[XFS] Remove version 1 directory code. Never functioned on Linux, just
[safe/jmp/linux-2.6] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49
50 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void     xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53                                                xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void     xlog_recover_check_summary(xlog_t *);
56 STATIC void     xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57 #else
58 #define xlog_recover_check_summary(log)
59 #define xlog_recover_check_ail(mp, lip, gen)
60 #endif
61
62
63 /*
64  * Sector aligned buffer routines for buffer create/read/write/access
65  */
66
67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)   \
68         ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69         ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)   ((bno) & ~(log)->l_sectbb_mask)
71
72 xfs_buf_t *
73 xlog_get_bp(
74         xlog_t          *log,
75         int             num_bblks)
76 {
77         ASSERT(num_bblks > 0);
78
79         if (log->l_sectbb_log) {
80                 if (num_bblks > 1)
81                         num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82                 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83         }
84         return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85 }
86
87 void
88 xlog_put_bp(
89         xfs_buf_t       *bp)
90 {
91         xfs_buf_free(bp);
92 }
93
94
95 /*
96  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
97  */
98 int
99 xlog_bread(
100         xlog_t          *log,
101         xfs_daddr_t     blk_no,
102         int             nbblks,
103         xfs_buf_t       *bp)
104 {
105         int             error;
106
107         if (log->l_sectbb_log) {
108                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110         }
111
112         ASSERT(nbblks > 0);
113         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114         ASSERT(bp);
115
116         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117         XFS_BUF_READ(bp);
118         XFS_BUF_BUSY(bp);
119         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121
122         xfsbdstrat(log->l_mp, bp);
123         if ((error = xfs_iowait(bp)))
124                 xfs_ioerror_alert("xlog_bread", log->l_mp,
125                                   bp, XFS_BUF_ADDR(bp));
126         return error;
127 }
128
129 /*
130  * Write out the buffer at the given block for the given number of blocks.
131  * The buffer is kept locked across the write and is returned locked.
132  * This can only be used for synchronous log writes.
133  */
134 STATIC int
135 xlog_bwrite(
136         xlog_t          *log,
137         xfs_daddr_t     blk_no,
138         int             nbblks,
139         xfs_buf_t       *bp)
140 {
141         int             error;
142
143         if (log->l_sectbb_log) {
144                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146         }
147
148         ASSERT(nbblks > 0);
149         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150
151         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152         XFS_BUF_ZEROFLAGS(bp);
153         XFS_BUF_BUSY(bp);
154         XFS_BUF_HOLD(bp);
155         XFS_BUF_PSEMA(bp, PRIBIO);
156         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158
159         if ((error = xfs_bwrite(log->l_mp, bp)))
160                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161                                   bp, XFS_BUF_ADDR(bp));
162         return error;
163 }
164
165 STATIC xfs_caddr_t
166 xlog_align(
167         xlog_t          *log,
168         xfs_daddr_t     blk_no,
169         int             nbblks,
170         xfs_buf_t       *bp)
171 {
172         xfs_caddr_t     ptr;
173
174         if (!log->l_sectbb_log)
175                 return XFS_BUF_PTR(bp);
176
177         ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178         ASSERT(XFS_BUF_SIZE(bp) >=
179                 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180         return ptr;
181 }
182
183 #ifdef DEBUG
184 /*
185  * dump debug superblock and log record information
186  */
187 STATIC void
188 xlog_header_check_dump(
189         xfs_mount_t             *mp,
190         xlog_rec_header_t       *head)
191 {
192         int                     b;
193
194         cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __FUNCTION__);
195         for (b = 0; b < 16; b++)
196                 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197         cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198         cmn_err(CE_DEBUG, "    log : uuid = ");
199         for (b = 0; b < 16; b++)
200                 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201         cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
202 }
203 #else
204 #define xlog_header_check_dump(mp, head)
205 #endif
206
207 /*
208  * check log record header for recovery
209  */
210 STATIC int
211 xlog_header_check_recover(
212         xfs_mount_t             *mp,
213         xlog_rec_header_t       *head)
214 {
215         ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
216
217         /*
218          * IRIX doesn't write the h_fmt field and leaves it zeroed
219          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220          * a dirty log created in IRIX.
221          */
222         if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
223                 xlog_warn(
224         "XFS: dirty log written in incompatible format - can't recover");
225                 xlog_header_check_dump(mp, head);
226                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227                                  XFS_ERRLEVEL_HIGH, mp);
228                 return XFS_ERROR(EFSCORRUPTED);
229         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230                 xlog_warn(
231         "XFS: dirty log entry has mismatched uuid - can't recover");
232                 xlog_header_check_dump(mp, head);
233                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234                                  XFS_ERRLEVEL_HIGH, mp);
235                 return XFS_ERROR(EFSCORRUPTED);
236         }
237         return 0;
238 }
239
240 /*
241  * read the head block of the log and check the header
242  */
243 STATIC int
244 xlog_header_check_mount(
245         xfs_mount_t             *mp,
246         xlog_rec_header_t       *head)
247 {
248         ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
249
250         if (uuid_is_nil(&head->h_fs_uuid)) {
251                 /*
252                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253                  * h_fs_uuid is nil, we assume this log was last mounted
254                  * by IRIX and continue.
255                  */
256                 xlog_warn("XFS: nil uuid in log - IRIX style log");
257         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258                 xlog_warn("XFS: log has mismatched uuid - can't recover");
259                 xlog_header_check_dump(mp, head);
260                 XFS_ERROR_REPORT("xlog_header_check_mount",
261                                  XFS_ERRLEVEL_HIGH, mp);
262                 return XFS_ERROR(EFSCORRUPTED);
263         }
264         return 0;
265 }
266
267 STATIC void
268 xlog_recover_iodone(
269         struct xfs_buf  *bp)
270 {
271         xfs_mount_t     *mp;
272
273         ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274
275         if (XFS_BUF_GETERROR(bp)) {
276                 /*
277                  * We're not going to bother about retrying
278                  * this during recovery. One strike!
279                  */
280                 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281                 xfs_ioerror_alert("xlog_recover_iodone",
282                                   mp, bp, XFS_BUF_ADDR(bp));
283                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
284         }
285         XFS_BUF_SET_FSPRIVATE(bp, NULL);
286         XFS_BUF_CLR_IODONE_FUNC(bp);
287         xfs_biodone(bp);
288 }
289
290 /*
291  * This routine finds (to an approximation) the first block in the physical
292  * log which contains the given cycle.  It uses a binary search algorithm.
293  * Note that the algorithm can not be perfect because the disk will not
294  * necessarily be perfect.
295  */
296 int
297 xlog_find_cycle_start(
298         xlog_t          *log,
299         xfs_buf_t       *bp,
300         xfs_daddr_t     first_blk,
301         xfs_daddr_t     *last_blk,
302         uint            cycle)
303 {
304         xfs_caddr_t     offset;
305         xfs_daddr_t     mid_blk;
306         uint            mid_cycle;
307         int             error;
308
309         mid_blk = BLK_AVG(first_blk, *last_blk);
310         while (mid_blk != first_blk && mid_blk != *last_blk) {
311                 if ((error = xlog_bread(log, mid_blk, 1, bp)))
312                         return error;
313                 offset = xlog_align(log, mid_blk, 1, bp);
314                 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
315                 if (mid_cycle == cycle) {
316                         *last_blk = mid_blk;
317                         /* last_half_cycle == mid_cycle */
318                 } else {
319                         first_blk = mid_blk;
320                         /* first_half_cycle == mid_cycle */
321                 }
322                 mid_blk = BLK_AVG(first_blk, *last_blk);
323         }
324         ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325                (mid_blk == *last_blk && mid_blk-1 == first_blk));
326
327         return 0;
328 }
329
330 /*
331  * Check that the range of blocks does not contain the cycle number
332  * given.  The scan needs to occur from front to back and the ptr into the
333  * region must be updated since a later routine will need to perform another
334  * test.  If the region is completely good, we end up returning the same
335  * last block number.
336  *
337  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
338  * since we don't ever expect logs to get this large.
339  */
340 STATIC int
341 xlog_find_verify_cycle(
342         xlog_t          *log,
343         xfs_daddr_t     start_blk,
344         int             nbblks,
345         uint            stop_on_cycle_no,
346         xfs_daddr_t     *new_blk)
347 {
348         xfs_daddr_t     i, j;
349         uint            cycle;
350         xfs_buf_t       *bp;
351         xfs_daddr_t     bufblks;
352         xfs_caddr_t     buf = NULL;
353         int             error = 0;
354
355         bufblks = 1 << ffs(nbblks);
356
357         while (!(bp = xlog_get_bp(log, bufblks))) {
358                 /* can't get enough memory to do everything in one big buffer */
359                 bufblks >>= 1;
360                 if (bufblks <= log->l_sectbb_log)
361                         return ENOMEM;
362         }
363
364         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365                 int     bcount;
366
367                 bcount = min(bufblks, (start_blk + nbblks - i));
368
369                 if ((error = xlog_bread(log, i, bcount, bp)))
370                         goto out;
371
372                 buf = xlog_align(log, i, bcount, bp);
373                 for (j = 0; j < bcount; j++) {
374                         cycle = GET_CYCLE(buf, ARCH_CONVERT);
375                         if (cycle == stop_on_cycle_no) {
376                                 *new_blk = i+j;
377                                 goto out;
378                         }
379
380                         buf += BBSIZE;
381                 }
382         }
383
384         *new_blk = -1;
385
386 out:
387         xlog_put_bp(bp);
388         return error;
389 }
390
391 /*
392  * Potentially backup over partial log record write.
393  *
394  * In the typical case, last_blk is the number of the block directly after
395  * a good log record.  Therefore, we subtract one to get the block number
396  * of the last block in the given buffer.  extra_bblks contains the number
397  * of blocks we would have read on a previous read.  This happens when the
398  * last log record is split over the end of the physical log.
399  *
400  * extra_bblks is the number of blocks potentially verified on a previous
401  * call to this routine.
402  */
403 STATIC int
404 xlog_find_verify_log_record(
405         xlog_t                  *log,
406         xfs_daddr_t             start_blk,
407         xfs_daddr_t             *last_blk,
408         int                     extra_bblks)
409 {
410         xfs_daddr_t             i;
411         xfs_buf_t               *bp;
412         xfs_caddr_t             offset = NULL;
413         xlog_rec_header_t       *head = NULL;
414         int                     error = 0;
415         int                     smallmem = 0;
416         int                     num_blks = *last_blk - start_blk;
417         int                     xhdrs;
418
419         ASSERT(start_blk != 0 || *last_blk != start_blk);
420
421         if (!(bp = xlog_get_bp(log, num_blks))) {
422                 if (!(bp = xlog_get_bp(log, 1)))
423                         return ENOMEM;
424                 smallmem = 1;
425         } else {
426                 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427                         goto out;
428                 offset = xlog_align(log, start_blk, num_blks, bp);
429                 offset += ((num_blks - 1) << BBSHIFT);
430         }
431
432         for (i = (*last_blk) - 1; i >= 0; i--) {
433                 if (i < start_blk) {
434                         /* valid log record not found */
435                         xlog_warn(
436                 "XFS: Log inconsistent (didn't find previous header)");
437                         ASSERT(0);
438                         error = XFS_ERROR(EIO);
439                         goto out;
440                 }
441
442                 if (smallmem) {
443                         if ((error = xlog_bread(log, i, 1, bp)))
444                                 goto out;
445                         offset = xlog_align(log, i, 1, bp);
446                 }
447
448                 head = (xlog_rec_header_t *)offset;
449
450                 if (XLOG_HEADER_MAGIC_NUM ==
451                     INT_GET(head->h_magicno, ARCH_CONVERT))
452                         break;
453
454                 if (!smallmem)
455                         offset -= BBSIZE;
456         }
457
458         /*
459          * We hit the beginning of the physical log & still no header.  Return
460          * to caller.  If caller can handle a return of -1, then this routine
461          * will be called again for the end of the physical log.
462          */
463         if (i == -1) {
464                 error = -1;
465                 goto out;
466         }
467
468         /*
469          * We have the final block of the good log (the first block
470          * of the log record _before_ the head. So we check the uuid.
471          */
472         if ((error = xlog_header_check_mount(log->l_mp, head)))
473                 goto out;
474
475         /*
476          * We may have found a log record header before we expected one.
477          * last_blk will be the 1st block # with a given cycle #.  We may end
478          * up reading an entire log record.  In this case, we don't want to
479          * reset last_blk.  Only when last_blk points in the middle of a log
480          * record do we update last_blk.
481          */
482         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
483                 uint    h_size = INT_GET(head->h_size, ARCH_CONVERT);
484
485                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
487                         xhdrs++;
488         } else {
489                 xhdrs = 1;
490         }
491
492         if (*last_blk - i + extra_bblks
493                         != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
494                 *last_blk = i;
495
496 out:
497         xlog_put_bp(bp);
498         return error;
499 }
500
501 /*
502  * Head is defined to be the point of the log where the next log write
503  * write could go.  This means that incomplete LR writes at the end are
504  * eliminated when calculating the head.  We aren't guaranteed that previous
505  * LR have complete transactions.  We only know that a cycle number of
506  * current cycle number -1 won't be present in the log if we start writing
507  * from our current block number.
508  *
509  * last_blk contains the block number of the first block with a given
510  * cycle number.
511  *
512  * Return: zero if normal, non-zero if error.
513  */
514 STATIC int
515 xlog_find_head(
516         xlog_t          *log,
517         xfs_daddr_t     *return_head_blk)
518 {
519         xfs_buf_t       *bp;
520         xfs_caddr_t     offset;
521         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
522         int             num_scan_bblks;
523         uint            first_half_cycle, last_half_cycle;
524         uint            stop_on_cycle;
525         int             error, log_bbnum = log->l_logBBsize;
526
527         /* Is the end of the log device zeroed? */
528         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529                 *return_head_blk = first_blk;
530
531                 /* Is the whole lot zeroed? */
532                 if (!first_blk) {
533                         /* Linux XFS shouldn't generate totally zeroed logs -
534                          * mkfs etc write a dummy unmount record to a fresh
535                          * log so we can store the uuid in there
536                          */
537                         xlog_warn("XFS: totally zeroed log");
538                 }
539
540                 return 0;
541         } else if (error) {
542                 xlog_warn("XFS: empty log check failed");
543                 return error;
544         }
545
546         first_blk = 0;                  /* get cycle # of 1st block */
547         bp = xlog_get_bp(log, 1);
548         if (!bp)
549                 return ENOMEM;
550         if ((error = xlog_bread(log, 0, 1, bp)))
551                 goto bp_err;
552         offset = xlog_align(log, 0, 1, bp);
553         first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
554
555         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
556         if ((error = xlog_bread(log, last_blk, 1, bp)))
557                 goto bp_err;
558         offset = xlog_align(log, last_blk, 1, bp);
559         last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
560         ASSERT(last_half_cycle != 0);
561
562         /*
563          * If the 1st half cycle number is equal to the last half cycle number,
564          * then the entire log is stamped with the same cycle number.  In this
565          * case, head_blk can't be set to zero (which makes sense).  The below
566          * math doesn't work out properly with head_blk equal to zero.  Instead,
567          * we set it to log_bbnum which is an invalid block number, but this
568          * value makes the math correct.  If head_blk doesn't changed through
569          * all the tests below, *head_blk is set to zero at the very end rather
570          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
571          * in a circular file.
572          */
573         if (first_half_cycle == last_half_cycle) {
574                 /*
575                  * In this case we believe that the entire log should have
576                  * cycle number last_half_cycle.  We need to scan backwards
577                  * from the end verifying that there are no holes still
578                  * containing last_half_cycle - 1.  If we find such a hole,
579                  * then the start of that hole will be the new head.  The
580                  * simple case looks like
581                  *        x | x ... | x - 1 | x
582                  * Another case that fits this picture would be
583                  *        x | x + 1 | x ... | x
584                  * In this case the head really is somewhere at the end of the
585                  * log, as one of the latest writes at the beginning was
586                  * incomplete.
587                  * One more case is
588                  *        x | x + 1 | x ... | x - 1 | x
589                  * This is really the combination of the above two cases, and
590                  * the head has to end up at the start of the x-1 hole at the
591                  * end of the log.
592                  *
593                  * In the 256k log case, we will read from the beginning to the
594                  * end of the log and search for cycle numbers equal to x-1.
595                  * We don't worry about the x+1 blocks that we encounter,
596                  * because we know that they cannot be the head since the log
597                  * started with x.
