xfs: remove another leftover of the old inode log item format
[safe/jmp/linux-2.6] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49
50 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void     xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53                                                xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void     xlog_recover_check_summary(xlog_t *);
56 #else
57 #define xlog_recover_check_summary(log)
58 #endif
59
60
61 /*
62  * Sector aligned buffer routines for buffer create/read/write/access
63  */
64
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)   \
66         ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67         ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)   ((bno) & ~(log)->l_sectbb_mask)
69
70 xfs_buf_t *
71 xlog_get_bp(
72         xlog_t          *log,
73         int             nbblks)
74 {
75         if (nbblks <= 0 || nbblks > log->l_logBBsize) {
76                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
77                 XFS_ERROR_REPORT("xlog_get_bp(1)",
78                                  XFS_ERRLEVEL_HIGH, log->l_mp);
79                 return NULL;
80         }
81
82         if (log->l_sectbb_log) {
83                 if (nbblks > 1)
84                         nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
85                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
86         }
87         return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
88 }
89
90 void
91 xlog_put_bp(
92         xfs_buf_t       *bp)
93 {
94         xfs_buf_free(bp);
95 }
96
97
98 /*
99  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
100  */
101 int
102 xlog_bread(
103         xlog_t          *log,
104         xfs_daddr_t     blk_no,
105         int             nbblks,
106         xfs_buf_t       *bp)
107 {
108         int             error;
109
110         if (nbblks <= 0 || nbblks > log->l_logBBsize) {
111                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
112                 XFS_ERROR_REPORT("xlog_bread(1)",
113                                  XFS_ERRLEVEL_HIGH, log->l_mp);
114                 return EFSCORRUPTED;
115         }
116
117         if (log->l_sectbb_log) {
118                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
119                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
120         }
121
122         ASSERT(nbblks > 0);
123         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
124         ASSERT(bp);
125
126         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
127         XFS_BUF_READ(bp);
128         XFS_BUF_BUSY(bp);
129         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
130         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
131
132         xfsbdstrat(log->l_mp, bp);
133         error = xfs_iowait(bp);
134         if (error)
135                 xfs_ioerror_alert("xlog_bread", log->l_mp,
136                                   bp, XFS_BUF_ADDR(bp));
137         return error;
138 }
139
140 /*
141  * Write out the buffer at the given block for the given number of blocks.
142  * The buffer is kept locked across the write and is returned locked.
143  * This can only be used for synchronous log writes.
144  */
145 STATIC int
146 xlog_bwrite(
147         xlog_t          *log,
148         xfs_daddr_t     blk_no,
149         int             nbblks,
150         xfs_buf_t       *bp)
151 {
152         int             error;
153
154         if (nbblks <= 0 || nbblks > log->l_logBBsize) {
155                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
156                 XFS_ERROR_REPORT("xlog_bwrite(1)",
157                                  XFS_ERRLEVEL_HIGH, log->l_mp);
158                 return EFSCORRUPTED;
159         }
160
161         if (log->l_sectbb_log) {
162                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
163                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
164         }
165
166         ASSERT(nbblks > 0);
167         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
168
169         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
170         XFS_BUF_ZEROFLAGS(bp);
171         XFS_BUF_BUSY(bp);
172         XFS_BUF_HOLD(bp);
173         XFS_BUF_PSEMA(bp, PRIBIO);
174         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
175         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
176
177         if ((error = xfs_bwrite(log->l_mp, bp)))
178                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
179                                   bp, XFS_BUF_ADDR(bp));
180         return error;
181 }
182
183 STATIC xfs_caddr_t
184 xlog_align(
185         xlog_t          *log,
186         xfs_daddr_t     blk_no,
187         int             nbblks,
188         xfs_buf_t       *bp)
189 {
190         xfs_caddr_t     ptr;
191
192         if (!log->l_sectbb_log)
193                 return XFS_BUF_PTR(bp);
194
195         ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
196         ASSERT(XFS_BUF_SIZE(bp) >=
197                 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
198         return ptr;
199 }
200
201 #ifdef DEBUG
202 /*
203  * dump debug superblock and log record information
204  */
205 STATIC void
206 xlog_header_check_dump(
207         xfs_mount_t             *mp,
208         xlog_rec_header_t       *head)
209 {
210         int                     b;
211
212         cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __func__);
213         for (b = 0; b < 16; b++)
214                 cmn_err(CE_DEBUG, "%02x", ((__uint8_t *)&mp->m_sb.sb_uuid)[b]);
215         cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
216         cmn_err(CE_DEBUG, "    log : uuid = ");
217         for (b = 0; b < 16; b++)
218                 cmn_err(CE_DEBUG, "%02x", ((__uint8_t *)&head->h_fs_uuid)[b]);
219         cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
220 }
221 #else
222 #define xlog_header_check_dump(mp, head)
223 #endif
224
225 /*
226  * check log record header for recovery
227  */
228 STATIC int
229 xlog_header_check_recover(
230         xfs_mount_t             *mp,
231         xlog_rec_header_t       *head)
232 {
233         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
234
235         /*
236          * IRIX doesn't write the h_fmt field and leaves it zeroed
237          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
238          * a dirty log created in IRIX.
239          */
240         if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
241                 xlog_warn(
242         "XFS: dirty log written in incompatible format - can't recover");
243                 xlog_header_check_dump(mp, head);
244                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
245                                  XFS_ERRLEVEL_HIGH, mp);
246                 return XFS_ERROR(EFSCORRUPTED);
247         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
248                 xlog_warn(
249         "XFS: dirty log entry has mismatched uuid - can't recover");
250                 xlog_header_check_dump(mp, head);
251                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
252                                  XFS_ERRLEVEL_HIGH, mp);
253                 return XFS_ERROR(EFSCORRUPTED);
254         }
255         return 0;
256 }
257
258 /*
259  * read the head block of the log and check the header
260  */
261 STATIC int
262 xlog_header_check_mount(
263         xfs_mount_t             *mp,
264         xlog_rec_header_t       *head)
265 {
266         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
267
268         if (uuid_is_nil(&head->h_fs_uuid)) {
269                 /*
270                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
271                  * h_fs_uuid is nil, we assume this log was last mounted
272                  * by IRIX and continue.
273                  */
274                 xlog_warn("XFS: nil uuid in log - IRIX style log");
275         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
276                 xlog_warn("XFS: log has mismatched uuid - can't recover");
277                 xlog_header_check_dump(mp, head);
278                 XFS_ERROR_REPORT("xlog_header_check_mount",
279                                  XFS_ERRLEVEL_HIGH, mp);
280                 return XFS_ERROR(EFSCORRUPTED);
281         }
282         return 0;
283 }
284
285 STATIC void
286 xlog_recover_iodone(
287         struct xfs_buf  *bp)
288 {
289         if (XFS_BUF_GETERROR(bp)) {
290                 /*
291                  * We're not going to bother about retrying
292                  * this during recovery. One strike!
293                  */
294                 xfs_ioerror_alert("xlog_recover_iodone",
295                                   bp->b_mount, bp, XFS_BUF_ADDR(bp));
296                 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
297         }
298         bp->b_mount = NULL;
299         XFS_BUF_CLR_IODONE_FUNC(bp);
300         xfs_biodone(bp);
301 }
302
303 /*
304  * This routine finds (to an approximation) the first block in the physical
305  * log which contains the given cycle.  It uses a binary search algorithm.
306  * Note that the algorithm can not be perfect because the disk will not
307  * necessarily be perfect.
308  */
309 STATIC int
310 xlog_find_cycle_start(
311         xlog_t          *log,
312         xfs_buf_t       *bp,
313         xfs_daddr_t     first_blk,
314         xfs_daddr_t     *last_blk,
315         uint            cycle)
316 {
317         xfs_caddr_t     offset;
318         xfs_daddr_t     mid_blk;
319         uint            mid_cycle;
320         int             error;
321
322         mid_blk = BLK_AVG(first_blk, *last_blk);
323         while (mid_blk != first_blk && mid_blk != *last_blk) {
324                 if ((error = xlog_bread(log, mid_blk, 1, bp)))
325                         return error;
326                 offset = xlog_align(log, mid_blk, 1, bp);
327                 mid_cycle = xlog_get_cycle(offset);
328                 if (mid_cycle == cycle) {
329                         *last_blk = mid_blk;
330                         /* last_half_cycle == mid_cycle */
331                 } else {
332                         first_blk = mid_blk;
333                         /* first_half_cycle == mid_cycle */
334                 }
335                 mid_blk = BLK_AVG(first_blk, *last_blk);
336         }
337         ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
338                (mid_blk == *last_blk && mid_blk-1 == first_blk));
339
340         return 0;
341 }
342
343 /*
344  * Check that the range of blocks does not contain the cycle number
345  * given.  The scan needs to occur from front to back and the ptr into the
346  * region must be updated since a later routine will need to perform another
347  * test.  If the region is completely good, we end up returning the same
348  * last block number.
349  *
350  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
351  * since we don't ever expect logs to get this large.
352  */
353 STATIC int
354 xlog_find_verify_cycle(
355         xlog_t          *log,
356         xfs_daddr_t     start_blk,
357         int             nbblks,
358         uint            stop_on_cycle_no,
359         xfs_daddr_t     *new_blk)
360 {
361         xfs_daddr_t     i, j;
362         uint            cycle;
363         xfs_buf_t       *bp;
364         xfs_daddr_t     bufblks;
365         xfs_caddr_t     buf = NULL;
366         int             error = 0;
367
368         bufblks = 1 << ffs(nbblks);
369
370         while (!(bp = xlog_get_bp(log, bufblks))) {
371                 /* can't get enough memory to do everything in one big buffer */
372                 bufblks >>= 1;
373                 if (bufblks <= log->l_sectbb_log)
374                         return ENOMEM;
375         }
376
377         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
378                 int     bcount;
379
380                 bcount = min(bufblks, (start_blk + nbblks - i));
381
382                 if ((error = xlog_bread(log, i, bcount, bp)))
383                         goto out;
384
385                 buf = xlog_align(log, i, bcount, bp);
386                 for (j = 0; j < bcount; j++) {
387                         cycle = xlog_get_cycle(buf);
388                         if (cycle == stop_on_cycle_no) {
389                                 *new_blk = i+j;
390                                 goto out;
391                         }
392
393                         buf += BBSIZE;
394                 }
395         }
396
397         *new_blk = -1;
398
399 out:
400         xlog_put_bp(bp);
401         return error;
402 }
403
404 /*
405  * Potentially backup over partial log record write.
406  *
407  * In the typical case, last_blk is the number of the block directly after
408  * a good log record.  Therefore, we subtract one to get the block number
409  * of the last block in the given buffer.  extra_bblks contains the number
410  * of blocks we would have read on a previous read.  This happens when the
411  * last log record is split over the end of the physical log.
412  *
413  * extra_bblks is the number of blocks potentially verified on a previous
414  * call to this routine.
415  */
416 STATIC int
417 xlog_find_verify_log_record(
418         xlog_t                  *log,
419         xfs_daddr_t             start_blk,
420         xfs_daddr_t             *last_blk,
421         int                     extra_bblks)
422 {
423         xfs_daddr_t             i;
424         xfs_buf_t               *bp;
425         xfs_caddr_t             offset = NULL;
426         xlog_rec_header_t       *head = NULL;
427         int                     error = 0;
428         int                     smallmem = 0;
429         int                     num_blks = *last_blk - start_blk;
430         int                     xhdrs;
431
432         ASSERT(start_blk != 0 || *last_blk != start_blk);
433
434         if (!(bp = xlog_get_bp(log, num_blks))) {
435                 if (!(bp = xlog_get_bp(log, 1)))
436                         return ENOMEM;
437                 smallmem = 1;
438         } else {
439                 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
440                         goto out;
441                 offset = xlog_align(log, start_blk, num_blks, bp);
442                 offset += ((num_blks - 1) << BBSHIFT);
443         }
444
445         for (i = (*last_blk) - 1; i >= 0; i--) {
446                 if (i < start_blk) {
447                         /* valid log record not found */
448                         xlog_warn(
449                 "XFS: Log inconsistent (didn't find previous header)");
450                         ASSERT(0);
451                         error = XFS_ERROR(EIO);
452                         goto out;
453                 }
454
455                 if (smallmem) {
456                         if ((error = xlog_bread(log, i, 1, bp)))
457                                 goto out;
458                         offset = xlog_align(log, i, 1, bp);
459                 }
460
461                 head = (xlog_rec_header_t *)offset;
462
463                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
464                         break;
465
466                 if (!smallmem)
467                         offset -= BBSIZE;
468         }
469
470         /*
471          * We hit the beginning of the physical log & still no header.  Return
472          * to caller.  If caller can handle a return of -1, then this routine
473          * will be called again for the end of the physical log.
