVAL);
148         }
149
150         mutex_lock(&xfs_uuid_table_mutex);
151         for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
152                 if (uuid_is_nil(&xfs_uuid_table[i])) {
153                         hole = i;
154                         continue;
155                 }
156                 if (uuid_equal(uuid, &xfs_uuid_table[i]))
157                         goto out_duplicate;
158         }
159
160         if (hole < 0) {
161                 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
162                         (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
163                         xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
164                         KM_SLEEP);
165                 hole = xfs_uuid_table_size++;
166         }
167         xfs_uuid_table[hole] = *uuid;
168         mutex_unlock(&xfs_uuid_table_mutex);
169
170         return 0;
171
172  out_duplicate:
173         mutex_unlock(&xfs_uuid_table_mutex);
174         cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
175                          mp->m_fsname);
176         return XFS_ERROR(EINVAL);
177 }
178
179 STATIC void
180 xfs_uuid_unmount(
181         struct xfs_mount        *mp)
182 {
183         uuid_t                  *uuid = &mp->m_sb.sb_uuid;
184         int                     i;
185
186         if (mp->m_flags & XFS_MOUNT_NOUUID)
187                 return;
188
189         mutex_lock(&xfs_uuid_table_mutex);
190         for (i = 0; i < xfs_uuid_table_size; i++) {
191                 if (uuid_is_nil(&xfs_uuid_table[i]))
192                         continue;
193                 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
194                         continue;
195                 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
196                 break;
197         }
198         ASSERT(i < xfs_uuid_table_size);
199         mutex_unlock(&xfs_uuid_table_mutex);
200 }
201
202
203 /*
204  * Reference counting access wrappers to the perag structures.
205  */
206 struct xfs_perag *
207 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
208 {
209         struct xfs_perag        *pag;
210         int                     ref = 0;
211
212         spin_lock(&mp->m_perag_lock);
213         pag = radix_tree_lookup(&mp->m_perag_tree, agno);
214         if (pag) {
215                 ASSERT(atomic_read(&pag->pag_ref) >= 0);
216                 /* catch leaks in the positive direction during testing */
217                 ASSERT(atomic_read(&pag->pag_ref) < 1000);
218                 ref = atomic_inc_return(&pag->pag_ref);
219         }
220         spin_unlock(&mp->m_perag_lock);
221         trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
222         return pag;
223 }
224
225 void
226 xfs_perag_put(struct xfs_perag *pag)
227 {
228         int     ref;
229
230         ASSERT(atomic_read(&pag->pag_ref) > 0);
231         ref = atomic_dec_return(&pag->pag_ref);
232         trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
233 }
234
235 /*
236  * Free up the resources associated with a mount structure.  Assume that
237  * the structure was initially zeroed, so we can tell which fields got
238  * initialized.
239  */
240 STATIC void
241 xfs_free_perag(
242         xfs_mount_t     *mp)
243 {
244         xfs_agnumber_t  agno;
245         struct xfs_perag *pag;
246
247         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
248                 spin_lock(&mp->m_perag_lock);
249                 pag = radix_tree_delete(&mp->m_perag_tree, agno);
250                 ASSERT(pag);
251                 ASSERT(atomic_read(&pag->pag_ref) == 0);
252                 spin_unlock(&mp->m_perag_lock);
253                 kmem_free(pag);
254         }
255 }
256
257 /*
258  * Check size of device based on the (data/realtime) block count.
259  * Note: this check is used by the growfs code as well as mount.
260  */
261 int
262 xfs_sb_validate_fsb_count(
263         xfs_sb_t        *sbp,
264         __uint64_t      nblocks)
265 {
266         ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
267         ASSERT(sbp->sb_blocklog >= BBSHIFT);
268
269 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
270         if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
271                 return E2BIG;
272 #else                  /* Limited by UINT_MAX of sectors */
273         if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
274                 return E2BIG;
275 #endif
276         return 0;
277 }
278
279 /*
280  * Check the validity of the SB found.
281  */
282 STATIC int
283 xfs_mount_validate_sb(
284         xfs_mount_t     *mp,
285         xfs_sb_t        *sbp,
286         int             flags)
287 {
288         /*
289          * If the log device and data device have the
290          * same device number, the log is internal.
291          * Consequently, the sb_logstart should be non-zero.  If
292          * we have a zero sb_logstart in this case, we may be trying to mount
293          * a volume filesystem in a non-volume manner.
294          */
295         if (sbp->sb_magicnum != XFS_SB_MAGIC) {
296                 xfs_fs_mount_cmn_err(flags, "bad magic number");
297                 return XFS_ERROR(EWRONGFS);
298         }
299
300         if (!xfs_sb_good_version(sbp)) {
301                 xfs_fs_mount_cmn_err(flags, "bad version");
302                 return XFS_ERROR(EWRONGFS);
303         }
304
305         if (unlikely(
306             sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
307                 xfs_fs_mount_cmn_err(flags,
308                         "filesystem is marked as having an external log; "
309                         "specify logdev on the\nmount command line.");
310                 return XFS_ERROR(EINVAL);
311         }
312
313         if (unlikely(
314             sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
315                 xfs_fs_mount_cmn_err(flags,
316                         "filesystem is marked as having an internal log; "
317                         "do not specify logdev on\nthe mount command line.");
318                 return XFS_ERROR(EINVAL);
319         }
320
321         /*
322          * More sanity checking. These were stolen directly from
323          * xfs_repair.
324          */
325         if (unlikely(
326             sbp->sb_agcount <= 0                                        ||
327             sbp->sb_sectsize < XFS_MIN_SECTORSIZE                       ||
328             sbp->sb_sectsize > XFS_MAX_SECTORSIZE                       ||
329             sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG                    ||
330             sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG                    ||
331             sbp->sb_sectsize != (1 << sbp->sb_sectlog)                  ||
332             sbp->sb_blocksize < XFS_MIN_BLOCKSIZE                       ||
333             sbp->sb_blocksize > XFS_MAX_BLOCKSIZE                       ||
334             sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG                    ||
335             sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG                    ||
336             sbp->sb_blocksize != (1 << sbp->sb_blocklog)                ||
337             sbp->sb_inodesize < XFS_DINODE_MIN_SIZE                     ||
338             sbp->sb_inodesize > XFS_DINODE_MAX_SIZE                     ||
339             sbp->sb_inodelog < XFS_DINODE_MIN_LOG                       ||
340             sbp->sb_inodelog > XFS_DINODE_MAX_LOG                       ||
341             sbp->sb_inodesize != (1 << sbp->sb_inodelog)                ||
342             (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)   ||
343             (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)  ||
344             (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)  ||
345             (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
346                 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
347                 return XFS_ERROR(EFSCORRUPTED);
348         }
349
350         /*
351          * Sanity check AG count, size fields against data size field
352          */
353         if (unlikely(
354             sbp->sb_dblocks == 0 ||
355             sbp->sb_dblocks >
356              (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
357             sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
358                               sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
359                 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
360                 return XFS_ERROR(EFSCORRUPTED);
361         }
362
363         /*
364          * Until this is fixed only page-sized or smaller data blocks work.
365          */
366         if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
367                 xfs_fs_mount_cmn_err(flags,
368                         "file system with blocksize %d bytes",
369                         sbp->sb_blocksize);
370                 xfs_fs_mount_cmn_err(flags,
371                         "only pagesize (%ld) or less will currently work.",
372                         PAGE_SIZE);
373                 return XFS_ERROR(ENOSYS);
374         }
375
376         /*
377          * Currently only very few inode sizes are supported.
378          */
379         switch (sbp->sb_inodesize) {
380         case 256:
381         case 512:
382         case 1024:
383         case 2048:
384                 break;
385         default:
386                 xfs_fs_mount_cmn_err(flags,
387                         "inode size of %d bytes not supported",
388                         sbp->sb_inodesize);
389                 return XFS_ERROR(ENOSYS);
390         }
391
392         if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
393             xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
394                 xfs_fs_mount_cmn_err(flags,
395                         "file system too large to be mounted on this system.");
396                 return XFS_ERROR(E2BIG);
397         }
398
399         if (unlikely(sbp->sb_inprogress)) {
400                 xfs_fs_mount_cmn_err(flags, "file system busy");
401                 return XFS_ERROR(EFSCORRUPTED);
402         }
403
404         /*
405          * Version 1 directory format has never worked on Linux.
406          */
407         if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
408                 xfs_fs_mount_cmn_err(flags,
409                         "file system using version 1 directory format");
410                 return XFS_ERROR(ENOSYS);
411         }
412
413         return 0;
414 }
415
416 STATIC void
417 xfs_initialize_perag_icache(
418         xfs_perag_t     *pag)
419 {
420         if (!pag->pag_ici_init) {
421                 rwlock_init(&pag->pag_ici_lock);
422                 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
423                 pag->pag_ici_init = 1;
424         }
425 }
426
427 int
428 xfs_initialize_perag(
429         xfs_mount_t     *mp,
430         xfs_agnumber_t  agcount,
431         xfs_agnumber_t  *maxagi)
432 {
433         xfs_agnumber_t  index, max_metadata;
434         xfs_agnumber_t  first_initialised = 0;
435         xfs_perag_t     *pag;
436         xfs_agino_t     agino;
437         xfs_ino_t       ino;
438         xfs_sb_t        *sbp = &mp->m_sb;
439         xfs_ino_t       max_inum = XFS_MAXINUMBER_32;
440         int             error = -ENOMEM;
441
442         /* Check to see if the filesystem can overflow 32 bit inodes */
443         agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
444         ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
445
446         /*
447          * Walk the current per-ag tree so we don't try to initialise AGs
448          * that already exist (growfs case). Allocate and insert all the
449          * AGs we don't find ready for initialisation.