598                  */
599                 head_blk = log_bbnum;
600                 stop_on_cycle = last_half_cycle - 1;
601         } else {
602                 /*
603                  * In this case we want to find the first block with cycle
604                  * number matching last_half_cycle.  We expect the log to be
605                  * some variation on
606                  *        x + 1 ... | x ...
607                  * The first block with cycle number x (last_half_cycle) will
608                  * be where the new head belongs.  First we do a binary search
609                  * for the first occurrence of last_half_cycle.  The binary
610                  * search may not be totally accurate, so then we scan back
611                  * from there looking for occurrences of last_half_cycle before
612                  * us.  If that backwards scan wraps around the beginning of
613                  * the log, then we look for occurrences of last_half_cycle - 1
614                  * at the end of the log.  The cases we're looking for look
615                  * like
616                  *        x + 1 ... | x | x + 1 | x ...
617                  *                               ^ binary search stopped here
618                  * or
619                  *        x + 1 ... | x ... | x - 1 | x
620                  *        <---------> less than scan distance
621                  */
622                 stop_on_cycle = last_half_cycle;
623                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
624                                                 &head_blk, last_half_cycle)))
625                         goto bp_err;
626         }
627
628         /*
629          * Now validate the answer.  Scan back some number of maximum possible
630          * blocks and make sure each one has the expected cycle number.  The
631          * maximum is determined by the total possible amount of buffering
632          * in the in-core log.  The following number can be made tighter if
633          * we actually look at the block size of the filesystem.
634          */
635         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636         if (head_blk >= num_scan_bblks) {
637                 /*
638                  * We are guaranteed that the entire check can be performed
639                  * in one buffer.
640                  */
641                 start_blk = head_blk - num_scan_bblks;
642                 if ((error = xlog_find_verify_cycle(log,
643                                                 start_blk, num_scan_bblks,
644                                                 stop_on_cycle, &new_blk)))
645                         goto bp_err;
646                 if (new_blk != -1)
647                         head_blk = new_blk;
648         } else {                /* need to read 2 parts of log */
649                 /*
650                  * We are going to scan backwards in the log in two parts.
651                  * First we scan the physical end of the log.  In this part
652                  * of the log, we are looking for blocks with cycle number
653                  * last_half_cycle - 1.
654                  * If we find one, then we know that the log starts there, as
655                  * we've found a hole that didn't get written in going around
656                  * the end of the physical log.  The simple case for this is
657                  *        x + 1 ... | x ... | x - 1 | x
658                  *        <---------> less than scan distance
659                  * If all of the blocks at the end of the log have cycle number
660                  * last_half_cycle, then we check the blocks at the start of
661                  * the log looking for occurrences of last_half_cycle.  If we
662                  * find one, then our current estimate for the location of the
663                  * first occurrence of last_half_cycle is wrong and we move
664                  * back to the hole we've found.  This case looks like
665                  *        x + 1 ... | x | x + 1 | x ...
666                  *                               ^ binary search stopped here
667                  * Another case we need to handle that only occurs in 256k
668                  * logs is
669                  *        x + 1 ... | x ... | x+1 | x ...
670                  *                   ^ binary search stops here
671                  * In a 256k log, the scan at the end of the log will see the
672                  * x + 1 blocks.  We need to skip past those since that is
673                  * certainly not the head of the log.  By searching for
674                  * last_half_cycle-1 we accomplish that.
675                  */
676                 start_blk = log_bbnum - num_scan_bblks + head_blk;
677                 ASSERT(head_blk <= INT_MAX &&
678                         (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679                 if ((error = xlog_find_verify_cycle(log, start_blk,
680                                         num_scan_bblks - (int)head_blk,
681                                         (stop_on_cycle - 1), &new_blk)))
682                         goto bp_err;
683                 if (new_blk != -1) {
684                         head_blk = new_blk;
685                         goto bad_blk;
686                 }
687
688                 /*
689                  * Scan beginning of log now.  The last part of the physical
690                  * log is good.  This scan needs to verify that it doesn't find
691                  * the last_half_cycle.
692                  */
693                 start_blk = 0;
694                 ASSERT(head_blk <= INT_MAX);
695                 if ((error = xlog_find_verify_cycle(log,
696                                         start_blk, (int)head_blk,
697                                         stop_on_cycle, &new_blk)))
698                         goto bp_err;
699                 if (new_blk != -1)
700                         head_blk = new_blk;
701         }
702
703  bad_blk:
704         /*
705          * Now we need to make sure head_blk is not pointing to a block in
706          * the middle of a log record.
707          */
708         num_scan_bblks = XLOG_REC_SHIFT(log);
709         if (head_blk >= num_scan_bblks) {
710                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711
712                 /* start ptr at last block ptr before head_blk */
713                 if ((error = xlog_find_verify_log_record(log, start_blk,
714                                                         &head_blk, 0)) == -1) {
715                         error = XFS_ERROR(EIO);
716                         goto bp_err;
717                 } else if (error)
718                         goto bp_err;
719         } else {
720                 start_blk = 0;
721                 ASSERT(head_blk <= INT_MAX);
722                 if ((error = xlog_find_verify_log_record(log, start_blk,
723                                                         &head_blk, 0)) == -1) {
724                         /* We hit the beginning of the log during our search */
725                         start_blk = log_bbnum - num_scan_bblks + head_blk;
726                         new_blk = log_bbnum;
727                         ASSERT(start_blk <= INT_MAX &&
728                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
729                         ASSERT(head_blk <= INT_MAX);
730                         if ((error = xlog_find_verify_log_record(log,
731                                                         start_blk, &new_blk,
732                                                         (int)head_blk)) == -1) {
733                                 error = XFS_ERROR(EIO);
734                                 goto bp_err;
735                         } else if (error)
736                                 goto bp_err;
737                         if (new_blk != log_bbnum)
738                                 head_blk = new_blk;
739                 } else if (error)
740                         goto bp_err;
741         }
742
743         xlog_put_bp(bp);
744         if (head_blk == log_bbnum)
745                 *return_head_blk = 0;
746         else
747                 *return_head_blk = head_blk;
748         /*
749          * When returning here, we have a good block number.  Bad block
750          * means that during a previous crash, we didn't have a clean break
751          * from cycle number N to cycle number N-1.  In this case, we need
752          * to find the first block with cycle number N-1.
753          */
754         return 0;
755
756  bp_err:
757         xlog_put_bp(bp);
758
759         if (error)
760             xlog_warn("XFS: failed to find log head");
761         return error;
762 }
763
764 /*
765  * Find the sync block number or the tail of the log.
766  *
767  * This will be the block number of the last record to have its
768  * associated buffers synced to disk.  Every log record header has
769  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
770  * to get a sync block number.  The only concern is to figure out which
771  * log record header to believe.
772  *
773  * The following algorithm uses the log record header with the largest
774  * lsn.  The entire log record does not need to be valid.  We only care
775  * that the header is valid.
776  *
777  * We could speed up search by using current head_blk buffer, but it is not
778  * available.
779  */
780 int
781 xlog_find_tail(
782         xlog_t                  *log,
783         xfs_daddr_t             *head_blk,
784         xfs_daddr_t             *tail_blk)
785 {
786         xlog_rec_header_t       *rhead;
787         xlog_op_header_t        *op_head;
788         xfs_caddr_t             offset = NULL;
789         xfs_buf_t               *bp;
790         int                     error, i, found;
791         xfs_daddr_t             umount_data_blk;
792         xfs_daddr_t             after_umount_blk;
793         xfs_lsn_t               tail_lsn;
794         int                     hblks;
795
796         found = 0;
797
798         /*
799          * Find previous log record
800          */
801         if ((error = xlog_find_head(log, head_blk)))
802                 return error;
803
804         bp = xlog_get_bp(log, 1);
805         if (!bp)
806                 return ENOMEM;
807         if (*head_blk == 0) {                           /* special case */
808                 if ((error = xlog_bread(log, 0, 1, bp)))
809                         goto bread_err;
810                 offset = xlog_align(log, 0, 1, bp);
811                 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
812                         *tail_blk = 0;
813                         /* leave all other log inited values alone */
814                         goto exit;
815                 }
816         }
817
818         /*
819          * Search backwards looking for log record header block
820          */
821         ASSERT(*head_blk < INT_MAX);
822         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823                 if ((error = xlog_bread(log, i, 1, bp)))
824                         goto bread_err;
825                 offset = xlog_align(log, i, 1, bp);
826                 if (XLOG_HEADER_MAGIC_NUM ==
827                     INT_GET(*(uint *)offset, ARCH_CONVERT)) {
828                         found = 1;
829                         break;
830                 }
831         }
832         /*
833          * If we haven't found the log record header block, start looking
834          * again from the end of the physical log.  XXXmiken: There should be
835          * a check here to make sure we didn't search more than N blocks in
836          * the previous code.
837          */
838         if (!found) {
839                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840                         if ((error = xlog_bread(log, i, 1, bp)))
841                                 goto bread_err;
842                         offset = xlog_align(log, i, 1, bp);
843                         if (XLOG_HEADER_MAGIC_NUM ==
844                             INT_GET(*(uint*)offset, ARCH_CONVERT)) {
845                                 found = 2;
846                                 break;
847                         }
848                 }
849         }
850         if (!found) {
851                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852                 ASSERT(0);
853                 return XFS_ERROR(EIO);
854         }
855
856         /* find blk_no of tail of log */
857         rhead = (xlog_rec_header_t *)offset;
858         *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
859
860         /*
861          * Reset log values according to the state of the log when we
862          * crashed.  In the case where head_blk == 0, we bump curr_cycle
863          * one because the next write starts a new cycle rather than
864          * continuing the cycle of the last good log record.  At this
865          * point we have guaranteed that all partial log records have been
866          * accounted for.  Therefore, we know that the last good log record
867          * written was complete and ended exactly on the end boundary
868          * of the physical log.
869          */
870         log->l_prev_block = i;
871         log->l_curr_block = (int)*head_blk;
872         log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
873         if (found == 2)
874                 log->l_curr_cycle++;
875         log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
876         log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
877         log->l_grant_reserve_cycle = log->l_curr_cycle;
878         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879         log->l_grant_write_cycle = log->l_curr_cycle;
880         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881
882         /*
883          * Look for unmount record.  If we find it, then we know there
884          * was a clean unmount.  Since 'i' could be the last block in
885          * the physical log, we convert to a log block before comparing
886          * to the head_blk.
887          *
888          * Save the current tail lsn to use to pass to
889          * xlog_clear_stale_blocks() below.  We won't want to clear the
890          * unmount record if there is one, so we pass the lsn of the
891          * unmount record rather than the block after it.
892          */
893         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
894                 int     h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
895                 int     h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
896
897                 if ((h_version & XLOG_VERSION_2) &&
898                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
901                                 hblks++;
902                 } else {
903                         hblks = 1;
904                 }
905         } else {
906                 hblks = 1;
907         }
908         after_umount_blk = (i + hblks + (int)
909                 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
910         tail_lsn = log->l_tail_lsn;
911         if (*head_blk == after_umount_blk &&
912             INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
913                 umount_data_blk = (i + hblks) % log->l_logBBsize;
914                 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915                         goto bread_err;
916                 }
917                 offset = xlog_align(log, umount_data_blk, 1, bp);
918                 op_head = (xlog_op_header_t *)offset;
919                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920                         /*
921                          * Set tail and last sync so that newly written
922                          * log records will point recovery to after the
923                          * current unmount record.
924                          */
925                         ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
926                                         after_umount_blk);
927                         ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
928                                         after_umount_blk);
929                         *tail_blk = after_umount_blk;
930                 }
931         }
932
933         /*
934          * Make sure that there are no blocks in front of the head
935          * with the same cycle number as the head.  This can happen
936          * because we allow multiple outstanding log writes concurrently,
937          * and the later writes might make it out before earlier ones.
938          *
939          * We use the lsn from before modifying it so that we'll never
940          * overwrite the unmount record after a clean unmount.
941          *
942          * Do this only if we are going to recover the filesystem
943          *
944          * NOTE: This used to say "if (!readonly)"
945          * However on Linux, we can & do recover a read-only filesystem.
946          * We only skip recovery if NORECOVERY is specified on mount,
947          * in which case we would not be here.
948          *
949          * But... if the -device- itself is readonly, just skip this.
950          * We can't recover this device anyway, so it won't matter.
951          */
952         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
953                 error = xlog_clear_stale_blocks(log, tail_lsn);
954         }
955
956 bread_err:
957 exit:
958         xlog_put_bp(bp);
959
960         if (error)
961                 xlog_warn("XFS: failed to locate log tail");
962         return error;
963 }
964
965 /*
966  * Is the log zeroed at all?
967  *
968  * The last binary search should be changed to perform an X block read
969  * once X becomes small enough.  You can then search linearly through
970  * the X blocks.  This will cut down on the number of reads we need to do.
971  *
972  * If the log is partially zeroed, this routine will pass back the blkno
973  * of the first block with cycle number 0.  It won't have a complete LR
974  * preceding it.
975  *
976  * Return:
977  *      0  => the log is completely written to
978  *      -1 => use *blk_no as the first block of the log
979  *      >0 => error has occurred
980  */
981 int
982 xlog_find_zeroed(
983         xlog_t          *log,
984         xfs_daddr_t     *blk_no)
985 {
986         xfs_buf_t       *bp;
987         xfs_caddr_t     offset;
988         uint            first_cycle, last_cycle;
989         xfs_daddr_t     new_blk, last_blk, start_blk;
990         xfs_daddr_t     num_scan_bblks;
991         int             error, log_bbnum = log->l_logBBsize;
992
993         /* check totally zeroed log */
994         bp = xlog_get_bp(log, 1);
995         if (!bp)
996                 return ENOMEM;
997         if ((error = xlog_bread(log, 0, 1, bp)))
998                 goto bp_err;
999         offset = xlog_align(log, 0, 1, bp);
1000         first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1001         if (first_cycle == 0) {         /* completely zeroed log */
1002                 *blk_no = 0;
1003                 xlog_put_bp(bp);
1004                 return -1;
1005         }
1006
1007         /* check partially zeroed log */
1008         if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1009                 goto bp_err;
1010         offset = xlog_align(log, log_bbnum-1, 1, bp);
1011         last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1012         if (last_cycle != 0) {          /* log completely written to */
1013                 xlog_put_bp(bp);
1014                 return 0;
1015         } else if (first_cycle != 1) {
1016                 /*
1017                  * If the cycle of the last block is zero, the cycle of
1018                  * the first block must be 1. If it's not, maybe we're
1019                  * not looking at a log... Bail out.
1020                  */
1021                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1022                 return XFS_ERROR(EINVAL);
1023         }
1024
1025         /* we have a partially zeroed log */
1026         last_blk = log_bbnum-1;
1027         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1028                 goto bp_err;
1029
1030         /*
1031          * Validate the answer.  Because there is no way to guarantee that
1032          * the entire log is made up of log records which are the same size,
1033          * we scan over the defined maximum blocks.  At this point, the maximum
1034          * is not chosen to mean anything special.   XXXmiken
1035          */
1036         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1037         ASSERT(num_scan_bblks <= INT_MAX);
1038
1039         if (last_blk < num_scan_bblks)
1040                 num_scan_bblks = last_blk;
1041         start_blk = last_blk - num_scan_bblks;
1042
1043         /*
1044          * We search for any instances of cycle number 0 that occur before
1045          * our current estimate of the head.  What we're trying to detect is
1046          *        1 ... | 0 | 1 | 0...
1047          *                       ^ binary search ends here
1048          */
1049         if ((error = xlog_find_verify_cycle(log, start_blk,
1050                                          (int)num_scan_bblks, 0, &new_blk)))
1051                 goto bp_err;
1052         if (new_blk != -1)
1053                 last_blk = new_blk;
1054
1055         /*
1056          * Potentially backup over partial log record write.  We don't need
1057          * to search the end of the log because we know it is zero.
1058          */
1059         if ((error = xlog_find_verify_log_record(log, start_blk,
1060                                 &last_blk, 0)) == -1) {
1061             error = XFS_ERROR(EIO);
1062             goto bp_err;
1063         } else if (error)
1064             goto bp_err;
1065
1066         *blk_no = last_blk;
1067 bp_err:
1068         xlog_put_bp(bp);
1069         if (error)
1070                 return error;
1071         return -1;
1072 }
1073
1074 /*
1075  * These are simple subroutines used by xlog_clear_stale_blocks() below
1076  * to initialize a buffer full of empty log record headers and write
1077  * them into the log.