474          */
475         if (i == -1) {
476                 error = -1;
477                 goto out;
478         }
479
480         /*
481          * We have the final block of the good log (the first block
482          * of the log record _before_ the head. So we check the uuid.
483          */
484         if ((error = xlog_header_check_mount(log->l_mp, head)))
485                 goto out;
486
487         /*
488          * We may have found a log record header before we expected one.
489          * last_blk will be the 1st block # with a given cycle #.  We may end
490          * up reading an entire log record.  In this case, we don't want to
491          * reset last_blk.  Only when last_blk points in the middle of a log
492          * record do we update last_blk.
493          */
494         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
495                 uint    h_size = be32_to_cpu(head->h_size);
496
497                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
498                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
499                         xhdrs++;
500         } else {
501                 xhdrs = 1;
502         }
503
504         if (*last_blk - i + extra_bblks !=
505             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
506                 *last_blk = i;
507
508 out:
509         xlog_put_bp(bp);
510         return error;
511 }
512
513 /*
514  * Head is defined to be the point of the log where the next log write
515  * write could go.  This means that incomplete LR writes at the end are
516  * eliminated when calculating the head.  We aren't guaranteed that previous
517  * LR have complete transactions.  We only know that a cycle number of
518  * current cycle number -1 won't be present in the log if we start writing
519  * from our current block number.
520  *
521  * last_blk contains the block number of the first block with a given
522  * cycle number.
523  *
524  * Return: zero if normal, non-zero if error.
525  */
526 STATIC int
527 xlog_find_head(
528         xlog_t          *log,
529         xfs_daddr_t     *return_head_blk)
530 {
531         xfs_buf_t       *bp;
532         xfs_caddr_t     offset;
533         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
534         int             num_scan_bblks;
535         uint            first_half_cycle, last_half_cycle;
536         uint            stop_on_cycle;
537         int             error, log_bbnum = log->l_logBBsize;
538
539         /* Is the end of the log device zeroed? */
540         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
541                 *return_head_blk = first_blk;
542
543                 /* Is the whole lot zeroed? */
544                 if (!first_blk) {
545                         /* Linux XFS shouldn't generate totally zeroed logs -
546                          * mkfs etc write a dummy unmount record to a fresh
547                          * log so we can store the uuid in there
548                          */
549                         xlog_warn("XFS: totally zeroed log");
550                 }
551
552                 return 0;
553         } else if (error) {
554                 xlog_warn("XFS: empty log check failed");
555                 return error;
556         }
557
558         first_blk = 0;                  /* get cycle # of 1st block */
559         bp = xlog_get_bp(log, 1);
560         if (!bp)
561                 return ENOMEM;
562         if ((error = xlog_bread(log, 0, 1, bp)))
563                 goto bp_err;
564         offset = xlog_align(log, 0, 1, bp);
565         first_half_cycle = xlog_get_cycle(offset);
566
567         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
568         if ((error = xlog_bread(log, last_blk, 1, bp)))
569                 goto bp_err;
570         offset = xlog_align(log, last_blk, 1, bp);
571         last_half_cycle = xlog_get_cycle(offset);
572         ASSERT(last_half_cycle != 0);
573
574         /*
575          * If the 1st half cycle number is equal to the last half cycle number,
576          * then the entire log is stamped with the same cycle number.  In this
577          * case, head_blk can't be set to zero (which makes sense).  The below
578          * math doesn't work out properly with head_blk equal to zero.  Instead,
579          * we set it to log_bbnum which is an invalid block number, but this
580          * value makes the math correct.  If head_blk doesn't changed through
581          * all the tests below, *head_blk is set to zero at the very end rather
582          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
583          * in a circular file.
584          */
585         if (first_half_cycle == last_half_cycle) {
586                 /*
587                  * In this case we believe that the entire log should have
588                  * cycle number last_half_cycle.  We need to scan backwards
589                  * from the end verifying that there are no holes still
590                  * containing last_half_cycle - 1.  If we find such a hole,
591                  * then the start of that hole will be the new head.  The
592                  * simple case looks like
593                  *        x | x ... | x - 1 | x
594                  * Another case that fits this picture would be
595                  *        x | x + 1 | x ... | x
596                  * In this case the head really is somewhere at the end of the
597                  * log, as one of the latest writes at the beginning was
598                  * incomplete.
599                  * One more case is
600                  *        x | x + 1 | x ... | x - 1 | x
601                  * This is really the combination of the above two cases, and
602                  * the head has to end up at the start of the x-1 hole at the
603                  * end of the log.
604                  *
605                  * In the 256k log case, we will read from the beginning to the
606                  * end of the log and search for cycle numbers equal to x-1.
607                  * We don't worry about the x+1 blocks that we encounter,
608                  * because we know that they cannot be the head since the log
609                  * started with x.
610                  */
611                 head_blk = log_bbnum;
612                 stop_on_cycle = last_half_cycle - 1;
613         } else {
614                 /*
615                  * In this case we want to find the first block with cycle
616                  * number matching last_half_cycle.  We expect the log to be
617                  * some variation on
618                  *        x + 1 ... | x ...
619                  * The first block with cycle number x (last_half_cycle) will
620                  * be where the new head belongs.  First we do a binary search
621                  * for the first occurrence of last_half_cycle.  The binary
622                  * search may not be totally accurate, so then we scan back
623                  * from there looking for occurrences of last_half_cycle before
624                  * us.  If that backwards scan wraps around the beginning of
625                  * the log, then we look for occurrences of last_half_cycle - 1
626                  * at the end of the log.  The cases we're looking for look
627                  * like
628                  *        x + 1 ... | x | x + 1 | x ...
629                  *                               ^ binary search stopped here
630                  * or
631                  *        x + 1 ... | x ... | x - 1 | x
632                  *        <---------> less than scan distance
633                  */
634                 stop_on_cycle = last_half_cycle;
635                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
636                                                 &head_blk, last_half_cycle)))
637                         goto bp_err;
638         }
639
640         /*
641          * Now validate the answer.  Scan back some number of maximum possible
642          * blocks and make sure each one has the expected cycle number.  The
643          * maximum is determined by the total possible amount of buffering
644          * in the in-core log.  The following number can be made tighter if
645          * we actually look at the block size of the filesystem.
646          */
647         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
648         if (head_blk >= num_scan_bblks) {
649                 /*
650                  * We are guaranteed that the entire check can be performed
651                  * in one buffer.
652                  */
653                 start_blk = head_blk - num_scan_bblks;
654                 if ((error = xlog_find_verify_cycle(log,
655                                                 start_blk, num_scan_bblks,
656                                                 stop_on_cycle, &new_blk)))
657                         goto bp_err;
658                 if (new_blk != -1)
659                         head_blk = new_blk;
660         } else {                /* need to read 2 parts of log */
661                 /*
662                  * We are going to scan backwards in the log in two parts.
663                  * First we scan the physical end of the log.  In this part
664                  * of the log, we are looking for blocks with cycle number
665                  * last_half_cycle - 1.
666                  * If we find one, then we know that the log starts there, as
667                  * we've found a hole that didn't get written in going around
668                  * the end of the physical log.  The simple case for this is
669                  *        x + 1 ... | x ... | x - 1 | x
670                  *        <---------> less than scan distance
671                  * If all of the blocks at the end of the log have cycle number
672                  * last_half_cycle, then we check the blocks at the start of
673                  * the log looking for occurrences of last_half_cycle.  If we
674                  * find one, then our current estimate for the location of the
675                  * first occurrence of last_half_cycle is wrong and we move
676                  * back to the hole we've found.  This case looks like
677                  *        x + 1 ... | x | x + 1 | x ...
678                  *                               ^ binary search stopped here
679                  * Another case we need to handle that only occurs in 256k
680                  * logs is
681                  *        x + 1 ... | x ... | x+1 | x ...
682                  *                   ^ binary search stops here
683                  * In a 256k log, the scan at the end of the log will see the
684                  * x + 1 blocks.  We need to skip past those since that is
685                  * certainly not the head of the log.  By searching for
686                  * last_half_cycle-1 we accomplish that.
687                  */
688                 start_blk = log_bbnum - num_scan_bblks + head_blk;
689                 ASSERT(head_blk <= INT_MAX &&
690                         (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
691                 if ((error = xlog_find_verify_cycle(log, start_blk,
692                                         num_scan_bblks - (int)head_blk,
693                                         (stop_on_cycle - 1), &new_blk)))
694                         goto bp_err;
695                 if (new_blk != -1) {
696                         head_blk = new_blk;
697                         goto bad_blk;
698                 }
699
700                 /*
701                  * Scan beginning of log now.  The last part of the physical
702                  * log is good.  This scan needs to verify that it doesn't find
703                  * the last_half_cycle.
704                  */
705                 start_blk = 0;
706                 ASSERT(head_blk <= INT_MAX);
707                 if ((error = xlog_find_verify_cycle(log,
708                                         start_blk, (int)head_blk,
709                                         stop_on_cycle, &new_blk)))
710                         goto bp_err;
711                 if (new_blk != -1)
712                         head_blk = new_blk;
713         }
714
715  bad_blk:
716         /*
717          * Now we need to make sure head_blk is not pointing to a block in
718          * the middle of a log record.
719          */
720         num_scan_bblks = XLOG_REC_SHIFT(log);
721         if (head_blk >= num_scan_bblks) {
722                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
723
724                 /* start ptr at last block ptr before head_blk */
725                 if ((error = xlog_find_verify_log_record(log, start_blk,
726                                                         &head_blk, 0)) == -1) {
727                         error = XFS_ERROR(EIO);
728                         goto bp_err;
729                 } else if (error)
730                         goto bp_err;
731         } else {
732                 start_blk = 0;
733                 ASSERT(head_blk <= INT_MAX);
734                 if ((error = xlog_find_verify_log_record(log, start_blk,
735                                                         &head_blk, 0)) == -1) {
736                         /* We hit the beginning of the log during our search */
737                         start_blk = log_bbnum - num_scan_bblks + head_blk;
738                         new_blk = log_bbnum;
739                         ASSERT(start_blk <= INT_MAX &&
740                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
741                         ASSERT(head_blk <= INT_MAX);
742                         if ((error = xlog_find_verify_log_record(log,
743                                                         start_blk, &new_blk,
744                                                         (int)head_blk)) == -1) {
745                                 error = XFS_ERROR(EIO);
746                                 goto bp_err;
747                         } else if (error)
748                                 goto bp_err;
749                         if (new_blk != log_bbnum)
750                                 head_blk = new_blk;
751                 } else if (error)
752                         goto bp_err;
753         }
754
755         xlog_put_bp(bp);
756         if (head_blk == log_bbnum)
757                 *return_head_blk = 0;
758         else
759                 *return_head_blk = head_blk;
760         /*
761          * When returning here, we have a good block number.  Bad block
762          * means that during a previous crash, we didn't have a clean break
763          * from cycle number N to cycle number N-1.  In this case, we need
764          * to find the first block with cycle number N-1.
765          */
766         return 0;
767
768  bp_err:
769         xlog_put_bp(bp);
770
771         if (error)
772             xlog_warn("XFS: failed to find log head");
773         return error;
774 }
775
776 /*
777  * Find the sync block number or the tail of the log.
778  *
779  * This will be the block number of the last record to have its
780  * associated buffers synced to disk.  Every log record header has
781  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
782  * to get a sync block number.  The only concern is to figure out which
783  * log record header to believe.
784  *
785  * The following algorithm uses the log record header with the largest
786  * lsn.  The entire log record does not need to be valid.  We only care
787  * that the header is valid.
788  *
789  * We could speed up search by using current head_blk buffer, but it is not
790  * available.