450          */
451         for (index = 0; index < agcount; index++) {
452                 pag = xfs_perag_get(mp, index);
453                 if (pag) {
454                         xfs_perag_put(pag);
455                         continue;
456                 }
457                 if (!first_initialised)
458                         first_initialised = index;
459                 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
460                 if (!pag)
461                         goto out_unwind;
462                 if (radix_tree_preload(GFP_NOFS))
463                         goto out_unwind;
464                 spin_lock(&mp->m_perag_lock);
465                 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
466                         BUG();
467                         spin_unlock(&mp->m_perag_lock);
468                         radix_tree_preload_end();
469                         error = -EEXIST;
470                         goto out_unwind;
471                 }
472                 pag->pag_agno = index;
473                 pag->pag_mount = mp;
474                 spin_unlock(&mp->m_perag_lock);
475                 radix_tree_preload_end();
476         }
477
478         /* Clear the mount flag if no inode can overflow 32 bits
479          * on this filesystem, or if specifically requested..
480          */
481         if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
482                 mp->m_flags |= XFS_MOUNT_32BITINODES;
483         } else {
484                 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
485         }
486
487         /* If we can overflow then setup the ag headers accordingly */
488         if (mp->m_flags & XFS_MOUNT_32BITINODES) {
489                 /* Calculate how much should be reserved for inodes to
490                  * meet the max inode percentage.
491                  */
492                 if (mp->m_maxicount) {
493                         __uint64_t      icount;
494
495                         icount = sbp->sb_dblocks * sbp->sb_imax_pct;
496                         do_div(icount, 100);
497                         icount += sbp->sb_agblocks - 1;
498                         do_div(icount, sbp->sb_agblocks);
499                         max_metadata = icount;
500                 } else {
501                         max_metadata = agcount;
502                 }
503                 for (index = 0; index < agcount; index++) {
504                         ino = XFS_AGINO_TO_INO(mp, index, agino);
505                         if (ino > max_inum) {
506                                 index++;
507                                 break;
508                         }
509
510                         /* This ag is preferred for inodes */
511                         pag = xfs_perag_get(mp, index);
512                         pag->pagi_inodeok = 1;
513                         if (index < max_metadata)
514                                 pag->pagf_metadata = 1;
515                         xfs_initialize_perag_icache(pag);
516                         xfs_perag_put(pag);
517                 }
518         } else {
519                 /* Setup default behavior for smaller filesystems */
520                 for (index = 0; index < agcount; index++) {
521                         pag = xfs_perag_get(mp, index);
522                         pag->pagi_inodeok = 1;
523                         xfs_initialize_perag_icache(pag);
524                         xfs_perag_put(pag);
525                 }
526         }
527         if (maxagi)
528                 *maxagi = index;
529         return 0;
530
531 out_unwind:
532         kmem_free(pag);
533         for (; index > first_initialised; index--) {
534                 pag = radix_tree_delete(&mp->m_perag_tree, index);
535                 kmem_free(pag);
536         }
537         return error;
538 }
539
540 void
541 xfs_sb_from_disk(
542         xfs_sb_t        *to,
543         xfs_dsb_t       *from)
544 {
545         to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
546         to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
547         to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
548         to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
549         to->sb_rextents = be64_to_cpu(from->sb_rextents);
550         memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
551         to->sb_logstart = be64_to_cpu(from->sb_logstart);
552         to->sb_rootino = be64_to_cpu(from->sb_rootino);
553         to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
554         to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
555         to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
556         to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
557         to->sb_agcount = be32_to_cpu(from->sb_agcount);
558         to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
559         to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
560         to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
561         to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
562         to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
563         to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
564         memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
565         to->sb_blocklog = from->sb_blocklog;
566         to->sb_sectlog = from->sb_sectlog;
567         to->sb_inodelog = from->sb_inodelog;
568         to->sb_inopblog = from->sb_inopblog;
569         to->sb_agblklog = from->sb_agblklog;
570         to->sb_rextslog = from->sb_rextslog;
571         to->sb_inprogress = from->sb_inprogress;
572         to->sb_imax_pct = from->sb_imax_pct;
573         to->sb_icount = be64_to_cpu(from->sb_icount);
574         to->sb_ifree = be64_to_cpu(from->sb_ifree);
575         to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
576         to->sb_frextents = be64_to_cpu(from->sb_frextents);
577         to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
578         to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
579         to->sb_qflags = be16_to_cpu(from->sb_qflags);
580         to->sb_flags = from->sb_flags;
581         to->sb_shared_vn = from->sb_shared_vn;
582         to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
583         to->sb_unit = be32_to_cpu(from->sb_unit);
584         to->sb_width = be32_to_cpu(from->sb_width);
585         to->sb_dirblklog = from->sb_dirblklog;
586         to->sb_logsectlog = from->sb_logsectlog;
587         to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
588         to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
589         to->sb_features2 = be32_to_cpu(from->sb_features2);
590         to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
591 }
592
593 /*
594  * Copy in core superblock to ondisk one.
595  *
596  * The fields argument is mask of superblock fields to copy.
597  */
598 void
599 xfs_sb_to_disk(
600         xfs_dsb_t       *to,
601         xfs_sb_t        *from,
602         __int64_t       fields)
603 {
604         xfs_caddr_t     to_ptr = (xfs_caddr_t)to;
605         xfs_caddr_t     from_ptr = (xfs_caddr_t)from;
606         xfs_sb_field_t  f;
607         int             first;
608         int             size;
609
610         ASSERT(fields);
611         if (!fields)
612                 return;
613
614         while (fields) {
615                 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
616                 first = xfs_sb_info[f].offset;
617                 size = xfs_sb_info[f + 1].offset - first;
618
619                 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
620
621                 if (size == 1 || xfs_sb_info[f].type == 1) {
622                         memcpy(to_ptr + first, from_ptr + first, size);
623                 } else {
624                         switch (size) {
625                         case 2:
626                                 *(__be16 *)(to_ptr + first) =
627                                         cpu_to_be16(*(__u16 *)(from_ptr + first));
628                                 break;
629                         case 4:
630                                 *(__be32 *)(to_ptr + first) =
631                                         cpu_to_be32(*(__u32 *)(from_ptr + first));
632                                 break;
633                         case 8:
634                                 *(__be64 *)(to_ptr + first) =
635                                         cpu_to_be64(*(__u64 *)(from_ptr + first));
636                                 break;
637                         default:
638                                 ASSERT(0);
639                         }
640                 }
641
642                 fields &= ~(1LL << f);
643         }
644 }
645
646 /*
647  * xfs_readsb
648  *
649  * Does the initial read of the superblock.
650  */
651 int
652 xfs_readsb(xfs_mount_t *mp, int flags)
653 {
654         unsigned int    sector_size;
655         unsigned int    extra_flags;
656         xfs_buf_t       *bp;
657         int             error;
658
659         ASSERT(mp->m_sb_bp == NULL);
660         ASSERT(mp->m_ddev_targp != NULL);
661
662         /*
663          * Allocate a (locked) buffer to hold the superblock.
664          * This will be kept around at all times to optimize
665          * access to the superblock.
666          */
667         sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
668         extra_flags = XBF_LOCK | XBF_FS_MANAGED | XBF_MAPPED;
669
670         bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size),
671                           extra_flags);
672         if (!bp || XFS_BUF_ISERROR(bp)) {
673                 xfs_fs_mount_cmn_err(flags, "SB read failed");
674                 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
675                 goto fail;
676         }
677         ASSERT(XFS_BUF_ISBUSY(bp));
678         ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
679
680         /*
681          * Initialize the mount structure from the superblock.
682          * But first do some basic consistency checking.
683          */
684         xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
685
686         error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
687         if (error) {
688                 xfs_fs_mount_cmn_err(flags, "SB validate failed");
689                 goto fail;
690         }
691
692         /*
693          * We must be able to do sector-sized and sector-aligned IO.
694          */
695         if (sector_size > mp->m_sb.sb_sectsize) {
696                 xfs_fs_mount_cmn_err(flags,
697                         "device supports only %u byte sectors (not %u)",
698                         sector_size, mp->m_sb.sb_sectsize);
699                 error = ENOSYS;
700                 goto fail;
701         }
702
703         /*
704          * If device sector size is smaller than the superblock size,
705          * re-read the superblock so the buffer is correctly sized.
706          */
707         if (sector_size < mp->m_sb.sb_sectsize) {
708                 XFS_BUF_UNMANAGE(bp);
709                 xfs_buf_relse(bp);
710                 sector_size = mp->m_sb.sb_sectsize;
711                 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR,
712                                   BTOBB(sector_size), extra_flags);
713                 if (!bp || XFS_BUF_ISERROR(bp)) {
714                         xfs_fs_mount_cmn_err(flags, "SB re-read failed");
715                         error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
716                         goto fail;
717                 }
718                 ASSERT(XFS_BUF_ISBUSY(bp));
719                 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
720         }
721
722         /* Initialize per-cpu counters */
723         xfs_icsb_reinit_counters(mp);
724
725         mp->m_sb_bp = bp;
726         xfs_buf_relse(bp);
727         ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
728         return 0;
729
730  fail:
731         if (bp) {
732                 XFS_BUF_UNMANAGE(bp);
733                 xfs_buf_relse(bp);
734         }
735         return error;
736 }
737
738
739 /*
740  * xfs_mount_common
741  *
742  * Mount initialization code establishing various mount
743  * fields from the superblock associated with the given
744  * mount structure
745  */
746 STATIC void
747 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
748 {
749         mp->m_agfrotor = mp->m_agirotor = 0;
750         spin_lock_init(&mp->m_agirotor_lock);
751         mp->m_maxagi = mp->m_sb.sb_agcount;
752         mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
753         mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
754         mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
755         mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
756         mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
757         mp->m_blockmask = sbp->sb_blocksize - 1;
758         mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
759         mp->m_blockwmask = mp->m_blockwsize - 1;
760
761         mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
762         mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
763         mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
764         mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
765
766         mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
767         mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
768         mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
769         mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
770
771         mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
772         mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
773         mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
774         mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
775
776         mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
777         mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
778                                         sbp->sb_inopblock);
779         mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
780 }
781
782 /*
783  * xfs_initialize_perag_data
784  *
785  * Read in each per-ag structure so we can count up the number of
786  * allocated inodes, free inodes and used filesystem blocks as this
787  * information is no longer persistent in the superblock. Once we have
788  * this information, write it into the in-core superblock structure.
