xfs: suppress spurious uninitialised var warning in xfs_bmapi()
[safe/jmp/linux-2.6] / fs / xfs / xfs_mount.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 #include "xfs_trace.h"
48
49
50 STATIC void     xfs_unmountfs_wait(xfs_mount_t *);
51
52
53 #ifdef HAVE_PERCPU_SB
54 STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
55                                                 int);
56 STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
57                                                 int);
58 STATIC int      xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59                                                 int64_t, int);
60 STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61
62 #else
63
64 #define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c)           do { } while (0)
67
68 #endif
69
70 static const struct {
71         short offset;
72         short type;     /* 0 = integer
73                          * 1 = binary / string (no translation)
74                          */
75 } xfs_sb_info[] = {
76     { offsetof(xfs_sb_t, sb_magicnum),   0 },
77     { offsetof(xfs_sb_t, sb_blocksize),  0 },
78     { offsetof(xfs_sb_t, sb_dblocks),    0 },
79     { offsetof(xfs_sb_t, sb_rblocks),    0 },
80     { offsetof(xfs_sb_t, sb_rextents),   0 },
81     { offsetof(xfs_sb_t, sb_uuid),       1 },
82     { offsetof(xfs_sb_t, sb_logstart),   0 },
83     { offsetof(xfs_sb_t, sb_rootino),    0 },
84     { offsetof(xfs_sb_t, sb_rbmino),     0 },
85     { offsetof(xfs_sb_t, sb_rsumino),    0 },
86     { offsetof(xfs_sb_t, sb_rextsize),   0 },
87     { offsetof(xfs_sb_t, sb_agblocks),   0 },
88     { offsetof(xfs_sb_t, sb_agcount),    0 },
89     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
90     { offsetof(xfs_sb_t, sb_logblocks),  0 },
91     { offsetof(xfs_sb_t, sb_versionnum), 0 },
92     { offsetof(xfs_sb_t, sb_sectsize),   0 },
93     { offsetof(xfs_sb_t, sb_inodesize),  0 },
94     { offsetof(xfs_sb_t, sb_inopblock),  0 },
95     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
96     { offsetof(xfs_sb_t, sb_blocklog),   0 },
97     { offsetof(xfs_sb_t, sb_sectlog),    0 },
98     { offsetof(xfs_sb_t, sb_inodelog),   0 },
99     { offsetof(xfs_sb_t, sb_inopblog),   0 },
100     { offsetof(xfs_sb_t, sb_agblklog),   0 },
101     { offsetof(xfs_sb_t, sb_rextslog),   0 },
102     { offsetof(xfs_sb_t, sb_inprogress), 0 },
103     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
104     { offsetof(xfs_sb_t, sb_icount),     0 },
105     { offsetof(xfs_sb_t, sb_ifree),      0 },
106     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
107     { offsetof(xfs_sb_t, sb_frextents),  0 },
108     { offsetof(xfs_sb_t, sb_uquotino),   0 },
109     { offsetof(xfs_sb_t, sb_gquotino),   0 },
110     { offsetof(xfs_sb_t, sb_qflags),     0 },
111     { offsetof(xfs_sb_t, sb_flags),      0 },
112     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
113     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114     { offsetof(xfs_sb_t, sb_unit),       0 },
115     { offsetof(xfs_sb_t, sb_width),      0 },
116     { offsetof(xfs_sb_t, sb_dirblklog),  0 },
117     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118     { offsetof(xfs_sb_t, sb_logsectsize),0 },
119     { offsetof(xfs_sb_t, sb_logsunit),   0 },
120     { offsetof(xfs_sb_t, sb_features2),  0 },
121     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122     { sizeof(xfs_sb_t),                  0 }
123 };
124
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
128
129 /*
130  * See if the UUID is unique among mounted XFS filesystems.
131  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132  */
133 STATIC int
134 xfs_uuid_mount(
135         struct xfs_mount        *mp)
136 {
137         uuid_t                  *uuid = &mp->m_sb.sb_uuid;
138         int                     hole, i;
139
140         if (mp->m_flags & XFS_MOUNT_NOUUID)
141                 return 0;
142
143         if (uuid_is_nil(uuid)) {
144                 cmn_err(CE_WARN,
145                         "XFS: Filesystem %s has nil UUID - can't mount",
146                         mp->m_fsname);
147                 return XFS_ERROR(EINVAL);
148         }
149
150         mutex_lock(&xfs_uuid_table_mutex);
151         for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
152                 if (uuid_is_nil(&xfs_uuid_table[i])) {
153                         hole = i;
154                         continue;
155                 }
156                 if (uuid_equal(uuid, &xfs_uuid_table[i]))
157                         goto out_duplicate;
158         }
159
160         if (hole < 0) {
161                 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
162                         (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
163                         xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
164                         KM_SLEEP);
165                 hole = xfs_uuid_table_size++;
166         }
167         xfs_uuid_table[hole] = *uuid;
168         mutex_unlock(&xfs_uuid_table_mutex);
169
170         return 0;
171
172  out_duplicate:
173         mutex_unlock(&xfs_uuid_table_mutex);
174         cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
175                          mp->m_fsname);
176         return XFS_ERROR(EINVAL);
177 }
178
179 STATIC void
180 xfs_uuid_unmount(
181         struct xfs_mount        *mp)
182 {
183         uuid_t                  *uuid = &mp->m_sb.sb_uuid;
184         int                     i;
185
186         if (mp->m_flags & XFS_MOUNT_NOUUID)
187                 return;
188
189         mutex_lock(&xfs_uuid_table_mutex);
190         for (i = 0; i < xfs_uuid_table_size; i++) {
191                 if (uuid_is_nil(&xfs_uuid_table[i]))
192                         continue;
193                 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
194                         continue;
195                 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
196                 break;
197         }
198         ASSERT(i < xfs_uuid_table_size);
199         mutex_unlock(&xfs_uuid_table_mutex);
200 }
201
202
203 /*
204  * Reference counting access wrappers to the perag structures.
205  */
206 struct xfs_perag *
207 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
208 {
209         struct xfs_perag        *pag;
210         int                     ref = 0;
211
212         spin_lock(&mp->m_perag_lock);
213         pag = radix_tree_lookup(&mp->m_perag_tree, agno);
214         if (pag) {
215                 ASSERT(atomic_read(&pag->pag_ref) >= 0);
216                 /* catch leaks in the positive direction during testing */
217                 ASSERT(atomic_read(&pag->pag_ref) < 1000);
218                 ref = atomic_inc_return(&pag->pag_ref);
219         }
220         spin_unlock(&mp->m_perag_lock);
221         trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
222         return pag;
223 }
224
225 void
226 xfs_perag_put(struct xfs_perag *pag)
227 {
228         int     ref;
229
230         ASSERT(atomic_read(&pag->pag_ref) > 0);
231         ref = atomic_dec_return(&pag->pag_ref);
232         trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
233 }
234
235 /*
236  * Free up the resources associated with a mount structure.  Assume that
237  * the structure was initially zeroed, so we can tell which fields got
238  * initialized.
239  */
240 STATIC void
241 xfs_free_perag(
242         xfs_mount_t     *mp)
243 {
244         xfs_agnumber_t  agno;
245         struct xfs_perag *pag;
246
247         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
248                 spin_lock(&mp->m_perag_lock);
249                 pag = radix_tree_delete(&mp->m_perag_tree, agno);
250                 ASSERT(pag);
251                 ASSERT(atomic_read(&pag->pag_ref) == 0);
252                 spin_unlock(&mp->m_perag_lock);
253                 kmem_free(pag);
254         }
255 }
256
257 /*
258  * Check size of device based on the (data/realtime) block count.
259  * Note: this check is used by the growfs code as well as mount.
260  */
261 int
262 xfs_sb_validate_fsb_count(
263         xfs_sb_t        *sbp,
264         __uint64_t      nblocks)
265 {
266         ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
267         ASSERT(sbp->sb_blocklog >= BBSHIFT);
268
269 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
270         if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
271                 return E2BIG;
272 #else                  /* Limited by UINT_MAX of sectors */
273         if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
274                 return E2BIG;
275 #endif
276         return 0;
277 }
278
279 /*
280  * Check the validity of the SB found.
281  */
282 STATIC int
283 xfs_mount_validate_sb(
284         xfs_mount_t     *mp,
285         xfs_sb_t        *sbp,
286         int             flags)
287 {
288         /*
289          * If the log device and data device have the
290          * same device number, the log is internal.
291          * Consequently, the sb_logstart should be non-zero.  If
292          * we have a zero sb_logstart in this case, we may be trying to mount
293          * a volume filesystem in a non-volume manner.
294          */
295         if (sbp->sb_magicnum != XFS_SB_MAGIC) {
296                 xfs_fs_mount_cmn_err(flags, "bad magic number");
297                 return XFS_ERROR(EWRONGFS);
298         }
299
300         if (!xfs_sb_good_version(sbp)) {
301                 xfs_fs_mount_cmn_err(flags, "bad version");
302                 return XFS_ERROR(EWRONGFS);
303         }
304
305         if (unlikely(
306             sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
307                 xfs_fs_mount_cmn_err(flags,
308                         "filesystem is marked as having an external log; "
309                         "specify logdev on the\nmount command line.");
310                 return XFS_ERROR(EINVAL);
311         }
312
313         if (unlikely(
314             sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
315                 xfs_fs_mount_cmn_err(flags,
316                         "filesystem is marked as having an internal log; "
317                         "do not specify logdev on\nthe mount command line.");
318                 return XFS_ERROR(EINVAL);
319         }
320
321         /*
322          * More sanity checking. These were stolen directly from
323          * xfs_repair.
324          */
325         if (unlikely(
326             sbp->sb_agcount <= 0                                        ||
327             sbp->sb_sectsize < XFS_MIN_SECTORSIZE                       ||
328             sbp->sb_sectsize > XFS_MAX_SECTORSIZE                       ||
329             sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG                    ||
330             sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG                    ||
331             sbp->sb_sectsize != (1 << sbp->sb_sectlog)                  ||
332             sbp->sb_blocksize < XFS_MIN_BLOCKSIZE                       ||
333             sbp->sb_blocksize > XFS_MAX_BLOCKSIZE                       ||
334             sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG                    ||
335             sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG                    ||
336             sbp->sb_blocksize != (1 << sbp->sb_blocklog)                ||
337             sbp->sb_inodesize < XFS_DINODE_MIN_SIZE                     ||
338             sbp->sb_inodesize > XFS_DINODE_MAX_SIZE                     ||
339             sbp->sb_inodelog < XFS_DINODE_MIN_LOG                       ||
340             sbp->sb_inodelog > XFS_DINODE_MAX_LOG                       ||
341             sbp->sb_inodesize != (1 << sbp->sb_inodelog)                ||
342             (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)   ||
343             (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)  ||
344             (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)  ||
345             (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
346                 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
347                 return XFS_ERROR(EFSCORRUPTED);
348         }
349
350         /*
351          * Sanity check AG count, size fields against data size field
352          */
353         if (unlikely(
354             sbp->sb_dblocks == 0 ||
355             sbp->sb_dblocks >
356              (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
357             sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
358                               sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
359                 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
360                 return XFS_ERROR(EFSCORRUPTED);
361         }
362
363         /*
364          * Until this is fixed only page-sized or smaller data blocks work.