791  */
792 int
793 xlog_find_tail(
794         xlog_t                  *log,
795         xfs_daddr_t             *head_blk,
796         xfs_daddr_t             *tail_blk)
797 {
798         xlog_rec_header_t       *rhead;
799         xlog_op_header_t        *op_head;
800         xfs_caddr_t             offset = NULL;
801         xfs_buf_t               *bp;
802         int                     error, i, found;
803         xfs_daddr_t             umount_data_blk;
804         xfs_daddr_t             after_umount_blk;
805         xfs_lsn_t               tail_lsn;
806         int                     hblks;
807
808         found = 0;
809
810         /*
811          * Find previous log record
812          */
813         if ((error = xlog_find_head(log, head_blk)))
814                 return error;
815
816         bp = xlog_get_bp(log, 1);
817         if (!bp)
818                 return ENOMEM;
819         if (*head_blk == 0) {                           /* special case */
820                 if ((error = xlog_bread(log, 0, 1, bp)))
821                         goto bread_err;
822                 offset = xlog_align(log, 0, 1, bp);
823                 if (xlog_get_cycle(offset) == 0) {
824                         *tail_blk = 0;
825                         /* leave all other log inited values alone */
826                         goto exit;
827                 }
828         }
829
830         /*
831          * Search backwards looking for log record header block
832          */
833         ASSERT(*head_blk < INT_MAX);
834         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
835                 if ((error = xlog_bread(log, i, 1, bp)))
836                         goto bread_err;
837                 offset = xlog_align(log, i, 1, bp);
838                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
839                         found = 1;
840                         break;
841                 }
842         }
843         /*
844          * If we haven't found the log record header block, start looking
845          * again from the end of the physical log.  XXXmiken: There should be
846          * a check here to make sure we didn't search more than N blocks in
847          * the previous code.
848          */
849         if (!found) {
850                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
851                         if ((error = xlog_bread(log, i, 1, bp)))
852                                 goto bread_err;
853                         offset = xlog_align(log, i, 1, bp);
854                         if (XLOG_HEADER_MAGIC_NUM ==
855                             be32_to_cpu(*(__be32 *)offset)) {
856                                 found = 2;
857                                 break;
858                         }
859                 }
860         }
861         if (!found) {
862                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
863                 ASSERT(0);
864                 return XFS_ERROR(EIO);
865         }
866
867         /* find blk_no of tail of log */
868         rhead = (xlog_rec_header_t *)offset;
869         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
870
871         /*
872          * Reset log values according to the state of the log when we
873          * crashed.  In the case where head_blk == 0, we bump curr_cycle
874          * one because the next write starts a new cycle rather than
875          * continuing the cycle of the last good log record.  At this
876          * point we have guaranteed that all partial log records have been
877          * accounted for.  Therefore, we know that the last good log record
878          * written was complete and ended exactly on the end boundary
879          * of the physical log.
880          */
881         log->l_prev_block = i;
882         log->l_curr_block = (int)*head_blk;
883         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
884         if (found == 2)
885                 log->l_curr_cycle++;
886         log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
887         log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
888         log->l_grant_reserve_cycle = log->l_curr_cycle;
889         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
890         log->l_grant_write_cycle = log->l_curr_cycle;
891         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
892
893         /*
894          * Look for unmount record.  If we find it, then we know there
895          * was a clean unmount.  Since 'i' could be the last block in
896          * the physical log, we convert to a log block before comparing
897          * to the head_blk.
898          *
899          * Save the current tail lsn to use to pass to
900          * xlog_clear_stale_blocks() below.  We won't want to clear the
901          * unmount record if there is one, so we pass the lsn of the
902          * unmount record rather than the block after it.
903          */
904         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
905                 int     h_size = be32_to_cpu(rhead->h_size);
906                 int     h_version = be32_to_cpu(rhead->h_version);
907
908                 if ((h_version & XLOG_VERSION_2) &&
909                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
910                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
911                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
912                                 hblks++;
913                 } else {
914                         hblks = 1;
915                 }
916         } else {
917                 hblks = 1;
918         }
919         after_umount_blk = (i + hblks + (int)
920                 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
921         tail_lsn = log->l_tail_lsn;
922         if (*head_blk == after_umount_blk &&
923             be32_to_cpu(rhead->h_num_logops) == 1) {
924                 umount_data_blk = (i + hblks) % log->l_logBBsize;
925                 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
926                         goto bread_err;
927                 }
928                 offset = xlog_align(log, umount_data_blk, 1, bp);
929                 op_head = (xlog_op_header_t *)offset;
930                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
931                         /*
932                          * Set tail and last sync so that newly written
933                          * log records will point recovery to after the
934                          * current unmount record.
935                          */
936                         log->l_tail_lsn =
937                                 xlog_assign_lsn(log->l_curr_cycle,
938                                                 after_umount_blk);
939                         log->l_last_sync_lsn =
940                                 xlog_assign_lsn(log->l_curr_cycle,
941                                                 after_umount_blk);
942                         *tail_blk = after_umount_blk;
943
944                         /*
945                          * Note that the unmount was clean. If the unmount
946                          * was not clean, we need to know this to rebuild the
947                          * superblock counters from the perag headers if we
948                          * have a filesystem using non-persistent counters.
949                          */
950                         log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
951                 }
952         }
953
954         /*
955          * Make sure that there are no blocks in front of the head
956          * with the same cycle number as the head.  This can happen
957          * because we allow multiple outstanding log writes concurrently,
958          * and the later writes might make it out before earlier ones.
959          *
960          * We use the lsn from before modifying it so that we'll never
961          * overwrite the unmount record after a clean unmount.
962          *
963          * Do this only if we are going to recover the filesystem
964          *
965          * NOTE: This used to say "if (!readonly)"
966          * However on Linux, we can & do recover a read-only filesystem.
967          * We only skip recovery if NORECOVERY is specified on mount,
968          * in which case we would not be here.
969          *
970          * But... if the -device- itself is readonly, just skip this.
971          * We can't recover this device anyway, so it won't matter.
972          */
973         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
974                 error = xlog_clear_stale_blocks(log, tail_lsn);
975         }
976
977 bread_err:
978 exit:
979         xlog_put_bp(bp);
980
981         if (error)
982                 xlog_warn("XFS: failed to locate log tail");
983         return error;
984 }
985
986 /*
987  * Is the log zeroed at all?
988  *
989  * The last binary search should be changed to perform an X block read
990  * once X becomes small enough.  You can then search linearly through
991  * the X blocks.  This will cut down on the number of reads we need to do.
992  *
993  * If the log is partially zeroed, this routine will pass back the blkno
994  * of the first block with cycle number 0.  It won't have a complete LR
995  * preceding it.
996  *
997  * Return:
998  *      0  => the log is completely written to
999  *      -1 => use *blk_no as the first block of the log
1000  *      >0 => error has occurred
1001  */
1002 STATIC int
1003 xlog_find_zeroed(
1004         xlog_t          *log,
1005         xfs_daddr_t     *blk_no)
1006 {
1007         xfs_buf_t       *bp;
1008         xfs_caddr_t     offset;
1009         uint            first_cycle, last_cycle;
1010         xfs_daddr_t     new_blk, last_blk, start_blk;
1011         xfs_daddr_t     num_scan_bblks;
1012         int             error, log_bbnum = log->l_logBBsize;
1013
1014         *blk_no = 0;
1015
1016         /* check totally zeroed log */
1017         bp = xlog_get_bp(log, 1);
1018         if (!bp)
1019                 return ENOMEM;
1020         if ((error = xlog_bread(log, 0, 1, bp)))
1021                 goto bp_err;
1022         offset = xlog_align(log, 0, 1, bp);
1023         first_cycle = xlog_get_cycle(offset);
1024         if (first_cycle == 0) {         /* completely zeroed log */
1025                 *blk_no = 0;
1026                 xlog_put_bp(bp);
1027                 return -1;
1028         }
1029
1030         /* check partially zeroed log */
1031         if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1032                 goto bp_err;
1033         offset = xlog_align(log, log_bbnum-1, 1, bp);
1034         last_cycle = xlog_get_cycle(offset);
1035         if (last_cycle != 0) {          /* log completely written to */
1036                 xlog_put_bp(bp);
1037                 return 0;
1038         } else if (first_cycle != 1) {
1039                 /*
1040                  * If the cycle of the last block is zero, the cycle of
1041                  * the first block must be 1. If it's not, maybe we're
1042                  * not looking at a log... Bail out.
1043                  */
1044                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1045                 return XFS_ERROR(EINVAL);
1046         }
1047
1048         /* we have a partially zeroed log */
1049         last_blk = log_bbnum-1;
1050         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1051                 goto bp_err;
1052
1053         /*
1054          * Validate the answer.  Because there is no way to guarantee that
1055          * the entire log is made up of log records which are the same size,
1056          * we scan over the defined maximum blocks.  At this point, the maximum
1057          * is not chosen to mean anything special.   XXXmiken
1058          */
1059         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1060         ASSERT(num_scan_bblks <= INT_MAX);
1061
1062         if (last_blk < num_scan_bblks)
1063                 num_scan_bblks = last_blk;
1064         start_blk = last_blk - num_scan_bblks;
1065
1066         /*
1067          * We search for any instances of cycle number 0 that occur before
1068          * our current estimate of the head.  What we're trying to detect is
1069          *        1 ... | 0 | 1 | 0...
1070          *                       ^ binary search ends here
1071          */
1072         if ((error = xlog_find_verify_cycle(log, start_blk,
1073                                          (int)num_scan_bblks, 0, &new_blk)))
1074                 goto bp_err;
1075         if (new_blk != -1)
1076                 last_blk = new_blk;
1077
1078         /*
1079          * Potentially backup over partial log record write.  We don't need
1080          * to search the end of the log because we know it is zero.
1081          */
1082         if ((error = xlog_find_verify_log_record(log, start_blk,
1083                                 &last_blk, 0)) == -1) {
1084             error = XFS_ERROR(EIO);
1085             goto bp_err;
1086         } else if (error)
1087             goto bp_err;
1088
1089         *blk_no = last_blk;
1090 bp_err:
1091         xlog_put_bp(bp);
1092         if (error)
1093                 return error;
1094         return -1;
1095 }
1096
1097 /*
1098  * These are simple subroutines used by xlog_clear_stale_blocks() below
1099  * to initialize a buffer full of empty log record headers and write
1100  * them into the log.
1101  */
1102 STATIC void
1103 xlog_add_record(
1104         xlog_t                  *log,
1105         xfs_caddr_t             buf,
1106         int                     cycle,
1107         int                     block,
1108         int                     tail_cycle,
1109         int                     tail_block)
1110 {
1111         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1112
1113         memset(buf, 0, BBSIZE);
1114         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1115         recp->h_cycle = cpu_to_be32(cycle);
1116         recp->h_version = cpu_to_be32(
1117                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1118         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1119         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1120         recp->h_fmt = cpu_to_be32(XLOG_FMT);
1121         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1122 }
1123
1124 STATIC int
1125 xlog_write_log_records(
1126         xlog_t          *log,
1127         int             cycle,
1128         int             start_block,
1129         int             blocks,
1130         int             tail_cycle,
1131         int             tail_block)
1132 {
1133         xfs_caddr_t     offset;
1134         xfs_buf_t       *bp;
1135         int             balign, ealign;
1136         int             sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1137         int             end_block = start_block + blocks;
1138         int             bufblks;
1139         int             error = 0;
1140         int             i, j = 0;
1141
1142         bufblks = 1 << ffs(blocks);
1143         while (!(bp = xlog_get_bp(log, bufblks))) {
1144                 bufblks >>= 1;
1145                 if (bufblks <= log->l_sectbb_log)
1146                         return ENOMEM;
1147         }
1148
1149         /* We may need to do a read at the start to fill in part of
1150          * the buffer in the starting sector not covered by the first
1151          * write below.
1152          */
1153         balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1154         if (balign != start_block) {
1155                 if ((error = xlog_bread(log, start_block, 1, bp))) {
1156                         xlog_put_bp(bp);
1157                         return error;
1158                 }
1159                 j = start_block - balign;
1160         }
1161
1162         for (i = start_block; i < end_block; i += bufblks) {
1163                 int             bcount, endcount;
1164
1165                 bcount = min(bufblks, end_block - start_block);
1166                 endcount = bcount - j;
1167
1168                 /* We may need to do a read at the end to fill in part of
1169                  * the buffer in the final sector not covered by the write.
1170                  * If this is the same sector as the above read, skip it.
1171                  */
1172                 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1173                 if (j == 0 && (start_block + endcount > ealign)) {
1174                         offset = XFS_BUF_PTR(bp);
1175                         balign = BBTOB(ealign - start_block);
1176                         error = XFS_BUF_SET_PTR(bp, offset + balign,
1177                                                 BBTOB(sectbb));
1178                         if (!error)
1179                                 error = xlog_bread(log, ealign, sectbb, bp);
1180                         if (!error)
1181                                 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1182                         if (error)
1183                                 break;
1184                 }
1185
1186                 offset = xlog_align(log, start_block, endcount, bp);
1187                 for (; j < endcount; j++) {
1188                         xlog_add_record(log, offset, cycle, i+j,
1189                                         tail_cycle, tail_block);
1190                         offset += BBSIZE;
1191                 }
1192                 error = xlog_bwrite(log, start_block, endcount, bp);
1193                 if (error)
1194                         break;
1195                 start_block += endcount;
1196                 j = 0;
1197         }
1198         xlog_put_bp(bp);
1199         return error;
1200 }
1201
1202 /*
1203  * This routine is called to blow away any incomplete log writes out
1204  * in front of the log head.  We do this so that we won't become confused
1205  * if we come up, write only a little bit more, and then crash again.