789  */
790 STATIC int
791 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
792 {
793         xfs_agnumber_t  index;
794         xfs_perag_t     *pag;
795         xfs_sb_t        *sbp = &mp->m_sb;
796         uint64_t        ifree = 0;
797         uint64_t        ialloc = 0;
798         uint64_t        bfree = 0;
799         uint64_t        bfreelst = 0;
800         uint64_t        btree = 0;
801         int             error;
802
803         for (index = 0; index < agcount; index++) {
804                 /*
805                  * read the agf, then the agi. This gets us
806                  * all the information we need and populates the
807                  * per-ag structures for us.
808                  */
809                 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
810                 if (error)
811                         return error;
812
813                 error = xfs_ialloc_pagi_init(mp, NULL, index);
814                 if (error)
815                         return error;
816                 pag = xfs_perag_get(mp, index);
817                 ifree += pag->pagi_freecount;
818                 ialloc += pag->pagi_count;
819                 bfree += pag->pagf_freeblks;
820                 bfreelst += pag->pagf_flcount;
821                 btree += pag->pagf_btreeblks;
822                 xfs_perag_put(pag);
823         }
824         /*
825          * Overwrite incore superblock counters with just-read data
826          */
827         spin_lock(&mp->m_sb_lock);
828         sbp->sb_ifree = ifree;
829         sbp->sb_icount = ialloc;
830         sbp->sb_fdblocks = bfree + bfreelst + btree;
831         spin_unlock(&mp->m_sb_lock);
832
833         /* Fixup the per-cpu counters as well. */
834         xfs_icsb_reinit_counters(mp);
835
836         return 0;
837 }
838
839 /*
840  * Update alignment values based on mount options and sb values
841  */
842 STATIC int
843 xfs_update_alignment(xfs_mount_t *mp)
844 {
845         xfs_sb_t        *sbp = &(mp->m_sb);
846
847         if (mp->m_dalign) {
848                 /*
849                  * If stripe unit and stripe width are not multiples
850                  * of the fs blocksize turn off alignment.
851                  */
852                 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
853                     (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
854                         if (mp->m_flags & XFS_MOUNT_RETERR) {
855                                 cmn_err(CE_WARN,
856                                         "XFS: alignment check 1 failed");
857                                 return XFS_ERROR(EINVAL);
858                         }
859                         mp->m_dalign = mp->m_swidth = 0;
860                 } else {
861                         /*
862                          * Convert the stripe unit and width to FSBs.
863                          */
864                         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
865                         if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
866                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
867                                         return XFS_ERROR(EINVAL);
868                                 }
869                                 xfs_fs_cmn_err(CE_WARN, mp,
870 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
871                                         mp->m_dalign, mp->m_swidth,
872                                         sbp->sb_agblocks);
873
874                                 mp->m_dalign = 0;
875                                 mp->m_swidth = 0;
876                         } else if (mp->m_dalign) {
877                                 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
878                         } else {
879                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
880                                         xfs_fs_cmn_err(CE_WARN, mp,
881 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
882                                                 mp->m_dalign,
883                                                 mp->m_blockmask +1);
884                                         return XFS_ERROR(EINVAL);
885                                 }
886                                 mp->m_swidth = 0;
887                         }
888                 }
889
890                 /*
891                  * Update superblock with new values
892                  * and log changes
893                  */
894                 if (xfs_sb_version_hasdalign(sbp)) {
895                         if (sbp->sb_unit != mp->m_dalign) {
896                                 sbp->sb_unit = mp->m_dalign;
897                                 mp->m_update_flags |= XFS_SB_UNIT;
898                         }
899                         if (sbp->sb_width != mp->m_swidth) {
900                                 sbp->sb_width = mp->m_swidth;
901                                 mp->m_update_flags |= XFS_SB_WIDTH;
902                         }
903                 }
904         } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
905                     xfs_sb_version_hasdalign(&mp->m_sb)) {
906                         mp->m_dalign = sbp->sb_unit;
907                         mp->m_swidth = sbp->sb_width;
908         }
909
910         return 0;
911 }
912
913 /*
914  * Set the maximum inode count for this filesystem
915  */
916 STATIC void
917 xfs_set_maxicount(xfs_mount_t *mp)
918 {
919         xfs_sb_t        *sbp = &(mp->m_sb);
920         __uint64_t      icount;
921
922         if (sbp->sb_imax_pct) {
923                 /*
924                  * Make sure the maximum inode count is a multiple
925                  * of the units we allocate inodes in.
926                  */
927                 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
928                 do_div(icount, 100);
929                 do_div(icount, mp->m_ialloc_blks);
930                 mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
931                                    sbp->sb_inopblog;
932         } else {
933                 mp->m_maxicount = 0;
934         }
935 }
936
937 /*
938  * Set the default minimum read and write sizes unless
939  * already specified in a mount option.
940  * We use smaller I/O sizes when the file system
941  * is being used for NFS service (wsync mount option).
942  */
943 STATIC void
944 xfs_set_rw_sizes(xfs_mount_t *mp)
945 {
946         xfs_sb_t        *sbp = &(mp->m_sb);
947         int             readio_log, writeio_log;
948
949         if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
950                 if (mp->m_flags & XFS_MOUNT_WSYNC) {
951                         readio_log = XFS_WSYNC_READIO_LOG;
952                         writeio_log = XFS_WSYNC_WRITEIO_LOG;
953                 } else {
954                         readio_log = XFS_READIO_LOG_LARGE;
955                         writeio_log = XFS_WRITEIO_LOG_LARGE;
956                 }
957         } else {
958                 readio_log = mp->m_readio_log;
959                 writeio_log = mp->m_writeio_log;
960         }
961
962         if (sbp->sb_blocklog > readio_log) {
963                 mp->m_readio_log = sbp->sb_blocklog;
964         } else {
965                 mp->m_readio_log = readio_log;
966         }
967         mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
968         if (sbp->sb_blocklog > writeio_log) {
969                 mp->m_writeio_log = sbp->sb_blocklog;
970         } else {
971                 mp->m_writeio_log = writeio_log;
972         }
973         mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
974 }
975
976 /*
977  * Set whether we're using inode alignment.
978  */
979 STATIC void
980 xfs_set_inoalignment(xfs_mount_t *mp)
981 {
982         if (xfs_sb_version_hasalign(&mp->m_sb) &&
983             mp->m_sb.sb_inoalignmt >=
984             XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
985                 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
986         else
987                 mp->m_inoalign_mask = 0;
988         /*
989          * If we are using stripe alignment, check whether
990          * the stripe unit is a multiple of the inode alignment
991          */
992         if (mp->m_dalign && mp->m_inoalign_mask &&
993             !(mp->m_dalign & mp->m_inoalign_mask))
994                 mp->m_sinoalign = mp->m_dalign;
995         else
996                 mp->m_sinoalign = 0;
997 }
998
999 /*
1000  * Check that the data (and log if separate) are an ok size.
1001  */
1002 STATIC int
1003 xfs_check_sizes(xfs_mount_t *mp)
1004 {
1005         xfs_buf_t       *bp;
1006         xfs_daddr_t     d;
1007         int             error;
1008
1009         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1010         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1011                 cmn_err(CE_WARN, "XFS: size check 1 failed");
1012                 return XFS_ERROR(E2BIG);
1013         }
1014         error = xfs_read_buf(mp, mp->m_ddev_targp,
1015                              d - XFS_FSS_TO_BB(mp, 1),
1016                              XFS_FSS_TO_BB(mp, 1), 0, &bp);
1017         if (!error) {
1018                 xfs_buf_relse(bp);
1019         } else {
1020                 cmn_err(CE_WARN, "XFS: size check 2 failed");
1021                 if (error == ENOSPC)
1022                         error = XFS_ERROR(E2BIG);
1023                 return error;
1024         }
1025
1026         if (mp->m_logdev_targp != mp->m_ddev_targp) {
1027                 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1028                 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1029                         cmn_err(CE_WARN, "XFS: size check 3 failed");
1030                         return XFS_ERROR(E2BIG);
1031                 }
1032                 error = xfs_read_buf(mp, mp->m_logdev_targp,
1033                                      d - XFS_FSB_TO_BB(mp, 1),
1034                                      XFS_FSB_TO_BB(mp, 1), 0, &bp);
1035                 if (!error) {
1036                         xfs_buf_relse(bp);
1037                 } else {
1038                         cmn_err(CE_WARN, "XFS: size check 3 failed");
1039                         if (error == ENOSPC)
1040                                 error = XFS_ERROR(E2BIG);
1041                         return error;
1042                 }
1043         }
1044         return 0;
1045 }
1046
1047 /*
1048  * Clear the quotaflags in memory and in the superblock.
1049  */
1050 int
1051 xfs_mount_reset_sbqflags(
1052         struct xfs_mount        *mp)
1053 {
1054         int                     error;
1055         struct xfs_trans        *tp;
1056
1057         mp->m_qflags = 0;
1058
1059         /*
1060          * It is OK to look at sb_qflags here in mount path,
1061          * without m_sb_lock.
1062          */
1063         if (mp->m_sb.sb_qflags == 0)
1064                 return 0;
1065         spin_lock(&mp->m_sb_lock);
1066         mp->m_sb.sb_qflags = 0;
1067         spin_unlock(&mp->m_sb_lock);
1068
1069         /*
1070          * If the fs is readonly, let the incore superblock run
1071          * with quotas off but don't flush the update out to disk
1072          */
1073         if (mp->m_flags & XFS_MOUNT_RDONLY)
1074                 return 0;
1075
1076 #ifdef QUOTADEBUG
1077         xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1078 #endif
1079
1080         tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1081         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1082                                       XFS_DEFAULT_LOG_COUNT);
1083         if (error) {
1084                 xfs_trans_cancel(tp, 0);
1085                 xfs_fs_cmn_err(CE_ALERT, mp,
1086                         "xfs_mount_reset_sbqflags: Superblock update failed!");
1087                 return error;
1088         }
1089
1090         xfs_mod_sb(tp, XFS_SB_QFLAGS);
1091         return xfs_trans_commit(tp, 0);
1092 }
1093
1094 __uint64_t
1095 xfs_default_resblks(xfs_mount_t *mp)
1096 {
1097         __uint64_t resblks;
1098
1099         /*
1100          * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1101          * This may drive us straight to ENOSPC on mount, but that implies
1102          * we were already there on the last unmount. Warn if this occurs.