365          */
366         if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
367                 xfs_fs_mount_cmn_err(flags,
368                         "file system with blocksize %d bytes",
369                         sbp->sb_blocksize);
370                 xfs_fs_mount_cmn_err(flags,
371                         "only pagesize (%ld) or less will currently work.",
372                         PAGE_SIZE);
373                 return XFS_ERROR(ENOSYS);
374         }
375
376         /*
377          * Currently only very few inode sizes are supported.
378          */
379         switch (sbp->sb_inodesize) {
380         case 256:
381         case 512:
382         case 1024:
383         case 2048:
384                 break;
385         default:
386                 xfs_fs_mount_cmn_err(flags,
387                         "inode size of %d bytes not supported",
388                         sbp->sb_inodesize);
389                 return XFS_ERROR(ENOSYS);
390         }
391
392         if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
393             xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
394                 xfs_fs_mount_cmn_err(flags,
395                         "file system too large to be mounted on this system.");
396                 return XFS_ERROR(E2BIG);
397         }
398
399         if (unlikely(sbp->sb_inprogress)) {
400                 xfs_fs_mount_cmn_err(flags, "file system busy");
401                 return XFS_ERROR(EFSCORRUPTED);
402         }
403
404         /*
405          * Version 1 directory format has never worked on Linux.
406          */
407         if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
408                 xfs_fs_mount_cmn_err(flags,
409                         "file system using version 1 directory format");
410                 return XFS_ERROR(ENOSYS);
411         }
412
413         return 0;
414 }
415
416 STATIC void
417 xfs_initialize_perag_icache(
418         xfs_perag_t     *pag)
419 {
420         if (!pag->pag_ici_init) {
421                 rwlock_init(&pag->pag_ici_lock);
422                 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
423                 pag->pag_ici_init = 1;
424         }
425 }
426
427 int
428 xfs_initialize_perag(
429         xfs_mount_t     *mp,
430         xfs_agnumber_t  agcount,
431         xfs_agnumber_t  *maxagi)
432 {
433         xfs_agnumber_t  index, max_metadata;
434         xfs_agnumber_t  first_initialised = 0;
435         xfs_perag_t     *pag;
436         xfs_agino_t     agino;
437         xfs_ino_t       ino;
438         xfs_sb_t        *sbp = &mp->m_sb;
439         xfs_ino_t       max_inum = XFS_MAXINUMBER_32;
440         int             error = -ENOMEM;
441
442         /* Check to see if the filesystem can overflow 32 bit inodes */
443         agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
444         ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
445
446         /*
447          * Walk the current per-ag tree so we don't try to initialise AGs
448          * that already exist (growfs case). Allocate and insert all the
449          * AGs we don't find ready for initialisation.
450          */
451         for (index = 0; index < agcount; index++) {
452                 pag = xfs_perag_get(mp, index);
453                 if (pag) {
454                         xfs_perag_put(pag);
455                         continue;
456                 }
457                 if (!first_initialised)
458                         first_initialised = index;
459                 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
460                 if (!pag)
461                         goto out_unwind;
462                 if (radix_tree_preload(GFP_NOFS))
463                         goto out_unwind;
464                 spin_lock(&mp->m_perag_lock);
465                 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
466                         BUG();
467                         spin_unlock(&mp->m_perag_lock);
468                         radix_tree_preload_end();
469                         error = -EEXIST;
470                         goto out_unwind;
471                 }
472                 pag->pag_agno = index;
473                 pag->pag_mount = mp;
474                 spin_unlock(&mp->m_perag_lock);
475                 radix_tree_preload_end();
476         }
477
478         /* Clear the mount flag if no inode can overflow 32 bits
479          * on this filesystem, or if specifically requested..
480          */
481         if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
482                 mp->m_flags |= XFS_MOUNT_32BITINODES;
483         } else {
484                 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
485         }
486
487         /* If we can overflow then setup the ag headers accordingly */
488         if (mp->m_flags & XFS_MOUNT_32BITINODES) {
489                 /* Calculate how much should be reserved for inodes to
490                  * meet the max inode percentage.
491                  */
492                 if (mp->m_maxicount) {
493                         __uint64_t      icount;
494
495                         icount = sbp->sb_dblocks * sbp->sb_imax_pct;
496                         do_div(icount, 100);
497                         icount += sbp->sb_agblocks - 1;
498                         do_div(icount, sbp->sb_agblocks);
499                         max_metadata = icount;
500                 } else {
501                         max_metadata = agcount;
502                 }
503                 for (index = 0; index < agcount; index++) {
504                         ino = XFS_AGINO_TO_INO(mp, index, agino);
505                         if (ino > max_inum) {
506                                 index++;
507                                 break;
508                         }
509
510                         /* This ag is preferred for inodes */
511                         pag = xfs_perag_get(mp, index);
512                         pag->pagi_inodeok = 1;
513                         if (index < max_metadata)
514                                 pag->pagf_metadata = 1;
515                         xfs_initialize_perag_icache(pag);
516                         xfs_perag_put(pag);
517                 }
518         } else {
519                 /* Setup default behavior for smaller filesystems */
520                 for (index = 0; index < agcount; index++) {
521                         pag = xfs_perag_get(mp, index);
522                         pag->pagi_inodeok = 1;
523                         xfs_initialize_perag_icache(pag);
524                         xfs_perag_put(pag);
525                 }
526         }
527         if (maxagi)
528                 *maxagi = index;
529         return 0;
530
531 out_unwind:
532         kmem_free(pag);
533         for (; index > first_initialised; index--) {
534                 pag = radix_tree_delete(&mp->m_perag_tree, index);
535                 kmem_free(pag);
536         }
537         return error;
538 }
539
540 void
541 xfs_sb_from_disk(
542         xfs_sb_t        *to,
543         xfs_dsb_t       *from)
544 {
545         to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
546         to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
547         to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
548         to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
549         to->sb_rextents = be64_to_cpu(from->sb_rextents);
550         memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
551         to->sb_logstart = be64_to_cpu(from->sb_logstart);
552         to->sb_rootino = be64_to_cpu(from->sb_rootino);
553         to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
554         to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
555         to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
556         to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
557         to->sb_agcount = be32_to_cpu(from->sb_agcount);
558         to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
559         to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
560         to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
561         to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
562         to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
563         to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
564         memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
565         to->sb_blocklog = from->sb_blocklog;
566         to->sb_sectlog = from->sb_sectlog;
567         to->sb_inodelog = from->sb_inodelog;
568         to->sb_inopblog = from->sb_inopblog;
569         to->sb_agblklog = from->sb_agblklog;
570         to->sb_rextslog = from->sb_rextslog;
571         to->sb_inprogress = from->sb_inprogress;
572         to->sb_imax_pct = from->sb_imax_pct;
573         to->sb_icount = be64_to_cpu(from->sb_icount);
574         to->sb_ifree = be64_to_cpu(from->sb_ifree);
575         to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
576         to->sb_frextents = be64_to_cpu(from->sb_frextents);
577         to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
578         to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
579         to->sb_qflags = be16_to_cpu(from->sb_qflags);
580         to->sb_flags = from->sb_flags;
581         to->sb_shared_vn = from->sb_shared_vn;
582         to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
583         to->sb_unit = be32_to_cpu(from->sb_unit);
584         to->sb_width = be32_to_cpu(from->sb_width);
585         to->sb_dirblklog = from->sb_dirblklog;
586         to->sb_logsectlog = from->sb_logsectlog;
587         to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
588         to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
589         to->sb_features2 = be32_to_cpu(from->sb_features2);
590         to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
591 }
592
593 /*
594  * Copy in core superblock to ondisk one.
595  *
596  * The fields argument is mask of superblock fields to copy.
597  */
598 void
599 xfs_sb_to_disk(
600         xfs_dsb_t       *to,
601         xfs_sb_t        *from,
602         __int64_t       fields)
603 {
604         xfs_caddr_t     to_ptr = (xfs_caddr_t)to;
605         xfs_caddr_t     from_ptr = (xfs_caddr_t)from;
606         xfs_sb_field_t  f;
607         int             first;
608         int             size;
609
610         ASSERT(fields);
611         if (!fields)
612                 return;
613
614         while (fields) {
615                 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
616                 first = xfs_sb_info[f].offset;
617                 size = xfs_sb_info[f + 1].offset - first;
618
619                 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
620
621                 if (size == 1 || xfs_sb_info[f].type == 1) {
622                         memcpy(to_ptr + first, from_ptr + first, size);
623                 } else {
624                         switch (size) {
625                         case 2:
626                                 *(__be16 *)(to_ptr + first) =
627                                         cpu_to_be16(*(__u16 *)(from_ptr + first));
628                                 break;
629                         case 4:
630                                 *(__be32 *)(to_ptr + first) =
631                                         cpu_to_be32(*(__u32 *)(from_ptr + first));
632                                 break;
633                         case 8:
634                                 *(__be64 *)(to_ptr + first) =
635                                         cpu_to_be64(*(__u64 *)(from_ptr + first));
636                                 break;
637                         default:
638                                 ASSERT(0);
639                         }
640                 }
641
642                 fields &= ~(1LL << f);
643         }
644 }
645
646 /*
647  * xfs_readsb
648  *
649  * Does the initial read of the superblock.
650  */
651 int
652 xfs_readsb(xfs_mount_t *mp, int flags)
653 {
654         unsigned int    sector_size;
655         unsigned int    extra_flags;
656         xfs_buf_t       *bp;
657         int             error;
658
659         ASSERT(mp->m_sb_bp == NULL);
660         ASSERT(mp->m_ddev_targp != NULL);
661
662         /*
663          * Allocate a (locked) buffer to hold the superblock.