1206  * If we leave the partial log records out there, this situation could
1207  * cause us to think those partial writes are valid blocks since they
1208  * have the current cycle number.  We get rid of them by overwriting them
1209  * with empty log records with the old cycle number rather than the
1210  * current one.
1211  *
1212  * The tail lsn is passed in rather than taken from
1213  * the log so that we will not write over the unmount record after a
1214  * clean unmount in a 512 block log.  Doing so would leave the log without
1215  * any valid log records in it until a new one was written.  If we crashed
1216  * during that time we would not be able to recover.
1217  */
1218 STATIC int
1219 xlog_clear_stale_blocks(
1220         xlog_t          *log,
1221         xfs_lsn_t       tail_lsn)
1222 {
1223         int             tail_cycle, head_cycle;
1224         int             tail_block, head_block;
1225         int             tail_distance, max_distance;
1226         int             distance;
1227         int             error;
1228
1229         tail_cycle = CYCLE_LSN(tail_lsn);
1230         tail_block = BLOCK_LSN(tail_lsn);
1231         head_cycle = log->l_curr_cycle;
1232         head_block = log->l_curr_block;
1233
1234         /*
1235          * Figure out the distance between the new head of the log
1236          * and the tail.  We want to write over any blocks beyond the
1237          * head that we may have written just before the crash, but
1238          * we don't want to overwrite the tail of the log.
1239          */
1240         if (head_cycle == tail_cycle) {
1241                 /*
1242                  * The tail is behind the head in the physical log,
1243                  * so the distance from the head to the tail is the
1244                  * distance from the head to the end of the log plus
1245                  * the distance from the beginning of the log to the
1246                  * tail.
1247                  */
1248                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1249                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1250                                          XFS_ERRLEVEL_LOW, log->l_mp);
1251                         return XFS_ERROR(EFSCORRUPTED);
1252                 }
1253                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1254         } else {
1255                 /*
1256                  * The head is behind the tail in the physical log,
1257                  * so the distance from the head to the tail is just
1258                  * the tail block minus the head block.
1259                  */
1260                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1261                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1262                                          XFS_ERRLEVEL_LOW, log->l_mp);
1263                         return XFS_ERROR(EFSCORRUPTED);
1264                 }
1265                 tail_distance = tail_block - head_block;
1266         }
1267
1268         /*
1269          * If the head is right up against the tail, we can't clear
1270          * anything.
1271          */
1272         if (tail_distance <= 0) {
1273                 ASSERT(tail_distance == 0);
1274                 return 0;
1275         }
1276
1277         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1278         /*
1279          * Take the smaller of the maximum amount of outstanding I/O
1280          * we could have and the distance to the tail to clear out.
1281          * We take the smaller so that we don't overwrite the tail and
1282          * we don't waste all day writing from the head to the tail
1283          * for no reason.
1284          */
1285         max_distance = MIN(max_distance, tail_distance);
1286
1287         if ((head_block + max_distance) <= log->l_logBBsize) {
1288                 /*
1289                  * We can stomp all the blocks we need to without
1290                  * wrapping around the end of the log.  Just do it
1291                  * in a single write.  Use the cycle number of the
1292                  * current cycle minus one so that the log will look like:
1293                  *     n ... | n - 1 ...
1294                  */
1295                 error = xlog_write_log_records(log, (head_cycle - 1),
1296                                 head_block, max_distance, tail_cycle,
1297                                 tail_block);
1298                 if (error)
1299                         return error;
1300         } else {
1301                 /*
1302                  * We need to wrap around the end of the physical log in
1303                  * order to clear all the blocks.  Do it in two separate
1304                  * I/Os.  The first write should be from the head to the
1305                  * end of the physical log, and it should use the current
1306                  * cycle number minus one just like above.
1307                  */
1308                 distance = log->l_logBBsize - head_block;
1309                 error = xlog_write_log_records(log, (head_cycle - 1),
1310                                 head_block, distance, tail_cycle,
1311                                 tail_block);
1312
1313                 if (error)
1314                         return error;
1315
1316                 /*
1317                  * Now write the blocks at the start of the physical log.
1318                  * This writes the remainder of the blocks we want to clear.
1319                  * It uses the current cycle number since we're now on the
1320                  * same cycle as the head so that we get:
1321                  *    n ... n ... | n - 1 ...
1322                  *    ^^^^^ blocks we're writing
1323                  */
1324                 distance = max_distance - (log->l_logBBsize - head_block);
1325                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1326                                 tail_cycle, tail_block);
1327                 if (error)
1328                         return error;
1329         }
1330
1331         return 0;
1332 }
1333
1334 /******************************************************************************
1335  *
1336  *              Log recover routines
1337  *
1338  ******************************************************************************
1339  */
1340
1341 STATIC xlog_recover_t *
1342 xlog_recover_find_tid(
1343         xlog_recover_t          *q,
1344         xlog_tid_t              tid)
1345 {
1346         xlog_recover_t          *p = q;
1347
1348         while (p != NULL) {
1349                 if (p->r_log_tid == tid)
1350                     break;
1351                 p = p->r_next;
1352         }
1353         return p;
1354 }
1355
1356 STATIC void
1357 xlog_recover_put_hashq(
1358         xlog_recover_t          **q,
1359         xlog_recover_t          *trans)
1360 {
1361         trans->r_next = *q;
1362         *q = trans;
1363 }
1364
1365 STATIC void
1366 xlog_recover_add_item(
1367         xlog_recover_item_t     **itemq)
1368 {
1369         xlog_recover_item_t     *item;
1370
1371         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1372         xlog_recover_insert_item_backq(itemq, item);
1373 }
1374
1375 STATIC int
1376 xlog_recover_add_to_cont_trans(
1377         xlog_recover_t          *trans,
1378         xfs_caddr_t             dp,
1379         int                     len)
1380 {
1381         xlog_recover_item_t     *item;
1382         xfs_caddr_t             ptr, old_ptr;
1383         int                     old_len;
1384
1385         item = trans->r_itemq;
1386         if (item == NULL) {
1387                 /* finish copying rest of trans header */
1388                 xlog_recover_add_item(&trans->r_itemq);
1389                 ptr = (xfs_caddr_t) &trans->r_theader +
1390                                 sizeof(xfs_trans_header_t) - len;
1391                 memcpy(ptr, dp, len); /* d, s, l */
1392                 return 0;
1393         }
1394         item = item->ri_prev;
1395
1396         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1397         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1398
1399         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1400         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1401         item->ri_buf[item->ri_cnt-1].i_len += len;
1402         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1403         return 0;
1404 }
1405
1406 /*
1407  * The next region to add is the start of a new region.  It could be
1408  * a whole region or it could be the first part of a new region.  Because
1409  * of this, the assumption here is that the type and size fields of all
1410  * format structures fit into the first 32 bits of the structure.
1411  *
1412  * This works because all regions must be 32 bit aligned.  Therefore, we
1413  * either have both fields or we have neither field.  In the case we have
1414  * neither field, the data part of the region is zero length.  We only have
1415  * a log_op_header and can throw away the header since a new one will appear
1416  * later.  If we have at least 4 bytes, then we can determine how many regions
1417  * will appear in the current log item.
1418  */
1419 STATIC int
1420 xlog_recover_add_to_trans(
1421         xlog_recover_t          *trans,
1422         xfs_caddr_t             dp,
1423         int                     len)
1424 {
1425         xfs_inode_log_format_t  *in_f;                  /* any will do */
1426         xlog_recover_item_t     *item;
1427         xfs_caddr_t             ptr;
1428
1429         if (!len)
1430                 return 0;
1431         item = trans->r_itemq;
1432         if (item == NULL) {
1433                 /* we need to catch log corruptions here */
1434                 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1435                         xlog_warn("XFS: xlog_recover_add_to_trans: "
1436                                   "bad header magic number");
1437                         ASSERT(0);
1438                         return XFS_ERROR(EIO);
1439                 }
1440                 if (len == sizeof(xfs_trans_header_t))
1441                         xlog_recover_add_item(&trans->r_itemq);
1442                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1443                 return 0;
1444         }
1445
1446         ptr = kmem_alloc(len, KM_SLEEP);
1447         memcpy(ptr, dp, len);
1448         in_f = (xfs_inode_log_format_t *)ptr;
1449
1450         if (item->ri_prev->ri_total != 0 &&
1451              item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1452                 xlog_recover_add_item(&trans->r_itemq);
1453         }
1454         item = trans->r_itemq;
1455         item = item->ri_prev;
1456
1457         if (item->ri_total == 0) {              /* first region to be added */
1458                 if (in_f->ilf_size == 0 ||
1459                     in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1460                         xlog_warn(
1461         "XFS: bad number of regions (%d) in inode log format",
1462                                   in_f->ilf_size);
1463                         ASSERT(0);
1464                         return XFS_ERROR(EIO);
1465                 }
1466
1467                 item->ri_total = in_f->ilf_size;
1468                 item->ri_buf =
1469                         kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1470                                     KM_SLEEP);
1471         }
1472         ASSERT(item->ri_total > item->ri_cnt);
1473         /* Description region is ri_buf[0] */
1474         item->ri_buf[item->ri_cnt].i_addr = ptr;
1475         item->ri_buf[item->ri_cnt].i_len  = len;
1476         item->ri_cnt++;
1477         return 0;
1478 }
1479
1480 STATIC void
1481 xlog_recover_new_tid(
1482         xlog_recover_t          **q,
1483         xlog_tid_t              tid,
1484         xfs_lsn_t               lsn)
1485 {
1486         xlog_recover_t          *trans;
1487
1488         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1489         trans->r_log_tid   = tid;
1490         trans->r_lsn       = lsn;
1491         xlog_recover_put_hashq(q, trans);
1492 }
1493
1494 STATIC int
1495 xlog_recover_unlink_tid(
1496         xlog_recover_t          **q,
1497         xlog_recover_t          *trans)
1498 {
1499         xlog_recover_t          *tp;
1500         int                     found = 0;
1501
1502         ASSERT(trans != NULL);
1503         if (trans == *q) {
1504                 *q = (*q)->r_next;
1505         } else {
1506                 tp = *q;
1507                 while (tp) {
1508                         if (tp->r_next == trans) {
1509                                 found = 1;
1510                                 break;
1511                         }
1512                         tp = tp->r_next;
1513                 }
1514                 if (!found) {
1515                         xlog_warn(
1516                              "XFS: xlog_recover_unlink_tid: trans not found");
1517                         ASSERT(0);
1518                         return XFS_ERROR(EIO);
1519                 }
1520                 tp->r_next = tp->r_next->r_next;
1521         }
1522         return 0;
1523 }
1524
1525 STATIC void
1526 xlog_recover_insert_item_backq(
1527         xlog_recover_item_t     **q,
1528         xlog_recover_item_t     *item)
1529 {
1530         if (*q == NULL) {
1531                 item->ri_prev = item->ri_next = item;
1532                 *q = item;
1533         } else {
1534                 item->ri_next           = *q;
1535                 item->ri_prev           = (*q)->ri_prev;
1536                 (*q)->ri_prev           = item;
1537                 item->ri_prev->ri_next  = item;
1538         }
1539 }
1540
1541 STATIC void
1542 xlog_recover_insert_item_frontq(
1543         xlog_recover_item_t     **q,
1544         xlog_recover_item_t     *item)
1545 {
1546         xlog_recover_insert_item_backq(q, item);
1547         *q = item;
1548 }
1549
1550 STATIC int
1551 xlog_recover_reorder_trans(
1552         xlog_recover_t          *trans)
1553 {
1554         xlog_recover_item_t     *first_item, *itemq, *itemq_next;
1555         xfs_buf_log_format_t    *buf_f;
1556         ushort                  flags = 0;
1557
1558         first_item = itemq = trans->r_itemq;
1559         trans->r_itemq = NULL;
1560         do {
1561                 itemq_next = itemq->ri_next;
1562                 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1563
1564                 switch (ITEM_TYPE(itemq)) {
1565                 case XFS_LI_BUF:
1566                         flags = buf_f->blf_flags;
1567                         if (!(flags & XFS_BLI_CANCEL)) {
1568                                 xlog_recover_insert_item_frontq(&trans->r_itemq,
1569                                                                 itemq);
1570                                 break;
1571                         }
1572                 case XFS_LI_INODE:
1573                 case XFS_LI_DQUOT:
1574                 case XFS_LI_QUOTAOFF:
1575                 case XFS_LI_EFD:
1576                 case XFS_LI_EFI:
1577                         xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1578                         break;
1579                 default:
1580                         xlog_warn(
1581         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1582                         ASSERT(0);
1583                         return XFS_ERROR(EIO);
1584                 }
1585                 itemq = itemq_next;
1586         } while (first_item != itemq);
1587         return 0;
1588 }
1589
1590 /*
1591  * Build up the table of buf cancel records so that we don't replay
1592  * cancelled data in the second pass.  For buffer records that are
1593  * not cancel records, there is nothing to do here so we just return.