1103          */
1104         resblks = mp->m_sb.sb_dblocks;
1105         do_div(resblks, 20);
1106         resblks = min_t(__uint64_t, resblks, 1024);
1107         return resblks;
1108 }
1109
1110 /*
1111  * This function does the following on an initial mount of a file system:
1112  *      - reads the superblock from disk and init the mount struct
1113  *      - if we're a 32-bit kernel, do a size check on the superblock
1114  *              so we don't mount terabyte filesystems
1115  *      - init mount struct realtime fields
1116  *      - allocate inode hash table for fs
1117  *      - init directory manager
1118  *      - perform recovery and init the log manager
1119  */
1120 int
1121 xfs_mountfs(
1122         xfs_mount_t     *mp)
1123 {
1124         xfs_sb_t        *sbp = &(mp->m_sb);
1125         xfs_inode_t     *rip;
1126         __uint64_t      resblks;
1127         uint            quotamount = 0;
1128         uint            quotaflags = 0;
1129         int             error = 0;
1130
1131         xfs_mount_common(mp, sbp);
1132
1133         /*
1134          * Check for a mismatched features2 values.  Older kernels
1135          * read & wrote into the wrong sb offset for sb_features2
1136          * on some platforms due to xfs_sb_t not being 64bit size aligned
1137          * when sb_features2 was added, which made older superblock
1138          * reading/writing routines swap it as a 64-bit value.
1139          *
1140          * For backwards compatibility, we make both slots equal.
1141          *
1142          * If we detect a mismatched field, we OR the set bits into the
1143          * existing features2 field in case it has already been modified; we
1144          * don't want to lose any features.  We then update the bad location
1145          * with the ORed value so that older kernels will see any features2
1146          * flags, and mark the two fields as needing updates once the
1147          * transaction subsystem is online.
1148          */
1149         if (xfs_sb_has_mismatched_features2(sbp)) {
1150                 cmn_err(CE_WARN,
1151                         "XFS: correcting sb_features alignment problem");
1152                 sbp->sb_features2 |= sbp->sb_bad_features2;
1153                 sbp->sb_bad_features2 = sbp->sb_features2;
1154                 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1155
1156                 /*
1157                  * Re-check for ATTR2 in case it was found in bad_features2
1158                  * slot.
1159                  */
1160                 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1161                    !(mp->m_flags & XFS_MOUNT_NOATTR2))
1162                         mp->m_flags |= XFS_MOUNT_ATTR2;
1163         }
1164
1165         if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1166            (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1167                 xfs_sb_version_removeattr2(&mp->m_sb);
1168                 mp->m_update_flags |= XFS_SB_FEATURES2;
1169
1170                 /* update sb_versionnum for the clearing of the morebits */
1171                 if (!sbp->sb_features2)
1172                         mp->m_update_flags |= XFS_SB_VERSIONNUM;
1173         }
1174
1175         /*
1176          * Check if sb_agblocks is aligned at stripe boundary
1177          * If sb_agblocks is NOT aligned turn off m_dalign since
1178          * allocator alignment is within an ag, therefore ag has
1179          * to be aligned at stripe boundary.
1180          */
1181         error = xfs_update_alignment(mp);
1182         if (error)
1183                 goto out;
1184
1185         xfs_alloc_compute_maxlevels(mp);
1186         xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1187         xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1188         xfs_ialloc_compute_maxlevels(mp);
1189
1190         xfs_set_maxicount(mp);
1191
1192         mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1193
1194         error = xfs_uuid_mount(mp);
1195         if (error)
1196                 goto out;
1197
1198         /*
1199          * Set the minimum read and write sizes
1200          */
1201         xfs_set_rw_sizes(mp);
1202
1203         /*
1204          * Set the inode cluster size.
1205          * This may still be overridden by the file system
1206          * block size if it is larger than the chosen cluster size.
1207          */
1208         mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1209
1210         /*
1211          * Set inode alignment fields
1212          */
1213         xfs_set_inoalignment(mp);
1214
1215         /*
1216          * Check that the data (and log if separate) are an ok size.
1217          */
1218         error = xfs_check_sizes(mp);
1219         if (error)
1220                 goto out_remove_uuid;
1221
1222         /*
1223          * Initialize realtime fields in the mount structure
1224          */
1225         error = xfs_rtmount_init(mp);
1226         if (error) {
1227                 cmn_err(CE_WARN, "XFS: RT mount failed");
1228                 goto out_remove_uuid;
1229         }
1230
1231         /*
1232          *  Copies the low order bits of the timestamp and the randomly
1233          *  set "sequence" number out of a UUID.
1234          */
1235         uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1236
1237         mp->m_dmevmask = 0;     /* not persistent; set after each mount */
1238
1239         xfs_dir_mount(mp);
1240
1241         /*
1242          * Initialize the attribute manager's entries.
1243          */
1244         mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1245
1246         /*
1247          * Initialize the precomputed transaction reservations values.
1248          */
1249         xfs_trans_init(mp);
1250
1251         /*
1252          * Allocate and initialize the per-ag data.
1253          */
1254         spin_lock_init(&mp->m_perag_lock);
1255         INIT_RADIX_TREE(&mp->m_perag_tree, GFP_NOFS);
1256         error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1257         if (error) {
1258                 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
1259                 goto out_remove_uuid;
1260         }
1261
1262         if (!sbp->sb_logblocks) {
1263                 cmn_err(CE_WARN, "XFS: no log defined");
1264                 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1265                 error = XFS_ERROR(EFSCORRUPTED);
1266                 goto out_free_perag;
1267         }
1268
1269         /*
1270          * log's mount-time initialization. Perform 1st part recovery if needed
1271          */
1272         error = xfs_log_mount(mp, mp->m_logdev_targp,
1273                               XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1274                               XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1275         if (error) {
1276                 cmn_err(CE_WARN, "XFS: log mount failed");
1277                 goto out_free_perag;
1278         }
1279
1280         /*
1281          * Now the log is mounted, we know if it was an unclean shutdown or
1282          * not. If it was, with the first phase of recovery has completed, we
1283          * have consistent AG blocks on disk. We have not recovered EFIs yet,
1284          * but they are recovered transactionally in the second recovery phase
1285          * later.
1286          *
1287          * Hence we can safely re-initialise incore superblock counters from
1288          * the per-ag data. These may not be correct if the filesystem was not
1289          * cleanly unmounted, so we need to wait for recovery to finish before
1290          * doing this.
1291          *
1292          * If the filesystem was cleanly unmounted, then we can trust the
1293          * values in the superblock to be correct and we don't need to do
1294          * anything here.
1295          *
1296          * If we are currently making the filesystem, the initialisation will
1297          * fail as the perag data is in an undefined state.
1298          */
1299         if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1300             !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1301              !mp->m_sb.sb_inprogress) {
1302                 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1303                 if (error)
1304                         goto out_free_perag;
1305         }
1306
1307         /*
1308          * Get and sanity-check the root inode.
1309          * Save the pointer to it in the mount structure.
1310          */
1311         error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1312         if (error) {
1313                 cmn_err(CE_WARN, "XFS: failed to read root inode");
1314                 goto out_log_dealloc;
1315         }
1316
1317         ASSERT(rip != NULL);
1318
1319         if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1320                 cmn_err(CE_WARN, "XFS: corrupted root inode");
1321                 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1322                         XFS_BUFTARG_NAME(mp->m_ddev_targp),
1323                         (unsigned long long)rip->i_ino);
1324                 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1325                 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1326                                  mp);
1327                 error = XFS_ERROR(EFSCORRUPTED);
1328                 goto out_rele_rip;
1329         }
1330         mp->m_rootip = rip;     /* save it */
1331
1332         xfs_iunlock(rip, XFS_ILOCK_EXCL);
1333
1334         /*
1335          * Initialize realtime inode pointers in the mount structure
1336          */
1337         error = xfs_rtmount_inodes(mp);
1338         if (error) {
1339                 /*
1340                  * Free up the root inode.
1341                  */
1342                 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1343                 goto out_rele_rip;
1344         }
1345
1346         /*
1347          * If this is a read-only mount defer the superblock updates until
1348          * the next remount into writeable mode.  Otherwise we would never
1349          * perform the update e.g. for the root filesystem.
1350          */
1351         if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1352                 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1353                 if (error) {
1354                         cmn_err(CE_WARN, "XFS: failed to write sb changes");
1355                         goto out_rtunmount;
1356                 }
1357         }
1358
1359         /*
1360          * Initialise the XFS quota management subsystem for this mount
1361          */
1362         if (XFS_IS_QUOTA_RUNNING(mp)) {
1363                 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1364                 if (error)
1365                         goto out_rtunmount;
1366         } else {
1367                 ASSERT(!XFS_IS_QUOTA_ON(mp));
1368
1369                 /*
1370                  * If a file system had quotas running earlier, but decided to
1371                  * mount without -o uquota/pquota/gquota options, revoke the
1372                  * quotachecked license.
1373                  */
1374                 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1375                         cmn_err(CE_NOTE,
1376                                 "XFS: resetting qflags for filesystem %s",
1377                                 mp->m_fsname);
1378
1379                         error = xfs_mount_reset_sbqflags(mp);
1380                         if (error)
1381                                 return error;
1382                 }
1383         }
1384
1385         /*
1386          * Finish recovering the file system.  This part needed to be
1387          * delayed until after the root and real-time bitmap inodes
1388          * were consistently read in.
1389          */
1390         error = xfs_log_mount_finish(mp);
1391         if (error) {
1392                 cmn_err(CE_WARN, "XFS: log mount finish failed");
1393                 goto out_rtunmount;
1394         }
1395
1396         /*
1397          * Complete the quota initialisation, post-log-replay component.