1078  */
1079 STATIC void
1080 xlog_add_record(
1081         xlog_t                  *log,
1082         xfs_caddr_t             buf,
1083         int                     cycle,
1084         int                     block,
1085         int                     tail_cycle,
1086         int                     tail_block)
1087 {
1088         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1089
1090         memset(buf, 0, BBSIZE);
1091         INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1092         INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1093         INT_SET(recp->h_version, ARCH_CONVERT,
1094                         XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1095         ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1096         ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1097         INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1098         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1099 }
1100
1101 STATIC int
1102 xlog_write_log_records(
1103         xlog_t          *log,
1104         int             cycle,
1105         int             start_block,
1106         int             blocks,
1107         int             tail_cycle,
1108         int             tail_block)
1109 {
1110         xfs_caddr_t     offset;
1111         xfs_buf_t       *bp;
1112         int             balign, ealign;
1113         int             sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1114         int             end_block = start_block + blocks;
1115         int             bufblks;
1116         int             error = 0;
1117         int             i, j = 0;
1118
1119         bufblks = 1 << ffs(blocks);
1120         while (!(bp = xlog_get_bp(log, bufblks))) {
1121                 bufblks >>= 1;
1122                 if (bufblks <= log->l_sectbb_log)
1123                         return ENOMEM;
1124         }
1125
1126         /* We may need to do a read at the start to fill in part of
1127          * the buffer in the starting sector not covered by the first
1128          * write below.
1129          */
1130         balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1131         if (balign != start_block) {
1132                 if ((error = xlog_bread(log, start_block, 1, bp))) {
1133                         xlog_put_bp(bp);
1134                         return error;
1135                 }
1136                 j = start_block - balign;
1137         }
1138
1139         for (i = start_block; i < end_block; i += bufblks) {
1140                 int             bcount, endcount;
1141
1142                 bcount = min(bufblks, end_block - start_block);
1143                 endcount = bcount - j;
1144
1145                 /* We may need to do a read at the end to fill in part of
1146                  * the buffer in the final sector not covered by the write.
1147                  * If this is the same sector as the above read, skip it.
1148                  */
1149                 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1150                 if (j == 0 && (start_block + endcount > ealign)) {
1151                         offset = XFS_BUF_PTR(bp);
1152                         balign = BBTOB(ealign - start_block);
1153                         XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1154                         if ((error = xlog_bread(log, ealign, sectbb, bp)))
1155                                 break;
1156                         XFS_BUF_SET_PTR(bp, offset, bufblks);
1157                 }
1158
1159                 offset = xlog_align(log, start_block, endcount, bp);
1160                 for (; j < endcount; j++) {
1161                         xlog_add_record(log, offset, cycle, i+j,
1162                                         tail_cycle, tail_block);
1163                         offset += BBSIZE;
1164                 }
1165                 error = xlog_bwrite(log, start_block, endcount, bp);
1166                 if (error)
1167                         break;
1168                 start_block += endcount;
1169                 j = 0;
1170         }
1171         xlog_put_bp(bp);
1172         return error;
1173 }
1174
1175 /*
1176  * This routine is called to blow away any incomplete log writes out
1177  * in front of the log head.  We do this so that we won't become confused
1178  * if we come up, write only a little bit more, and then crash again.
1179  * If we leave the partial log records out there, this situation could
1180  * cause us to think those partial writes are valid blocks since they
1181  * have the current cycle number.  We get rid of them by overwriting them
1182  * with empty log records with the old cycle number rather than the
1183  * current one.
1184  *
1185  * The tail lsn is passed in rather than taken from
1186  * the log so that we will not write over the unmount record after a
1187  * clean unmount in a 512 block log.  Doing so would leave the log without
1188  * any valid log records in it until a new one was written.  If we crashed
1189  * during that time we would not be able to recover.
1190  */
1191 STATIC int
1192 xlog_clear_stale_blocks(
1193         xlog_t          *log,
1194         xfs_lsn_t       tail_lsn)
1195 {
1196         int             tail_cycle, head_cycle;
1197         int             tail_block, head_block;
1198         int             tail_distance, max_distance;
1199         int             distance;
1200         int             error;
1201
1202         tail_cycle = CYCLE_LSN(tail_lsn);
1203         tail_block = BLOCK_LSN(tail_lsn);
1204         head_cycle = log->l_curr_cycle;
1205         head_block = log->l_curr_block;
1206
1207         /*
1208          * Figure out the distance between the new head of the log
1209          * and the tail.  We want to write over any blocks beyond the
1210          * head that we may have written just before the crash, but
1211          * we don't want to overwrite the tail of the log.
1212          */
1213         if (head_cycle == tail_cycle) {
1214                 /*
1215                  * The tail is behind the head in the physical log,
1216                  * so the distance from the head to the tail is the
1217                  * distance from the head to the end of the log plus
1218                  * the distance from the beginning of the log to the
1219                  * tail.
1220                  */
1221                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1222                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1223                                          XFS_ERRLEVEL_LOW, log->l_mp);
1224                         return XFS_ERROR(EFSCORRUPTED);
1225                 }
1226                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1227         } else {
1228                 /*
1229                  * The head is behind the tail in the physical log,
1230                  * so the distance from the head to the tail is just
1231                  * the tail block minus the head block.
1232                  */
1233                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1234                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1235                                          XFS_ERRLEVEL_LOW, log->l_mp);
1236                         return XFS_ERROR(EFSCORRUPTED);
1237                 }
1238                 tail_distance = tail_block - head_block;
1239         }
1240
1241         /*
1242          * If the head is right up against the tail, we can't clear
1243          * anything.
1244          */
1245         if (tail_distance <= 0) {
1246                 ASSERT(tail_distance == 0);
1247                 return 0;
1248         }
1249
1250         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1251         /*
1252          * Take the smaller of the maximum amount of outstanding I/O
1253          * we could have and the distance to the tail to clear out.
1254          * We take the smaller so that we don't overwrite the tail and
1255          * we don't waste all day writing from the head to the tail
1256          * for no reason.
1257          */
1258         max_distance = MIN(max_distance, tail_distance);
1259
1260         if ((head_block + max_distance) <= log->l_logBBsize) {
1261                 /*
1262                  * We can stomp all the blocks we need to without
1263                  * wrapping around the end of the log.  Just do it
1264                  * in a single write.  Use the cycle number of the
1265                  * current cycle minus one so that the log will look like:
1266                  *     n ... | n - 1 ...
1267                  */
1268                 error = xlog_write_log_records(log, (head_cycle - 1),
1269                                 head_block, max_distance, tail_cycle,
1270                                 tail_block);
1271                 if (error)
1272                         return error;
1273         } else {
1274                 /*
1275                  * We need to wrap around the end of the physical log in
1276                  * order to clear all the blocks.  Do it in two separate
1277                  * I/Os.  The first write should be from the head to the
1278                  * end of the physical log, and it should use the current
1279                  * cycle number minus one just like above.
1280                  */
1281                 distance = log->l_logBBsize - head_block;
1282                 error = xlog_write_log_records(log, (head_cycle - 1),
1283                                 head_block, distance, tail_cycle,
1284                                 tail_block);
1285
1286                 if (error)
1287                         return error;
1288
1289                 /*
1290                  * Now write the blocks at the start of the physical log.
1291                  * This writes the remainder of the blocks we want to clear.
1292                  * It uses the current cycle number since we're now on the
1293                  * same cycle as the head so that we get:
1294                  *    n ... n ... | n - 1 ...
1295                  *    ^^^^^ blocks we're writing
1296                  */
1297                 distance = max_distance - (log->l_logBBsize - head_block);
1298                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1299                                 tail_cycle, tail_block);
1300                 if (error)
1301                         return error;
1302         }
1303
1304         return 0;
1305 }
1306
1307 /******************************************************************************
1308  *
1309  *              Log recover routines
1310  *
1311  ******************************************************************************
1312  */
1313
1314 STATIC xlog_recover_t *
1315 xlog_recover_find_tid(
1316         xlog_recover_t          *q,
1317         xlog_tid_t              tid)
1318 {
1319         xlog_recover_t          *p = q;
1320
1321         while (p != NULL) {
1322                 if (p->r_log_tid == tid)
1323                     break;
1324                 p = p->r_next;
1325         }
1326         return p;
1327 }
1328
1329 STATIC void
1330 xlog_recover_put_hashq(
1331         xlog_recover_t          **q,
1332         xlog_recover_t          *trans)
1333 {
1334         trans->r_next = *q;
1335         *q = trans;
1336 }
1337
1338 STATIC void
1339 xlog_recover_add_item(
1340         xlog_recover_item_t     **itemq)
1341 {
1342         xlog_recover_item_t     *item;
1343
1344         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1345         xlog_recover_insert_item_backq(itemq, item);
1346 }
1347
1348 STATIC int
1349 xlog_recover_add_to_cont_trans(
1350         xlog_recover_t          *trans,
1351         xfs_caddr_t             dp,
1352         int                     len)
1353 {
1354         xlog_recover_item_t     *item;
1355         xfs_caddr_t             ptr, old_ptr;
1356         int                     old_len;
1357
1358         item = trans->r_itemq;
1359         if (item == 0) {
1360                 /* finish copying rest of trans header */
1361                 xlog_recover_add_item(&trans->r_itemq);
1362                 ptr = (xfs_caddr_t) &trans->r_theader +
1363                                 sizeof(xfs_trans_header_t) - len;
1364                 memcpy(ptr, dp, len); /* d, s, l */
1365                 return 0;
1366         }
1367         item = item->ri_prev;
1368
1369         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1370         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1371
1372         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1373         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1374         item->ri_buf[item->ri_cnt-1].i_len += len;
1375         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1376         return 0;
1377 }
1378
1379 /*
1380  * The next region to add is the start of a new region.  It could be
1381  * a whole region or it could be the first part of a new region.  Because
1382  * of this, the assumption here is that the type and size fields of all
1383  * format structures fit into the first 32 bits of the structure.
1384  *
1385  * This works because all regions must be 32 bit aligned.  Therefore, we
1386  * either have both fields or we have neither field.  In the case we have
1387  * neither field, the data part of the region is zero length.  We only have
1388  * a log_op_header and can throw away the header since a new one will appear
1389  * later.  If we have at least 4 bytes, then we can determine how many regions
1390  * will appear in the current log item.
1391  */
1392 STATIC int
1393 xlog_recover_add_to_trans(
1394         xlog_recover_t          *trans,
1395         xfs_caddr_t             dp,
1396         int                     len)
1397 {
1398         xfs_inode_log_format_t  *in_f;                  /* any will do */
1399         xlog_recover_item_t     *item;
1400         xfs_caddr_t             ptr;
1401
1402         if (!len)
1403                 return 0;
1404         item = trans->r_itemq;
1405         if (item == 0) {
1406                 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1407                 if (len == sizeof(xfs_trans_header_t))
1408                         xlog_recover_add_item(&trans->r_itemq);
1409                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1410                 return 0;
1411         }
1412
1413         ptr = kmem_alloc(len, KM_SLEEP);
1414         memcpy(ptr, dp, len);
1415         in_f = (xfs_inode_log_format_t *)ptr;
1416
1417         if (item->ri_prev->ri_total != 0 &&
1418              item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1419                 xlog_recover_add_item(&trans->r_itemq);
1420         }
1421         item = trans->r_itemq;
1422         item = item->ri_prev;
1423
1424         if (item->ri_total == 0) {              /* first region to be added */
1425                 item->ri_total  = in_f->ilf_size;
1426                 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1427                 item->ri_buf = kmem_zalloc((item->ri_total *
1428                                             sizeof(xfs_log_iovec_t)), KM_SLEEP);
1429         }
1430         ASSERT(item->ri_total > item->ri_cnt);
1431         /* Description region is ri_buf[0] */
1432         item->ri_buf[item->ri_cnt].i_addr = ptr;
1433         item->ri_buf[item->ri_cnt].i_len  = len;
1434         item->ri_cnt++;
1435         return 0;
1436 }
1437
1438 STATIC void
1439 xlog_recover_new_tid(
1440         xlog_recover_t          **q,
1441         xlog_tid_t              tid,
1442         xfs_lsn_t               lsn)
1443 {
1444         xlog_recover_t          *trans;
1445
1446         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1447         trans->r_log_tid   = tid;
1448         trans->r_lsn       = lsn;
1449         xlog_recover_put_hashq(q, trans);
1450 }
1451
1452 STATIC int
1453 xlog_recover_unlink_tid(
1454         xlog_recover_t          **q,
1455         xlog_recover_t          *trans)
1456 {
1457         xlog_recover_t          *tp;
1458         int                     found = 0;
1459
1460         ASSERT(trans != 0);
1461         if (trans == *q) {
1462                 *q = (*q)->r_next;
1463         } else {
1464                 tp = *q;
1465                 while (tp != 0) {
1466                         if (tp->r_next == trans) {
1467                                 found = 1;
1468                                 break;
1469                         }
1470                         tp = tp->r_next;
1471                 }
1472                 if (!found) {
1473                         xlog_warn(
1474                              "XFS: xlog_recover_unlink_tid: trans not found");
1475                         ASSERT(0);
1476                         return XFS_ERROR(EIO);
1477                 }
1478                 tp->r_next = tp->r_next->r_next;
1479         }
1480         return 0;
1481 }
1482
1483 STATIC void
1484 xlog_recover_insert_item_backq(
1485         xlog_recover_item_t     **q,
1486         xlog_recover_item_t     *item)
1487 {
1488         if (*q == 0) {
1489                 item->ri_prev = item->ri_next = item;
1490                 *q = item;
1491         } else {
1492                 item->ri_next           = *q;
1493                 item->ri_prev           = (*q)->ri_prev;
1494                 (*q)->ri_prev           = item;
1495                 item->ri_prev->ri_next  = item;
1496         }
1497 }
1498
1499 STATIC void
1500 xlog_recover_insert_item_frontq(
1501         xlog_recover_item_t     **q,
1502         xlog_recover_item_t     *item)
1503 {
1504         xlog_recover_insert_item_backq(q, item);
1505         *q = item;
1506 }
1507
1508 STATIC int
1509 xlog_recover_reorder_trans(
1510         xlog_t                  *log,
1511         xlog_recover_t          *trans)
1512 {
1513         xlog_recover_item_t     *first_item, *itemq, *itemq_next;
1514         xfs_buf_log_format_t    *buf_f;
1515         xfs_buf_log_format_v1_t *obuf_f;
1516         ushort                  flags = 0;
1517
1518         first_item = itemq = trans->r_itemq;
1519         trans->r_itemq = NULL;
1520         do {
1521                 itemq_next = itemq->ri_next;
1522                 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1523                 switch (ITEM_TYPE(itemq)) {
1524                 case XFS_LI_BUF:
1525                         flags = buf_f->blf_flags;
1526                         break;
1527                 case XFS_LI_6_1_BUF:
1528                 case XFS_LI_5_3_BUF:
1529                         obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1530                         flags = obuf_f->blf_flags;
1531                         break;
1532                 }
1533
1534                 switch (ITEM_TYPE(itemq)) {
1535                 case XFS_LI_BUF:
1536                 case XFS_LI_6_1_BUF:
1537                 case XFS_LI_5_3_BUF:
1538                         if (!(flags & XFS_BLI_CANCEL)) {
1539                                 xlog_recover_insert_item_frontq(&trans->r_itemq,
1540                                                                 itemq);
1541                                 break;
1542                         }
1543                 case XFS_LI_INODE:
1544                 case XFS_LI_6_1_INODE:
1545                 case XFS_LI_5_3_INODE:
1546                 case XFS_LI_DQUOT:
1547                 case XFS_LI_QUOTAOFF:
1548                 case XFS_LI_EFD:
1549                 case XFS_LI_EFI:
1550                         xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1551                         break;
1552                 default:
1553                         xlog_warn(
1554         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1555                         ASSERT(0);
1556                         return XFS_ERROR(EIO);
1557                 }
1558                 itemq = itemq_next;
1559         } while (first_item != itemq);
1560         return 0;
1561 }
1562
1563 /*
1564  * Build up the table of buf cancel records so that we don't replay
1565  * cancelled data in the second pass.  For buffer records that are
1566  * not cancel records, there is nothing to do here so we just return.