1594  *
1595  * If we get a cancel record which is already in the table, this indicates
1596  * that the buffer was cancelled multiple times.  In order to ensure
1597  * that during pass 2 we keep the record in the table until we reach its
1598  * last occurrence in the log, we keep a reference count in the cancel
1599  * record in the table to tell us how many times we expect to see this
1600  * record during the second pass.
1601  */
1602 STATIC void
1603 xlog_recover_do_buffer_pass1(
1604         xlog_t                  *log,
1605         xfs_buf_log_format_t    *buf_f)
1606 {
1607         xfs_buf_cancel_t        *bcp;
1608         xfs_buf_cancel_t        *nextp;
1609         xfs_buf_cancel_t        *prevp;
1610         xfs_buf_cancel_t        **bucket;
1611         xfs_daddr_t             blkno = 0;
1612         uint                    len = 0;
1613         ushort                  flags = 0;
1614
1615         switch (buf_f->blf_type) {
1616         case XFS_LI_BUF:
1617                 blkno = buf_f->blf_blkno;
1618                 len = buf_f->blf_len;
1619                 flags = buf_f->blf_flags;
1620                 break;
1621         }
1622
1623         /*
1624          * If this isn't a cancel buffer item, then just return.
1625          */
1626         if (!(flags & XFS_BLI_CANCEL))
1627                 return;
1628
1629         /*
1630          * Insert an xfs_buf_cancel record into the hash table of
1631          * them.  If there is already an identical record, bump
1632          * its reference count.
1633          */
1634         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1635                                           XLOG_BC_TABLE_SIZE];
1636         /*
1637          * If the hash bucket is empty then just insert a new record into
1638          * the bucket.
1639          */
1640         if (*bucket == NULL) {
1641                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1642                                                      KM_SLEEP);
1643                 bcp->bc_blkno = blkno;
1644                 bcp->bc_len = len;
1645                 bcp->bc_refcount = 1;
1646                 bcp->bc_next = NULL;
1647                 *bucket = bcp;
1648                 return;
1649         }
1650
1651         /*
1652          * The hash bucket is not empty, so search for duplicates of our
1653          * record.  If we find one them just bump its refcount.  If not
1654          * then add us at the end of the list.
1655          */
1656         prevp = NULL;
1657         nextp = *bucket;
1658         while (nextp != NULL) {
1659                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1660                         nextp->bc_refcount++;
1661                         return;
1662                 }
1663                 prevp = nextp;
1664                 nextp = nextp->bc_next;
1665         }
1666         ASSERT(prevp != NULL);
1667         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1668                                              KM_SLEEP);
1669         bcp->bc_blkno = blkno;
1670         bcp->bc_len = len;
1671         bcp->bc_refcount = 1;
1672         bcp->bc_next = NULL;
1673         prevp->bc_next = bcp;
1674 }
1675
1676 /*
1677  * Check to see whether the buffer being recovered has a corresponding
1678  * entry in the buffer cancel record table.  If it does then return 1
1679  * so that it will be cancelled, otherwise return 0.  If the buffer is
1680  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1681  * the refcount on the entry in the table and remove it from the table
1682  * if this is the last reference.
1683  *
1684  * We remove the cancel record from the table when we encounter its
1685  * last occurrence in the log so that if the same buffer is re-used
1686  * again after its last cancellation we actually replay the changes
1687  * made at that point.
1688  */
1689 STATIC int
1690 xlog_check_buffer_cancelled(
1691         xlog_t                  *log,
1692         xfs_daddr_t             blkno,
1693         uint                    len,
1694         ushort                  flags)
1695 {
1696         xfs_buf_cancel_t        *bcp;
1697         xfs_buf_cancel_t        *prevp;
1698         xfs_buf_cancel_t        **bucket;
1699
1700         if (log->l_buf_cancel_table == NULL) {
1701                 /*
1702                  * There is nothing in the table built in pass one,
1703                  * so this buffer must not be cancelled.
1704                  */
1705                 ASSERT(!(flags & XFS_BLI_CANCEL));
1706                 return 0;
1707         }
1708
1709         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1710                                           XLOG_BC_TABLE_SIZE];
1711         bcp = *bucket;
1712         if (bcp == NULL) {
1713                 /*
1714                  * There is no corresponding entry in the table built
1715                  * in pass one, so this buffer has not been cancelled.
1716                  */
1717                 ASSERT(!(flags & XFS_BLI_CANCEL));
1718                 return 0;
1719         }
1720
1721         /*
1722          * Search for an entry in the buffer cancel table that
1723          * matches our buffer.
1724          */
1725         prevp = NULL;
1726         while (bcp != NULL) {
1727                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1728                         /*
1729                          * We've go a match, so return 1 so that the
1730                          * recovery of this buffer is cancelled.
1731                          * If this buffer is actually a buffer cancel
1732                          * log item, then decrement the refcount on the
1733                          * one in the table and remove it if this is the
1734                          * last reference.
1735                          */
1736                         if (flags & XFS_BLI_CANCEL) {
1737                                 bcp->bc_refcount--;
1738                                 if (bcp->bc_refcount == 0) {
1739                                         if (prevp == NULL) {
1740                                                 *bucket = bcp->bc_next;
1741                                         } else {
1742                                                 prevp->bc_next = bcp->bc_next;
1743                                         }
1744                                         kmem_free(bcp);
1745                                 }
1746                         }
1747                         return 1;
1748                 }
1749                 prevp = bcp;
1750                 bcp = bcp->bc_next;
1751         }
1752         /*
1753          * We didn't find a corresponding entry in the table, so
1754          * return 0 so that the buffer is NOT cancelled.
1755          */
1756         ASSERT(!(flags & XFS_BLI_CANCEL));
1757         return 0;
1758 }
1759
1760 STATIC int
1761 xlog_recover_do_buffer_pass2(
1762         xlog_t                  *log,
1763         xfs_buf_log_format_t    *buf_f)
1764 {
1765         xfs_daddr_t             blkno = 0;
1766         ushort                  flags = 0;
1767         uint                    len = 0;
1768
1769         switch (buf_f->blf_type) {
1770         case XFS_LI_BUF:
1771                 blkno = buf_f->blf_blkno;
1772                 flags = buf_f->blf_flags;
1773                 len = buf_f->blf_len;
1774                 break;
1775         }
1776
1777         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1778 }
1779
1780 /*
1781  * Perform recovery for a buffer full of inodes.  In these buffers,
1782  * the only data which should be recovered is that which corresponds
1783  * to the di_next_unlinked pointers in the on disk inode structures.
1784  * The rest of the data for the inodes is always logged through the
1785  * inodes themselves rather than the inode buffer and is recovered
1786  * in xlog_recover_do_inode_trans().
1787  *
1788  * The only time when buffers full of inodes are fully recovered is
1789  * when the buffer is full of newly allocated inodes.  In this case
1790  * the buffer will not be marked as an inode buffer and so will be
1791  * sent to xlog_recover_do_reg_buffer() below during recovery.
1792  */
1793 STATIC int
1794 xlog_recover_do_inode_buffer(
1795         xfs_mount_t             *mp,
1796         xlog_recover_item_t     *item,
1797         xfs_buf_t               *bp,
1798         xfs_buf_log_format_t    *buf_f)
1799 {
1800         int                     i;
1801         int                     item_index;
1802         int                     bit;
1803         int                     nbits;
1804         int                     reg_buf_offset;
1805         int                     reg_buf_bytes;
1806         int                     next_unlinked_offset;
1807         int                     inodes_per_buf;
1808         xfs_agino_t             *logged_nextp;
1809         xfs_agino_t             *buffer_nextp;
1810         unsigned int            *data_map = NULL;
1811         unsigned int            map_size = 0;
1812
1813         switch (buf_f->blf_type) {
1814         case XFS_LI_BUF:
1815                 data_map = buf_f->blf_data_map;
1816                 map_size = buf_f->blf_map_size;
1817                 break;
1818         }
1819         /*
1820          * Set the variables corresponding to the current region to
1821          * 0 so that we'll initialize them on the first pass through
1822          * the loop.
1823          */
1824         reg_buf_offset = 0;
1825         reg_buf_bytes = 0;
1826         bit = 0;
1827         nbits = 0;
1828         item_index = 0;
1829         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1830         for (i = 0; i < inodes_per_buf; i++) {
1831                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1832                         offsetof(xfs_dinode_t, di_next_unlinked);
1833
1834                 while (next_unlinked_offset >=
1835                        (reg_buf_offset + reg_buf_bytes)) {
1836                         /*
1837                          * The next di_next_unlinked field is beyond
1838                          * the current logged region.  Find the next
1839                          * logged region that contains or is beyond
1840                          * the current di_next_unlinked field.
1841                          */
1842                         bit += nbits;
1843                         bit = xfs_next_bit(data_map, map_size, bit);
1844
1845                         /*
1846                          * If there are no more logged regions in the
1847                          * buffer, then we're done.
1848                          */
1849                         if (bit == -1) {
1850                                 return 0;
1851                         }
1852
1853                         nbits = xfs_contig_bits(data_map, map_size,
1854                                                          bit);
1855                         ASSERT(nbits > 0);
1856                         reg_buf_offset = bit << XFS_BLI_SHIFT;
1857                         reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1858                         item_index++;
1859                 }
1860
1861                 /*
1862                  * If the current logged region starts after the current
1863                  * di_next_unlinked field, then move on to the next
1864                  * di_next_unlinked field.
1865                  */
1866                 if (next_unlinked_offset < reg_buf_offset) {
1867                         continue;
1868                 }
1869
1870                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1871                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1872                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1873
1874                 /*
1875                  * The current logged region contains a copy of the
1876                  * current di_next_unlinked field.  Extract its value
1877                  * and copy it to the buffer copy.
1878                  */
1879                 logged_nextp = (xfs_agino_t *)
1880                                ((char *)(item->ri_buf[item_index].i_addr) +
1881                                 (next_unlinked_offset - reg_buf_offset));
1882                 if (unlikely(*logged_nextp == 0)) {
1883                         xfs_fs_cmn_err(CE_ALERT, mp,
1884                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1885                                 item, bp);
1886                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1887                                          XFS_ERRLEVEL_LOW, mp);
1888                         return XFS_ERROR(EFSCORRUPTED);
1889                 }
1890
1891                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1892                                               next_unlinked_offset);
1893                 *buffer_nextp = *logged_nextp;
1894         }
1895
1896         return 0;
1897 }
1898
1899 /*
1900  * Perform a 'normal' buffer recovery.  Each logged region of the
1901  * buffer should be copied over the corresponding region in the
1902  * given buffer.  The bitmap in the buf log format structure indicates
1903  * where to place the logged data.
1904  */
1905 /*ARGSUSED*/
1906 STATIC void
1907 xlog_recover_do_reg_buffer(
1908         xlog_recover_item_t     *item,
1909         xfs_buf_t               *bp,
1910         xfs_buf_log_format_t    *buf_f)
1911 {
1912         int                     i;
1913         int                     bit;
1914         int                     nbits;
1915         unsigned int            *data_map = NULL;
1916         unsigned int            map_size = 0;
1917         int                     error;
1918
1919         switch (buf_f->blf_type) {
1920         case XFS_LI_BUF:
1921                 data_map = buf_f->blf_data_map;
1922                 map_size = buf_f->blf_map_size;
1923                 break;
1924         }
1925         bit = 0;
1926         i = 1;  /* 0 is the buf format structure */
1927         while (1) {
1928                 bit = xfs_next_bit(data_map, map_size, bit);
1929                 if (bit == -1)
1930                         break;
1931                 nbits = xfs_contig_bits(data_map, map_size, bit);
1932                 ASSERT(nbits > 0);
1933                 ASSERT(item->ri_buf[i].i_addr != NULL);
1934                 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1935                 ASSERT(XFS_BUF_COUNT(bp) >=
1936                        ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1937
1938                 /*
1939                  * Do a sanity check if this is a dquot buffer. Just checking
1940                  * the first dquot in the buffer should do. XXXThis is
1941                  * probably a good thing to do for other buf types also.