1398          */
1399         if (quotamount) {
1400                 ASSERT(mp->m_qflags == 0);
1401                 mp->m_qflags = quotaflags;
1402
1403                 xfs_qm_mount_quotas(mp);
1404         }
1405
1406 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1407         if (XFS_IS_QUOTA_ON(mp))
1408                 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on");
1409         else
1410                 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on");
1411 #endif
1412
1413         /*
1414          * Now we are mounted, reserve a small amount of unused space for
1415          * privileged transactions. This is needed so that transaction
1416          * space required for critical operations can dip into this pool
1417          * when at ENOSPC. This is needed for operations like create with
1418          * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1419          * are not allowed to use this reserved space.
1420          */
1421         if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1422                 resblks = xfs_default_resblks(mp);
1423                 error = xfs_reserve_blocks(mp, &resblks, NULL);
1424                 if (error)
1425                         cmn_err(CE_WARN, "XFS: Unable to allocate reserve "
1426                                 "blocks. Continuing without a reserve pool.");
1427         }
1428
1429         return 0;
1430
1431  out_rtunmount:
1432         xfs_rtunmount_inodes(mp);
1433  out_rele_rip:
1434         IRELE(rip);
1435  out_log_dealloc:
1436         xfs_log_unmount(mp);
1437  out_free_perag:
1438         xfs_free_perag(mp);
1439  out_remove_uuid:
1440         xfs_uuid_unmount(mp);
1441  out:
1442         return error;
1443 }
1444
1445 /*
1446  * This flushes out the inodes,dquots and the superblock, unmounts the
1447  * log and makes sure that incore structures are freed.
1448  */
1449 void
1450 xfs_unmountfs(
1451         struct xfs_mount        *mp)
1452 {
1453         __uint64_t              resblks;
1454         int                     error;
1455
1456         xfs_qm_unmount_quotas(mp);
1457         xfs_rtunmount_inodes(mp);
1458         IRELE(mp->m_rootip);
1459
1460         /*
1461          * We can potentially deadlock here if we have an inode cluster
1462          * that has been freed has its buffer still pinned in memory because
1463          * the transaction is still sitting in a iclog. The stale inodes
1464          * on that buffer will have their flush locks held until the
1465          * transaction hits the disk and the callbacks run. the inode
1466          * flush takes the flush lock unconditionally and with nothing to
1467          * push out the iclog we will never get that unlocked. hence we
1468          * need to force the log first.
1469          */
1470         xfs_log_force(mp, XFS_LOG_SYNC);
1471
1472         /*
1473          * Do a delwri reclaim pass first so that as many dirty inodes are
1474          * queued up for IO as possible. Then flush the buffers before making
1475          * a synchronous path to catch all the remaining inodes are reclaimed.
1476          * This makes the reclaim process as quick as possible by avoiding
1477          * synchronous writeout and blocking on inodes already in the delwri
1478          * state as much as possible.
1479          */
1480         xfs_reclaim_inodes(mp, 0);
1481         XFS_bflush(mp->m_ddev_targp);
1482         xfs_reclaim_inodes(mp, SYNC_WAIT);
1483
1484         xfs_qm_unmount(mp);
1485
1486         /*
1487          * Flush out the log synchronously so that we know for sure
1488          * that nothing is pinned.  This is important because bflush()
1489          * will skip pinned buffers.
1490          */
1491         xfs_log_force(mp, XFS_LOG_SYNC);
1492
1493         xfs_binval(mp->m_ddev_targp);
1494         if (mp->m_rtdev_targp) {
1495                 xfs_binval(mp->m_rtdev_targp);
1496         }
1497
1498         /*
1499          * Unreserve any blocks we have so that when we unmount we don't account
1500          * the reserved free space as used. This is really only necessary for
1501          * lazy superblock counting because it trusts the incore superblock
1502          * counters to be absolutely correct on clean unmount.
1503          *
1504          * We don't bother correcting this elsewhere for lazy superblock
1505          * counting because on mount of an unclean filesystem we reconstruct the
1506          * correct counter value and this is irrelevant.
1507          *
1508          * For non-lazy counter filesystems, this doesn't matter at all because
1509          * we only every apply deltas to the superblock and hence the incore
1510          * value does not matter....
1511          */
1512         resblks = 0;
1513         error = xfs_reserve_blocks(mp, &resblks, NULL);
1514         if (error)
1515                 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1516                                 "Freespace may not be correct on next mount.");
1517
1518         error = xfs_log_sbcount(mp, 1);
1519         if (error)
1520                 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1521                                 "Freespace may not be correct on next mount.");
1522         xfs_unmountfs_writesb(mp);
1523         xfs_unmountfs_wait(mp);                 /* wait for async bufs */
1524         xfs_log_unmount_write(mp);
1525         xfs_log_unmount(mp);
1526         xfs_uuid_unmount(mp);
1527
1528 #if defined(DEBUG)
1529         xfs_errortag_clearall(mp, 0);
1530 #endif
1531         xfs_free_perag(mp);
1532 }
1533
1534 STATIC void
1535 xfs_unmountfs_wait(xfs_mount_t *mp)
1536 {
1537         if (mp->m_logdev_targp != mp->m_ddev_targp)
1538                 xfs_wait_buftarg(mp->m_logdev_targp);
1539         if (mp->m_rtdev_targp)
1540                 xfs_wait_buftarg(mp->m_rtdev_targp);
1541         xfs_wait_buftarg(mp->m_ddev_targp);
1542 }
1543
1544 int
1545 xfs_fs_writable(xfs_mount_t *mp)
1546 {
1547         return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1548                 (mp->m_flags & XFS_MOUNT_RDONLY));
1549 }
1550
1551 /*
1552  * xfs_log_sbcount
1553  *
1554  * Called either periodically to keep the on disk superblock values
1555  * roughly up to date or from unmount to make sure the values are
1556  * correct on a clean unmount.
1557  *
1558  * Note this code can be called during the process of freezing, so
1559  * we may need to use the transaction allocator which does not not
1560  * block when the transaction subsystem is in its frozen state.
1561  */
1562 int
1563 xfs_log_sbcount(
1564         xfs_mount_t     *mp,
1565         uint            sync)
1566 {
1567         xfs_trans_t     *tp;
1568         int             error;
1569
1570         if (!xfs_fs_writable(mp))
1571                 return 0;
1572
1573         xfs_icsb_sync_counters(mp, 0);
1574
1575         /*
1576          * we don't need to do this if we are updating the superblock
1577          * counters on every modification.
1578          */
1579         if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1580                 return 0;
1581
1582         tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1583         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1584                                         XFS_DEFAULT_LOG_COUNT);
1585         if (error) {
1586                 xfs_trans_cancel(tp, 0);
1587                 return error;
1588         }
1589
1590         xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1591         if (sync)
1592                 xfs_trans_set_sync(tp);
1593         error = xfs_trans_commit(tp, 0);
1594         return error;
1595 }
1596
1597 int
1598 xfs_unmountfs_writesb(xfs_mount_t *mp)
1599 {
1600         xfs_buf_t       *sbp;
1601         int             error = 0;
1602
1603         /*
1604          * skip superblock write if fs is read-only, or
1605          * if we are doing a forced umount.
1606          */
1607         if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1608                 XFS_FORCED_SHUTDOWN(mp))) {
1609
1610                 sbp = xfs_getsb(mp, 0);
1611
1612                 XFS_BUF_UNDONE(sbp);
1613                 XFS_BUF_UNREAD(sbp);
1614                 XFS_BUF_UNDELAYWRITE(sbp);
1615                 XFS_BUF_WRITE(sbp);
1616                 XFS_BUF_UNASYNC(sbp);
1617                 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1618                 xfsbdstrat(mp, sbp);
1619                 error = xfs_iowait(sbp);
1620                 if (error)
1621                         xfs_ioerror_alert("xfs_unmountfs_writesb",
1622                                           mp, sbp, XFS_BUF_ADDR(sbp));
1623                 xfs_buf_relse(sbp);
1624         }
1625         return error;
1626 }
1627
1628 /*
1629  * xfs_mod_sb() can be used to copy arbitrary changes to the
1630  * in-core superblock into the superblock buffer to be logged.
1631  * It does not provide the higher level of locking that is
1632  * needed to protect the in-core superblock from concurrent
1633  * access.
1634  */
1635 void
1636 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1637 {
1638         xfs_buf_t       *bp;
1639         int             first;
1640         int             last;
1641         xfs_mount_t     *mp;
1642         xfs_sb_field_t  f;
1643
1644         ASSERT(fields);
1645         if (!fields)
1646                 return;
1647         mp = tp->t_mountp;
1648         bp = xfs_trans_getsb(tp, mp, 0);
1649         first = sizeof(xfs_sb_t);
1650         last = 0;
1651
1652         /* translate/copy */
1653
1654         xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1655
1656         /* find modified range */
1657         f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1658         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1659         last = xfs_sb_info[f + 1].offset - 1;
1660
1661         f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1662         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1663         first = xfs_sb_info[f].offset;
1664
1665         xfs_trans_log_buf(tp, bp, first, last);
1666 }
1667
1668
1669 /*
1670  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1671  * a delta to a specified field in the in-core superblock.  Simply
1672  * switch on the field indicated and apply the delta to that field.
1673  * Fields are not allowed to dip below zero, so if the delta would
1674  * do this do not apply it and return EINVAL.
1675  *
1676  * The m_sb_lock must be held when this routine is called.
1677  */
1678 STATIC int
1679 xfs_mod_incore_sb_unlocked(
1680         xfs_mount_t     *mp,
1681         xfs_sb_field_t  field,
1682         int64_t         delta,
1683         int             rsvd)
1684 {
1685         int             scounter;       /* short counter for 32 bit fields */
1686         long long       lcounter;       /* long counter for 64 bit fields */
1687         long long       res_used, rem;
1688
1689         /*
1690          * With the in-core superblock spin lock held, switch
1691          * on the indicated field.  Apply the delta to the
1692          * proper field.  If the fields value would dip below
1693          * 0, then do not apply the delta and return EINVAL.