1567  *
1568  * If we get a cancel record which is already in the table, this indicates
1569  * that the buffer was cancelled multiple times.  In order to ensure
1570  * that during pass 2 we keep the record in the table until we reach its
1571  * last occurrence in the log, we keep a reference count in the cancel
1572  * record in the table to tell us how many times we expect to see this
1573  * record during the second pass.
1574  */
1575 STATIC void
1576 xlog_recover_do_buffer_pass1(
1577         xlog_t                  *log,
1578         xfs_buf_log_format_t    *buf_f)
1579 {
1580         xfs_buf_cancel_t        *bcp;
1581         xfs_buf_cancel_t        *nextp;
1582         xfs_buf_cancel_t        *prevp;
1583         xfs_buf_cancel_t        **bucket;
1584         xfs_buf_log_format_v1_t *obuf_f;
1585         xfs_daddr_t             blkno = 0;
1586         uint                    len = 0;
1587         ushort                  flags = 0;
1588
1589         switch (buf_f->blf_type) {
1590         case XFS_LI_BUF:
1591                 blkno = buf_f->blf_blkno;
1592                 len = buf_f->blf_len;
1593                 flags = buf_f->blf_flags;
1594                 break;
1595         case XFS_LI_6_1_BUF:
1596         case XFS_LI_5_3_BUF:
1597                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1598                 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1599                 len = obuf_f->blf_len;
1600                 flags = obuf_f->blf_flags;
1601                 break;
1602         }
1603
1604         /*
1605          * If this isn't a cancel buffer item, then just return.
1606          */
1607         if (!(flags & XFS_BLI_CANCEL))
1608                 return;
1609
1610         /*
1611          * Insert an xfs_buf_cancel record into the hash table of
1612          * them.  If there is already an identical record, bump
1613          * its reference count.
1614          */
1615         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1616                                           XLOG_BC_TABLE_SIZE];
1617         /*
1618          * If the hash bucket is empty then just insert a new record into
1619          * the bucket.
1620          */
1621         if (*bucket == NULL) {
1622                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1623                                                      KM_SLEEP);
1624                 bcp->bc_blkno = blkno;
1625                 bcp->bc_len = len;
1626                 bcp->bc_refcount = 1;
1627                 bcp->bc_next = NULL;
1628                 *bucket = bcp;
1629                 return;
1630         }
1631
1632         /*
1633          * The hash bucket is not empty, so search for duplicates of our
1634          * record.  If we find one them just bump its refcount.  If not
1635          * then add us at the end of the list.
1636          */
1637         prevp = NULL;
1638         nextp = *bucket;
1639         while (nextp != NULL) {
1640                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1641                         nextp->bc_refcount++;
1642                         return;
1643                 }
1644                 prevp = nextp;
1645                 nextp = nextp->bc_next;
1646         }
1647         ASSERT(prevp != NULL);
1648         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1649                                              KM_SLEEP);
1650         bcp->bc_blkno = blkno;
1651         bcp->bc_len = len;
1652         bcp->bc_refcount = 1;
1653         bcp->bc_next = NULL;
1654         prevp->bc_next = bcp;
1655 }
1656
1657 /*
1658  * Check to see whether the buffer being recovered has a corresponding
1659  * entry in the buffer cancel record table.  If it does then return 1
1660  * so that it will be cancelled, otherwise return 0.  If the buffer is
1661  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1662  * the refcount on the entry in the table and remove it from the table
1663  * if this is the last reference.
1664  *
1665  * We remove the cancel record from the table when we encounter its
1666  * last occurrence in the log so that if the same buffer is re-used
1667  * again after its last cancellation we actually replay the changes
1668  * made at that point.
1669  */
1670 STATIC int
1671 xlog_check_buffer_cancelled(
1672         xlog_t                  *log,
1673         xfs_daddr_t             blkno,
1674         uint                    len,
1675         ushort                  flags)
1676 {
1677         xfs_buf_cancel_t        *bcp;
1678         xfs_buf_cancel_t        *prevp;
1679         xfs_buf_cancel_t        **bucket;
1680
1681         if (log->l_buf_cancel_table == NULL) {
1682                 /*
1683                  * There is nothing in the table built in pass one,
1684                  * so this buffer must not be cancelled.
1685                  */
1686                 ASSERT(!(flags & XFS_BLI_CANCEL));
1687                 return 0;
1688         }
1689
1690         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1691                                           XLOG_BC_TABLE_SIZE];
1692         bcp = *bucket;
1693         if (bcp == NULL) {
1694                 /*
1695                  * There is no corresponding entry in the table built
1696                  * in pass one, so this buffer has not been cancelled.
1697                  */
1698                 ASSERT(!(flags & XFS_BLI_CANCEL));
1699                 return 0;
1700         }
1701
1702         /*
1703          * Search for an entry in the buffer cancel table that
1704          * matches our buffer.
1705          */
1706         prevp = NULL;
1707         while (bcp != NULL) {
1708                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1709                         /*
1710                          * We've go a match, so return 1 so that the
1711                          * recovery of this buffer is cancelled.
1712                          * If this buffer is actually a buffer cancel
1713                          * log item, then decrement the refcount on the
1714                          * one in the table and remove it if this is the
1715                          * last reference.
1716                          */
1717                         if (flags & XFS_BLI_CANCEL) {
1718                                 bcp->bc_refcount--;
1719                                 if (bcp->bc_refcount == 0) {
1720                                         if (prevp == NULL) {
1721                                                 *bucket = bcp->bc_next;
1722                                         } else {
1723                                                 prevp->bc_next = bcp->bc_next;
1724                                         }
1725                                         kmem_free(bcp,
1726                                                   sizeof(xfs_buf_cancel_t));
1727                                 }
1728                         }
1729                         return 1;
1730                 }
1731                 prevp = bcp;
1732                 bcp = bcp->bc_next;
1733         }
1734         /*
1735          * We didn't find a corresponding entry in the table, so
1736          * return 0 so that the buffer is NOT cancelled.
1737          */
1738         ASSERT(!(flags & XFS_BLI_CANCEL));
1739         return 0;
1740 }
1741
1742 STATIC int
1743 xlog_recover_do_buffer_pass2(
1744         xlog_t                  *log,
1745         xfs_buf_log_format_t    *buf_f)
1746 {
1747         xfs_buf_log_format_v1_t *obuf_f;
1748         xfs_daddr_t             blkno = 0;
1749         ushort                  flags = 0;
1750         uint                    len = 0;
1751
1752         switch (buf_f->blf_type) {
1753         case XFS_LI_BUF:
1754                 blkno = buf_f->blf_blkno;
1755                 flags = buf_f->blf_flags;
1756                 len = buf_f->blf_len;
1757                 break;
1758         case XFS_LI_6_1_BUF:
1759         case XFS_LI_5_3_BUF:
1760                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1761                 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1762                 flags = obuf_f->blf_flags;
1763                 len = (xfs_daddr_t) obuf_f->blf_len;
1764                 break;
1765         }
1766
1767         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1768 }
1769
1770 /*
1771  * Perform recovery for a buffer full of inodes.  In these buffers,
1772  * the only data which should be recovered is that which corresponds
1773  * to the di_next_unlinked pointers in the on disk inode structures.
1774  * The rest of the data for the inodes is always logged through the
1775  * inodes themselves rather than the inode buffer and is recovered
1776  * in xlog_recover_do_inode_trans().
1777  *
1778  * The only time when buffers full of inodes are fully recovered is
1779  * when the buffer is full of newly allocated inodes.  In this case
1780  * the buffer will not be marked as an inode buffer and so will be
1781  * sent to xlog_recover_do_reg_buffer() below during recovery.
1782  */
1783 STATIC int
1784 xlog_recover_do_inode_buffer(
1785         xfs_mount_t             *mp,
1786         xlog_recover_item_t     *item,
1787         xfs_buf_t               *bp,
1788         xfs_buf_log_format_t    *buf_f)
1789 {
1790         int                     i;
1791         int                     item_index;
1792         int                     bit;
1793         int                     nbits;
1794         int                     reg_buf_offset;
1795         int                     reg_buf_bytes;
1796         int                     next_unlinked_offset;
1797         int                     inodes_per_buf;
1798         xfs_agino_t             *logged_nextp;
1799         xfs_agino_t             *buffer_nextp;
1800         xfs_buf_log_format_v1_t *obuf_f;
1801         unsigned int            *data_map = NULL;
1802         unsigned int            map_size = 0;
1803
1804         switch (buf_f->blf_type) {
1805         case XFS_LI_BUF:
1806                 data_map = buf_f->blf_data_map;
1807                 map_size = buf_f->blf_map_size;
1808                 break;
1809         case XFS_LI_6_1_BUF:
1810         case XFS_LI_5_3_BUF:
1811                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1812                 data_map = obuf_f->blf_data_map;
1813                 map_size = obuf_f->blf_map_size;
1814                 break;
1815         }
1816         /*
1817          * Set the variables corresponding to the current region to
1818          * 0 so that we'll initialize them on the first pass through
1819          * the loop.
1820          */
1821         reg_buf_offset = 0;
1822         reg_buf_bytes = 0;
1823         bit = 0;
1824         nbits = 0;
1825         item_index = 0;
1826         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1827         for (i = 0; i < inodes_per_buf; i++) {
1828                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1829                         offsetof(xfs_dinode_t, di_next_unlinked);
1830
1831                 while (next_unlinked_offset >=
1832                        (reg_buf_offset + reg_buf_bytes)) {
1833                         /*
1834                          * The next di_next_unlinked field is beyond
1835                          * the current logged region.  Find the next
1836                          * logged region that contains or is beyond
1837                          * the current di_next_unlinked field.
1838                          */
1839                         bit += nbits;
1840                         bit = xfs_next_bit(data_map, map_size, bit);
1841
1842                         /*
1843                          * If there are no more logged regions in the
1844                          * buffer, then we're done.
1845                          */
1846                         if (bit == -1) {
1847                                 return 0;
1848                         }
1849
1850                         nbits = xfs_contig_bits(data_map, map_size,
1851                                                          bit);
1852                         ASSERT(nbits > 0);
1853                         reg_buf_offset = bit << XFS_BLI_SHIFT;
1854                         reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1855                         item_index++;
1856                 }
1857
1858                 /*
1859                  * If the current logged region starts after the current
1860                  * di_next_unlinked field, then move on to the next
1861                  * di_next_unlinked field.
1862                  */
1863                 if (next_unlinked_offset < reg_buf_offset) {
1864                         continue;
1865                 }
1866
1867                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1868                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1869                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1870
1871                 /*
1872                  * The current logged region contains a copy of the
1873                  * current di_next_unlinked field.  Extract its value
1874                  * and copy it to the buffer copy.
1875                  */
1876                 logged_nextp = (xfs_agino_t *)
1877                                ((char *)(item->ri_buf[item_index].i_addr) +
1878                                 (next_unlinked_offset - reg_buf_offset));
1879                 if (unlikely(*logged_nextp == 0)) {
1880                         xfs_fs_cmn_err(CE_ALERT, mp,
1881                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1882                                 item, bp);
1883                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1884                                          XFS_ERRLEVEL_LOW, mp);
1885                         return XFS_ERROR(EFSCORRUPTED);
1886                 }
1887
1888                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1889                                               next_unlinked_offset);
1890                 *buffer_nextp = *logged_nextp;
1891         }
1892
1893         return 0;
1894 }
1895
1896 /*
1897  * Perform a 'normal' buffer recovery.  Each logged region of the
1898  * buffer should be copied over the corresponding region in the
1899  * given buffer.  The bitmap in the buf log format structure indicates
1900  * where to place the logged data.
1901  */
1902 /*ARGSUSED*/
1903 STATIC void
1904 xlog_recover_do_reg_buffer(
1905         xfs_mount_t             *mp,
1906         xlog_recover_item_t     *item,
1907         xfs_buf_t               *bp,
1908         xfs_buf_log_format_t    *buf_f)
1909 {
1910         int                     i;
1911         int                     bit;
1912         int                     nbits;
1913         xfs_buf_log_format_v1_t *obuf_f;
1914         unsigned int            *data_map = NULL;
1915         unsigned int            map_size = 0;
1916         int                     error;
1917
1918         switch (buf_f->blf_type) {
1919         case XFS_LI_BUF:
1920                 data_map = buf_f->blf_data_map;
1921                 map_size = buf_f->blf_map_size;
1922                 break;
1923         case XFS_LI_6_1_BUF:
1924         case XFS_LI_5_3_BUF:
1925                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1926                 data_map = obuf_f->blf_data_map;
1927                 map_size = obuf_f->blf_map_size;
1928                 break;
1929         }
1930         bit = 0;
1931         i = 1;  /* 0 is the buf format structure */
1932         while (1) {
1933                 bit = xfs_next_bit(data_map, map_size, bit);
1934                 if (bit == -1)
1935                         break;
1936                 nbits = xfs_contig_bits(data_map, map_size, bit);
1937                 ASSERT(nbits > 0);
1938                 ASSERT(item->ri_buf[i].i_addr != 0);
1939                 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1940                 ASSERT(XFS_BUF_COUNT(bp) >=
1941                        ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1942
1943                 /*
1944                  * Do a sanity check if this is a dquot buffer. Just checking
1945                  * the first dquot in the buffer should do. XXXThis is
1946                  * probably a good thing to do for other buf types also.
1947                  */
1948                 error = 0;
1949                 if (buf_f->blf_flags &
1950                    (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1951                         error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1952                                                item->ri_buf[i].i_addr,
1953                                                -1, 0, XFS_QMOPT_DOWARN,
1954                                                "dquot_buf_recover");
1955                 }
1956                 if (!error)
1957                         memcpy(xfs_buf_offset(bp,
1958                                 (uint)bit << XFS_BLI_SHIFT),    /* dest */
1959                                 item->ri_buf[i].i_addr,         /* source */
1960                                 nbits<<XFS_BLI_SHIFT);          /* length */
1961                 i++;
1962                 bit += nbits;
1963         }
1964
1965         /* Shouldn't be any more regions */
1966         ASSERT(i == item->ri_total);
1967 }
1968
1969 /*
1970  * Do some primitive error checking on ondisk dquot data structures.
1971  */
1972 int
1973 xfs_qm_dqcheck(
1974         xfs_disk_dquot_t *ddq,
1975         xfs_dqid_t       id,
1976         uint             type,    /* used only when IO_dorepair is true */
1977         uint             flags,
1978         char             *str)
1979 {
1980         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1981         int             errs = 0;
1982
1983         /*
1984          * We can encounter an uninitialized dquot buffer for 2 reasons:
1985          * 1. If we crash while deleting the quotainode(s), and those blks got
1986          *    used for user data. This is because we take the path of regular
1987          *    file deletion; however, the size field of quotainodes is never
1988          *    updated, so all the tricks that we play in itruncate_finish
1989          *    don't quite matter.
1990          *
1991          * 2. We don't play the quota buffers when there's a quotaoff logitem.
1992          *    But the allocation will be replayed so we'll end up with an
1993          *    uninitialized quota block.
1994          *
1995          * This is all fine; things are still consistent, and we haven't lost
1996          * any quota information. Just don't complain about bad dquot blks.
1997          */
1998         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1999                 if (flags & XFS_QMOPT_DOWARN)
2000                         cmn_err(CE_ALERT,
2001                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2002                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2003                 errs++;
2004         }
2005         if (ddq->d_version != XFS_DQUOT_VERSION) {
2006                 if (flags & XFS_QMOPT_DOWARN)
2007                         cmn_err(CE_ALERT,
2008                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2009                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
2010                 errs++;
2011         }
2012
2013         if (ddq->d_flags != XFS_DQ_USER &&
2014             ddq->d_flags != XFS_DQ_PROJ &&
2015             ddq->d_flags != XFS_DQ_GROUP) {
2016                 if (flags & XFS_QMOPT_DOWARN)
2017                         cmn_err(CE_ALERT,
2018                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2019                         str, id, ddq->d_flags);
2020                 errs++;
2021         }
2022
2023         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2024                 if (flags & XFS_QMOPT_DOWARN)
2025                         cmn_err(CE_ALERT,
2026                         "%s : ondisk-dquot 0x%p, ID mismatch: "
2027                         "0x%x expected, found id 0x%x",
2028                         str, ddq, id, be32_to_cpu(ddq->d_id));
2029                 errs++;
2030         }
2031
2032         if (!errs && ddq->d_id) {
2033                 if (ddq->d_blk_softlimit &&
2034                     be64_to_cpu(ddq->d_bcount) >=
2035                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2036                         if (!ddq->d_btimer) {
2037                                 if (flags & XFS_QMOPT_DOWARN)
2038                                         cmn_err(CE_ALERT,
2039                                         "%s : Dquot ID 0x%x (0x%p) "
2040                                         "BLK TIMER NOT STARTED",
2041                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2042                                 errs++;
2043                         }
2044                 }
2045                 if (ddq->d_ino_softlimit &&
2046                     be64_to_cpu(ddq->d_icount) >=
2047                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2048                         if (!ddq->d_itimer) {
2049                                 if (flags & XFS_QMOPT_DOWARN)
2050                                         cmn_err(CE_ALERT,
2051                                         "%s : Dquot ID 0x%x (0x%p) "
2052                                         "INODE TIMER NOT STARTED",
2053                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2054                                 errs++;
2055                         }
2056                 }
2057                 if (ddq->d_rtb_softlimit &&
2058                     be64_to_cpu(ddq->d_rtbcount) >=
2059                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2060                         if (!ddq->d_rtbtimer) {
2061                                 if (flags & XFS_QMOPT_DOWARN)
2062                                         cmn_err(CE_ALERT,
2063                                         "%s : Dquot ID 0x%x (0x%p) "
2064                                         "RTBLK TIMER NOT STARTED",
2065                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2066                                 errs++;
2067                         }
2068                 }
2069         }
2070
2071         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2072                 return errs;
2073
2074         if (flags & XFS_QMOPT_DOWARN)
2075                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2076
2077         /*
2078          * Typically, a repair is only requested by quotacheck.