664          * This will be kept around at all times to optimize
665          * access to the superblock.
666          */
667         sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
668         extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
669
670         bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size),
671                           extra_flags);
672         if (!bp || XFS_BUF_ISERROR(bp)) {
673                 xfs_fs_mount_cmn_err(flags, "SB read failed");
674                 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
675                 goto fail;
676         }
677         ASSERT(XFS_BUF_ISBUSY(bp));
678         ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
679
680         /*
681          * Initialize the mount structure from the superblock.
682          * But first do some basic consistency checking.
683          */
684         xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
685
686         error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
687         if (error) {
688                 xfs_fs_mount_cmn_err(flags, "SB validate failed");
689                 goto fail;
690         }
691
692         /*
693          * We must be able to do sector-sized and sector-aligned IO.
694          */
695         if (sector_size > mp->m_sb.sb_sectsize) {
696                 xfs_fs_mount_cmn_err(flags,
697                         "device supports only %u byte sectors (not %u)",
698                         sector_size, mp->m_sb.sb_sectsize);
699                 error = ENOSYS;
700                 goto fail;
701         }
702
703         /*
704          * If device sector size is smaller than the superblock size,
705          * re-read the superblock so the buffer is correctly sized.
706          */
707         if (sector_size < mp->m_sb.sb_sectsize) {
708                 XFS_BUF_UNMANAGE(bp);
709                 xfs_buf_relse(bp);
710                 sector_size = mp->m_sb.sb_sectsize;
711                 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR,
712                                   BTOBB(sector_size), extra_flags);
713                 if (!bp || XFS_BUF_ISERROR(bp)) {
714                         xfs_fs_mount_cmn_err(flags, "SB re-read failed");
715                         error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
716                         goto fail;
717                 }
718                 ASSERT(XFS_BUF_ISBUSY(bp));
719                 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
720         }
721
722         /* Initialize per-cpu counters */
723         xfs_icsb_reinit_counters(mp);
724
725         mp->m_sb_bp = bp;
726         xfs_buf_relse(bp);
727         ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
728         return 0;
729
730  fail:
731         if (bp) {
732                 XFS_BUF_UNMANAGE(bp);
733                 xfs_buf_relse(bp);
734         }
735         return error;
736 }
737
738
739 /*
740  * xfs_mount_common
741  *
742  * Mount initialization code establishing various mount
743  * fields from the superblock associated with the given
744  * mount structure
745  */
746 STATIC void
747 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
748 {
749         mp->m_agfrotor = mp->m_agirotor = 0;
750         spin_lock_init(&mp->m_agirotor_lock);
751         mp->m_maxagi = mp->m_sb.sb_agcount;
752         mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
753         mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
754         mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
755         mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
756         mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
757         mp->m_blockmask = sbp->sb_blocksize - 1;
758         mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
759         mp->m_blockwmask = mp->m_blockwsize - 1;
760
761         mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
762         mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
763         mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
764         mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
765
766         mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
767         mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
768         mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
769         mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
770
771         mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
772         mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
773         mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
774         mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
775
776         mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
777         mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
778                                         sbp->sb_inopblock);
779         mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
780 }
781
782 /*
783  * xfs_initialize_perag_data
784  *
785  * Read in each per-ag structure so we can count up the number of
786  * allocated inodes, free inodes and used filesystem blocks as this
787  * information is no longer persistent in the superblock. Once we have
788  * this information, write it into the in-core superblock structure.
789  */
790 STATIC int
791 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
792 {
793         xfs_agnumber_t  index;
794         xfs_perag_t     *pag;
795         xfs_sb_t        *sbp = &mp->m_sb;
796         uint64_t        ifree = 0;
797         uint64_t        ialloc = 0;
798         uint64_t        bfree = 0;
799         uint64_t        bfreelst = 0;
800         uint64_t        btree = 0;
801         int             error;
802
803         for (index = 0; index < agcount; index++) {
804                 /*
805                  * read the agf, then the agi. This gets us
806                  * all the information we need and populates the
807                  * per-ag structures for us.
808                  */
809                 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
810                 if (error)
811                         return error;
812
813                 error = xfs_ialloc_pagi_init(mp, NULL, index);
814                 if (error)
815                         return error;
816                 pag = xfs_perag_get(mp, index);
817                 ifree += pag->pagi_freecount;
818                 ialloc += pag->pagi_count;
819                 bfree += pag->pagf_freeblks;
820                 bfreelst += pag->pagf_flcount;
821                 btree += pag->pagf_btreeblks;
822                 xfs_perag_put(pag);
823         }
824         /*
825          * Overwrite incore superblock counters with just-read data
826          */
827         spin_lock(&mp->m_sb_lock);
828         sbp->sb_ifree = ifree;
829         sbp->sb_icount = ialloc;
830         sbp->sb_fdblocks = bfree + bfreelst + btree;
831         spin_unlock(&mp->m_sb_lock);
832
833         /* Fixup the per-cpu counters as well. */
834         xfs_icsb_reinit_counters(mp);
835
836         return 0;
837 }
838
839 /*
840  * Update alignment values based on mount options and sb values
841  */
842 STATIC int
843 xfs_update_alignment(xfs_mount_t *mp)
844 {
845         xfs_sb_t        *sbp = &(mp->m_sb);
846
847         if (mp->m_dalign) {
848                 /*
849                  * If stripe unit and stripe width are not multiples
850                  * of the fs blocksize turn off alignment.
851                  */
852                 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
853                     (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
854                         if (mp->m_flags & XFS_MOUNT_RETERR) {
855                                 cmn_err(CE_WARN,
856                                         "XFS: alignment check 1 failed");
857                                 return XFS_ERROR(EINVAL);
858                         }
859                         mp->m_dalign = mp->m_swidth = 0;
860                 } else {
861                         /*
862                          * Convert the stripe unit and width to FSBs.
863                          */
864                         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
865                         if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
866                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
867                                         return XFS_ERROR(EINVAL);
868                                 }
869                                 xfs_fs_cmn_err(CE_WARN, mp,
870 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
871                                         mp->m_dalign, mp->m_swidth,
872                                         sbp->sb_agblocks);
873
874                                 mp->m_dalign = 0;
875                                 mp->m_swidth = 0;
876                         } else if (mp->m_dalign) {
877                                 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
878                         } else {
879                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
880                                         xfs_fs_cmn_err(CE_WARN, mp,
881 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
882                                                 mp->m_dalign,
883                                                 mp->m_blockmask +1);
884                                         return XFS_ERROR(EINVAL);
885                                 }
886                                 mp->m_swidth = 0;
887                         }
888                 }
889
890                 /*
891                  * Update superblock with new values
892                  * and log changes
893                  */
894                 if (xfs_sb_version_hasdalign(sbp)) {
895                         if (sbp->sb_unit != mp->m_dalign) {
896                                 sbp->sb_unit = mp->m_dalign;
897                                 mp->m_update_flags |= XFS_SB_UNIT;
898                         }
899                         if (sbp->sb_width != mp->m_swidth) {
900                                 sbp->sb_width = mp->m_swidth;
901                                 mp->m_update_flags |= XFS_SB_WIDTH;
902                         }
903                 }
904         } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
905                     xfs_sb_version_hasdalign(&mp->m_sb)) {
906                         mp->m_dalign = sbp->sb_unit;
907                         mp->m_swidth = sbp->sb_width;
908         }
909
910         return 0;
911 }
912
913 /*
914  * Set the maximum inode count for this filesystem
915  */
916 STATIC void
917 xfs_set_maxicount(xfs_mount_t *mp)
918 {
919         xfs_sb_t        *sbp = &(mp->m_sb);
920         __uint64_t      icount;
921
922         if (sbp->sb_imax_pct) {
923                 /*
924                  * Make sure the maximum inode count is a multiple
925                  * of the units we allocate inodes in.
926                  */
927                 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
928                 do_div(icount, 100);
929                 do_div(icount, mp->m_ialloc_blks);
930                 mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
931                                    sbp->sb_inopblog;
932         } else {
933                 mp->m_maxicount = 0;
934         }
935 }
936
937 /*
938  * Set the default minimum read and write sizes unless
939  * already specified in a mount option.
940  * We use smaller I/O sizes when the file system
941  * is being used for NFS service (wsync mount option).
942  */
943 STATIC void
944 xfs_set_rw_sizes(xfs_mount_t *mp)
945 {
946         xfs_sb_t        *sbp = &(mp->m_sb);
947         int             readio_log, writeio_log;
948
949         if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
950                 if (mp->m_flags & XFS_MOUNT_WSYNC) {
951                         readio_log = XFS_WSYNC_READIO_LOG;
952                         writeio_log = XFS_WSYNC_WRITEIO_LOG;
953                 } else {
954                         readio_log = XFS_READIO_LOG_LARGE;
955                         writeio_log = XFS_WRITEIO_LOG_LARGE;
956                 }
957         } else {
958                 readio_log = mp->m_readio_log;
959                 writeio_log = mp->m_writeio_log;
960         }
961
962         if (sbp->sb_blocklog > readio_log) {
963                 mp->m_readio_log = sbp->sb_blocklog;
964         } else {
965                 mp->m_readio_log = readio_log;
966         }
967         mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
968         if (sbp->sb_blocklog > writeio_log) {
969                 mp->m_writeio_log = sbp->sb_blocklog;
970         } else {
971                 mp->m_writeio_log = writeio_log;
972         }
973         mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
974 }
975
976 /*
977  * Set whether we're using inode alignment.
978  */
979 STATIC void
980 xfs_set_inoalignment(xfs_mount_t *mp)
981 {
982         if (xfs_sb_version_hasalign(&mp->m_sb) &&
983             mp->m_sb.sb_inoalignmt >=
984             XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
985                 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
986         else
987                 mp->m_inoalign_mask = 0;
988         /*
989          * If we are using stripe alignment, check whether
990          * the stripe unit is a multiple of the inode alignment
991          */
992         if (mp->m_dalign && mp->m_inoalign_mask &&
993             !(mp->m_dalign & mp->m_inoalign_mask))
994                 mp->m_sinoalign = mp->m_dalign;
995         else
996                 mp->m_sinoalign = 0;
997 }
998
999 /*
1000  * Check that the data (and log if separate) are an ok size.