1942                  */
1943                 error = 0;
1944                 if (buf_f->blf_flags &
1945                    (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1946                         error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1947                                                item->ri_buf[i].i_addr,
1948                                                -1, 0, XFS_QMOPT_DOWARN,
1949                                                "dquot_buf_recover");
1950                 }
1951                 if (!error)
1952                         memcpy(xfs_buf_offset(bp,
1953                                 (uint)bit << XFS_BLI_SHIFT),    /* dest */
1954                                 item->ri_buf[i].i_addr,         /* source */
1955                                 nbits<<XFS_BLI_SHIFT);          /* length */
1956                 i++;
1957                 bit += nbits;
1958         }
1959
1960         /* Shouldn't be any more regions */
1961         ASSERT(i == item->ri_total);
1962 }
1963
1964 /*
1965  * Do some primitive error checking on ondisk dquot data structures.
1966  */
1967 int
1968 xfs_qm_dqcheck(
1969         xfs_disk_dquot_t *ddq,
1970         xfs_dqid_t       id,
1971         uint             type,    /* used only when IO_dorepair is true */
1972         uint             flags,
1973         char             *str)
1974 {
1975         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1976         int             errs = 0;
1977
1978         /*
1979          * We can encounter an uninitialized dquot buffer for 2 reasons:
1980          * 1. If we crash while deleting the quotainode(s), and those blks got
1981          *    used for user data. This is because we take the path of regular
1982          *    file deletion; however, the size field of quotainodes is never
1983          *    updated, so all the tricks that we play in itruncate_finish
1984          *    don't quite matter.
1985          *
1986          * 2. We don't play the quota buffers when there's a quotaoff logitem.
1987          *    But the allocation will be replayed so we'll end up with an
1988          *    uninitialized quota block.
1989          *
1990          * This is all fine; things are still consistent, and we haven't lost
1991          * any quota information. Just don't complain about bad dquot blks.
1992          */
1993         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1994                 if (flags & XFS_QMOPT_DOWARN)
1995                         cmn_err(CE_ALERT,
1996                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1997                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1998                 errs++;
1999         }
2000         if (ddq->d_version != XFS_DQUOT_VERSION) {
2001                 if (flags & XFS_QMOPT_DOWARN)
2002                         cmn_err(CE_ALERT,
2003                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2004                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
2005                 errs++;
2006         }
2007
2008         if (ddq->d_flags != XFS_DQ_USER &&
2009             ddq->d_flags != XFS_DQ_PROJ &&
2010             ddq->d_flags != XFS_DQ_GROUP) {
2011                 if (flags & XFS_QMOPT_DOWARN)
2012                         cmn_err(CE_ALERT,
2013                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2014                         str, id, ddq->d_flags);
2015                 errs++;
2016         }
2017
2018         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2019                 if (flags & XFS_QMOPT_DOWARN)
2020                         cmn_err(CE_ALERT,
2021                         "%s : ondisk-dquot 0x%p, ID mismatch: "
2022                         "0x%x expected, found id 0x%x",
2023                         str, ddq, id, be32_to_cpu(ddq->d_id));
2024                 errs++;
2025         }
2026
2027         if (!errs && ddq->d_id) {
2028                 if (ddq->d_blk_softlimit &&
2029                     be64_to_cpu(ddq->d_bcount) >=
2030                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2031                         if (!ddq->d_btimer) {
2032                                 if (flags & XFS_QMOPT_DOWARN)
2033                                         cmn_err(CE_ALERT,
2034                                         "%s : Dquot ID 0x%x (0x%p) "
2035                                         "BLK TIMER NOT STARTED",
2036                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2037                                 errs++;
2038                         }
2039                 }
2040                 if (ddq->d_ino_softlimit &&
2041                     be64_to_cpu(ddq->d_icount) >=
2042                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2043                         if (!ddq->d_itimer) {
2044                                 if (flags & XFS_QMOPT_DOWARN)
2045                                         cmn_err(CE_ALERT,
2046                                         "%s : Dquot ID 0x%x (0x%p) "
2047                                         "INODE TIMER NOT STARTED",
2048                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2049                                 errs++;
2050                         }
2051                 }
2052                 if (ddq->d_rtb_softlimit &&
2053                     be64_to_cpu(ddq->d_rtbcount) >=
2054                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2055                         if (!ddq->d_rtbtimer) {
2056                                 if (flags & XFS_QMOPT_DOWARN)
2057                                         cmn_err(CE_ALERT,
2058                                         "%s : Dquot ID 0x%x (0x%p) "
2059                                         "RTBLK TIMER NOT STARTED",
2060                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2061                                 errs++;
2062                         }
2063                 }
2064         }
2065
2066         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2067                 return errs;
2068
2069         if (flags & XFS_QMOPT_DOWARN)
2070                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2071
2072         /*
2073          * Typically, a repair is only requested by quotacheck.
2074          */
2075         ASSERT(id != -1);
2076         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2077         memset(d, 0, sizeof(xfs_dqblk_t));
2078
2079         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2080         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2081         d->dd_diskdq.d_flags = type;
2082         d->dd_diskdq.d_id = cpu_to_be32(id);
2083
2084         return errs;
2085 }
2086
2087 /*
2088  * Perform a dquot buffer recovery.
2089  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2090  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2091  * Else, treat it as a regular buffer and do recovery.
2092  */
2093 STATIC void
2094 xlog_recover_do_dquot_buffer(
2095         xfs_mount_t             *mp,
2096         xlog_t                  *log,
2097         xlog_recover_item_t     *item,
2098         xfs_buf_t               *bp,
2099         xfs_buf_log_format_t    *buf_f)
2100 {
2101         uint                    type;
2102
2103         /*
2104          * Filesystems are required to send in quota flags at mount time.
2105          */
2106         if (mp->m_qflags == 0) {
2107                 return;
2108         }
2109
2110         type = 0;
2111         if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2112                 type |= XFS_DQ_USER;
2113         if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2114                 type |= XFS_DQ_PROJ;
2115         if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2116                 type |= XFS_DQ_GROUP;
2117         /*
2118          * This type of quotas was turned off, so ignore this buffer
2119          */
2120         if (log->l_quotaoffs_flag & type)
2121                 return;
2122
2123         xlog_recover_do_reg_buffer(item, bp, buf_f);
2124 }
2125
2126 /*
2127  * This routine replays a modification made to a buffer at runtime.
2128  * There are actually two types of buffer, regular and inode, which
2129  * are handled differently.  Inode buffers are handled differently
2130  * in that we only recover a specific set of data from them, namely
2131  * the inode di_next_unlinked fields.  This is because all other inode
2132  * data is actually logged via inode records and any data we replay
2133  * here which overlaps that may be stale.
2134  *
2135  * When meta-data buffers are freed at run time we log a buffer item
2136  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2137  * of the buffer in the log should not be replayed at recovery time.
2138  * This is so that if the blocks covered by the buffer are reused for
2139  * file data before we crash we don't end up replaying old, freed
2140  * meta-data into a user's file.
2141  *
2142  * To handle the cancellation of buffer log items, we make two passes
2143  * over the log during recovery.  During the first we build a table of
2144  * those buffers which have been cancelled, and during the second we
2145  * only replay those buffers which do not have corresponding cancel
2146  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2147  * for more details on the implementation of the table of cancel records.
2148  */
2149 STATIC int
2150 xlog_recover_do_buffer_trans(
2151         xlog_t                  *log,
2152         xlog_recover_item_t     *item,
2153         int                     pass)
2154 {
2155         xfs_buf_log_format_t    *buf_f;
2156         xfs_mount_t             *mp;
2157         xfs_buf_t               *bp;
2158         int                     error;
2159         int                     cancel;
2160         xfs_daddr_t             blkno;
2161         int                     len;
2162         ushort                  flags;
2163
2164         buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2165
2166         if (pass == XLOG_RECOVER_PASS1) {
2167                 /*
2168                  * In this pass we're only looking for buf items
2169                  * with the XFS_BLI_CANCEL bit set.
2170                  */
2171                 xlog_recover_do_buffer_pass1(log, buf_f);
2172                 return 0;
2173         } else {
2174                 /*
2175                  * In this pass we want to recover all the buffers
2176                  * which have not been cancelled and are not
2177                  * cancellation buffers themselves.  The routine
2178                  * we call here will tell us whether or not to
2179                  * continue with the replay of this buffer.
2180                  */
2181                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2182                 if (cancel) {
2183                         return 0;
2184                 }
2185         }
2186         switch (buf_f->blf_type) {
2187         case XFS_LI_BUF:
2188                 blkno = buf_f->blf_blkno;
2189                 len = buf_f->blf_len;
2190                 flags = buf_f->blf_flags;
2191                 break;
2192         default:
2193                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2194                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2195                         buf_f->blf_type, log->l_mp->m_logname ?
2196                         log->l_mp->m_logname : "internal");
2197                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2198                                  XFS_ERRLEVEL_LOW, log->l_mp);
2199                 return XFS_ERROR(EFSCORRUPTED);
2200         }
2201
2202         mp = log->l_mp;
2203         if (flags & XFS_BLI_INODE_BUF) {
2204                 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2205                                                                 XFS_BUF_LOCK);
2206         } else {
2207                 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2208         }
2209         if (XFS_BUF_ISERROR(bp)) {
2210                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2211                                   bp, blkno);
2212                 error = XFS_BUF_GETERROR(bp);
2213                 xfs_buf_relse(bp);
2214                 return error;
2215         }
2216
2217         error = 0;
2218         if (flags & XFS_BLI_INODE_BUF) {
2219                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2220         } else if (flags &
2221                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2222                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2223         } else {
2224                 xlog_recover_do_reg_buffer(item, bp, buf_f);
2225         }
2226         if (error)
2227                 return XFS_ERROR(error);
2228
2229         /*
2230          * Perform delayed write on the buffer.  Asynchronous writes will be
2231          * slower when taking into account all the buffers to be flushed.
2232          *
2233          * Also make sure that only inode buffers with good sizes stay in
2234          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2235          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2236          * buffers in the log can be a different size if the log was generated
2237          * by an older kernel using unclustered inode buffers or a newer kernel
2238          * running with a different inode cluster size.  Regardless, if the
2239          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2240          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2241          * the buffer out of the buffer cache so that the buffer won't
2242          * overlap with future reads of those inodes.
2243          */
2244         if (XFS_DINODE_MAGIC ==
2245             be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2246             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2247                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2248                 XFS_BUF_STALE(bp);
2249                 error = xfs_bwrite(mp, bp);
2250         } else {
2251                 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2252                 bp->b_mount = mp;
2253                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2254                 xfs_bdwrite(mp, bp);
2255         }
2256
2257         return (error);
2258 }
2259
2260 STATIC int
2261 xlog_recover_do_inode_trans(
2262         xlog_t                  *log,
2263         xlog_recover_item_t     *item,
2264         int                     pass)
2265 {
2266         xfs_inode_log_format_t  *in_f;
2267         xfs_mount_t             *mp;
2268         xfs_buf_t               *bp;
2269         xfs_dinode_t            *dip;
2270         xfs_ino_t               ino;
2271         int                     len;
2272         xfs_caddr_t             src;
2273         xfs_caddr_t             dest;
2274         int                     error;
2275         int                     attr_index;
2276         uint                    fields;
2277         xfs_icdinode_t          *dicp;
2278         int                     need_free = 0;
2279
2280         if (pass == XLOG_RECOVER_PASS1) {
2281                 return 0;
2282         }
2283
2284         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2285                 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2286         } else {
2287                 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2288                         sizeof(xfs_inode_log_format_t), KM_SLEEP);
2289                 need_free = 1;
2290                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2291                 if (error)
2292                         goto error;
2293         }
2294         ino = in_f->ilf_ino;
2295         mp = log->l_mp;
2296
2297         /*
2298          * Inode buffers can be freed, look out for it,
2299          * and do not replay the inode.