1694          */
1695         switch (field) {
1696         case XFS_SBS_ICOUNT:
1697                 lcounter = (long long)mp->m_sb.sb_icount;
1698                 lcounter += delta;
1699                 if (lcounter < 0) {
1700                         ASSERT(0);
1701                         return XFS_ERROR(EINVAL);
1702                 }
1703                 mp->m_sb.sb_icount = lcounter;
1704                 return 0;
1705         case XFS_SBS_IFREE:
1706                 lcounter = (long long)mp->m_sb.sb_ifree;
1707                 lcounter += delta;
1708                 if (lcounter < 0) {
1709                         ASSERT(0);
1710                         return XFS_ERROR(EINVAL);
1711                 }
1712                 mp->m_sb.sb_ifree = lcounter;
1713                 return 0;
1714         case XFS_SBS_FDBLOCKS:
1715                 lcounter = (long long)
1716                         mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1717                 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1718
1719                 if (delta > 0) {                /* Putting blocks back */
1720                         if (res_used > delta) {
1721                                 mp->m_resblks_avail += delta;
1722                         } else {
1723                                 rem = delta - res_used;
1724                                 mp->m_resblks_avail = mp->m_resblks;
1725                                 lcounter += rem;
1726                         }
1727                 } else {                                /* Taking blocks away */
1728
1729                         lcounter += delta;
1730
1731                 /*
1732                  * If were out of blocks, use any available reserved blocks if
1733                  * were allowed to.
1734                  */
1735
1736                         if (lcounter < 0) {
1737                                 if (rsvd) {
1738                                         lcounter = (long long)mp->m_resblks_avail + delta;
1739                                         if (lcounter < 0) {
1740                                                 return XFS_ERROR(ENOSPC);
1741                                         }
1742                                         mp->m_resblks_avail = lcounter;
1743                                         return 0;
1744                                 } else {        /* not reserved */
1745                                         return XFS_ERROR(ENOSPC);
1746                                 }
1747                         }
1748                 }
1749
1750                 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1751                 return 0;
1752         case XFS_SBS_FREXTENTS:
1753                 lcounter = (long long)mp->m_sb.sb_frextents;
1754                 lcounter += delta;
1755                 if (lcounter < 0) {
1756                         return XFS_ERROR(ENOSPC);
1757                 }
1758                 mp->m_sb.sb_frextents = lcounter;
1759                 return 0;
1760         case XFS_SBS_DBLOCKS:
1761                 lcounter = (long long)mp->m_sb.sb_dblocks;
1762                 lcounter += delta;
1763                 if (lcounter < 0) {
1764                         ASSERT(0);
1765                         return XFS_ERROR(EINVAL);
1766                 }
1767                 mp->m_sb.sb_dblocks = lcounter;
1768                 return 0;
1769         case XFS_SBS_AGCOUNT:
1770                 scounter = mp->m_sb.sb_agcount;
1771                 scounter += delta;
1772                 if (scounter < 0) {
1773                         ASSERT(0);
1774                         return XFS_ERROR(EINVAL);
1775                 }
1776                 mp->m_sb.sb_agcount = scounter;
1777                 return 0;
1778         case XFS_SBS_IMAX_PCT:
1779                 scounter = mp->m_sb.sb_imax_pct;
1780                 scounter += delta;
1781                 if (scounter < 0) {
1782                         ASSERT(0);
1783                         return XFS_ERROR(EINVAL);
1784                 }
1785                 mp->m_sb.sb_imax_pct = scounter;
1786                 return 0;
1787         case XFS_SBS_REXTSIZE:
1788                 scounter = mp->m_sb.sb_rextsize;
1789                 scounter += delta;
1790                 if (scounter < 0) {
1791                         ASSERT(0);
1792                         return XFS_ERROR(EINVAL);
1793                 }
1794                 mp->m_sb.sb_rextsize = scounter;
1795                 return 0;
1796         case XFS_SBS_RBMBLOCKS:
1797                 scounter = mp->m_sb.sb_rbmblocks;
1798                 scounter += delta;
1799                 if (scounter < 0) {
1800                         ASSERT(0);
1801                         return XFS_ERROR(EINVAL);
1802                 }
1803                 mp->m_sb.sb_rbmblocks = scounter;
1804                 return 0;
1805         case XFS_SBS_RBLOCKS:
1806                 lcounter = (long long)mp->m_sb.sb_rblocks;
1807                 lcounter += delta;
1808                 if (lcounter < 0) {
1809                         ASSERT(0);
1810                         return XFS_ERROR(EINVAL);
1811                 }
1812                 mp->m_sb.sb_rblocks = lcounter;
1813                 return 0;
1814         case XFS_SBS_REXTENTS:
1815                 lcounter = (long long)mp->m_sb.sb_rextents;
1816                 lcounter += delta;
1817                 if (lcounter < 0) {
1818                         ASSERT(0);
1819                         return XFS_ERROR(EINVAL);
1820                 }
1821                 mp->m_sb.sb_rextents = lcounter;
1822                 return 0;
1823         case XFS_SBS_REXTSLOG:
1824                 scounter = mp->m_sb.sb_rextslog;
1825                 scounter += delta;
1826                 if (scounter < 0) {
1827                         ASSERT(0);
1828                         return XFS_ERROR(EINVAL);
1829                 }
1830                 mp->m_sb.sb_rextslog = scounter;
1831                 return 0;
1832         default:
1833                 ASSERT(0);
1834                 return XFS_ERROR(EINVAL);
1835         }
1836 }
1837
1838 /*
1839  * xfs_mod_incore_sb() is used to change a field in the in-core
1840  * superblock structure by the specified delta.  This modification
1841  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1842  * routine to do the work.
1843  */
1844 int
1845 xfs_mod_incore_sb(
1846         xfs_mount_t     *mp,
1847         xfs_sb_field_t  field,
1848         int64_t         delta,
1849         int             rsvd)
1850 {
1851         int     status;
1852
1853         /* check for per-cpu counters */
1854         switch (field) {
1855 #ifdef HAVE_PERCPU_SB
1856         case XFS_SBS_ICOUNT:
1857         case XFS_SBS_IFREE:
1858         case XFS_SBS_FDBLOCKS:
1859                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1860                         status = xfs_icsb_modify_counters(mp, field,
1861                                                         delta, rsvd);
1862                         break;
1863                 }
1864                 /* FALLTHROUGH */
1865 #endif
1866         default:
1867                 spin_lock(&mp->m_sb_lock);
1868                 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1869                 spin_unlock(&mp->m_sb_lock);
1870                 break;
1871         }
1872
1873         return status;
1874 }
1875
1876 /*
1877  * xfs_mod_incore_sb_batch() is used to change more than one field
1878  * in the in-core superblock structure at a time.  This modification
1879  * is protected by a lock internal to this module.  The fields and
1880  * changes to those fields are specified in the array of xfs_mod_sb
1881  * structures passed in.
1882  *
1883  * Either all of the specified deltas will be applied or none of
1884  * them will.  If any modified field dips below 0, then all modifications
1885  * will be backed out and EINVAL will be returned.
1886  */
1887 int
1888 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1889 {
1890         int             status=0;
1891         xfs_mod_sb_t    *msbp;
1892
1893         /*
1894          * Loop through the array of mod structures and apply each
1895          * individually.  If any fail, then back out all those
1896          * which have already been applied.  Do all of this within
1897          * the scope of the m_sb_lock so that all of the changes will
1898          * be atomic.
1899          */
1900         spin_lock(&mp->m_sb_lock);
1901         msbp = &msb[0];
1902         for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1903                 /*
1904                  * Apply the delta at index n.  If it fails, break
1905                  * from the loop so we'll fall into the undo loop
1906                  * below.
1907                  */
1908                 switch (msbp->msb_field) {
1909 #ifdef HAVE_PERCPU_SB
1910                 case XFS_SBS_ICOUNT:
1911                 case XFS_SBS_IFREE:
1912                 case XFS_SBS_FDBLOCKS:
1913                         if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1914                                 spin_unlock(&mp->m_sb_lock);
1915                                 status = xfs_icsb_modify_counters(mp,
1916                                                         msbp->msb_field,
1917                                                         msbp->msb_delta, rsvd);
1918                                 spin_lock(&mp->m_sb_lock);
1919                                 break;
1920                         }
1921                         /* FALLTHROUGH */
1922 #endif
1923                 default:
1924                         status = xfs_mod_incore_sb_unlocked(mp,
1925                                                 msbp->msb_field,
1926                                                 msbp->msb_delta, rsvd);
1927                         break;
1928                 }
1929
1930                 if (status != 0) {
1931                         break;
1932                 }
1933         }
1934
1935         /*
1936          * If we didn't complete the loop above, then back out
1937          * any changes made to the superblock.  If you add code
1938          * between the loop above and here, make sure that you
1939          * preserve the value of status. Loop back until
1940          * we step below the beginning of the array.  Make sure
1941          * we don't touch anything back there.
1942          */
1943         if (status != 0) {
1944                 msbp--;
1945                 while (msbp >= msb) {
1946                         switch (msbp->msb_field) {
1947 #ifdef HAVE_PERCPU_SB
1948                         case XFS_SBS_ICOUNT:
1949                         case XFS_SBS_IFREE:
1950                         case XFS_SBS_FDBLOCKS:
1951                                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1952                                         spin_unlock(&mp->m_sb_lock);
1953                                         status = xfs_icsb_modify_counters(mp,
1954                                                         msbp->msb_field,
1955                                                         -(msbp->msb_delta),
1956                                                         rsvd);
1957                                         spin_lock(&mp->m_sb_lock);
1958                                         break;
1959                                 }
1960                                 /* FALLTHROUGH */
1961 #endif
1962                         default:
1963                                 status = xfs_mod_incore_sb_unlocked(mp,
1964                                                         msbp->msb_field,
1965                                                         -(msbp->msb_delta),
1966                                                         rsvd);
1967                                 break;
1968                         }
1969                         ASSERT(status == 0);
1970                         msbp--;
1971                 }
1972         }
1973         spin_unlock(&mp->m_sb_lock);
1974         return status;
1975 }
1976
1977 /*
1978  * xfs_getsb() is called to obtain the buffer for the superblock.
1979  * The buffer is returned locked and read in from disk.
1980  * The buffer should be released with a call to xfs_brelse().
1981  *
1982  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1983  * the superblock buffer if it can be locked without sleeping.