2079          */
2080         ASSERT(id != -1);
2081         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2082         memset(d, 0, sizeof(xfs_dqblk_t));
2083
2084         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2085         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2086         d->dd_diskdq.d_flags = type;
2087         d->dd_diskdq.d_id = cpu_to_be32(id);
2088
2089         return errs;
2090 }
2091
2092 /*
2093  * Perform a dquot buffer recovery.
2094  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2095  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2096  * Else, treat it as a regular buffer and do recovery.
2097  */
2098 STATIC void
2099 xlog_recover_do_dquot_buffer(
2100         xfs_mount_t             *mp,
2101         xlog_t                  *log,
2102         xlog_recover_item_t     *item,
2103         xfs_buf_t               *bp,
2104         xfs_buf_log_format_t    *buf_f)
2105 {
2106         uint                    type;
2107
2108         /*
2109          * Filesystems are required to send in quota flags at mount time.
2110          */
2111         if (mp->m_qflags == 0) {
2112                 return;
2113         }
2114
2115         type = 0;
2116         if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2117                 type |= XFS_DQ_USER;
2118         if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2119                 type |= XFS_DQ_PROJ;
2120         if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2121                 type |= XFS_DQ_GROUP;
2122         /*
2123          * This type of quotas was turned off, so ignore this buffer
2124          */
2125         if (log->l_quotaoffs_flag & type)
2126                 return;
2127
2128         xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2129 }
2130
2131 /*
2132  * This routine replays a modification made to a buffer at runtime.
2133  * There are actually two types of buffer, regular and inode, which
2134  * are handled differently.  Inode buffers are handled differently
2135  * in that we only recover a specific set of data from them, namely
2136  * the inode di_next_unlinked fields.  This is because all other inode
2137  * data is actually logged via inode records and any data we replay
2138  * here which overlaps that may be stale.
2139  *
2140  * When meta-data buffers are freed at run time we log a buffer item
2141  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2142  * of the buffer in the log should not be replayed at recovery time.
2143  * This is so that if the blocks covered by the buffer are reused for
2144  * file data before we crash we don't end up replaying old, freed
2145  * meta-data into a user's file.
2146  *
2147  * To handle the cancellation of buffer log items, we make two passes
2148  * over the log during recovery.  During the first we build a table of
2149  * those buffers which have been cancelled, and during the second we
2150  * only replay those buffers which do not have corresponding cancel
2151  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2152  * for more details on the implementation of the table of cancel records.
2153  */
2154 STATIC int
2155 xlog_recover_do_buffer_trans(
2156         xlog_t                  *log,
2157         xlog_recover_item_t     *item,
2158         int                     pass)
2159 {
2160         xfs_buf_log_format_t    *buf_f;
2161         xfs_buf_log_format_v1_t *obuf_f;
2162         xfs_mount_t             *mp;
2163         xfs_buf_t               *bp;
2164         int                     error;
2165         int                     cancel;
2166         xfs_daddr_t             blkno;
2167         int                     len;
2168         ushort                  flags;
2169
2170         buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2171
2172         if (pass == XLOG_RECOVER_PASS1) {
2173                 /*
2174                  * In this pass we're only looking for buf items
2175                  * with the XFS_BLI_CANCEL bit set.
2176                  */
2177                 xlog_recover_do_buffer_pass1(log, buf_f);
2178                 return 0;
2179         } else {
2180                 /*
2181                  * In this pass we want to recover all the buffers
2182                  * which have not been cancelled and are not
2183                  * cancellation buffers themselves.  The routine
2184                  * we call here will tell us whether or not to
2185                  * continue with the replay of this buffer.
2186                  */
2187                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2188                 if (cancel) {
2189                         return 0;
2190                 }
2191         }
2192         switch (buf_f->blf_type) {
2193         case XFS_LI_BUF:
2194                 blkno = buf_f->blf_blkno;
2195                 len = buf_f->blf_len;
2196                 flags = buf_f->blf_flags;
2197                 break;
2198         case XFS_LI_6_1_BUF:
2199         case XFS_LI_5_3_BUF:
2200                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2201                 blkno = obuf_f->blf_blkno;
2202                 len = obuf_f->blf_len;
2203                 flags = obuf_f->blf_flags;
2204                 break;
2205         default:
2206                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2207                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2208                         buf_f->blf_type, log->l_mp->m_logname ?
2209                         log->l_mp->m_logname : "internal");
2210                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2211                                  XFS_ERRLEVEL_LOW, log->l_mp);
2212                 return XFS_ERROR(EFSCORRUPTED);
2213         }
2214
2215         mp = log->l_mp;
2216         if (flags & XFS_BLI_INODE_BUF) {
2217                 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2218                                                                 XFS_BUF_LOCK);
2219         } else {
2220                 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2221         }
2222         if (XFS_BUF_ISERROR(bp)) {
2223                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2224                                   bp, blkno);
2225                 error = XFS_BUF_GETERROR(bp);
2226                 xfs_buf_relse(bp);
2227                 return error;
2228         }
2229
2230         error = 0;
2231         if (flags & XFS_BLI_INODE_BUF) {
2232                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2233         } else if (flags &
2234                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2235                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2236         } else {
2237                 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2238         }
2239         if (error)
2240                 return XFS_ERROR(error);
2241
2242         /*
2243          * Perform delayed write on the buffer.  Asynchronous writes will be
2244          * slower when taking into account all the buffers to be flushed.
2245          *
2246          * Also make sure that only inode buffers with good sizes stay in
2247          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2248          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2249          * buffers in the log can be a different size if the log was generated
2250          * by an older kernel using unclustered inode buffers or a newer kernel
2251          * running with a different inode cluster size.  Regardless, if the
2252          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2253          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2254          * the buffer out of the buffer cache so that the buffer won't
2255          * overlap with future reads of those inodes.
2256          */
2257         if (XFS_DINODE_MAGIC ==
2258             INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2259             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2260                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2261                 XFS_BUF_STALE(bp);
2262                 error = xfs_bwrite(mp, bp);
2263         } else {
2264                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2265                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2266                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2267                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2268                 xfs_bdwrite(mp, bp);
2269         }
2270
2271         return (error);
2272 }
2273
2274 STATIC int
2275 xlog_recover_do_inode_trans(
2276         xlog_t                  *log,
2277         xlog_recover_item_t     *item,
2278         int                     pass)
2279 {
2280         xfs_inode_log_format_t  *in_f;
2281         xfs_mount_t             *mp;
2282         xfs_buf_t               *bp;
2283         xfs_imap_t              imap;
2284         xfs_dinode_t            *dip;
2285         xfs_ino_t               ino;
2286         int                     len;
2287         xfs_caddr_t             src;
2288         xfs_caddr_t             dest;
2289         int                     error;
2290         int                     attr_index;
2291         uint                    fields;
2292         xfs_dinode_core_t       *dicp;
2293         int                     need_free = 0;
2294
2295         if (pass == XLOG_RECOVER_PASS1) {
2296                 return 0;
2297         }
2298
2299         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2300                 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2301         } else {
2302                 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2303                         sizeof(xfs_inode_log_format_t), KM_SLEEP);
2304                 need_free = 1;
2305                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2306                 if (error)
2307                         goto error;
2308         }
2309         ino = in_f->ilf_ino;
2310         mp = log->l_mp;
2311         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2312                 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2313                 imap.im_len = in_f->ilf_len;
2314                 imap.im_boffset = in_f->ilf_boffset;
2315         } else {
2316                 /*
2317                  * It's an old inode format record.  We don't know where
2318                  * its cluster is located on disk, and we can't allow
2319                  * xfs_imap() to figure it out because the inode btrees
2320                  * are not ready to be used.  Therefore do not pass the
2321                  * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2322                  * us only the single block in which the inode lives
2323                  * rather than its cluster, so we must make sure to
2324                  * invalidate the buffer when we write it out below.
2325                  */
2326                 imap.im_blkno = 0;
2327                 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2328         }
2329
2330         /*
2331          * Inode buffers can be freed, look out for it,
2332          * and do not replay the inode.
2333          */
2334         if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2335                 error = 0;
2336                 goto error;
2337         }
2338
2339         bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2340                                                                 XFS_BUF_LOCK);
2341         if (XFS_BUF_ISERROR(bp)) {
2342                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2343                                   bp, imap.im_blkno);
2344                 error = XFS_BUF_GETERROR(bp);
2345                 xfs_buf_relse(bp);
2346                 goto error;
2347         }
2348         error = 0;
2349         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2350         dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2351
2352         /*
2353          * Make sure the place we're flushing out to really looks
2354          * like an inode!
2355          */
2356         if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2357                 xfs_buf_relse(bp);
2358                 xfs_fs_cmn_err(CE_ALERT, mp,
2359                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2360                         dip, bp, ino);
2361                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2362                                  XFS_ERRLEVEL_LOW, mp);
2363                 error = EFSCORRUPTED;
2364                 goto error;
2365         }
2366         dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2367         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2368                 xfs_buf_relse(bp);
2369                 xfs_fs_cmn_err(CE_ALERT, mp,
2370                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2371                         item, ino);
2372                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2373                                  XFS_ERRLEVEL_LOW, mp);
2374                 error = EFSCORRUPTED;
2375                 goto error;
2376         }
2377
2378         /* Skip replay when the on disk inode is newer than the log one */
2379         if (dicp->di_flushiter <
2380             INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2381                 /*
2382                  * Deal with the wrap case, DI_MAX_FLUSH is less
2383                  * than smaller numbers
2384                  */
2385                 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2386                                                         == DI_MAX_FLUSH) &&
2387                     (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2388                         /* do nothing */
2389                 } else {
2390                         xfs_buf_relse(bp);
2391                         error = 0;
2392                         goto error;
2393                 }
2394         }
2395         /* Take the opportunity to reset the flush iteration count */
2396         dicp->di_flushiter = 0;
2397
2398         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2399                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2400                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2401                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2402                                          XFS_ERRLEVEL_LOW, mp, dicp);
2403                         xfs_buf_relse(bp);
2404                         xfs_fs_cmn_err(CE_ALERT, mp,
2405                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2406                                 item, dip, bp, ino);
2407                         error = EFSCORRUPTED;
2408                         goto error;
2409                 }
2410         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2411                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2412                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2413                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2414                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2415                                              XFS_ERRLEVEL_LOW, mp, dicp);
2416                         xfs_buf_relse(bp);
2417                         xfs_fs_cmn_err(CE_ALERT, mp,
2418                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2419                                 item, dip, bp, ino);
2420                         error = EFSCORRUPTED;
2421                         goto error;
2422                 }
2423         }
2424         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2425                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2426                                      XFS_ERRLEVEL_LOW, mp, dicp);
2427                 xfs_buf_relse(bp);
2428                 xfs_fs_cmn_err(CE_ALERT, mp,
2429                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2430                         item, dip, bp, ino,
2431                         dicp->di_nextents + dicp->di_anextents,
2432                         dicp->di_nblocks);
2433                 error = EFSCORRUPTED;
2434                 goto error;
2435         }
2436         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2437                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2438                                      XFS_ERRLEVEL_LOW, mp, dicp);
2439                 xfs_buf_relse(bp);
2440                 xfs_fs_cmn_err(CE_ALERT, mp,
2441                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2442                         item, dip, bp, ino, dicp->di_forkoff);
2443                 error = EFSCORRUPTED;
2444                 goto error;
2445         }
2446         if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2447                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2448                                      XFS_ERRLEVEL_LOW, mp, dicp);
2449                 xfs_buf_relse(bp);
2450                 xfs_fs_cmn_err(CE_ALERT, mp,
2451                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2452                         item->ri_buf[1].i_len, item);
2453                 error = EFSCORRUPTED;
2454                 goto error;
2455         }
2456
2457         /* The core is in in-core format */
2458         xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2459                               (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2460
2461         /* the rest is in on-disk format */
2462         if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2463                 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2464                         item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2465                         item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2466         }
2467
2468         fields = in_f->ilf_fields;
2469         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2470         case XFS_ILOG_DEV:
2471                 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2472
2473                 break;
2474         case XFS_ILOG_UUID:
2475                 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2476                 break;
2477         }
2478
2479         if (in_f->ilf_size == 2)
2480                 goto write_inode_buffer;
2481         len = item->ri_buf[2].i_len;
2482         src = item->ri_buf[2].i_addr;
2483         ASSERT(in_f->ilf_size <= 4);
2484         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2485         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2486                (len == in_f->ilf_dsize));
2487
2488         switch (fields & XFS_ILOG_DFORK) {
2489         case XFS_ILOG_DDATA:
2490         case XFS_ILOG_DEXT:
2491                 memcpy(&dip->di_u, src, len);
2492                 break;
2493
2494         case XFS_ILOG_DBROOT:
2495                 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2496                                  &(dip->di_u.di_bmbt),
2497                                  XFS_DFORK_DSIZE(dip, mp));
2498                 break;
2499
2500         default:
2501                 /*
2502                  * There are no data fork flags set.
2503                  */
2504                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2505                 break;
2506         }
2507
2508         /*
2509          * If we logged any attribute data, recover it.  There may or
2510          * may not have been any other non-core data logged in this
2511          * transaction.
2512          */
2513         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2514                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2515                         attr_index = 3;
2516                 } else {
2517                         attr_index = 2;
2518                 }
2519                 len = item->ri_buf[attr_index].i_len;
2520                 src = item->ri_buf[attr_index].i_addr;
2521                 ASSERT(len == in_f->ilf_asize);
2522
2523                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2524                 case XFS_ILOG_ADATA:
2525                 case XFS_ILOG_AEXT:
2526                         dest = XFS_DFORK_APTR(dip);
2527                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2528                         memcpy(dest, src, len);
2529                         break;
2530
2531                 case XFS_ILOG_ABROOT:
2532                         dest = XFS_DFORK_APTR(dip);
2533                         xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2534                                          (xfs_bmdr_block_t*)dest,
2535                                          XFS_DFORK_ASIZE(dip, mp));
2536                         break;
2537
2538                 default:
2539                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2540                         ASSERT(0);
2541                         xfs_buf_relse(bp);
2542                         error = EIO;
2543                         goto error;
2544                 }
2545         }
2546
2547 write_inode_buffer:
2548         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2549                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2550                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2551                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2552                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2553                 xfs_bdwrite(mp, bp);
2554         } else {
2555                 XFS_BUF_STALE(bp);
2556                 error = xfs_bwrite(mp, bp);
2557         }
2558
2559 error:
2560         if (need_free)
2561                 kmem_free(in_f, sizeof(*in_f));
2562         return XFS_ERROR(error);
2563 }
2564
2565 /*
2566  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2567  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2568  * of that type.
2569  */
2570 STATIC int
2571 xlog_recover_do_quotaoff_trans(
2572         xlog_t                  *log,
2573         xlog_recover_item_t     *item,
2574         int                     pass)
2575 {
2576         xfs_qoff_logformat_t    *qoff_f;
2577
2578         if (pass == XLOG_RECOVER_PASS2) {
2579                 return (0);
2580         }
2581
2582         qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2583         ASSERT(qoff_f);
2584
2585         /*
2586          * The logitem format's flag tells us if this was user quotaoff,
2587          * group/project quotaoff or both.