2300          */
2301         if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2302                                         in_f->ilf_len, 0)) {
2303                 error = 0;
2304                 goto error;
2305         }
2306
2307         bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
2308                                 in_f->ilf_len, XFS_BUF_LOCK);
2309         if (XFS_BUF_ISERROR(bp)) {
2310                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2311                                   bp, in_f->ilf_blkno);
2312                 error = XFS_BUF_GETERROR(bp);
2313                 xfs_buf_relse(bp);
2314                 goto error;
2315         }
2316         error = 0;
2317         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2318         dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2319
2320         /*
2321          * Make sure the place we're flushing out to really looks
2322          * like an inode!
2323          */
2324         if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2325                 xfs_buf_relse(bp);
2326                 xfs_fs_cmn_err(CE_ALERT, mp,
2327                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2328                         dip, bp, ino);
2329                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2330                                  XFS_ERRLEVEL_LOW, mp);
2331                 error = EFSCORRUPTED;
2332                 goto error;
2333         }
2334         dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2335         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2336                 xfs_buf_relse(bp);
2337                 xfs_fs_cmn_err(CE_ALERT, mp,
2338                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2339                         item, ino);
2340                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2341                                  XFS_ERRLEVEL_LOW, mp);
2342                 error = EFSCORRUPTED;
2343                 goto error;
2344         }
2345
2346         /* Skip replay when the on disk inode is newer than the log one */
2347         if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2348                 /*
2349                  * Deal with the wrap case, DI_MAX_FLUSH is less
2350                  * than smaller numbers
2351                  */
2352                 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2353                     dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2354                         /* do nothing */
2355                 } else {
2356                         xfs_buf_relse(bp);
2357                         error = 0;
2358                         goto error;
2359                 }
2360         }
2361         /* Take the opportunity to reset the flush iteration count */
2362         dicp->di_flushiter = 0;
2363
2364         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2365                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2366                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2367                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2368                                          XFS_ERRLEVEL_LOW, mp, dicp);
2369                         xfs_buf_relse(bp);
2370                         xfs_fs_cmn_err(CE_ALERT, mp,
2371                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2372                                 item, dip, bp, ino);
2373                         error = EFSCORRUPTED;
2374                         goto error;
2375                 }
2376         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2377                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2378                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2379                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2380                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2381                                              XFS_ERRLEVEL_LOW, mp, dicp);
2382                         xfs_buf_relse(bp);
2383                         xfs_fs_cmn_err(CE_ALERT, mp,
2384                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2385                                 item, dip, bp, ino);
2386                         error = EFSCORRUPTED;
2387                         goto error;
2388                 }
2389         }
2390         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2391                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2392                                      XFS_ERRLEVEL_LOW, mp, dicp);
2393                 xfs_buf_relse(bp);
2394                 xfs_fs_cmn_err(CE_ALERT, mp,
2395                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2396                         item, dip, bp, ino,
2397                         dicp->di_nextents + dicp->di_anextents,
2398                         dicp->di_nblocks);
2399                 error = EFSCORRUPTED;
2400                 goto error;
2401         }
2402         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2403                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2404                                      XFS_ERRLEVEL_LOW, mp, dicp);
2405                 xfs_buf_relse(bp);
2406                 xfs_fs_cmn_err(CE_ALERT, mp,
2407                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2408                         item, dip, bp, ino, dicp->di_forkoff);
2409                 error = EFSCORRUPTED;
2410                 goto error;
2411         }
2412         if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2413                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2414                                      XFS_ERRLEVEL_LOW, mp, dicp);
2415                 xfs_buf_relse(bp);
2416                 xfs_fs_cmn_err(CE_ALERT, mp,
2417                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2418                         item->ri_buf[1].i_len, item);
2419                 error = EFSCORRUPTED;
2420                 goto error;
2421         }
2422
2423         /* The core is in in-core format */
2424         xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2425
2426         /* the rest is in on-disk format */
2427         if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2428                 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2429                         item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2430                         item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2431         }
2432
2433         fields = in_f->ilf_fields;
2434         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2435         case XFS_ILOG_DEV:
2436                 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2437                 break;
2438         case XFS_ILOG_UUID:
2439                 memcpy(XFS_DFORK_DPTR(dip),
2440                        &in_f->ilf_u.ilfu_uuid,
2441                        sizeof(uuid_t));
2442                 break;
2443         }
2444
2445         if (in_f->ilf_size == 2)
2446                 goto write_inode_buffer;
2447         len = item->ri_buf[2].i_len;
2448         src = item->ri_buf[2].i_addr;
2449         ASSERT(in_f->ilf_size <= 4);
2450         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2451         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2452                (len == in_f->ilf_dsize));
2453
2454         switch (fields & XFS_ILOG_DFORK) {
2455         case XFS_ILOG_DDATA:
2456         case XFS_ILOG_DEXT:
2457                 memcpy(XFS_DFORK_DPTR(dip), src, len);
2458                 break;
2459
2460         case XFS_ILOG_DBROOT:
2461                 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2462                                  (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2463                                  XFS_DFORK_DSIZE(dip, mp));
2464                 break;
2465
2466         default:
2467                 /*
2468                  * There are no data fork flags set.
2469                  */
2470                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2471                 break;
2472         }
2473
2474         /*
2475          * If we logged any attribute data, recover it.  There may or
2476          * may not have been any other non-core data logged in this
2477          * transaction.
2478          */
2479         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2480                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2481                         attr_index = 3;
2482                 } else {
2483                         attr_index = 2;
2484                 }
2485                 len = item->ri_buf[attr_index].i_len;
2486                 src = item->ri_buf[attr_index].i_addr;
2487                 ASSERT(len == in_f->ilf_asize);
2488
2489                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2490                 case XFS_ILOG_ADATA:
2491                 case XFS_ILOG_AEXT:
2492                         dest = XFS_DFORK_APTR(dip);
2493                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2494                         memcpy(dest, src, len);
2495                         break;
2496
2497                 case XFS_ILOG_ABROOT:
2498                         dest = XFS_DFORK_APTR(dip);
2499                         xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2500                                          len, (xfs_bmdr_block_t*)dest,
2501                                          XFS_DFORK_ASIZE(dip, mp));
2502                         break;
2503
2504                 default:
2505                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2506                         ASSERT(0);
2507                         xfs_buf_relse(bp);
2508                         error = EIO;
2509                         goto error;
2510                 }
2511         }
2512
2513 write_inode_buffer:
2514         ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2515         bp->b_mount = mp;
2516         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2517         xfs_bdwrite(mp, bp);
2518 error:
2519         if (need_free)
2520                 kmem_free(in_f);
2521         return XFS_ERROR(error);
2522 }
2523
2524 /*
2525  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2526  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2527  * of that type.
2528  */
2529 STATIC int
2530 xlog_recover_do_quotaoff_trans(
2531         xlog_t                  *log,
2532         xlog_recover_item_t     *item,
2533         int                     pass)
2534 {
2535         xfs_qoff_logformat_t    *qoff_f;
2536
2537         if (pass == XLOG_RECOVER_PASS2) {
2538                 return (0);
2539         }
2540
2541         qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2542         ASSERT(qoff_f);
2543
2544         /*
2545          * The logitem format's flag tells us if this was user quotaoff,
2546          * group/project quotaoff or both.
2547          */
2548         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2549                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2550         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2551                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2552         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2553                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2554
2555         return (0);
2556 }
2557
2558 /*
2559  * Recover a dquot record
2560  */
2561 STATIC int
2562 xlog_recover_do_dquot_trans(
2563         xlog_t                  *log,
2564         xlog_recover_item_t     *item,
2565         int                     pass)
2566 {
2567         xfs_mount_t             *mp;
2568         xfs_buf_t               *bp;
2569         struct xfs_disk_dquot   *ddq, *recddq;
2570         int                     error;
2571         xfs_dq_logformat_t      *dq_f;
2572         uint                    type;
2573
2574         if (pass == XLOG_RECOVER_PASS1) {
2575                 return 0;
2576         }
2577         mp = log->l_mp;
2578
2579         /*
2580          * Filesystems are required to send in quota flags at mount time.
2581          */
2582         if (mp->m_qflags == 0)
2583                 return (0);
2584
2585         recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2586         ASSERT(recddq);
2587         /*
2588          * This type of quotas was turned off, so ignore this record.
2589          */
2590         type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2591         ASSERT(type);
2592         if (log->l_quotaoffs_flag & type)
2593                 return (0);
2594
2595         /*
2596          * At this point we know that quota was _not_ turned off.
2597          * Since the mount flags are not indicating to us otherwise, this
2598          * must mean that quota is on, and the dquot needs to be replayed.
2599          * Remember that we may not have fully recovered the superblock yet,
2600          * so we can't do the usual trick of looking at the SB quota bits.
2601          *
2602          * The other possibility, of course, is that the quota subsystem was
2603          * removed since the last mount - ENOSYS.
2604          */
2605         dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2606         ASSERT(dq_f);
2607         if ((error = xfs_qm_dqcheck(recddq,
2608                            dq_f->qlf_id,
2609                            0, XFS_QMOPT_DOWARN,
2610                            "xlog_recover_do_dquot_trans (log copy)"))) {
2611                 return XFS_ERROR(EIO);
2612         }
2613         ASSERT(dq_f->qlf_len == 1);
2614
2615         error = xfs_read_buf(mp, mp->m_ddev_targp,
2616                              dq_f->qlf_blkno,
2617                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2618                              0, &bp);
2619         if (error) {
2620                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2621                                   bp, dq_f->qlf_blkno);
2622                 return error;
2623         }
2624         ASSERT(bp);
2625         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2626
2627         /*
2628          * At least the magic num portion should be on disk because this
2629          * was among a chunk of dquots created earlier, and we did some
2630          * minimal initialization then.
2631          */
2632         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2633                            "xlog_recover_do_dquot_trans")) {
2634                 xfs_buf_relse(bp);
2635                 return XFS_ERROR(EIO);
2636         }
2637
2638         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2639
2640         ASSERT(dq_f->qlf_size == 2);
2641         ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2642         bp->b_mount = mp;
2643         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2644         xfs_bdwrite(mp, bp);
2645
2646         return (0);
2647 }
2648
2649 /*
2650  * This routine is called to create an in-core extent free intent
2651  * item from the efi format structure which was logged on disk.
2652  * It allocates an in-core efi, copies the extents from the format
2653  * structure into it, and adds the efi to the AIL with the given
2654  * LSN.
2655  */
2656 STATIC int
2657 xlog_recover_do_efi_trans(
2658         xlog_t                  *log,
2659         xlog_recover_item_t     *item,
2660         xfs_lsn_t               lsn,
2661         int                     pass)
2662 {
2663         int                     error;
2664         xfs_mount_t             *mp;
2665         xfs_efi_log_item_t      *efip;
2666         xfs_efi_log_format_t    *efi_formatp;
2667
2668         if (pass == XLOG_RECOVER_PASS1) {
2669                 return 0;
2670         }
2671
2672         efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2673
2674         mp = log->l_mp;
2675         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2676         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2677                                          &(efip->efi_format)))) {
2678                 xfs_efi_item_free(efip);
2679                 return error;
2680         }
2681         efip->efi_next_extent = efi_formatp->efi_nextents;
2682         efip->efi_flags |= XFS_EFI_COMMITTED;
2683
2684         spin_lock(&log->l_ailp->xa_lock);
2685         /*
2686          * xfs_trans_ail_update() drops the AIL lock.
2687          */
2688         xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2689         return 0;
2690 }
2691
2692
2693 /*
2694  * This routine is called when an efd format structure is found in
2695  * a committed transaction in the log.  It's purpose is to cancel
2696  * the corresponding efi if it was still in the log.  To do this
2697  * it searches the AIL for the efi with an id equal to that in the
2698  * efd format structure.  If we find it, we remove the efi from the
2699  * AIL and free it.
2700  */
2701 STATIC void
2702 xlog_recover_do_efd_trans(
2703         xlog_t                  *log,
2704         xlog_recover_item_t     *item,
2705         int                     pass)
2706 {
2707         xfs_efd_log_format_t    *efd_formatp;
2708         xfs_efi_log_item_t      *efip = NULL;
2709         xfs_log_item_t          *lip;
2710         __uint64_t              efi_id;
2711         struct xfs_ail_cursor   cur;
2712         struct xfs_ail          *ailp = log->l_ailp;
2713
2714         if (pass == XLOG_RECOVER_PASS1) {
2715                 return;
2716         }
2717
2718         efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2719         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2720                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2721                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2722                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2723         efi_id = efd_formatp->efd_efi_id;
2724
2725         /*
2726          * Search for the efi with the id in the efd format structure
2727          * in the AIL.