1984  * If it can't then we'll return NULL.
1985  */
1986 xfs_buf_t *
1987 xfs_getsb(
1988         xfs_mount_t     *mp,
1989         int             flags)
1990 {
1991         xfs_buf_t       *bp;
1992
1993         ASSERT(mp->m_sb_bp != NULL);
1994         bp = mp->m_sb_bp;
1995         if (flags & XBF_TRYLOCK) {
1996                 if (!XFS_BUF_CPSEMA(bp)) {
1997                         return NULL;
1998                 }
1999         } else {
2000                 XFS_BUF_PSEMA(bp, PRIBIO);
2001         }
2002         XFS_BUF_HOLD(bp);
2003         ASSERT(XFS_BUF_ISDONE(bp));
2004         return bp;
2005 }
2006
2007 /*
2008  * Used to free the superblock along various error paths.
2009  */
2010 void
2011 xfs_freesb(
2012         xfs_mount_t     *mp)
2013 {
2014         xfs_buf_t       *bp;
2015
2016         /*
2017          * Use xfs_getsb() so that the buffer will be locked
2018          * when we call xfs_buf_relse().
2019          */
2020         bp = xfs_getsb(mp, 0);
2021         XFS_BUF_UNMANAGE(bp);
2022         xfs_buf_relse(bp);
2023         mp->m_sb_bp = NULL;
2024 }
2025
2026 /*
2027  * Used to log changes to the superblock unit and width fields which could
2028  * be altered by the mount options, as well as any potential sb_features2
2029  * fixup. Only the first superblock is updated.
2030  */
2031 int
2032 xfs_mount_log_sb(
2033         xfs_mount_t     *mp,
2034         __int64_t       fields)
2035 {
2036         xfs_trans_t     *tp;
2037         int             error;
2038
2039         ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2040                          XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2041                          XFS_SB_VERSIONNUM));
2042
2043         tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2044         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2045                                 XFS_DEFAULT_LOG_COUNT);
2046         if (error) {
2047                 xfs_trans_cancel(tp, 0);
2048                 return error;
2049         }
2050         xfs_mod_sb(tp, fields);
2051         error = xfs_trans_commit(tp, 0);
2052         return error;
2053 }
2054
2055
2056 #ifdef HAVE_PERCPU_SB
2057 /*
2058  * Per-cpu incore superblock counters
2059  *
2060  * Simple concept, difficult implementation
2061  *
2062  * Basically, replace the incore superblock counters with a distributed per cpu
2063  * counter for contended fields (e.g.  free block count).
2064  *
2065  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2066  * hence needs to be accurately read when we are running low on space. Hence
2067  * there is a method to enable and disable the per-cpu counters based on how
2068  * much "stuff" is available in them.
2069  *
2070  * Basically, a counter is enabled if there is enough free resource to justify
2071  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2072  * ENOSPC), then we disable the counters to synchronise all callers and
2073  * re-distribute the available resources.
2074  *
2075  * If, once we redistributed the available resources, we still get a failure,
2076  * we disable the per-cpu counter and go through the slow path.
2077  *
2078  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2079  * when we disable a per-cpu counter, we need to drain its resources back to
2080  * the global superblock. We do this after disabling the counter to prevent
2081  * more threads from queueing up on the counter.
2082  *
2083  * Essentially, this means that we still need a lock in the fast path to enable
2084  * synchronisation between the global counters and the per-cpu counters. This
2085  * is not a problem because the lock will be local to a CPU almost all the time
2086  * and have little contention except when we get to ENOSPC conditions.
2087  *
2088  * Basically, this lock becomes a barrier that enables us to lock out the fast
2089  * path while we do things like enabling and disabling counters and
2090  * synchronising the counters.
2091  *
2092  * Locking rules:
2093  *
2094  *      1. m_sb_lock before picking up per-cpu locks
2095  *      2. per-cpu locks always picked up via for_each_online_cpu() order
2096  *      3. accurate counter sync requires m_sb_lock + per cpu locks
2097  *      4. modifying per-cpu counters requires holding per-cpu lock
2098  *      5. modifying global counters requires holding m_sb_lock
2099  *      6. enabling or disabling a counter requires holding the m_sb_lock 
2100  *         and _none_ of the per-cpu locks.
2101  *
2102  * Disabled counters are only ever re-enabled by a balance operation
2103  * that results in more free resources per CPU than a given threshold.
2104  * To ensure counters don't remain disabled, they are rebalanced when
2105  * the global resource goes above a higher threshold (i.e. some hysteresis
2106  * is present to prevent thrashing).
2107  */
2108
2109 #ifdef CONFIG_HOTPLUG_CPU
2110 /*
2111  * hot-plug CPU notifier support.
2112  *
2113  * We need a notifier per filesystem as we need to be able to identify
2114  * the filesystem to balance the counters out. This is achieved by
2115  * having a notifier block embedded in the xfs_mount_t and doing pointer
2116  * magic to get the mount pointer from the notifier block address.
2117  */
2118 STATIC int
2119 xfs_icsb_cpu_notify(
2120         struct notifier_block *nfb,
2121         unsigned long action,
2122         void *hcpu)
2123 {
2124         xfs_icsb_cnts_t *cntp;
2125         xfs_mount_t     *mp;
2126
2127         mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2128         cntp = (xfs_icsb_cnts_t *)
2129                         per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2130         switch (action) {
2131         case CPU_UP_PREPARE:
2132         case CPU_UP_PREPARE_FROZEN:
2133                 /* Easy Case - initialize the area and locks, and
2134                  * then rebalance when online does everything else for us. */
2135                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2136                 break;
2137         case CPU_ONLINE:
2138         case CPU_ONLINE_FROZEN:
2139                 xfs_icsb_lock(mp);
2140                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2141                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2142                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2143                 xfs_icsb_unlock(mp);
2144                 break;
2145         case CPU_DEAD:
2146         case CPU_DEAD_FROZEN:
2147                 /* Disable all the counters, then fold the dead cpu's
2148                  * count into the total on the global superblock and
2149                  * re-enable the counters. */
2150                 xfs_icsb_lock(mp);
2151                 spin_lock(&mp->m_sb_lock);
2152                 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2153                 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2154                 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2155
2156                 mp->m_sb.sb_icount += cntp->icsb_icount;
2157                 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2158                 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2159
2160                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2161
2162                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2163                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2164                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2165                 spin_unlock(&mp->m_sb_lock);
2166                 xfs_icsb_unlock(mp);
2167                 break;
2168         }
2169
2170         return NOTIFY_OK;
2171 }
2172 #endif /* CONFIG_HOTPLUG_CPU */
2173
2174 int
2175 xfs_icsb_init_counters(
2176         xfs_mount_t     *mp)
2177 {
2178         xfs_icsb_cnts_t *cntp;
2179         int             i;
2180
2181         mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2182         if (mp->m_sb_cnts == NULL)
2183                 return -ENOMEM;
2184
2185 #ifdef CONFIG_HOTPLUG_CPU
2186         mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2187         mp->m_icsb_notifier.priority = 0;
2188         register_hotcpu_notifier(&mp->m_icsb_notifier);
2189 #endif /* CONFIG_HOTPLUG_CPU */
2190
2191         for_each_online_cpu(i) {
2192                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2193                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2194         }
2195
2196         mutex_init(&mp->m_icsb_mutex);
2197
2198         /*
2199          * start with all counters disabled so that the
2200          * initial balance kicks us off correctly
2201          */
2202         mp->m_icsb_counters = -1;
2203         return 0;
2204 }
2205
2206 void
2207 xfs_icsb_reinit_counters(
2208         xfs_mount_t     *mp)
2209 {
2210         xfs_icsb_lock(mp);
2211         /*
2212          * start with all counters disabled so that the
2213          * initial balance kicks us off correctly
2214          */
2215         mp->m_icsb_counters = -1;
2216         xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2217         xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2218         xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2219         xfs_icsb_unlock(mp);
2220 }
2221
2222 void
2223 xfs_icsb_destroy_counters(
2224         xfs_mount_t     *mp)
2225 {
2226         if (mp->m_sb_cnts) {
2227                 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2228                 free_percpu(mp->m_sb_cnts);
2229         }
2230         mutex_destroy(&mp->m_icsb_mutex);
2231 }
2232
2233 STATIC void
2234 xfs_icsb_lock_cntr(
2235         xfs_icsb_cnts_t *icsbp)
2236 {
2237         while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2238                 ndelay(1000);
2239         }
2240 }
2241
2242 STATIC void
2243 xfs_icsb_unlock_cntr(
2244         xfs_icsb_cnts_t *icsbp)
2245 {
2246         clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2247 }
2248
2249
2250 STATIC void
2251 xfs_icsb_lock_all_counters(
2252         xfs_mount_t     *mp)
2253 {
2254         xfs_icsb_cnts_t *cntp;
2255         int             i;
2256
2257         for_each_online_cpu(i) {
2258                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2259                 xfs_icsb_lock_cntr(cntp);
2260         }
2261 }
2262
2263 STATIC void
2264 xfs_icsb_unlock_all_counters(
2265         xfs_mount_t     *mp)
2266 {
2267         xfs_icsb_cnts_t *cntp;
2268         int             i;
2269
2270         for_each_online_cpu(i) {
2271                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2272                 xfs_icsb_unlock_cntr(cntp);
2273         }
2274 }
2275
2276 STATIC void
2277 xfs_icsb_count(
2278         xfs_mount_t     *mp,
2279         xfs_icsb_cnts_t *cnt,
2280         int             flags)
2281 {
2282         xfs_icsb_cnts_t *cntp;
2283         int             i;
2284
2285         memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2286
2287         if (!(flags & XFS_ICSB_LAZY_COUNT))
2288                 xfs_icsb_lock_all_counters(mp);
2289
2290         for_each_online_cpu(i) {
2291                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2292                 cnt->icsb_icount += cntp->icsb_icount;
2293                 cnt->icsb_ifree += cntp->icsb_ifree;
2294                 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2295         }
2296
2297         if (!(flags & XFS_ICSB_LAZY_COUNT))
2298                 xfs_icsb_unlock_all_counters(mp);
2299 }
2300
2301 STATIC int
2302 xfs_icsb_counter_disabled(
2303         xfs_mount_t     *mp,
2304         xfs_sb_field_t  field)
2305 {
2306         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2307         return test_bit(field, &mp->m_icsb_counters);
2308 }
2309
2310 STATIC void
2311 xfs_icsb_disable_counter(
2312         xfs_mount_t     *mp,
2313         xfs_sb_field_t  field)
2314 {
2315         xfs_icsb_cnts_t cnt;
2316
2317         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2318
2319         /*
2320          * If we are already disabled, then there is nothing to do
2321          * here. We check before locking all the counters to avoid
2322          * the expensive lock operation when being called in the
2323          * slow path and the counter is already disabled. This is
2324          * safe because the only time we set or clear this state is under
2325          * the m_icsb_mutex.