1001  */
1002 STATIC int
1003 xfs_check_sizes(xfs_mount_t *mp)
1004 {
1005         xfs_buf_t       *bp;
1006         xfs_daddr_t     d;
1007         int             error;
1008
1009         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1010         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1011                 cmn_err(CE_WARN, "XFS: size check 1 failed");
1012                 return XFS_ERROR(E2BIG);
1013         }
1014         error = xfs_read_buf(mp, mp->m_ddev_targp,
1015                              d - XFS_FSS_TO_BB(mp, 1),
1016                              XFS_FSS_TO_BB(mp, 1), 0, &bp);
1017         if (!error) {
1018                 xfs_buf_relse(bp);
1019         } else {
1020                 cmn_err(CE_WARN, "XFS: size check 2 failed");
1021                 if (error == ENOSPC)
1022                         error = XFS_ERROR(E2BIG);
1023                 return error;
1024         }
1025
1026         if (mp->m_logdev_targp != mp->m_ddev_targp) {
1027                 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1028                 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1029                         cmn_err(CE_WARN, "XFS: size check 3 failed");
1030                         return XFS_ERROR(E2BIG);
1031                 }
1032                 error = xfs_read_buf(mp, mp->m_logdev_targp,
1033                                      d - XFS_FSB_TO_BB(mp, 1),
1034                                      XFS_FSB_TO_BB(mp, 1), 0, &bp);
1035                 if (!error) {
1036                         xfs_buf_relse(bp);
1037                 } else {
1038                         cmn_err(CE_WARN, "XFS: size check 3 failed");
1039                         if (error == ENOSPC)
1040                                 error = XFS_ERROR(E2BIG);
1041                         return error;
1042                 }
1043         }
1044         return 0;
1045 }
1046
1047 /*
1048  * Clear the quotaflags in memory and in the superblock.
1049  */
1050 int
1051 xfs_mount_reset_sbqflags(
1052         struct xfs_mount        *mp)
1053 {
1054         int                     error;
1055         struct xfs_trans        *tp;
1056
1057         mp->m_qflags = 0;
1058
1059         /*
1060          * It is OK to look at sb_qflags here in mount path,
1061          * without m_sb_lock.
1062          */
1063         if (mp->m_sb.sb_qflags == 0)
1064                 return 0;
1065         spin_lock(&mp->m_sb_lock);
1066         mp->m_sb.sb_qflags = 0;
1067         spin_unlock(&mp->m_sb_lock);
1068
1069         /*
1070          * If the fs is readonly, let the incore superblock run
1071          * with quotas off but don't flush the update out to disk
1072          */
1073         if (mp->m_flags & XFS_MOUNT_RDONLY)
1074                 return 0;
1075
1076 #ifdef QUOTADEBUG
1077         xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1078 #endif
1079
1080         tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1081         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1082                                       XFS_DEFAULT_LOG_COUNT);
1083         if (error) {
1084                 xfs_trans_cancel(tp, 0);
1085                 xfs_fs_cmn_err(CE_ALERT, mp,
1086                         "xfs_mount_reset_sbqflags: Superblock update failed!");
1087                 return error;
1088         }
1089
1090         xfs_mod_sb(tp, XFS_SB_QFLAGS);
1091         return xfs_trans_commit(tp, 0);
1092 }
1093
1094 /*
1095  * This function does the following on an initial mount of a file system:
1096  *      - reads the superblock from disk and init the mount struct
1097  *      - if we're a 32-bit kernel, do a size check on the superblock
1098  *              so we don't mount terabyte filesystems
1099  *      - init mount struct realtime fields
1100  *      - allocate inode hash table for fs
1101  *      - init directory manager
1102  *      - perform recovery and init the log manager
1103  */
1104 int
1105 xfs_mountfs(
1106         xfs_mount_t     *mp)
1107 {
1108         xfs_sb_t        *sbp = &(mp->m_sb);
1109         xfs_inode_t     *rip;
1110         __uint64_t      resblks;
1111         uint            quotamount = 0;
1112         uint            quotaflags = 0;
1113         int             error = 0;
1114
1115         xfs_mount_common(mp, sbp);
1116
1117         /*
1118          * Check for a mismatched features2 values.  Older kernels
1119          * read & wrote into the wrong sb offset for sb_features2
1120          * on some platforms due to xfs_sb_t not being 64bit size aligned
1121          * when sb_features2 was added, which made older superblock
1122          * reading/writing routines swap it as a 64-bit value.
1123          *
1124          * For backwards compatibility, we make both slots equal.
1125          *
1126          * If we detect a mismatched field, we OR the set bits into the
1127          * existing features2 field in case it has already been modified; we
1128          * don't want to lose any features.  We then update the bad location
1129          * with the ORed value so that older kernels will see any features2
1130          * flags, and mark the two fields as needing updates once the
1131          * transaction subsystem is online.
1132          */
1133         if (xfs_sb_has_mismatched_features2(sbp)) {
1134                 cmn_err(CE_WARN,
1135                         "XFS: correcting sb_features alignment problem");
1136                 sbp->sb_features2 |= sbp->sb_bad_features2;
1137                 sbp->sb_bad_features2 = sbp->sb_features2;
1138                 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1139
1140                 /*
1141                  * Re-check for ATTR2 in case it was found in bad_features2
1142                  * slot.
1143                  */
1144                 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1145                    !(mp->m_flags & XFS_MOUNT_NOATTR2))
1146                         mp->m_flags |= XFS_MOUNT_ATTR2;
1147         }
1148
1149         if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1150            (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1151                 xfs_sb_version_removeattr2(&mp->m_sb);
1152                 mp->m_update_flags |= XFS_SB_FEATURES2;
1153
1154                 /* update sb_versionnum for the clearing of the morebits */
1155                 if (!sbp->sb_features2)
1156                         mp->m_update_flags |= XFS_SB_VERSIONNUM;
1157         }
1158
1159         /*
1160          * Check if sb_agblocks is aligned at stripe boundary
1161          * If sb_agblocks is NOT aligned turn off m_dalign since
1162          * allocator alignment is within an ag, therefore ag has
1163          * to be aligned at stripe boundary.
1164          */
1165         error = xfs_update_alignment(mp);
1166         if (error)
1167                 goto out;
1168
1169         xfs_alloc_compute_maxlevels(mp);
1170         xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1171         xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1172         xfs_ialloc_compute_maxlevels(mp);
1173
1174         xfs_set_maxicount(mp);
1175
1176         mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1177
1178         error = xfs_uuid_mount(mp);
1179         if (error)
1180                 goto out;
1181
1182         /*
1183          * Set the minimum read and write sizes
1184          */
1185         xfs_set_rw_sizes(mp);
1186
1187         /*
1188          * Set the inode cluster size.
1189          * This may still be overridden by the file system
1190          * block size if it is larger than the chosen cluster size.
1191          */
1192         mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1193
1194         /*
1195          * Set inode alignment fields
1196          */
1197         xfs_set_inoalignment(mp);
1198
1199         /*
1200          * Check that the data (and log if separate) are an ok size.
1201          */
1202         error = xfs_check_sizes(mp);
1203         if (error)
1204                 goto out_remove_uuid;
1205
1206         /*
1207          * Initialize realtime fields in the mount structure
1208          */
1209         error = xfs_rtmount_init(mp);
1210         if (error) {
1211                 cmn_err(CE_WARN, "XFS: RT mount failed");
1212                 goto out_remove_uuid;
1213         }
1214
1215         /*
1216          *  Copies the low order bits of the timestamp and the randomly
1217          *  set "sequence" number out of a UUID.
1218          */
1219         uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1220
1221         mp->m_dmevmask = 0;     /* not persistent; set after each mount */
1222
1223         xfs_dir_mount(mp);
1224
1225         /*
1226          * Initialize the attribute manager's entries.
1227          */
1228         mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1229
1230         /*
1231          * Initialize the precomputed transaction reservations values.
1232          */
1233         xfs_trans_init(mp);
1234
1235         /*
1236          * Allocate and initialize the per-ag data.
1237          */
1238         spin_lock_init(&mp->m_perag_lock);
1239         INIT_RADIX_TREE(&mp->m_perag_tree, GFP_NOFS);
1240         error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1241         if (error) {
1242                 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
1243                 goto out_remove_uuid;
1244         }
1245
1246         if (!sbp->sb_logblocks) {
1247                 cmn_err(CE_WARN, "XFS: no log defined");
1248                 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1249                 error = XFS_ERROR(EFSCORRUPTED);
1250                 goto out_free_perag;
1251         }
1252
1253         /*
1254          * log's mount-time initialization. Perform 1st part recovery if needed
1255          */
1256         error = xfs_log_mount(mp, mp->m_logdev_targp,
1257                               XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1258                               XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1259         if (error) {
1260                 cmn_err(CE_WARN, "XFS: log mount failed");
1261                 goto out_free_perag;
1262         }
1263
1264         /*
1265          * Now the log is mounted, we know if it was an unclean shutdown or
1266          * not. If it was, with the first phase of recovery has completed, we
1267          * have consistent AG blocks on disk. We have not recovered EFIs yet,
1268          * but they are recovered transactionally in the second recovery phase
1269          * later.
1270          *
1271          * Hence we can safely re-initialise incore superblock counters from
1272          * the per-ag data. These may not be correct if the filesystem was not
1273          * cleanly unmounted, so we need to wait for recovery to finish before
1274          * doing this.
1275          *
1276          * If the filesystem was cleanly unmounted, then we can trust the
1277          * values in the superblock to be correct and we don't need to do
1278          * anything here.
1279          *
1280          * If we are currently making the filesystem, the initialisation will
1281          * fail as the perag data is in an undefined state.
1282          */
1283         if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1284             !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1285              !mp->m_sb.sb_inprogress) {
1286                 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1287                 if (error)
1288                         goto out_free_perag;
1289         }
1290
1291         /*
1292          * Get and sanity-check the root inode.
1293          * Save the pointer to it in the mount structure.
1294          */
1295         error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1296         if (error) {
1297                 cmn_err(CE_WARN, "XFS: failed to read root inode");
1298                 goto out_log_dealloc;
1299         }
1300
1301         ASSERT(rip != NULL);
1302
1303         if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1304                 cmn_err(CE_WARN, "XFS: corrupted root inode");
1305                 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1306                         XFS_BUFTARG_NAME(mp->m_ddev_targp),
1307                         (unsigned long long)rip->i_ino);
1308                 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1309                 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1310                                  mp);
1311                 error = XFS_ERROR(EFSCORRUPTED);
1312                 goto out_rele_rip;
1313         }
1314         mp->m_rootip = rip;     /* save it */
1315
1316         xfs_iunlock(rip, XFS_ILOCK_EXCL);
1317
1318         /*
1319          * Initialize realtime inode pointers in the mount structure
1320          */
1321         error = xfs_rtmount_inodes(mp);
1322         if (error) {
1323                 /*
1324                  * Free up the root inode.