2588          */
2589         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2590                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2591         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2592                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2593         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2594                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2595
2596         return (0);
2597 }
2598
2599 /*
2600  * Recover a dquot record
2601  */
2602 STATIC int
2603 xlog_recover_do_dquot_trans(
2604         xlog_t                  *log,
2605         xlog_recover_item_t     *item,
2606         int                     pass)
2607 {
2608         xfs_mount_t             *mp;
2609         xfs_buf_t               *bp;
2610         struct xfs_disk_dquot   *ddq, *recddq;
2611         int                     error;
2612         xfs_dq_logformat_t      *dq_f;
2613         uint                    type;
2614
2615         if (pass == XLOG_RECOVER_PASS1) {
2616                 return 0;
2617         }
2618         mp = log->l_mp;
2619
2620         /*
2621          * Filesystems are required to send in quota flags at mount time.
2622          */
2623         if (mp->m_qflags == 0)
2624                 return (0);
2625
2626         recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2627         ASSERT(recddq);
2628         /*
2629          * This type of quotas was turned off, so ignore this record.
2630          */
2631         type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2632                         (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2633         ASSERT(type);
2634         if (log->l_quotaoffs_flag & type)
2635                 return (0);
2636
2637         /*
2638          * At this point we know that quota was _not_ turned off.
2639          * Since the mount flags are not indicating to us otherwise, this
2640          * must mean that quota is on, and the dquot needs to be replayed.
2641          * Remember that we may not have fully recovered the superblock yet,
2642          * so we can't do the usual trick of looking at the SB quota bits.
2643          *
2644          * The other possibility, of course, is that the quota subsystem was
2645          * removed since the last mount - ENOSYS.
2646          */
2647         dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2648         ASSERT(dq_f);
2649         if ((error = xfs_qm_dqcheck(recddq,
2650                            dq_f->qlf_id,
2651                            0, XFS_QMOPT_DOWARN,
2652                            "xlog_recover_do_dquot_trans (log copy)"))) {
2653                 return XFS_ERROR(EIO);
2654         }
2655         ASSERT(dq_f->qlf_len == 1);
2656
2657         error = xfs_read_buf(mp, mp->m_ddev_targp,
2658                              dq_f->qlf_blkno,
2659                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2660                              0, &bp);
2661         if (error) {
2662                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2663                                   bp, dq_f->qlf_blkno);
2664                 return error;
2665         }
2666         ASSERT(bp);
2667         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2668
2669         /*
2670          * At least the magic num portion should be on disk because this
2671          * was among a chunk of dquots created earlier, and we did some
2672          * minimal initialization then.
2673          */
2674         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2675                            "xlog_recover_do_dquot_trans")) {
2676                 xfs_buf_relse(bp);
2677                 return XFS_ERROR(EIO);
2678         }
2679
2680         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2681
2682         ASSERT(dq_f->qlf_size == 2);
2683         ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2684                XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2685         XFS_BUF_SET_FSPRIVATE(bp, mp);
2686         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2687         xfs_bdwrite(mp, bp);
2688
2689         return (0);
2690 }
2691
2692 /*
2693  * This routine is called to create an in-core extent free intent
2694  * item from the efi format structure which was logged on disk.
2695  * It allocates an in-core efi, copies the extents from the format
2696  * structure into it, and adds the efi to the AIL with the given
2697  * LSN.
2698  */
2699 STATIC int
2700 xlog_recover_do_efi_trans(
2701         xlog_t                  *log,
2702         xlog_recover_item_t     *item,
2703         xfs_lsn_t               lsn,
2704         int                     pass)
2705 {
2706         int                     error;
2707         xfs_mount_t             *mp;
2708         xfs_efi_log_item_t      *efip;
2709         xfs_efi_log_format_t    *efi_formatp;
2710         SPLDECL(s);
2711
2712         if (pass == XLOG_RECOVER_PASS1) {
2713                 return 0;
2714         }
2715
2716         efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2717
2718         mp = log->l_mp;
2719         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2720         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2721                                          &(efip->efi_format)))) {
2722                 xfs_efi_item_free(efip);
2723                 return error;
2724         }
2725         efip->efi_next_extent = efi_formatp->efi_nextents;
2726         efip->efi_flags |= XFS_EFI_COMMITTED;
2727
2728         AIL_LOCK(mp,s);
2729         /*
2730          * xfs_trans_update_ail() drops the AIL lock.
2731          */
2732         xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2733         return 0;
2734 }
2735
2736
2737 /*
2738  * This routine is called when an efd format structure is found in
2739  * a committed transaction in the log.  It's purpose is to cancel
2740  * the corresponding efi if it was still in the log.  To do this
2741  * it searches the AIL for the efi with an id equal to that in the
2742  * efd format structure.  If we find it, we remove the efi from the
2743  * AIL and free it.
2744  */
2745 STATIC void
2746 xlog_recover_do_efd_trans(
2747         xlog_t                  *log,
2748         xlog_recover_item_t     *item,
2749         int                     pass)
2750 {
2751         xfs_mount_t             *mp;
2752         xfs_efd_log_format_t    *efd_formatp;
2753         xfs_efi_log_item_t      *efip = NULL;
2754         xfs_log_item_t          *lip;
2755         int                     gen;
2756         __uint64_t              efi_id;
2757         SPLDECL(s);
2758
2759         if (pass == XLOG_RECOVER_PASS1) {
2760                 return;
2761         }
2762
2763         efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2764         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2765                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2766                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2767                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2768         efi_id = efd_formatp->efd_efi_id;
2769
2770         /*
2771          * Search for the efi with the id in the efd format structure
2772          * in the AIL.
2773          */
2774         mp = log->l_mp;
2775         AIL_LOCK(mp,s);
2776         lip = xfs_trans_first_ail(mp, &gen);
2777         while (lip != NULL) {
2778                 if (lip->li_type == XFS_LI_EFI) {
2779                         efip = (xfs_efi_log_item_t *)lip;
2780                         if (efip->efi_format.efi_id == efi_id) {
2781                                 /*
2782                                  * xfs_trans_delete_ail() drops the
2783                                  * AIL lock.
2784                                  */
2785                                 xfs_trans_delete_ail(mp, lip, s);
2786                                 break;
2787                         }
2788                 }
2789                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2790         }
2791
2792         /*
2793          * If we found it, then free it up.  If it wasn't there, it
2794          * must have been overwritten in the log.  Oh well.
2795          */
2796         if (lip != NULL) {
2797                 xfs_efi_item_free(efip);
2798         } else {
2799                 AIL_UNLOCK(mp, s);
2800         }
2801 }
2802
2803 /*
2804  * Perform the transaction
2805  *
2806  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2807  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2808  */
2809 STATIC int
2810 xlog_recover_do_trans(
2811         xlog_t                  *log,
2812         xlog_recover_t          *trans,
2813         int                     pass)
2814 {
2815         int                     error = 0;
2816         xlog_recover_item_t     *item, *first_item;
2817
2818         if ((error = xlog_recover_reorder_trans(log, trans)))
2819                 return error;
2820         first_item = item = trans->r_itemq;
2821         do {
2822                 /*
2823                  * we don't need to worry about the block number being
2824                  * truncated in > 1 TB buffers because in user-land,
2825                  * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2826                  * the blknos will get through the user-mode buffer
2827                  * cache properly.  The only bad case is o32 kernels
2828                  * where xfs_daddr_t is 32-bits but mount will warn us
2829                  * off a > 1 TB filesystem before we get here.
2830                  */
2831                 if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2832                     (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2833                     (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2834                         if  ((error = xlog_recover_do_buffer_trans(log, item,
2835                                                                  pass)))
2836                                 break;
2837                 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2838                         if ((error = xlog_recover_do_inode_trans(log, item,
2839                                                                 pass)))
2840                                 break;
2841                 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2842                         if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2843                                                   pass)))
2844                                 break;
2845                 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2846                         xlog_recover_do_efd_trans(log, item, pass);
2847                 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2848                         if ((error = xlog_recover_do_dquot_trans(log, item,
2849                                                                    pass)))
2850                                         break;
2851                 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2852                         if ((error = xlog_recover_do_quotaoff_trans(log, item,
2853                                                                    pass)))
2854                                         break;
2855                 } else {
2856                         xlog_warn("XFS: xlog_recover_do_trans");
2857                         ASSERT(0);
2858                         error = XFS_ERROR(EIO);
2859                         break;
2860                 }
2861                 item = item->ri_next;
2862         } while (first_item != item);
2863
2864         return error;
2865 }
2866
2867 /*
2868  * Free up any resources allocated by the transaction
2869  *
2870  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2871  */
2872 STATIC void
2873 xlog_recover_free_trans(
2874         xlog_recover_t          *trans)
2875 {
2876         xlog_recover_item_t     *first_item, *item, *free_item;
2877         int                     i;
2878
2879         item = first_item = trans->r_itemq;
2880         do {
2881                 free_item = item;
2882                 item = item->ri_next;
2883                  /* Free the regions in the item. */
2884                 for (i = 0; i < free_item->ri_cnt; i++) {
2885                         kmem_free(free_item->ri_buf[i].i_addr,
2886                                   free_item->ri_buf[i].i_len);
2887                 }
2888                 /* Free the item itself */
2889                 kmem_free(free_item->ri_buf,
2890                           (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2891                 kmem_free(free_item, sizeof(xlog_recover_item_t));
2892         } while (first_item != item);
2893         /* Free the transaction recover structure */
2894         kmem_free(trans, sizeof(xlog_recover_t));
2895 }
2896
2897 STATIC int
2898 xlog_recover_commit_trans(
2899         xlog_t                  *log,
2900         xlog_recover_t          **q,
2901         xlog_recover_t          *trans,
2902         int                     pass)
2903 {
2904         int                     error;
2905
2906         if ((error = xlog_recover_unlink_tid(q, trans)))
2907                 return error;
2908         if ((error = xlog_recover_do_trans(log, trans, pass)))
2909                 return error;
2910         xlog_recover_free_trans(trans);                 /* no error */
2911         return 0;
2912 }
2913
2914 STATIC int
2915 xlog_recover_unmount_trans(
2916         xlog_recover_t          *trans)
2917 {
2918         /* Do nothing now */
2919         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2920         return 0;
2921 }
2922
2923 /*
2924  * There are two valid states of the r_state field.  0 indicates that the
2925  * transaction structure is in a normal state.  We have either seen the
2926  * start of the transaction or the last operation we added was not a partial
2927  * operation.  If the last operation we added to the transaction was a
2928  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2929  *
2930  * NOTE: skip LRs with 0 data length.
2931  */
2932 STATIC int
2933 xlog_recover_process_data(
2934         xlog_t                  *log,
2935         xlog_recover_t          *rhash[],
2936         xlog_rec_header_t       *rhead,
2937         xfs_caddr_t             dp,
2938         int                     pass)
2939 {
2940         xfs_caddr_t             lp;
2941         int                     num_logops;
2942         xlog_op_header_t        *ohead;
2943         xlog_recover_t          *trans;
2944         xlog_tid_t              tid;
2945         int                     error;
2946         unsigned long           hash;
2947         uint                    flags;
2948
2949         lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2950         num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2951
2952         /* check the log format matches our own - else we can't recover */
2953         if (xlog_header_check_recover(log->l_mp, rhead))
2954                 return (XFS_ERROR(EIO));
2955
2956         while ((dp < lp) && num_logops) {
2957                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2958                 ohead = (xlog_op_header_t *)dp;
2959                 dp += sizeof(xlog_op_header_t);
2960                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2961                     ohead->oh_clientid != XFS_LOG) {
2962                         xlog_warn(
2963                 "XFS: xlog_recover_process_data: bad clientid");
2964                         ASSERT(0);
2965                         return (XFS_ERROR(EIO));
2966                 }
2967                 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2968                 hash = XLOG_RHASH(tid);
2969                 trans = xlog_recover_find_tid(rhash[hash], tid);
2970                 if (trans == NULL) {               /* not found; add new tid */
2971                         if (ohead->oh_flags & XLOG_START_TRANS)
2972                                 xlog_recover_new_tid(&rhash[hash], tid,
2973                                         INT_GET(rhead->h_lsn, ARCH_CONVERT));
2974                 } else {
2975                         ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2976                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2977                         if (flags & XLOG_WAS_CONT_TRANS)
2978                                 flags &= ~XLOG_CONTINUE_TRANS;
2979                         switch (flags) {
2980                         case XLOG_COMMIT_TRANS:
2981                                 error = xlog_recover_commit_trans(log,
2982                                                 &rhash[hash], trans, pass);
2983                                 break;
2984                         case XLOG_UNMOUNT_TRANS:
2985                                 error = xlog_recover_unmount_trans(trans);
2986                                 break;
2987                         case XLOG_WAS_CONT_TRANS:
2988                                 error = xlog_recover_add_to_cont_trans(trans,
2989                                                 dp, INT_GET(ohead->oh_len,
2990                                                         ARCH_CONVERT));
2991                                 break;
2992                         case XLOG_START_TRANS:
2993                                 xlog_warn(
2994                         "XFS: xlog_recover_process_data: bad transaction");
2995                                 ASSERT(0);
2996                                 error = XFS_ERROR(EIO);
2997                                 break;
2998                         case 0:
2999                         case XLOG_CONTINUE_TRANS:
3000                                 error = xlog_recover_add_to_trans(trans,
3001                                                 dp, INT_GET(ohead->oh_len,
3002                                                         ARCH_CONVERT));
3003                                 break;
3004                         default:
3005                                 xlog_warn(
3006                         "XFS: xlog_recover_process_data: bad flag");
3007                                 ASSERT(0);
3008                                 error = XFS_ERROR(EIO);
3009                                 break;
3010                         }
3011                         if (error)
3012                                 return error;
3013                 }
3014                 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3015                 num_logops--;
3016         }
3017         return 0;
3018 }
3019
3020 /*
3021  * Process an extent free intent item that was recovered from
3022  * the log.  We need to free the extents that it describes.
3023  */
3024 STATIC void
3025 xlog_recover_process_efi(
3026         xfs_mount_t             *mp,
3027         xfs_efi_log_item_t      *efip)
3028 {
3029         xfs_efd_log_item_t      *efdp;
3030         xfs_trans_t             *tp;
3031         int                     i;
3032         xfs_extent_t            *extp;
3033         xfs_fsblock_t           startblock_fsb;
3034
3035         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3036
3037         /*
3038          * First check the validity of the extents described by the
3039          * EFI.  If any are bad, then assume that all are bad and
3040          * just toss the EFI.
3041          */
3042         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3043                 extp = &(efip->efi_format.efi_extents[i]);
3044                 startblock_fsb = XFS_BB_TO_FSB(mp,
3045                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
3046                 if ((startblock_fsb == 0) ||
3047                     (extp->ext_len == 0) ||
3048                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3049                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3050                         /*
3051                          * This will pull the EFI from the AIL and
3052                          * free the memory associated with it.
3053                          */
3054                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
3055                         return;
3056                 }
3057         }
3058
3059         tp = xfs_trans_alloc(mp, 0);
3060         xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3061         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3062
3063         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3064                 extp = &(efip->efi_format.efi_extents[i]);
3065                 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3066                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3067                                          extp->ext_len);
3068         }
3069
3070         efip->efi_flags |= XFS_EFI_RECOVERED;
3071         xfs_trans_commit(tp, 0, NULL);
3072 }
3073
3074 /*
3075  * Verify that once we've encountered something other than an EFI
3076  * in the AIL that there are no more EFIs in the AIL.
3077  */
3078 #if defined(DEBUG)
3079 STATIC void
3080 xlog_recover_check_ail(
3081         xfs_mount_t             *mp,
3082         xfs_log_item_t          *lip,
3083         int                     gen)
3084 {
3085         int                     orig_gen = gen;
3086
3087         do {
3088                 ASSERT(lip->li_type != XFS_LI_EFI);
3089                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3090                 /*
3091                  * The check will be bogus if we restart from the
3092                  * beginning of the AIL, so ASSERT that we don't.
3093                  * We never should since we're holding the AIL lock
3094                  * the entire time.
3095                  */
3096                 ASSERT(gen == orig_gen);
3097         } while (lip != NULL);
3098 }
3099 #endif  /* DEBUG */
3100
3101 /*
3102  * When this is called, all of the EFIs which did not have
3103  * corresponding EFDs should be in the AIL.  What we do now
3104  * is free the extents associated with each one.