2326          */
2327         if (xfs_icsb_counter_disabled(mp, field))
2328                 return;
2329
2330         xfs_icsb_lock_all_counters(mp);
2331         if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2332                 /* drain back to superblock */
2333
2334                 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2335                 switch(field) {
2336                 case XFS_SBS_ICOUNT:
2337                         mp->m_sb.sb_icount = cnt.icsb_icount;
2338                         break;
2339                 case XFS_SBS_IFREE:
2340                         mp->m_sb.sb_ifree = cnt.icsb_ifree;
2341                         break;
2342                 case XFS_SBS_FDBLOCKS:
2343                         mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2344                         break;
2345                 default:
2346                         BUG();
2347                 }
2348         }
2349
2350         xfs_icsb_unlock_all_counters(mp);
2351 }
2352
2353 STATIC void
2354 xfs_icsb_enable_counter(
2355         xfs_mount_t     *mp,
2356         xfs_sb_field_t  field,
2357         uint64_t        count,
2358         uint64_t        resid)
2359 {
2360         xfs_icsb_cnts_t *cntp;
2361         int             i;
2362
2363         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2364
2365         xfs_icsb_lock_all_counters(mp);
2366         for_each_online_cpu(i) {
2367                 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2368                 switch (field) {
2369                 case XFS_SBS_ICOUNT:
2370                         cntp->icsb_icount = count + resid;
2371                         break;
2372                 case XFS_SBS_IFREE:
2373                         cntp->icsb_ifree = count + resid;
2374                         break;
2375                 case XFS_SBS_FDBLOCKS:
2376                         cntp->icsb_fdblocks = count + resid;
2377                         break;
2378                 default:
2379                         BUG();
2380                         break;
2381                 }
2382                 resid = 0;
2383         }
2384         clear_bit(field, &mp->m_icsb_counters);
2385         xfs_icsb_unlock_all_counters(mp);
2386 }
2387
2388 void
2389 xfs_icsb_sync_counters_locked(
2390         xfs_mount_t     *mp,
2391         int             flags)
2392 {
2393         xfs_icsb_cnts_t cnt;
2394
2395         xfs_icsb_count(mp, &cnt, flags);
2396
2397         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2398                 mp->m_sb.sb_icount = cnt.icsb_icount;
2399         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2400                 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2401         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2402                 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2403 }
2404
2405 /*
2406  * Accurate update of per-cpu counters to incore superblock
2407  */
2408 void
2409 xfs_icsb_sync_counters(
2410         xfs_mount_t     *mp,
2411         int             flags)
2412 {
2413         spin_lock(&mp->m_sb_lock);
2414         xfs_icsb_sync_counters_locked(mp, flags);
2415         spin_unlock(&mp->m_sb_lock);
2416 }
2417
2418 /*
2419  * Balance and enable/disable counters as necessary.
2420  *
2421  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2422  * chosen to be the same number as single on disk allocation chunk per CPU, and
2423  * free blocks is something far enough zero that we aren't going thrash when we
2424  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2425  * prevent looping endlessly when xfs_alloc_space asks for more than will
2426  * be distributed to a single CPU but each CPU has enough blocks to be
2427  * reenabled.
2428  *
2429  * Note that we can be called when counters are already disabled.
2430  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2431  * prevent locking every per-cpu counter needlessly.
2432  */
2433
2434 #define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
2435 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2436                 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2437 STATIC void
2438 xfs_icsb_balance_counter_locked(
2439         xfs_mount_t     *mp,
2440         xfs_sb_field_t  field,
2441         int             min_per_cpu)
2442 {
2443         uint64_t        count, resid;
2444         int             weight = num_online_cpus();
2445         uint64_t        min = (uint64_t)min_per_cpu;
2446
2447         /* disable counter and sync counter */
2448         xfs_icsb_disable_counter(mp, field);
2449
2450         /* update counters  - first CPU gets residual*/
2451         switch (field) {
2452         case XFS_SBS_ICOUNT:
2453                 count = mp->m_sb.sb_icount;
2454                 resid = do_div(count, weight);
2455                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2456                         return;
2457                 break;
2458         case XFS_SBS_IFREE:
2459                 count = mp->m_sb.sb_ifree;
2460                 resid = do_div(count, weight);
2461                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2462                         return;
2463                 break;
2464         case XFS_SBS_FDBLOCKS:
2465                 count = mp->m_sb.sb_fdblocks;
2466                 resid = do_div(count, weight);
2467                 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2468                         return;
2469                 break;
2470         default:
2471                 BUG();
2472                 count = resid = 0;      /* quiet, gcc */
2473                 break;
2474         }
2475
2476         xfs_icsb_enable_counter(mp, field, count, resid);
2477 }
2478
2479 STATIC void
2480 xfs_icsb_balance_counter(
2481         xfs_mount_t     *mp,
2482         xfs_sb_field_t  fields,
2483         int             min_per_cpu)
2484 {
2485         spin_lock(&mp->m_sb_lock);
2486         xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2487         spin_unlock(&mp->m_sb_lock);
2488 }
2489
2490 STATIC int
2491 xfs_icsb_modify_counters(
2492         xfs_mount_t     *mp,
2493         xfs_sb_field_t  field,
2494         int64_t         delta,
2495         int             rsvd)
2496 {
2497         xfs_icsb_cnts_t *icsbp;
2498         long long       lcounter;       /* long counter for 64 bit fields */
2499         int             ret = 0;
2500
2501         might_sleep();
2502 again:
2503         preempt_disable();
2504         icsbp = this_cpu_ptr(mp->m_sb_cnts);
2505
2506         /*
2507          * if the counter is disabled, go to slow path
2508          */
2509         if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2510                 goto slow_path;
2511         xfs_icsb_lock_cntr(icsbp);
2512         if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2513                 xfs_icsb_unlock_cntr(icsbp);
2514                 goto slow_path;
2515         }
2516
2517         switch (field) {
2518         case XFS_SBS_ICOUNT:
2519                 lcounter = icsbp->icsb_icount;
2520                 lcounter += delta;
2521                 if (unlikely(lcounter < 0))
2522                         goto balance_counter;
2523                 icsbp->icsb_icount = lcounter;
2524                 break;
2525
2526         case XFS_SBS_IFREE:
2527                 lcounter = icsbp->icsb_ifree;
2528                 lcounter += delta;
2529                 if (unlikely(lcounter < 0))
2530                         goto balance_counter;
2531                 icsbp->icsb_ifree = lcounter;
2532                 break;
2533
2534         case XFS_SBS_FDBLOCKS:
2535                 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2536
2537                 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2538                 lcounter += delta;
2539                 if (unlikely(lcounter < 0))
2540                         goto balance_counter;
2541                 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2542                 break;
2543         default:
2544                 BUG();
2545                 break;
2546         }
2547         xfs_icsb_unlock_cntr(icsbp);
2548         preempt_enable();
2549         return 0;
2550
2551 slow_path:
2552         preempt_enable();
2553
2554         /*
2555          * serialise with a mutex so we don't burn lots of cpu on
2556          * the superblock lock. We still need to hold the superblock
2557          * lock, however, when we modify the global structures.
2558          */
2559         xfs_icsb_lock(mp);
2560
2561         /*
2562          * Now running atomically.
2563          *
2564          * If the counter is enabled, someone has beaten us to rebalancing.
2565          * Drop the lock and try again in the fast path....
2566          */
2567         if (!(xfs_icsb_counter_disabled(mp, field))) {
2568                 xfs_icsb_unlock(mp);
2569                 goto again;
2570         }
2571
2572         /*
2573          * The counter is currently disabled. Because we are
2574          * running atomically here, we know a rebalance cannot
2575          * be in progress. Hence we can go straight to operating
2576          * on the global superblock. We do not call xfs_mod_incore_sb()
2577          * here even though we need to get the m_sb_lock. Doing so
2578          * will cause us to re-enter this function and deadlock.
2579          * Hence we get the m_sb_lock ourselves and then call
2580          * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2581          * directly on the global counters.
2582          */
2583         spin_lock(&mp->m_sb_lock);
2584         ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2585         spin_unlock(&mp->m_sb_lock);
2586
2587         /*
2588          * Now that we've modified the global superblock, we
2589          * may be able to re-enable the distributed counters
2590          * (e.g. lots of space just got freed). After that
2591          * we are done.
2592          */
2593         if (ret != ENOSPC)
2594                 xfs_icsb_balance_counter(mp, field, 0);
2595         xfs_icsb_unlock(mp);
2596         return ret;
2597
2598 balance_counter:
2599         xfs_icsb_unlock_cntr(icsbp);
2600         preempt_enable();
2601
2602         /*
2603          * We may have multiple threads here if multiple per-cpu
2604          * counters run dry at the same time. This will mean we can
2605          * do more balances than strictly necessary but it is not
2606          * the common slowpath case.
2607          */
2608         xfs_icsb_lock(mp);
2609
2610         /*
2611          * running atomically.
2612          *
2613          * This will leave the counter in the correct state for future
2614          * accesses. After the rebalance, we simply try again and our retry
2615          * will either succeed through the fast path or slow path without
2616          * another balance operation being required.
2617          */
2618         xfs_icsb_balance_counter(mp, field, delta);
2619         xfs_icsb_unlock(mp);
2620         goto again;
2621 }
2622
2623 #endif