1325                  */
1326                 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1327                 goto out_rele_rip;
1328         }
1329
1330         /*
1331          * If this is a read-only mount defer the superblock updates until
1332          * the next remount into writeable mode.  Otherwise we would never
1333          * perform the update e.g. for the root filesystem.
1334          */
1335         if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1336                 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1337                 if (error) {
1338                         cmn_err(CE_WARN, "XFS: failed to write sb changes");
1339                         goto out_rtunmount;
1340                 }
1341         }
1342
1343         /*
1344          * Initialise the XFS quota management subsystem for this mount
1345          */
1346         if (XFS_IS_QUOTA_RUNNING(mp)) {
1347                 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1348                 if (error)
1349                         goto out_rtunmount;
1350         } else {
1351                 ASSERT(!XFS_IS_QUOTA_ON(mp));
1352
1353                 /*
1354                  * If a file system had quotas running earlier, but decided to
1355                  * mount without -o uquota/pquota/gquota options, revoke the
1356                  * quotachecked license.
1357                  */
1358                 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1359                         cmn_err(CE_NOTE,
1360                                 "XFS: resetting qflags for filesystem %s",
1361                                 mp->m_fsname);
1362
1363                         error = xfs_mount_reset_sbqflags(mp);
1364                         if (error)
1365                                 return error;
1366                 }
1367         }
1368
1369         /*
1370          * Finish recovering the file system.  This part needed to be
1371          * delayed until after the root and real-time bitmap inodes
1372          * were consistently read in.
1373          */
1374         error = xfs_log_mount_finish(mp);
1375         if (error) {
1376                 cmn_err(CE_WARN, "XFS: log mount finish failed");
1377                 goto out_rtunmount;
1378         }
1379
1380         /*
1381          * Complete the quota initialisation, post-log-replay component.
1382          */
1383         if (quotamount) {
1384                 ASSERT(mp->m_qflags == 0);
1385                 mp->m_qflags = quotaflags;
1386
1387                 xfs_qm_mount_quotas(mp);
1388         }
1389
1390 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1391         if (XFS_IS_QUOTA_ON(mp))
1392                 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on");
1393         else
1394                 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on");
1395 #endif
1396
1397         /*
1398          * Now we are mounted, reserve a small amount of unused space for
1399          * privileged transactions. This is needed so that transaction
1400          * space required for critical operations can dip into this pool
1401          * when at ENOSPC. This is needed for operations like create with
1402          * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1403          * are not allowed to use this reserved space.
1404          *
1405          * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1406          * This may drive us straight to ENOSPC on mount, but that implies
1407          * we were already there on the last unmount. Warn if this occurs.
1408          */
1409         resblks = mp->m_sb.sb_dblocks;
1410         do_div(resblks, 20);
1411         resblks = min_t(__uint64_t, resblks, 1024);
1412         error = xfs_reserve_blocks(mp, &resblks, NULL);
1413         if (error)
1414                 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1415                                 "Continuing without a reserve pool.");
1416
1417         return 0;
1418
1419  out_rtunmount:
1420         xfs_rtunmount_inodes(mp);
1421  out_rele_rip:
1422         IRELE(rip);
1423  out_log_dealloc:
1424         xfs_log_unmount(mp);
1425  out_free_perag:
1426         xfs_free_perag(mp);
1427  out_remove_uuid:
1428         xfs_uuid_unmount(mp);
1429  out:
1430         return error;
1431 }
1432
1433 /*
1434  * This flushes out the inodes,dquots and the superblock, unmounts the
1435  * log and makes sure that incore structures are freed.
1436  */
1437 void
1438 xfs_unmountfs(
1439         struct xfs_mount        *mp)
1440 {
1441         __uint64_t              resblks;
1442         int                     error;
1443
1444         xfs_qm_unmount_quotas(mp);
1445         xfs_rtunmount_inodes(mp);
1446         IRELE(mp->m_rootip);
1447
1448         /*
1449          * We can potentially deadlock here if we have an inode cluster
1450          * that has been freed has its buffer still pinned in memory because
1451          * the transaction is still sitting in a iclog. The stale inodes
1452          * on that buffer will have their flush locks held until the
1453          * transaction hits the disk and the callbacks run. the inode
1454          * flush takes the flush lock unconditionally and with nothing to
1455          * push out the iclog we will never get that unlocked. hence we
1456          * need to force the log first.
1457          */
1458         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1459         xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC);
1460
1461         xfs_qm_unmount(mp);
1462
1463         /*
1464          * Flush out the log synchronously so that we know for sure
1465          * that nothing is pinned.  This is important because bflush()
1466          * will skip pinned buffers.
1467          */
1468         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1469
1470         xfs_binval(mp->m_ddev_targp);
1471         if (mp->m_rtdev_targp) {
1472                 xfs_binval(mp->m_rtdev_targp);
1473         }
1474
1475         /*
1476          * Unreserve any blocks we have so that when we unmount we don't account
1477          * the reserved free space as used. This is really only necessary for
1478          * lazy superblock counting because it trusts the incore superblock
1479          * counters to be absolutely correct on clean unmount.
1480          *
1481          * We don't bother correcting this elsewhere for lazy superblock
1482          * counting because on mount of an unclean filesystem we reconstruct the
1483          * correct counter value and this is irrelevant.
1484          *
1485          * For non-lazy counter filesystems, this doesn't matter at all because
1486          * we only every apply deltas to the superblock and hence the incore
1487          * value does not matter....
1488          */
1489         resblks = 0;
1490         error = xfs_reserve_blocks(mp, &resblks, NULL);
1491         if (error)
1492                 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1493                                 "Freespace may not be correct on next mount.");
1494
1495         error = xfs_log_sbcount(mp, 1);
1496         if (error)
1497                 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1498                                 "Freespace may not be correct on next mount.");
1499         xfs_unmountfs_writesb(mp);
1500         xfs_unmountfs_wait(mp);                 /* wait for async bufs */
1501         xfs_log_unmount_write(mp);
1502         xfs_log_unmount(mp);
1503         xfs_uuid_unmount(mp);
1504
1505 #if defined(DEBUG)
1506         xfs_errortag_clearall(mp, 0);
1507 #endif
1508         xfs_free_perag(mp);
1509 }
1510
1511 STATIC void
1512 xfs_unmountfs_wait(xfs_mount_t *mp)
1513 {
1514         if (mp->m_logdev_targp != mp->m_ddev_targp)
1515                 xfs_wait_buftarg(mp->m_logdev_targp);
1516         if (mp->m_rtdev_targp)
1517                 xfs_wait_buftarg(mp->m_rtdev_targp);
1518         xfs_wait_buftarg(mp->m_ddev_targp);
1519 }
1520
1521 int
1522 xfs_fs_writable(xfs_mount_t *mp)
1523 {
1524         return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1525                 (mp->m_flags & XFS_MOUNT_RDONLY));
1526 }
1527
1528 /*
1529  * xfs_log_sbcount
1530  *
1531  * Called either periodically to keep the on disk superblock values
1532  * roughly up to date or from unmount to make sure the values are
1533  * correct on a clean unmount.
1534  *
1535  * Note this code can be called during the process of freezing, so
1536  * we may need to use the transaction allocator which does not not
1537  * block when the transaction subsystem is in its frozen state.
1538  */
1539 int
1540 xfs_log_sbcount(
1541         xfs_mount_t     *mp,
1542         uint            sync)
1543 {
1544         xfs_trans_t     *tp;
1545         int             error;
1546
1547         if (!xfs_fs_writable(mp))
1548                 return 0;
1549
1550         xfs_icsb_sync_counters(mp, 0);
1551
1552         /*
1553          * we don't need to do this if we are updating the superblock
1554          * counters on every modification.
1555          */
1556         if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1557                 return 0;
1558
1559         tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1560         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1561                                         XFS_DEFAULT_LOG_COUNT);
1562         if (error) {
1563                 xfs_trans_cancel(tp, 0);
1564                 return error;
1565         }
1566
1567         xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1568         if (sync)
1569                 xfs_trans_set_sync(tp);
1570         error = xfs_trans_commit(tp, 0);
1571         return error;
1572 }
1573
1574 int
1575 xfs_unmountfs_writesb(xfs_mount_t *mp)
1576 {
1577         xfs_buf_t       *sbp;
1578         int             error = 0;
1579
1580         /*
1581          * skip superblock write if fs is read-only, or
1582          * if we are doing a forced umount.
1583          */
1584         if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1585                 XFS_FORCED_SHUTDOWN(mp))) {
1586
1587                 sbp = xfs_getsb(mp, 0);
1588
1589                 XFS_BUF_UNDONE(sbp);
1590                 XFS_BUF_UNREAD(sbp);
1591                 XFS_BUF_UNDELAYWRITE(sbp);
1592                 XFS_BUF_WRITE(sbp);
1593                 XFS_BUF_UNASYNC(sbp);
1594                 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1595                 xfsbdstrat(mp, sbp);
1596                 error = xfs_iowait(sbp);
1597                 if (error)
1598                         xfs_ioerror_alert("xfs_unmountfs_writesb",
1599                                           mp, sbp, XFS_BUF_ADDR(sbp));
1600                 xfs_buf_relse(sbp);
1601         }
1602         return error;
1603 }
1604
1605 /*
1606  * xfs_mod_sb() can be used to copy arbitrary changes to the
1607  * in-core superblock into the superblock buffer to be logged.
1608  * It does not provide the higher level of locking that is
1609  * needed to protect the in-core superblock from concurrent
1610  * access.
1611  */
1612 void
1613 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1614 {
1615         xfs_buf_t       *bp;
1616         int             first;
1617         int             last;
1618         xfs_mount_t     *mp;
1619         xfs_sb_field_t  f;
1620
1621         ASSERT(fields);
1622         if (!fields)
1623                 return;
1624         mp = tp->t_mountp;
1625         bp = xfs_trans_getsb(tp, mp, 0);
1626         first = sizeof(xfs_sb_t);
1627         last = 0;
1628
1629         /* translate/copy */
1630
1631         xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1632
1633         /* find modified range */
1634
1635         f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1636         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1637         first = xfs_sb_info[f].offset;
1638
1639         f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1640         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1641         last = xfs_sb_info[f + 1].offset - 1;
1642
1643         xfs_trans_log_buf(tp, bp, first, last);
1644 }
1645
1646
1647 /*
1648  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1649  * a delta to a specified field in the in-core superblock.  Simply
1650  * switch on the field indicated and apply the delta to that field.