3105  *
3106  * Since we process the EFIs in normal transactions, they
3107  * will be removed at some point after the commit.  This prevents
3108  * us from just walking down the list processing each one.
3109  * We'll use a flag in the EFI to skip those that we've already
3110  * processed and use the AIL iteration mechanism's generation
3111  * count to try to speed this up at least a bit.
3112  *
3113  * When we start, we know that the EFIs are the only things in
3114  * the AIL.  As we process them, however, other items are added
3115  * to the AIL.  Since everything added to the AIL must come after
3116  * everything already in the AIL, we stop processing as soon as
3117  * we see something other than an EFI in the AIL.
3118  */
3119 STATIC void
3120 xlog_recover_process_efis(
3121         xlog_t                  *log)
3122 {
3123         xfs_log_item_t          *lip;
3124         xfs_efi_log_item_t      *efip;
3125         int                     gen;
3126         xfs_mount_t             *mp;
3127         SPLDECL(s);
3128
3129         mp = log->l_mp;
3130         AIL_LOCK(mp,s);
3131
3132         lip = xfs_trans_first_ail(mp, &gen);
3133         while (lip != NULL) {
3134                 /*
3135                  * We're done when we see something other than an EFI.
3136                  */
3137                 if (lip->li_type != XFS_LI_EFI) {
3138                         xlog_recover_check_ail(mp, lip, gen);
3139                         break;
3140                 }
3141
3142                 /*
3143                  * Skip EFIs that we've already processed.
3144                  */
3145                 efip = (xfs_efi_log_item_t *)lip;
3146                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3147                         lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3148                         continue;
3149                 }
3150
3151                 AIL_UNLOCK(mp, s);
3152                 xlog_recover_process_efi(mp, efip);
3153                 AIL_LOCK(mp,s);
3154                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3155         }
3156         AIL_UNLOCK(mp, s);
3157 }
3158
3159 /*
3160  * This routine performs a transaction to null out a bad inode pointer
3161  * in an agi unlinked inode hash bucket.
3162  */
3163 STATIC void
3164 xlog_recover_clear_agi_bucket(
3165         xfs_mount_t     *mp,
3166         xfs_agnumber_t  agno,
3167         int             bucket)
3168 {
3169         xfs_trans_t     *tp;
3170         xfs_agi_t       *agi;
3171         xfs_buf_t       *agibp;
3172         int             offset;
3173         int             error;
3174
3175         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3176         xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3177
3178         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3179                                    XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3180                                    XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3181         if (error) {
3182                 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3183                 return;
3184         }
3185
3186         agi = XFS_BUF_TO_AGI(agibp);
3187         if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3188                 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3189                 return;
3190         }
3191
3192         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3193         offset = offsetof(xfs_agi_t, agi_unlinked) +
3194                  (sizeof(xfs_agino_t) * bucket);
3195         xfs_trans_log_buf(tp, agibp, offset,
3196                           (offset + sizeof(xfs_agino_t) - 1));
3197
3198         (void) xfs_trans_commit(tp, 0, NULL);
3199 }
3200
3201 /*
3202  * xlog_iunlink_recover
3203  *
3204  * This is called during recovery to process any inodes which
3205  * we unlinked but not freed when the system crashed.  These
3206  * inodes will be on the lists in the AGI blocks.  What we do
3207  * here is scan all the AGIs and fully truncate and free any
3208  * inodes found on the lists.  Each inode is removed from the
3209  * lists when it has been fully truncated and is freed.  The
3210  * freeing of the inode and its removal from the list must be
3211  * atomic.
3212  */
3213 void
3214 xlog_recover_process_iunlinks(
3215         xlog_t          *log)
3216 {
3217         xfs_mount_t     *mp;
3218         xfs_agnumber_t  agno;
3219         xfs_agi_t       *agi;
3220         xfs_buf_t       *agibp;
3221         xfs_buf_t       *ibp;
3222         xfs_dinode_t    *dip;
3223         xfs_inode_t     *ip;
3224         xfs_agino_t     agino;
3225         xfs_ino_t       ino;
3226         int             bucket;
3227         int             error;
3228         uint            mp_dmevmask;
3229
3230         mp = log->l_mp;
3231
3232         /*
3233          * Prevent any DMAPI event from being sent while in this function.
3234          */
3235         mp_dmevmask = mp->m_dmevmask;
3236         mp->m_dmevmask = 0;
3237
3238         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3239                 /*
3240                  * Find the agi for this ag.
3241                  */
3242                 agibp = xfs_buf_read(mp->m_ddev_targp,
3243                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3244                                 XFS_FSS_TO_BB(mp, 1), 0);
3245                 if (XFS_BUF_ISERROR(agibp)) {
3246                         xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3247                                 log->l_mp, agibp,
3248                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3249                 }
3250                 agi = XFS_BUF_TO_AGI(agibp);
3251                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3252
3253                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3254
3255                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3256                         while (agino != NULLAGINO) {
3257
3258                                 /*
3259                                  * Release the agi buffer so that it can
3260                                  * be acquired in the normal course of the
3261                                  * transaction to truncate and free the inode.
3262                                  */
3263                                 xfs_buf_relse(agibp);
3264
3265                                 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3266                                 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3267                                 ASSERT(error || (ip != NULL));
3268
3269                                 if (!error) {
3270                                         /*
3271                                          * Get the on disk inode to find the
3272                                          * next inode in the bucket.
3273                                          */
3274                                         error = xfs_itobp(mp, NULL, ip, &dip,
3275                                                         &ibp, 0, 0);
3276                                         ASSERT(error || (dip != NULL));
3277                                 }
3278
3279                                 if (!error) {
3280                                         ASSERT(ip->i_d.di_nlink == 0);
3281
3282                                         /* setup for the next pass */
3283                                         agino = INT_GET(dip->di_next_unlinked,
3284                                                         ARCH_CONVERT);
3285                                         xfs_buf_relse(ibp);
3286                                         /*
3287                                          * Prevent any DMAPI event from
3288                                          * being sent when the
3289                                          * reference on the inode is
3290                                          * dropped.
3291                                          */
3292                                         ip->i_d.di_dmevmask = 0;
3293
3294                                         /*
3295                                          * If this is a new inode, handle
3296                                          * it specially.  Otherwise,
3297                                          * just drop our reference to the
3298                                          * inode.  If there are no
3299                                          * other references, this will
3300                                          * send the inode to
3301                                          * xfs_inactive() which will
3302                                          * truncate the file and free
3303                                          * the inode.
3304                                          */
3305                                         if (ip->i_d.di_mode == 0)
3306                                                 xfs_iput_new(ip, 0);
3307                                         else
3308                                                 VN_RELE(XFS_ITOV(ip));
3309                                 } else {
3310                                         /*
3311                                          * We can't read in the inode
3312                                          * this bucket points to, or
3313                                          * this inode is messed up.  Just
3314                                          * ditch this bucket of inodes.  We
3315                                          * will lose some inodes and space,
3316                                          * but at least we won't hang.  Call
3317                                          * xlog_recover_clear_agi_bucket()
3318                                          * to perform a transaction to clear
3319                                          * the inode pointer in the bucket.
3320                                          */
3321                                         xlog_recover_clear_agi_bucket(mp, agno,
3322                                                         bucket);
3323
3324                                         agino = NULLAGINO;
3325                                 }
3326
3327                                 /*
3328                                  * Reacquire the agibuffer and continue around
3329                                  * the loop.
3330                                  */
3331                                 agibp = xfs_buf_read(mp->m_ddev_targp,
3332                                                 XFS_AG_DADDR(mp, agno,
3333                                                         XFS_AGI_DADDR(mp)),
3334                                                 XFS_FSS_TO_BB(mp, 1), 0);
3335                                 if (XFS_BUF_ISERROR(agibp)) {
3336                                         xfs_ioerror_alert(
3337                                 "xlog_recover_process_iunlinks(#2)",
3338                                                 log->l_mp, agibp,
3339                                                 XFS_AG_DADDR(mp, agno,
3340                                                         XFS_AGI_DADDR(mp)));
3341                                 }
3342                                 agi = XFS_BUF_TO_AGI(agibp);
3343                                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3344                                         agi->agi_magicnum));
3345                         }
3346                 }
3347
3348                 /*
3349                  * Release the buffer for the current agi so we can
3350                  * go on to the next one.
3351                  */
3352                 xfs_buf_relse(agibp);
3353         }
3354
3355         mp->m_dmevmask = mp_dmevmask;
3356 }
3357
3358
3359 #ifdef DEBUG
3360 STATIC void
3361 xlog_pack_data_checksum(
3362         xlog_t          *log,
3363         xlog_in_core_t  *iclog,
3364         int             size)
3365 {
3366         int             i;
3367         uint            *up;
3368         uint            chksum = 0;
3369
3370         up = (uint *)iclog->ic_datap;
3371         /* divide length by 4 to get # words */
3372         for (i = 0; i < (size >> 2); i++) {
3373                 chksum ^= INT_GET(*up, ARCH_CONVERT);
3374                 up++;
3375         }
3376         INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3377 }
3378 #else
3379 #define xlog_pack_data_checksum(log, iclog, size)
3380 #endif
3381
3382 /*
3383  * Stamp cycle number in every block
3384  */
3385 void
3386 xlog_pack_data(
3387         xlog_t                  *log,
3388         xlog_in_core_t          *iclog,
3389         int                     roundoff)
3390 {
3391         int                     i, j, k;
3392         int                     size = iclog->ic_offset + roundoff;
3393         uint                    cycle_lsn;
3394         xfs_caddr_t             dp;
3395         xlog_in_core_2_t        *xhdr;
3396
3397         xlog_pack_data_checksum(log, iclog, size);
3398
3399         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3400
3401         dp = iclog->ic_datap;
3402         for (i = 0; i < BTOBB(size) &&
3403                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3404                 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3405                 *(uint *)dp = cycle_lsn;
3406                 dp += BBSIZE;
3407         }
3408
3409         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3410                 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3411                 for ( ; i < BTOBB(size); i++) {
3412                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3413                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3414                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3415                         *(uint *)dp = cycle_lsn;
3416                         dp += BBSIZE;
3417                 }
3418
3419                 for (i = 1; i < log->l_iclog_heads; i++) {
3420                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3421                 }
3422         }
3423 }
3424
3425 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3426 STATIC void
3427 xlog_unpack_data_checksum(
3428         xlog_rec_header_t       *rhead,
3429         xfs_caddr_t             dp,
3430         xlog_t                  *log)
3431 {
3432         uint                    *up = (uint *)dp;
3433         uint                    chksum = 0;
3434         int                     i;
3435
3436         /* divide length by 4 to get # words */
3437         for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3438                 chksum ^= INT_GET(*up, ARCH_CONVERT);
3439                 up++;
3440         }
3441         if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3442             if (rhead->h_chksum ||
3443                 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3444                     cmn_err(CE_DEBUG,
3445                         "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3446                             INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3447                     cmn_err(CE_DEBUG,
3448 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3449                     if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3450                             cmn_err(CE_DEBUG,
3451                                 "XFS: LogR this is a LogV2 filesystem\n");
3452                     }
3453                     log->l_flags |= XLOG_CHKSUM_MISMATCH;
3454             }
3455         }
3456 }
3457 #else
3458 #define xlog_unpack_data_checksum(rhead, dp, log)
3459 #endif
3460
3461 STATIC void
3462 xlog_unpack_data(
3463         xlog_rec_header_t       *rhead,
3464         xfs_caddr_t             dp,
3465         xlog_t                  *log)
3466 {
3467         int                     i, j, k;
3468         xlog_in_core_2_t        *xhdr;
3469
3470         for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3471                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3472                 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3473                 dp += BBSIZE;
3474         }
3475
3476         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3477                 xhdr = (xlog_in_core_2_t *)rhead;
3478                 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3479                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3480                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3481                         *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3482                         dp += BBSIZE;
3483                 }
3484         }
3485
3486         xlog_unpack_data_checksum(rhead, dp, log);
3487 }
3488
3489 STATIC int
3490 xlog_valid_rec_header(
3491         xlog_t                  *log,
3492         xlog_rec_header_t       *rhead,
3493         xfs_daddr_t             blkno)
3494 {
3495         int                     hlen;
3496
3497         if (unlikely(
3498             (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3499                         XLOG_HEADER_MAGIC_NUM))) {
3500                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3501                                 XFS_ERRLEVEL_LOW, log->l_mp);
3502                 return XFS_ERROR(EFSCORRUPTED);
3503         }
3504         if (unlikely(
3505             (!rhead->h_version ||
3506             (INT_GET(rhead->h_version, ARCH_CONVERT) &
3507                         (~XLOG_VERSION_OKBITS)) != 0))) {
3508                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3509                         __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3510                 return XFS_ERROR(EIO);
3511         }
3512
3513         /* LR body must have data or it wouldn't have been written */
3514         hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3515         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3516                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3517                                 XFS_ERRLEVEL_LOW, log->l_mp);
3518                 return XFS_ERROR(EFSCORRUPTED);
3519         }
3520         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3521                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3522                                 XFS_ERRLEVEL_LOW, log->l_mp);
3523                 return XFS_ERROR(EFSCORRUPTED);
3524         }
3525         return 0;
3526 }
3527
3528 /*
3529  * Read the log from tail to head and process the log records found.
3530  * Handle the two cases where the tail and head are in the same cycle
3531  * and where the active portion of the log wraps around the end of
3532  * the physical log separately.  The pass parameter is passed through
3533  * to the routines called to process the data and is not looked at
3534  * here.
3535  */
3536 STATIC int
3537 xlog_do_recovery_pass(
3538         xlog_t                  *log,
3539         xfs_daddr_t             head_blk,
3540         xfs_daddr_t             tail_blk,
3541         int                     pass)
3542 {
3543         xlog_rec_header_t       *rhead;
3544         xfs_daddr_t             blk_no;
3545         xfs_caddr_t             bufaddr, offset;
3546         xfs_buf_t               *hbp, *dbp;
3547         int                     error = 0, h_size;
3548         int                     bblks, split_bblks;
3549         int                     hblks, split_hblks, wrapped_hblks;
3550         xlog_recover_t          *rhash[XLOG_RHASH_SIZE];
3551
3552         ASSERT(head_blk != tail_blk);
3553
3554         /*
3555          * Read the header of the tail block and get the iclog buffer size from
3556          * h_size.  Use this to tell how many sectors make up the log header.
3557          */
3558         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3559                 /*
3560                  * When using variable length iclogs, read first sector of
3561                  * iclog header and extract the header size from it.  Get a
3562                  * new hbp that is the correct size.
3563                  */
3564                 hbp = xlog_get_bp(log, 1);
3565                 if (!hbp)
3566                         return ENOMEM;
3567                 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3568                         goto bread_err1;
3569                 offset = xlog_align(log, tail_blk, 1, hbp);
3570                 rhead = (xlog_rec_header_t *)offset;
3571                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3572                 if (error)
3573                         goto bread_err1;
3574                 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3575                 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3576                                 & XLOG_VERSION_2) &&
3577                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3578                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3579                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3580                                 hblks++;
3581                         xlog_put_bp(hbp);
3582                         hbp = xlog_get_bp(log, hblks);
3583                 } else {
3584                         hblks = 1;
3585                 }
3586         } else {
3587                 ASSERT(log->l_sectbb_log == 0);
3588                 hblks = 1;
3589                 hbp = xlog_get_bp(log, 1);
3590                 h_size = XLOG_BIG_RECORD_BSIZE;
3591         }
3592
3593         if (!hbp)
3594                 return ENOMEM;
3595         dbp = xlog_get_bp(log, BTOBB(h_size));
3596         if (!dbp) {
3597                 xlog_put_bp(hbp);
3598                 return ENOMEM;
3599         }
3600
3601         memset(rhash, 0, sizeof(rhash));
3602         if (tail_blk <= head_blk) {
3603                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3604                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3605                                 goto bread_err2;
3606                         offset = xlog_align(log, blk_no, hblks, hbp);
3607                         rhead = (xlog_rec_header_t *)offset;
3608                         error = xlog_valid_rec_header(log, rhead, blk_no);
3609                         if (error)
3610                                 goto bread_err2;
3611
3612                         /* blocks in data section */
3613                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3614                         error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3615                         if (error)
3616                                 goto bread_err2;
3617                         offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3618                         xlog_unpack_data(rhead, offset, log);
3619                         if ((error = xlog_recover_process_data(log,
3620                                                 rhash, rhead, offset, pass)))
3621                                 goto bread_err2;
3622                         blk_no += bblks + hblks;
3623                 }
3624         } else {
3625                 /*
3626                  * Perform recovery around the end of the physical log.
3627                  * When the head is not on the same cycle number as the tail,
3628                  * we can't do a sequential recovery as above.
3629                  */
3630                 blk_no = tail_blk;
3631                 while (blk_no < log->l_logBBsize) {
3632                         /*
3633                          * Check for header wrapping around physical end-of-log
3634                          */
3635                         offset = NULL;
3636                         split_hblks = 0;
3637                         wrapped_hblks = 0;
3638                         if (blk_no + hblks <= log->l_logBBsize) {
3639                                 /* Read header in one read */
3640                                 error = xlog_bread(log, blk_no, hblks, hbp);
3641                                 if (error)
3642                                         goto bread_err2;
3643                                 offset = xlog_align(log, blk_no, hblks, hbp);
3644                         } else {
3645                                 /* This LR is split across physical log end */
3646                                 if (blk_no != log->l_logBBsize) {
3647                                         /* some data before physical log end */
3648                                         ASSERT(blk_no <= INT_MAX);
3649                                         split_hblks = log->l_logBBsize - (int)blk_no;
3650                                         ASSERT(split_hblks > 0);
3651                                         if ((error = xlog_bread(log, blk_no,
3652                                                         split_hblks, hbp)))
3653                                                 goto bread_err2;
3654                                         offset = xlog_align(log, blk_no,
3655                                                         split_hblks, hbp);
3656                                 }
3657                                 /*
3658                                  * Note: this black magic still works with
3659                                  * large sector sizes (non-512) only because:
3660                                  * - we increased the buffer size originally
3661                                  *   by 1 sector giving us enough extra space
3662                                  *   for the second read;
3663                                  * - the log start is guaranteed to be sector
3664                                  *   aligned;
3665                                  * - we read the log end (LR header start)
3666                                  *   _first_, then the log start (LR header end)
3667                                  *   - order is important.
3668                                  */
3669                                 bufaddr = XFS_BUF_PTR(hbp);
3670                                 XFS_BUF_SET_PTR(hbp,
3671                                                 bufaddr + BBTOB(split_hblks),
3672                                                 BBTOB(hblks - split_hblks));
3673                                 wrapped_hblks = hblks - split_hblks;
3674                                 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3675                                 if (error)
3676                                         goto bread_err2;
3677                                 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3678                                 if (!offset)
3679                                         offset = xlog_align(log, 0,
3680                                                         wrapped_hblks, hbp);
3681                         }
3682                         rhead = (xlog_rec_header_t *)offset;
3683                         error = xlog_valid_rec_header(log, rhead,
3684                                                 split_hblks ? blk_no : 0);
3685                         if (error)
3686                                 goto bread_err2;
3687
3688                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3689                         blk_no += hblks;
3690
3691                         /* Read in data for log record */
3692                         if (blk_no + bblks <= log->l_logBBsize) {
3693                                 error = xlog_bread(log, blk_no, bblks, dbp);
3694                                 if (error)
3695                                         goto bread_err2;
3696                                 offset = xlog_align(log, blk_no, bblks, dbp);
3697                         } else {
3698                                 /* This log record is split across the
3699                                  * physical end of log */
3700                                 offset = NULL;
3701                                 split_bblks = 0;
3702                                 if (blk_no != log->l_logBBsize) {
3703                                         /* some data is before the physical
3704                                          * end of log */
3705                                         ASSERT(!wrapped_hblks);
3706                                         ASSERT(blk_no <= INT_MAX);
3707                                         split_bblks =
3708                                                 log->l_logBBsize - (int)blk_no;
3709                                         ASSERT(split_bblks > 0);
3710                                         if ((error = xlog_bread(log, blk_no,
3711                                                         split_bblks, dbp)))
3712                                                 goto bread_err2;
3713                                         offset = xlog_align(log, blk_no,
3714                                                         split_bblks, dbp);
3715                                 }
3716                                 /*
3717                                  * Note: this black magic still works with
3718                                  * large sector sizes (non-512) only because:
3719                                  * - we increased the buffer size originally
3720                                  *   by 1 sector giving us enough extra space
3721                                  *   for the second read;
3722                                  * - the log start is guaranteed to be sector
3723                                  *   aligned;
3724                                  * - we read the log end (LR header start)
3725                                  *   _first_, then the log start (LR header end)
3726                                  *   - order is important.
3727                                  */
3728                                 bufaddr = XFS_BUF_PTR(dbp);
3729                                 XFS_BUF_SET_PTR(dbp,
3730                                                 bufaddr + BBTOB(split_bblks),
3731                                                 BBTOB(bblks - split_bblks));
3732                                 if ((error = xlog_bread(log, wrapped_hblks,
3733                                                 bblks - split_bblks, dbp)))
3734                                         goto bread_err2;
3735                                 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3736                                 if (!offset)
3737                                         offset = xlog_align(log, wrapped_hblks,
3738                                                 bblks - split_bblks, dbp);
3739                         }
3740                         xlog_unpack_data(rhead, offset, log);
3741                         if ((error = xlog_recover_process_data(log, rhash,
3742                                                         rhead, offset, pass)))
3743                                 goto bread_err2;
3744                         blk_no += bblks;
3745                 }
3746
3747                 ASSERT(blk_no >= log->l_logBBsize);
3748                 blk_no -= log->l_logBBsize;
3749
3750                 /* read first part of physical log */
3751                 while (blk_no < head_blk) {
3752                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3753                                 goto bread_err2;
3754                         offset = xlog_align(log, blk_no, hblks, hbp);
3755                         rhead = (xlog_rec_header_t *)offset;
3756                         error = xlog_valid_rec_header(log, rhead, blk_no);
3757                         if (error)
3758                                 goto bread_err2;
3759                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3760                         if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3761                                 goto bread_err2;
3762                         offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3763                         xlog_unpack_data(rhead, offset, log);
3764                         if ((error = xlog_recover_process_data(log, rhash,
3765                                                         rhead, offset, pass)))
3766                                 goto bread_err2;
3767                         blk_no += bblks + hblks;
3768                 }
3769         }
3770
3771  bread_err2:
3772         xlog_put_bp(dbp);
3773  bread_err1:
3774         xlog_put_bp(hbp);
3775         return error;
3776 }
3777
3778 /*
3779  * Do the recovery of the log.  We actually do this in two phases.
3780  * The two passes are necessary in order to implement the function
3781  * of cancelling a record written into the log.  The first pass
3782  * determines those things which have been cancelled, and the
3783  * second pass replays log items normally except for those which
3784  * have been cancelled.  The handling of the replay and cancellations
3785  * takes place in the log item type specific routines.
3786  *
3787  * The table of items which have cancel records in the log is allocated
3788  * and freed at this level, since only here do we know when all of
3789  * the log recovery has been completed.
3790  */
3791 STATIC int
3792 xlog_do_log_recovery(
3793         xlog_t          *log,
3794         xfs_daddr_t     head_blk,
3795         xfs_daddr_t     tail_blk)
3796 {
3797         int             error;
3798
3799         ASSERT(head_blk != tail_blk);
3800
3801         /*
3802          * First do a pass to find all of the cancelled buf log items.
3803          * Store them in the buf_cancel_table for use in the second pass.
3804          */
3805         log->l_buf_cancel_table =
3806                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3807                                                  sizeof(xfs_buf_cancel_t*),
3808                                                  KM_SLEEP);
3809         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3810                                       XLOG_RECOVER_PASS1);
3811         if (error != 0) {
3812                 kmem_free(log->l_buf_cancel_table,
3813                           XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3814                 log->l_buf_cancel_table = NULL;
3815                 return error;
3816         }
3817         /*
3818          * Then do a second pass to actually recover the items in the log.
3819          * When it is complete free the table of buf cancel items.
3820          */
3821         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3822                                       XLOG_RECOVER_PASS2);
3823 #ifdef DEBUG
3824         if (!error) {
3825                 int     i;
3826
3827                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3828                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3829         }
3830 #endif  /* DEBUG */
3831
3832         kmem_free(log->l_buf_cancel_table,
3833                   XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3834         log->l_buf_cancel_table = NULL;
3835
3836         return error;
3837 }
3838
3839 /*
3840  * Do the actual recovery
3841  */
3842 STATIC int
3843 xlog_do_recover(
3844         xlog_t          *log,
3845         xfs_daddr_t     head_blk,
3846         xfs_daddr_t     tail_blk)
3847 {
3848         int             error;
3849         xfs_buf_t       *bp;
3850         xfs_sb_t        *sbp;
3851
3852         /*
3853          * First replay the images in the log.
3854          */
3855         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3856         if (error) {
3857                 return error;
3858         }
3859
3860         XFS_bflush(log->l_mp->m_ddev_targp);
3861
3862         /*
3863          * If IO errors happened during recovery, bail out.
3864          */
3865         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3866                 return (EIO);
3867         }
3868
3869         /*
3870          * We now update the tail_lsn since much of the recovery has completed
3871          * and there may be space available to use.  If there were no extent
3872          * or iunlinks, we can free up the entire log and set the tail_lsn to
3873          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3874          * lsn of the last known good LR on disk.  If there are extent frees
3875          * or iunlinks they will have some entries in the AIL; so we look at
3876          * the AIL to determine how to set the tail_lsn.
3877          */
3878         xlog_assign_tail_lsn(log->l_mp);
3879
3880         /*
3881          * Now that we've finished replaying all buffer and inode
3882          * updates, re-read in the superblock.
3883          */
3884         bp = xfs_getsb(log->l_mp, 0);
3885         XFS_BUF_UNDONE(bp);
3886         XFS_BUF_READ(bp);
3887         xfsbdstrat(log->l_mp, bp);
3888         if ((error = xfs_iowait(bp))) {
3889                 xfs_ioerror_alert("xlog_do_recover",
3890                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3891                 ASSERT(0);
3892                 xfs_buf_relse(bp);
3893                 return error;
3894         }
3895
3896         /* Convert superblock from on-disk format */
3897         sbp = &log->l_mp->m_sb;
3898         xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3899         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3900         ASSERT(XFS_SB_GOOD_VERSION(sbp));
3901         xfs_buf_relse(bp);
3902
3903         xlog_recover_check_summary(log);
3904
3905         /* Normal transactions can now occur */
3906         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3907         return 0;
3908 }
3909
3910 /*
3911  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3912  *
3913  * Return error or zero.
3914  */
3915 int
3916 xlog_recover(
3917         xlog_t          *log)
3918 {
3919         xfs_daddr_t     head_blk, tail_blk;
3920         int             error;
3921
3922         /* find the tail of the log */
3923         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3924                 return error;
3925
3926         if (tail_blk != head_blk) {
3927                 /* There used to be a comment here:
3928                  *
3929                  * disallow recovery on read-only mounts.  note -- mount
3930                  * checks for ENOSPC and turns it into an intelligent
3931                  * error message.
3932                  * ...but this is no longer true.  Now, unless you specify
3933                  * NORECOVERY (in which case this function would never be
3934                  * called), we just go ahead and recover.  We do this all
3935                  * under the vfs layer, so we can get away with it unless
3936                  * the device itself is read-only, in which case we fail.
3937                  */
3938                 if ((error = xfs_dev_is_read_only(log->l_mp,
3939                                                 "recovery required"))) {
3940                         return error;
3941                 }
3942
3943                 cmn_err(CE_NOTE,
3944                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3945                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3946                         log->l_mp->m_logname : "internal");
3947
3948                 error = xlog_do_recover(log, head_blk, tail_blk);
3949                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3950         }
3951         return error;
3952 }
3953
3954 /*
3955  * In the first part of recovery we replay inodes and buffers and build
3956  * up the list of extent free items which need to be processed.  Here
3957  * we process the extent free items and clean up the on disk unlinked
3958  * inode lists.  This is separated from the first part of recovery so
3959  * that the root and real-time bitmap inodes can be read in from disk in
3960  * between the two stages.  This is necessary so that we can free space
3961  * in the real-time portion of the file system.
3962  */
3963 int
3964 xlog_recover_finish(
3965         xlog_t          *log,
3966         int             mfsi_flags)
3967 {
3968         /*
3969          * Now we're ready to do the transactions needed for the
3970          * rest of recovery.  Start with completing all the extent
3971          * free intent records and then process the unlinked inode
3972          * lists.  At this point, we essentially run in normal mode
3973          * except that we're still performing recovery actions
3974          * rather than accepting new requests.
3975          */
3976         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3977                 xlog_recover_process_efis(log);
3978                 /*
3979                  * Sync the log to get all the EFIs out of the AIL.
3980                  * This isn't absolutely necessary, but it helps in
3981                  * case the unlink transactions would have problems
3982                  * pushing the EFIs out of the way.
3983                  */
3984                 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3985                               (XFS_LOG_FORCE | XFS_LOG_SYNC));
3986
3987                 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3988                         xlog_recover_process_iunlinks(log);
3989                 }
3990
3991                 xlog_recover_check_summary(log);
3992
3993                 cmn_err(CE_NOTE,
3994                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3995                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3996                         log->l_mp->m_logname : "internal");
3997                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3998         } else {
3999                 cmn_err(CE_DEBUG,
4000                         "!Ending clean XFS mount for filesystem: %s\n",
4001                         log->l_mp->m_fsname);
4002         }
4003         return 0;
4004 }
4005
4006
4007 #if defined(DEBUG)
4008 /*
4009  * Read all of the agf and agi counters and check that they
4010  * are consistent with the superblock counters.
4011  */
4012 void
4013 xlog_recover_check_summary(
4014         xlog_t          *log)
4015 {
4016         xfs_mount_t     *mp;
4017         xfs_agf_t       *agfp;
4018         xfs_agi_t       *agip;
4019         xfs_buf_t       *agfbp;
4020         xfs_buf_t       *agibp;
4021         xfs_daddr_t     agfdaddr;
4022         xfs_daddr_t     agidaddr;
4023         xfs_buf_t       *sbbp;
4024 #ifdef XFS_LOUD_RECOVERY
4025         xfs_sb_t        *sbp;
4026 #endif
4027         xfs_agnumber_t  agno;
4028         __uint64_t      freeblks;
4029         __uint64_t      itotal;
4030         __uint64_t      ifree;
4031
4032         mp = log->l_mp;
4033
4034         freeblks = 0LL;
4035         itotal = 0LL;
4036         ifree = 0LL;
4037         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4038                 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4039                 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4040                                 XFS_FSS_TO_BB(mp, 1), 0);
4041                 if (XFS_BUF_ISERROR(agfbp)) {
4042                         xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4043                                                 mp, agfbp, agfdaddr);
4044                 }
4045                 agfp = XFS_BUF_TO_AGF(agfbp);
4046                 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4047                 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4048                 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4049
4050                 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4051                             be32_to_cpu(agfp->agf_flcount);
4052                 xfs_buf_relse(agfbp);
4053
4054                 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4055                 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4056                                 XFS_FSS_TO_BB(mp, 1), 0);
4057                 if (XFS_BUF_ISERROR(agibp)) {
4058                         xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4059                                           mp, agibp, agidaddr);
4060                 }
4061                 agip = XFS_BUF_TO_AGI(agibp);
4062                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4063                 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4064                 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4065
4066                 itotal += be32_to_cpu(agip->agi_count);
4067                 ifree += be32_to_cpu(agip->agi_freecount);
4068                 xfs_buf_relse(agibp);
4069         }
4070
4071         sbbp = xfs_getsb(mp, 0);
4072 #ifdef XFS_LOUD_RECOVERY
4073         sbp = &mp->m_sb;
4074         xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4075         cmn_err(CE_NOTE,
4076                 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4077                 sbp->sb_icount, itotal);
4078         cmn_err(CE_NOTE,
4079                 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4080                 sbp->sb_ifree, ifree);
4081         cmn_err(CE_NOTE,
4082                 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4083                 sbp->sb_fdblocks, freeblks);
4084 #if 0
4085         /*
4086          * This is turned off until I account for the allocation
4087          * btree blocks which live in free space.
4088          */
4089         ASSERT(sbp->sb_icount == itotal);
4090         ASSERT(sbp->sb_ifree == ifree);
4091         ASSERT(sbp->sb_fdblocks == freeblks);
4092 #endif
4093 #endif
4094         xfs_buf_relse(sbbp);
4095 }
4096 #endif /* DEBUG */