1651  * Fields are not allowed to dip below zero, so if the delta would
1652  * do this do not apply it and return EINVAL.
1653  *
1654  * The m_sb_lock must be held when this routine is called.
1655  */
1656 STATIC int
1657 xfs_mod_incore_sb_unlocked(
1658         xfs_mount_t     *mp,
1659         xfs_sb_field_t  field,
1660         int64_t         delta,
1661         int             rsvd)
1662 {
1663         int             scounter;       /* short counter for 32 bit fields */
1664         long long       lcounter;       /* long counter for 64 bit fields */
1665         long long       res_used, rem;
1666
1667         /*
1668          * With the in-core superblock spin lock held, switch
1669          * on the indicated field.  Apply the delta to the
1670          * proper field.  If the fields value would dip below
1671          * 0, then do not apply the delta and return EINVAL.
1672          */
1673         switch (field) {
1674         case XFS_SBS_ICOUNT:
1675                 lcounter = (long long)mp->m_sb.sb_icount;
1676                 lcounter += delta;
1677                 if (lcounter < 0) {
1678                         ASSERT(0);
1679                         return XFS_ERROR(EINVAL);
1680                 }
1681                 mp->m_sb.sb_icount = lcounter;
1682                 return 0;
1683         case XFS_SBS_IFREE:
1684                 lcounter = (long long)mp->m_sb.sb_ifree;
1685                 lcounter += delta;
1686                 if (lcounter < 0) {
1687                         ASSERT(0);
1688                         return XFS_ERROR(EINVAL);
1689                 }
1690                 mp->m_sb.sb_ifree = lcounter;
1691                 return 0;
1692         case XFS_SBS_FDBLOCKS:
1693                 lcounter = (long long)
1694                         mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1695                 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1696
1697                 if (delta > 0) {                /* Putting blocks back */
1698                         if (res_used > delta) {
1699                                 mp->m_resblks_avail += delta;
1700                         } else {
1701                                 rem = delta - res_used;
1702                                 mp->m_resblks_avail = mp->m_resblks;
1703                                 lcounter += rem;
1704                         }
1705                 } else {                                /* Taking blocks away */
1706
1707                         lcounter += delta;
1708
1709                 /*
1710                  * If were out of blocks, use any available reserved blocks if
1711                  * were allowed to.
1712                  */
1713
1714                         if (lcounter < 0) {
1715                                 if (rsvd) {
1716                                         lcounter = (long long)mp->m_resblks_avail + delta;
1717                                         if (lcounter < 0) {
1718                                                 return XFS_ERROR(ENOSPC);
1719                                         }
1720                                         mp->m_resblks_avail = lcounter;
1721                                         return 0;
1722                                 } else {        /* not reserved */
1723                                         return XFS_ERROR(ENOSPC);
1724                                 }
1725                         }
1726                 }
1727
1728                 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1729                 return 0;
1730         case XFS_SBS_FREXTENTS:
1731                 lcounter = (long long)mp->m_sb.sb_frextents;
1732                 lcounter += delta;
1733                 if (lcounter < 0) {
1734                         return XFS_ERROR(ENOSPC);
1735                 }
1736                 mp->m_sb.sb_frextents = lcounter;
1737                 return 0;
1738         case XFS_SBS_DBLOCKS:
1739                 lcounter = (long long)mp->m_sb.sb_dblocks;
1740                 lcounter += delta;
1741                 if (lcounter < 0) {
1742                         ASSERT(0);
1743                         return XFS_ERROR(EINVAL);
1744                 }
1745                 mp->m_sb.sb_dblocks = lcounter;
1746                 return 0;
1747         case XFS_SBS_AGCOUNT:
1748                 scounter = mp->m_sb.sb_agcount;
1749                 scounter += delta;
1750                 if (scounter < 0) {
1751                         ASSERT(0);
1752                         return XFS_ERROR(EINVAL);
1753                 }
1754                 mp->m_sb.sb_agcount = scounter;
1755                 return 0;
1756         case XFS_SBS_IMAX_PCT:
1757                 scounter = mp->m_sb.sb_imax_pct;
1758                 scounter += delta;
1759                 if (scounter < 0) {
1760                         ASSERT(0);
1761                         return XFS_ERROR(EINVAL);
1762                 }
1763                 mp->m_sb.sb_imax_pct = scounter;
1764                 return 0;
1765         case XFS_SBS_REXTSIZE:
1766                 scounter = mp->m_sb.sb_rextsize;
1767                 scounter += delta;
1768                 if (scounter < 0) {
1769                         ASSERT(0);
1770                         return XFS_ERROR(EINVAL);
1771                 }
1772                 mp->m_sb.sb_rextsize = scounter;
1773                 return 0;
1774         case XFS_SBS_RBMBLOCKS:
1775                 scounter = mp->m_sb.sb_rbmblocks;
1776                 scounter += delta;
1777                 if (scounter < 0) {
1778                         ASSERT(0);
1779                         return XFS_ERROR(EINVAL);
1780                 }
1781                 mp->m_sb.sb_rbmblocks = scounter;
1782                 return 0;
1783         case XFS_SBS_RBLOCKS:
1784                 lcounter = (long long)mp->m_sb.sb_rblocks;
1785                 lcounter += delta;
1786                 if (lcounter < 0) {
1787                         ASSERT(0);
1788                         return XFS_ERROR(EINVAL);
1789                 }
1790                 mp->m_sb.sb_rblocks = lcounter;
1791                 return 0;
1792         case XFS_SBS_REXTENTS:
1793                 lcounter = (long long)mp->m_sb.sb_rextents;
1794                 lcounter += delta;
1795                 if (lcounter < 0) {
1796                         ASSERT(0);
1797                         return XFS_ERROR(EINVAL);
1798                 }
1799                 mp->m_sb.sb_rextents = lcounter;
1800                 return 0;
1801         case XFS_SBS_REXTSLOG:
1802                 scounter = mp->m_sb.sb_rextslog;
1803                 scounter += delta;
1804                 if (scounter < 0) {
1805                         ASSERT(0);
1806                         return XFS_ERROR(EINVAL);
1807                 }
1808                 mp->m_sb.sb_rextslog = scounter;
1809                 return 0;
1810         default:
1811                 ASSERT(0);
1812                 return XFS_ERROR(EINVAL);
1813         }
1814 }
1815
1816 /*
1817  * xfs_mod_incore_sb() is used to change a field in the in-core
1818  * superblock structure by the specified delta.  This modification
1819  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1820  * routine to do the work.
1821  */
1822 int
1823 xfs_mod_incore_sb(
1824         xfs_mount_t     *mp,
1825         xfs_sb_field_t  field,
1826         int64_t         delta,
1827         int             rsvd)
1828 {
1829         int     status;
1830
1831         /* check for per-cpu counters */
1832         switch (field) {
1833 #ifdef HAVE_PERCPU_SB
1834         case XFS_SBS_ICOUNT:
1835         case XFS_SBS_IFREE:
1836         case XFS_SBS_FDBLOCKS:
1837                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1838                         status = xfs_icsb_modify_counters(mp, field,
1839                                                         delta, rsvd);
1840                         break;
1841                 }
1842                 /* FALLTHROUGH */
1843 #endif
1844         default:
1845                 spin_lock(&mp->m_sb_lock);
1846                 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1847                 spin_unlock(&mp->m_sb_lock);
1848                 break;
1849         }
1850
1851         return status;
1852 }
1853
1854 /*
1855  * xfs_mod_incore_sb_batch() is used to change more than one field
1856  * in the in-core superblock structure at a time.  This modification
1857  * is protected by a lock internal to this module.  The fields and
1858  * changes to those fields are specified in the array of xfs_mod_sb
1859  * structures passed in.
1860  *
1861  * Either all of the specified deltas will be applied or none of
1862  * them will.  If any modified field dips below 0, then all modifications
1863  * will be backed out and EINVAL will be returned.
1864  */
1865 int
1866 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1867 {
1868         int             status=0;
1869         xfs_mod_sb_t    *msbp;
1870
1871         /*
1872          * Loop through the array of mod structures and apply each
1873          * individually.  If any fail, then back out all those
1874          * which have already been applied.  Do all of this within
1875          * the scope of the m_sb_lock so that all of the changes will
1876          * be atomic.
1877          */
1878         spin_lock(&mp->m_sb_lock);
1879         msbp = &msb[0];
1880         for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1881                 /*
1882                  * Apply the delta at index n.  If it fails, break
1883                  * from the loop so we'll fall into the undo loop
1884                  * below.
1885                  */
1886                 switch (msbp->msb_field) {
1887 #ifdef HAVE_PERCPU_SB
1888                 case XFS_SBS_ICOUNT:
1889                 case XFS_SBS_IFREE:
1890                 case XFS_SBS_FDBLOCKS:
1891                         if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1892                                 spin_unlock(&mp->m_sb_lock);
1893                                 status = xfs_icsb_modify_counters(mp,
1894                                                         msbp->msb_field,
1895                                                         msbp->msb_delta, rsvd);
1896                                 spin_lock(&mp->m_sb_lock);
1897                                 break;
1898                         }
1899                         /* FALLTHROUGH */
1900 #endif
1901                 default:
1902                         status = xfs_mod_incore_sb_unlocked(mp,
1903                                                 msbp->msb_field,
1904                                                 msbp->msb_delta, rsvd);
1905                         break;
1906                 }
1907
1908                 if (status != 0) {
1909                         break;
1910                 }
1911         }
1912
1913         /*
1914          * If we didn't complete the loop above, then back out
1915          * any changes made to the superblock.  If you add code
1916          * between the loop above and here, make sure that you
1917          * preserve the value of status. Loop back until
1918          * we step below the beginning of the array.  Make sure
1919          * we don't touch anything back there.
1920          */
1921         if (status != 0) {
1922                 msbp--;
1923                 while (msbp >= msb) {
1924                         switch (msbp->msb_field) {
1925 #ifdef HAVE_PERCPU_SB
1926                         case XFS_SBS_ICOUNT:
1927                         case XFS_SBS_IFREE:
1928                         case XFS_SBS_FDBLOCKS:
1929                                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1930                                         spin_unlock(&mp->m_sb_lock);
1931                                         status = xfs_icsb_modify_counters(mp,
1932                                                         msbp->msb_field,
1933                                                         -(msbp->msb_delta),
1934                                                         rsvd);
1935                                         spin_lock(&mp->m_sb_lock);
1936                                         break;
1937                                 }
1938                                 /* FALLTHROUGH */
1939 #endif
1940                         default:
1941                                 status = xfs_mod_incore_sb_unlocked(mp,
1942                                                         msbp->msb_field,
1943                                                         -(msbp->msb_delta),
1944                                                         rsvd);
1945                                 break;
1946                         }
1947                         ASSERT(status == 0);
1948                         msbp--;
1949                 }
1950         }
1951         spin_unlock(&mp->m_sb_lock);
1952         return status;
1953 }
1954
1955 /*
1956  * xfs_getsb() is called to obtain the buffer for the superblock.
1957  * The buffer is returned locked and read in from disk.
1958  * The buffer should be released with a call to xfs_brelse().
1959  *
1960  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1961  * the superblock buffer if it can be locked without sleeping.
1962  * If it can't then we'll return NULL.
1963  */
1964 xfs_buf_t *
1965 xfs_getsb(
1966         xfs_mount_t     *mp,
1967         int             flags)
1968 {
1969         xfs_buf_t       *bp;
1970
1971         ASSERT(mp->m_sb_bp != NULL);
1972         bp = mp->m_sb_bp;
1973         if (flags & XFS_BUF_TRYLOCK) {
1974                 if (!XFS_BUF_CPSEMA(bp)) {
1975                         return NULL;
1976                 }
1977         } else {
1978                 XFS_BUF_PSEMA(bp, PRIBIO);
1979         }
1980         XFS_BUF_HOLD(bp);
1981         ASSERT(XFS_BUF_ISDONE(bp));
1982         return bp;
1983 }
1984
1985 /*
1986  * Used to free the superblock along various error paths.
1987  */
1988 void
1989 xfs_freesb(
1990         xfs_mount_t     *mp)
1991 {
1992         xfs_buf_t       *bp;
1993
1994         /*
1995          * Use xfs_getsb() so that the buffer will be locked
1996          * when we call xfs_buf_relse().
1997          */
1998         bp = xfs_getsb(mp, 0);
1999         XFS_BUF_UNMANAGE(bp);
2000         xfs_buf_relse(bp);
2001         mp->m_sb_bp = NULL;
2002 }
2003
2004 /*
2005  * Used to log changes to the superblock unit and width fields which could
2006  * be altered by the mount options, as well as any potential sb_features2
2007  * fixup. Only the first superblock is updated.
2008  */
2009 int
2010 xfs_mount_log_sb(
2011         xfs_mount_t     *mp,
2012         __int64_t       fields)
2013 {
2014         xfs_trans_t     *tp;
2015         int             error;
2016
2017         ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2018                          XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2019                          XFS_SB_VERSIONNUM));
2020
2021         tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2022         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2023                                 XFS_DEFAULT_LOG_COUNT);
2024         if (error) {
2025                 xfs_trans_cancel(tp, 0);
2026                 return error;
2027         }
2028         xfs_mod_sb(tp, fields);
2029         error = xfs_trans_commit(tp, 0);
2030         return error;
2031 }
2032
2033
2034 #ifdef HAVE_PERCPU_SB
2035 /*
2036  * Per-cpu incore superblock counters
2037  *
2038  * Simple concept, difficult implementation
2039  *
2040  * Basically, replace the incore superblock counters with a distributed per cpu
2041  * counter for contended fields (e.g.  free block count).
2042  *
2043  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2044  * hence needs to be accurately read when we are running low on space. Hence
2045  * there is a method to enable and disable the per-cpu counters based on how
2046  * much "stuff" is available in them.
2047  *
2048  * Basically, a counter is enabled if there is enough free resource to justify
2049  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2050  * ENOSPC), then we disable the counters to synchronise all callers and
2051  * re-distribute the available resources.
2052  *
2053  * If, once we redistributed the available resources, we still get a failure,
2054  * we disable the per-cpu counter and go through the slow path.
2055  *
2056  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2057  * when we disable a per-cpu counter, we need to drain its resources back to
2058  * the global superblock. We do this after disabling the counter to prevent
2059  * more threads from queueing up on the counter.
2060  *
2061  * Essentially, this means that we still need a lock in the fast path to enable
2062  * synchronisation between the global counters and the per-cpu counters. This
2063  * is not a problem because the lock will be local to a CPU almost all the time
2064  * and have little contention except when we get to ENOSPC conditions.
2065  *
2066  * Basically, this lock becomes a barrier that enables us to lock out the fast
2067  * path while we do things like enabling and disabling counters and
2068  * synchronising the counters.
2069  *
2070  * Locking rules:
2071  *
2072  *      1. m_sb_lock before picking up per-cpu locks
2073  *      2. per-cpu locks always picked up via for_each_online_cpu() order
2074  *      3. accurate counter sync requires m_sb_lock + per cpu locks
2075  *      4. modifying per-cpu counters requires holding per-cpu lock
2076  *      5. modifying global counters requires holding m_sb_lock
2077  *      6. enabling or disabling a counter requires holding the m_sb_lock 
2078  *         and _none_ of the per-cpu locks.
2079  *
2080  * Disabled counters are only ever re-enabled by a balance operation
2081  * that results in more free resources per CPU than a given threshold.
2082  * To ensure counters don't remain disabled, they are rebalanced when
2083  * the global resource goes above a higher threshold (i.e. some hysteresis
2084  * is present to prevent thrashing).
2085  */
2086
2087 #ifdef CONFIG_HOTPLUG_CPU
2088 /*
2089  * hot-plug CPU notifier support.
2090  *
2091  * We need a notifier per filesystem as we need to be able to identify
2092  * the filesystem to balance the counters out. This is achieved by
2093  * having a notifier block embedded in the xfs_mount_t and doing pointer
2094  * magic to get the mount pointer from the notifier block address.
2095  */
2096 STATIC int
2097 xfs_icsb_cpu_notify(
2098         struct notifier_block *nfb,
2099         unsigned long action,
2100         void *hcpu)
2101 {
2102         xfs_icsb_cnts_t *cntp;
2103         xfs_mount_t     *mp;
2104
2105         mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2106         cntp = (xfs_icsb_cnts_t *)
2107                         per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2108         switch (action) {
2109         case CPU_UP_PREPARE:
2110         case CPU_UP_PREPARE_FROZEN:
2111                 /* Easy Case - initialize the area and locks, and
2112                  * then rebalance when online does everything else for us. */
2113                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2114                 break;
2115         case CPU_ONLINE:
2116         case CPU_ONLINE_FROZEN:
2117                 xfs_icsb_lock(mp);
2118                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2119                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2120                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2121                 xfs_icsb_unlock(mp);
2122                 break;
2123         case CPU_DEAD:
2124         case CPU_DEAD_FROZEN:
2125                 /* Disable all the counters, then fold the dead cpu's
2126                  * count into the total on the global superblock and
2127                  * re-enable the counters. */
2128                 xfs_icsb_lock(mp);
2129                 spin_lock(&mp->m_sb_lock);
2130                 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2131                 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2132                 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2133
2134                 mp->m_sb.sb_icount += cntp->icsb_icount;
2135                 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2136                 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2137
2138                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2139
2140                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2141                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2142                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2143                 spin_unlock(&mp->m_sb_lock);
2144                 xfs_icsb_unlock(mp);
2145                 break;
2146         }
2147
2148         return NOTIFY_OK;
2149 }
2150 #endif /* CONFIG_HOTPLUG_CPU */
2151
2152 int
2153 xfs_icsb_init_counters(
2154         xfs_mount_t     *mp)
2155 {
2156         xfs_icsb_cnts_t *cntp;
2157         int             i;
2158
2159         mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2160         if (mp->m_sb_cnts == NULL)
2161                 return -ENOMEM;
2162
2163 #ifdef CONFIG_HOTPLUG_CPU
2164         mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2165         mp->m_icsb_notifier.priority = 0;
2166         register_hotcpu_notifier(&mp->m_icsb_notifier);
2167 #endif /* CONFIG_HOTPLUG_CPU */
2168
2169         for_each_online_cpu(i) {
2170                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2171                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2172         }
2173
2174         mutex_init(&mp->m_icsb_mutex);
2175
2176         /*
2177          * start with all counters disabled so that the
2178          * initial balance kicks us off correctly
2179          */
2180         mp->m_icsb_counters = -1;
2181         return 0;
2182 }
2183
2184 void
2185 xfs_icsb_reinit_counters(
2186         xfs_mount_t     *mp)
2187 {
2188         xfs_icsb_lock(mp);
2189         /*
2190          * start with all counters disabled so that the
2191          * initial balance kicks us off correctly
2192          */
2193         mp->m_icsb_counters = -1;
2194         xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2195         xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2196         xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2197         xfs_icsb_unlock(mp);
2198 }
2199
2200 void
2201 xfs_icsb_destroy_counters(
2202         xfs_mount_t     *mp)
2203 {
2204         if (mp->m_sb_cnts) {
2205                 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2206                 free_percpu(mp->m_sb_cnts);
2207         }
2208         mutex_destroy(&mp->m_icsb_mutex);
2209 }
2210
2211 STATIC void
2212 xfs_icsb_lock_cntr(
2213         xfs_icsb_cnts_t *icsbp)
2214 {
2215         while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2216                 ndelay(1000);
2217         }
2218 }
2219
2220 STATIC void
2221 xfs_icsb_unlock_cntr(
2222         xfs_icsb_cnts_t *icsbp)
2223 {
2224         clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2225 }
2226
2227
2228 STATIC void
2229 xfs_icsb_lock_all_counters(
2230         xfs_mount_t     *mp)
2231 {
2232         xfs_icsb_cnts_t *cntp;
2233         int             i;
2234
2235         for_each_online_cpu(i) {
2236                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2237                 xfs_icsb_lock_cntr(cntp);
2238         }
2239 }
2240
2241 STATIC void
2242 xfs_icsb_unlock_all_counters(
2243         xfs_mount_t     *mp)
2244 {
2245         xfs_icsb_cnts_t *cntp;
2246         int             i;
2247
2248         for_each_online_cpu(i) {
2249                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2250                 xfs_icsb_unlock_cntr(cntp);
2251         }
2252 }
2253
2254 STATIC void
2255 xfs_icsb_count(
2256         xfs_mount_t     *mp,
2257         xfs_icsb_cnts_t *cnt,
2258         int             flags)
2259 {
2260         xfs_icsb_cnts_t *cntp;
2261         int             i;
2262
2263         memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2264
2265         if (!(flags & XFS_ICSB_LAZY_COUNT))
2266                 xfs_icsb_lock_all_counters(mp);
2267
2268         for_each_online_cpu(i) {
2269                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2270                 cnt->icsb_icount += cntp->icsb_icount;
2271                 cnt->icsb_ifree += cntp->icsb_ifree;
2272                 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2273         }
2274
2275         if (!(flags & XFS_ICSB_LAZY_COUNT))
2276                 xfs_icsb_unlock_all_counters(mp);
2277 }
2278
2279 STATIC int
2280 xfs_icsb_counter_disabled(
2281         xfs_mount_t     *mp,
2282         xfs_sb_field_t  field)
2283 {
2284         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2285         return test_bit(field, &mp->m_icsb_counters);
2286 }
2287
2288 STATIC void
2289 xfs_icsb_disable_counter(
2290         xfs_mount_t     *mp,
2291         xfs_sb_field_t  field)
2292 {
2293         xfs_icsb_cnts_t cnt;
2294
2295         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2296
2297         /*
2298          * If we are already disabled, then there is nothing to do
2299          * here. We check before locking all the counters to avoid
2300          * the expensive lock operation when being called in the
2301          * slow path and the counter is already disabled. This is
2302          * safe because the only time we set or clear this state is under
2303          * the m_icsb_mutex.
2304          */
2305         if (xfs_icsb_counter_disabled(mp, field))
2306                 return;
2307
2308         xfs_icsb_lock_all_counters(mp);
2309         if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2310                 /* drain back to superblock */
2311
2312                 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2313                 switch(field) {
2314                 case XFS_SBS_ICOUNT:
2315                         mp->m_sb.sb_icount = cnt.icsb_icount;
2316                         break;
2317                 case XFS_SBS_IFREE:
2318                         mp->m_sb.sb_ifree = cnt.icsb_ifree;
2319                         break;
2320                 case XFS_SBS_FDBLOCKS:
2321                         mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2322                         break;
2323                 default:
2324                         BUG();
2325                 }
2326         }
2327
2328         xfs_icsb_unlock_all_counters(mp);
2329 }
2330
2331 STATIC void
2332 xfs_icsb_enable_counter(
2333         xfs_mount_t     *mp,
2334         xfs_sb_field_t  field,
2335         uint64_t        count,
2336         uint64_t        resid)
2337 {
2338         xfs_icsb_cnts_t *cntp;
2339         int             i;
2340
2341         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2342
2343         xfs_icsb_lock_all_counters(mp);
2344         for_each_online_cpu(i) {
2345                 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2346                 switch (field) {
2347                 case XFS_SBS_ICOUNT:
2348                         cntp->icsb_icount = count + resid;
2349                         break;
2350                 case XFS_SBS_IFREE:
2351                         cntp->icsb_ifree = count + resid;
2352                         break;
2353                 case XFS_SBS_FDBLOCKS:
2354                         cntp->icsb_fdblocks = count + resid;
2355                         break;
2356                 default:
2357                         BUG();
2358                         break;
2359                 }
2360                 resid = 0;
2361         }
2362         clear_bit(field, &mp->m_icsb_counters);
2363         xfs_icsb_unlock_all_counters(mp);
2364 }
2365
2366 void
2367 xfs_icsb_sync_counters_locked(
2368         xfs_mount_t     *mp,
2369         int             flags)
2370 {
2371         xfs_icsb_cnts_t cnt;
2372
2373         xfs_icsb_count(mp, &cnt, flags);
2374
2375         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2376                 mp->m_sb.sb_icount = cnt.icsb_icount;
2377         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2378                 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2379         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2380                 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2381 }
2382
2383 /*
2384  * Accurate update of per-cpu counters to incore superblock
2385  */
2386 void
2387 xfs_icsb_sync_counters(
2388         xfs_mount_t     *mp,
2389         int             flags)
2390 {
2391         spin_lock(&mp->m_sb_lock);
2392         xfs_icsb_sync_counters_locked(mp, flags);
2393         spin_unlock(&mp->m_sb_lock);
2394 }
2395
2396 /*
2397  * Balance and enable/disable counters as necessary.
2398  *
2399  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2400  * chosen to be the same number as single on disk allocation chunk per CPU, and
2401  * free blocks is something far enough zero that we aren't going thrash when we
2402  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2403  * prevent looping endlessly when xfs_alloc_space asks for more than will
2404  * be distributed to a single CPU but each CPU has enough blocks to be
2405  * reenabled.
2406  *
2407  * Note that we can be called when counters are already disabled.
2408  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2409  * prevent locking every per-cpu counter needlessly.
2410  */
2411
2412 #define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
2413 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2414                 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2415 STATIC void
2416 xfs_icsb_balance_counter_locked(
2417         xfs_mount_t     *mp,
2418         xfs_sb_field_t  field,
2419         int             min_per_cpu)
2420 {
2421         uint64_t        count, resid;
2422         int             weight = num_online_cpus();
2423         uint64_t        min = (uint64_t)min_per_cpu;
2424
2425         /* disable counter and sync counter */
2426         xfs_icsb_disable_counter(mp, field);
2427
2428         /* update counters  - first CPU gets residual*/
2429         switch (field) {
2430         case XFS_SBS_ICOUNT:
2431                 count = mp->m_sb.sb_icount;
2432                 resid = do_div(count, weight);
2433                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2434                         return;
2435                 break;
2436         case XFS_SBS_IFREE:
2437                 count = mp->m_sb.sb_ifree;
2438                 resid = do_div(count, weight);
2439                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2440                         return;
2441                 break;
2442         case XFS_SBS_FDBLOCKS:
2443                 count = mp->m_sb.sb_fdblocks;
2444                 resid = do_div(count, weight);
2445                 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2446                         return;
2447                 break;
2448         default:
2449                 BUG();
2450                 count = resid = 0;      /* quiet, gcc */
2451                 break;
2452         }
2453
2454         xfs_icsb_enable_counter(mp, field, count, resid);
2455 }
2456
2457 STATIC void
2458 xfs_icsb_balance_counter(
2459         xfs_mount_t     *mp,
2460         xfs_sb_field_t  fields,
2461         int             min_per_cpu)
2462 {
2463         spin_lock(&mp->m_sb_lock);
2464         xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2465         spin_unlock(&mp->m_sb_lock);
2466 }
2467
2468 STATIC int
2469 xfs_icsb_modify_counters(
2470         xfs_mount_t     *mp,
2471         xfs_sb_field_t  field,
2472         int64_t         delta,
2473         int             rsvd)
2474 {
2475         xfs_icsb_cnts_t *icsbp;
2476         long long       lcounter;       /* long counter for 64 bit fields */
2477         int             ret = 0;
2478
2479         might_sleep();
2480 again:
2481         preempt_disable();
2482         icsbp = this_cpu_ptr(mp->m_sb_cnts);
2483
2484         /*
2485          * if the counter is disabled, go to slow path
2486          */
2487         if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2488                 goto slow_path;
2489         xfs_icsb_lock_cntr(icsbp);
2490         if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2491                 xfs_icsb_unlock_cntr(icsbp);
2492                 goto slow_path;
2493         }
2494
2495         switch (field) {
2496         case XFS_SBS_ICOUNT:
2497                 lcounter = icsbp->icsb_icount;
2498                 lcounter += delta;
2499                 if (unlikely(lcounter < 0))
2500                         goto balance_counter;
2501                 icsbp->icsb_icount = lcounter;
2502                 break;
2503
2504         case XFS_SBS_IFREE:
2505                 lcounter = icsbp->icsb_ifree;
2506                 lcounter += delta;
2507                 if (unlikely(lcounter < 0))
2508                         goto balance_counter;
2509                 icsbp->icsb_ifree = lcounter;
2510                 break;
2511
2512         case XFS_SBS_FDBLOCKS:
2513                 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2514
2515                 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2516                 lcounter += delta;
2517                 if (unlikely(lcounter < 0))
2518                         goto balance_counter;
2519                 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2520                 break;
2521         default:
2522                 BUG();
2523                 break;
2524         }
2525         xfs_icsb_unlock_cntr(icsbp);
2526         preempt_enable();
2527         return 0;
2528
2529 slow_path:
2530         preempt_enable();
2531
2532         /*
2533          * serialise with a mutex so we don't burn lots of cpu on
2534          * the superblock lock. We still need to hold the superblock
2535          * lock, however, when we modify the global structures.
2536          */
2537         xfs_icsb_lock(mp);
2538
2539         /*
2540          * Now running atomically.
2541          *
2542          * If the counter is enabled, someone has beaten us to rebalancing.
2543          * Drop the lock and try again in the fast path....
2544          */
2545         if (!(xfs_icsb_counter_disabled(mp, field))) {
2546                 xfs_icsb_unlock(mp);
2547                 goto again;
2548         }
2549
2550         /*
2551          * The counter is currently disabled. Because we are
2552          * running atomically here, we know a rebalance cannot
2553          * be in progress. Hence we can go straight to operating
2554          * on the global superblock. We do not call xfs_mod_incore_sb()
2555          * here even though we need to get the m_sb_lock. Doing so
2556          * will cause us to re-enter this function and deadlock.
2557          * Hence we get the m_sb_lock ourselves and then call
2558          * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2559          * directly on the global counters.
2560          */
2561         spin_lock(&mp->m_sb_lock);
2562         ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2563         spin_unlock(&mp->m_sb_lock);
2564
2565         /*
2566          * Now that we've modified the global superblock, we
2567          * may be able to re-enable the distributed counters
2568          * (e.g. lots of space just got freed). After that
2569          * we are done.
2570          */
2571         if (ret != ENOSPC)
2572                 xfs_icsb_balance_counter(mp, field, 0);
2573         xfs_icsb_unlock(mp);
2574         return ret;
2575
2576 balance_counter:
2577         xfs_icsb_unlock_cntr(icsbp);
2578         preempt_enable();
2579
2580         /*
2581          * We may have multiple threads here if multiple per-cpu
2582          * counters run dry at the same time. This will mean we can
2583          * do more balances than strictly necessary but it is not
2584          * the common slowpath case.
2585          */
2586         xfs_icsb_lock(mp);
2587
2588         /*
2589          * running atomically.
2590          *
2591          * This will leave the counter in the correct state for future
2592          * accesses. After the rebalance, we simply try again and our retry
2593          * will either succeed through the fast path or slow path without
2594          * another balance operation being required.
2595          */
2596         xfs_icsb_balance_counter(mp, field, delta);
2597         xfs_icsb_unlock(mp);
2598         goto again;
2599 }
2600
2601 #endif