2728          */
2729         spin_lock(&ailp->xa_lock);
2730         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2731         while (lip != NULL) {
2732                 if (lip->li_type == XFS_LI_EFI) {
2733                         efip = (xfs_efi_log_item_t *)lip;
2734                         if (efip->efi_format.efi_id == efi_id) {
2735                                 /*
2736                                  * xfs_trans_ail_delete() drops the
2737                                  * AIL lock.
2738                                  */
2739                                 xfs_trans_ail_delete(ailp, lip);
2740                                 xfs_efi_item_free(efip);
2741                                 spin_lock(&ailp->xa_lock);
2742                                 break;
2743                         }
2744                 }
2745                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2746         }
2747         xfs_trans_ail_cursor_done(ailp, &cur);
2748         spin_unlock(&ailp->xa_lock);
2749 }
2750
2751 /*
2752  * Perform the transaction
2753  *
2754  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2755  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2756  */
2757 STATIC int
2758 xlog_recover_do_trans(
2759         xlog_t                  *log,
2760         xlog_recover_t          *trans,
2761         int                     pass)
2762 {
2763         int                     error = 0;
2764         xlog_recover_item_t     *item, *first_item;
2765
2766         if ((error = xlog_recover_reorder_trans(trans)))
2767                 return error;
2768         first_item = item = trans->r_itemq;
2769         do {
2770                 /*
2771                  * we don't need to worry about the block number being
2772                  * truncated in > 1 TB buffers because in user-land,
2773                  * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2774                  * the blknos will get through the user-mode buffer
2775                  * cache properly.  The only bad case is o32 kernels
2776                  * where xfs_daddr_t is 32-bits but mount will warn us
2777                  * off a > 1 TB filesystem before we get here.
2778                  */
2779                 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2780                         if  ((error = xlog_recover_do_buffer_trans(log, item,
2781                                                                  pass)))
2782                                 break;
2783                 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2784                         if ((error = xlog_recover_do_inode_trans(log, item,
2785                                                                 pass)))
2786                                 break;
2787                 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2788                         if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2789                                                   pass)))
2790                                 break;
2791                 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2792                         xlog_recover_do_efd_trans(log, item, pass);
2793                 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2794                         if ((error = xlog_recover_do_dquot_trans(log, item,
2795                                                                    pass)))
2796                                         break;
2797                 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2798                         if ((error = xlog_recover_do_quotaoff_trans(log, item,
2799                                                                    pass)))
2800                                         break;
2801                 } else {
2802                         xlog_warn("XFS: xlog_recover_do_trans");
2803                         ASSERT(0);
2804                         error = XFS_ERROR(EIO);
2805                         break;
2806                 }
2807                 item = item->ri_next;
2808         } while (first_item != item);
2809
2810         return error;
2811 }
2812
2813 /*
2814  * Free up any resources allocated by the transaction
2815  *
2816  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2817  */
2818 STATIC void
2819 xlog_recover_free_trans(
2820         xlog_recover_t          *trans)
2821 {
2822         xlog_recover_item_t     *first_item, *item, *free_item;
2823         int                     i;
2824
2825         item = first_item = trans->r_itemq;
2826         do {
2827                 free_item = item;
2828                 item = item->ri_next;
2829                  /* Free the regions in the item. */
2830                 for (i = 0; i < free_item->ri_cnt; i++) {
2831                         kmem_free(free_item->ri_buf[i].i_addr);
2832                 }
2833                 /* Free the item itself */
2834                 kmem_free(free_item->ri_buf);
2835                 kmem_free(free_item);
2836         } while (first_item != item);
2837         /* Free the transaction recover structure */
2838         kmem_free(trans);
2839 }
2840
2841 STATIC int
2842 xlog_recover_commit_trans(
2843         xlog_t                  *log,
2844         xlog_recover_t          **q,
2845         xlog_recover_t          *trans,
2846         int                     pass)
2847 {
2848         int                     error;
2849
2850         if ((error = xlog_recover_unlink_tid(q, trans)))
2851                 return error;
2852         if ((error = xlog_recover_do_trans(log, trans, pass)))
2853                 return error;
2854         xlog_recover_free_trans(trans);                 /* no error */
2855         return 0;
2856 }
2857
2858 STATIC int
2859 xlog_recover_unmount_trans(
2860         xlog_recover_t          *trans)
2861 {
2862         /* Do nothing now */
2863         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2864         return 0;
2865 }
2866
2867 /*
2868  * There are two valid states of the r_state field.  0 indicates that the
2869  * transaction structure is in a normal state.  We have either seen the
2870  * start of the transaction or the last operation we added was not a partial
2871  * operation.  If the last operation we added to the transaction was a
2872  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2873  *
2874  * NOTE: skip LRs with 0 data length.
2875  */
2876 STATIC int
2877 xlog_recover_process_data(
2878         xlog_t                  *log,
2879         xlog_recover_t          *rhash[],
2880         xlog_rec_header_t       *rhead,
2881         xfs_caddr_t             dp,
2882         int                     pass)
2883 {
2884         xfs_caddr_t             lp;
2885         int                     num_logops;
2886         xlog_op_header_t        *ohead;
2887         xlog_recover_t          *trans;
2888         xlog_tid_t              tid;
2889         int                     error;
2890         unsigned long           hash;
2891         uint                    flags;
2892
2893         lp = dp + be32_to_cpu(rhead->h_len);
2894         num_logops = be32_to_cpu(rhead->h_num_logops);
2895
2896         /* check the log format matches our own - else we can't recover */
2897         if (xlog_header_check_recover(log->l_mp, rhead))
2898                 return (XFS_ERROR(EIO));
2899
2900         while ((dp < lp) && num_logops) {
2901                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2902                 ohead = (xlog_op_header_t *)dp;
2903                 dp += sizeof(xlog_op_header_t);
2904                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2905                     ohead->oh_clientid != XFS_LOG) {
2906                         xlog_warn(
2907                 "XFS: xlog_recover_process_data: bad clientid");
2908                         ASSERT(0);
2909                         return (XFS_ERROR(EIO));
2910                 }
2911                 tid = be32_to_cpu(ohead->oh_tid);
2912                 hash = XLOG_RHASH(tid);
2913                 trans = xlog_recover_find_tid(rhash[hash], tid);
2914                 if (trans == NULL) {               /* not found; add new tid */
2915                         if (ohead->oh_flags & XLOG_START_TRANS)
2916                                 xlog_recover_new_tid(&rhash[hash], tid,
2917                                         be64_to_cpu(rhead->h_lsn));
2918                 } else {
2919                         if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2920                                 xlog_warn(
2921                         "XFS: xlog_recover_process_data: bad length");
2922                                 WARN_ON(1);
2923                                 return (XFS_ERROR(EIO));
2924                         }
2925                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2926                         if (flags & XLOG_WAS_CONT_TRANS)
2927                                 flags &= ~XLOG_CONTINUE_TRANS;
2928                         switch (flags) {
2929                         case XLOG_COMMIT_TRANS:
2930                                 error = xlog_recover_commit_trans(log,
2931                                                 &rhash[hash], trans, pass);
2932                                 break;
2933                         case XLOG_UNMOUNT_TRANS:
2934                                 error = xlog_recover_unmount_trans(trans);
2935                                 break;
2936                         case XLOG_WAS_CONT_TRANS:
2937                                 error = xlog_recover_add_to_cont_trans(trans,
2938                                                 dp, be32_to_cpu(ohead->oh_len));
2939                                 break;
2940                         case XLOG_START_TRANS:
2941                                 xlog_warn(
2942                         "XFS: xlog_recover_process_data: bad transaction");
2943                                 ASSERT(0);
2944                                 error = XFS_ERROR(EIO);
2945                                 break;
2946                         case 0:
2947                         case XLOG_CONTINUE_TRANS:
2948                                 error = xlog_recover_add_to_trans(trans,
2949                                                 dp, be32_to_cpu(ohead->oh_len));
2950                                 break;
2951                         default:
2952                                 xlog_warn(
2953                         "XFS: xlog_recover_process_data: bad flag");
2954                                 ASSERT(0);
2955                                 error = XFS_ERROR(EIO);
2956                                 break;
2957                         }
2958                         if (error)
2959                                 return error;
2960                 }
2961                 dp += be32_to_cpu(ohead->oh_len);
2962                 num_logops--;
2963         }
2964         return 0;
2965 }
2966
2967 /*
2968  * Process an extent free intent item that was recovered from
2969  * the log.  We need to free the extents that it describes.
2970  */
2971 STATIC int
2972 xlog_recover_process_efi(
2973         xfs_mount_t             *mp,
2974         xfs_efi_log_item_t      *efip)
2975 {
2976         xfs_efd_log_item_t      *efdp;
2977         xfs_trans_t             *tp;
2978         int                     i;
2979         int                     error = 0;
2980         xfs_extent_t            *extp;
2981         xfs_fsblock_t           startblock_fsb;
2982
2983         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2984
2985         /*
2986          * First check the validity of the extents described by the
2987          * EFI.  If any are bad, then assume that all are bad and
2988          * just toss the EFI.
2989          */
2990         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2991                 extp = &(efip->efi_format.efi_extents[i]);
2992                 startblock_fsb = XFS_BB_TO_FSB(mp,
2993                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
2994                 if ((startblock_fsb == 0) ||
2995                     (extp->ext_len == 0) ||
2996                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2997                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2998                         /*
2999                          * This will pull the EFI from the AIL and
3000                          * free the memory associated with it.
3001                          */
3002                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
3003                         return XFS_ERROR(EIO);
3004                 }
3005         }
3006
3007         tp = xfs_trans_alloc(mp, 0);
3008         error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3009         if (error)
3010                 goto abort_error;
3011         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3012
3013         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3014                 extp = &(efip->efi_format.efi_extents[i]);
3015                 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3016                 if (error)
3017                         goto abort_error;
3018                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3019                                          extp->ext_len);
3020         }
3021
3022         efip->efi_flags |= XFS_EFI_RECOVERED;
3023         error = xfs_trans_commit(tp, 0);
3024         return error;
3025
3026 abort_error:
3027         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3028         return error;
3029 }
3030
3031 /*
3032  * When this is called, all of the EFIs which did not have
3033  * corresponding EFDs should be in the AIL.  What we do now
3034  * is free the extents associated with each one.
3035  *
3036  * Since we process the EFIs in normal transactions, they
3037  * will be removed at some point after the commit.  This prevents
3038  * us from just walking down the list processing each one.
3039  * We'll use a flag in the EFI to skip those that we've already
3040  * processed and use the AIL iteration mechanism's generation
3041  * count to try to speed this up at least a bit.
3042  *
3043  * When we start, we know that the EFIs are the only things in
3044  * the AIL.  As we process them, however, other items are added
3045  * to the AIL.  Since everything added to the AIL must come after
3046  * everything already in the AIL, we stop processing as soon as
3047  * we see something other than an EFI in the AIL.
3048  */
3049 STATIC int
3050 xlog_recover_process_efis(
3051         xlog_t                  *log)
3052 {
3053         xfs_log_item_t          *lip;
3054         xfs_efi_log_item_t      *efip;
3055         int                     error = 0;
3056         struct xfs_ail_cursor   cur;
3057         struct xfs_ail          *ailp;
3058
3059         ailp = log->l_ailp;
3060         spin_lock(&ailp->xa_lock);
3061         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3062         while (lip != NULL) {
3063                 /*
3064                  * We're done when we see something other than an EFI.
3065                  * There should be no EFIs left in the AIL now.
3066                  */
3067                 if (lip->li_type != XFS_LI_EFI) {
3068 #ifdef DEBUG
3069                         for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3070                                 ASSERT(lip->li_type != XFS_LI_EFI);
3071 #endif
3072                         break;
3073                 }
3074
3075                 /*
3076                  * Skip EFIs that we've already processed.
3077                  */
3078                 efip = (xfs_efi_log_item_t *)lip;
3079                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3080                         lip = xfs_trans_ail_cursor_next(ailp, &cur);
3081                         continue;
3082                 }
3083
3084                 spin_unlock(&ailp->xa_lock);
3085                 error = xlog_recover_process_efi(log->l_mp, efip);
3086                 spin_lock(&ailp->xa_lock);
3087                 if (error)
3088                         goto out;
3089                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3090         }
3091 out:
3092         xfs_trans_ail_cursor_done(ailp, &cur);
3093         spin_unlock(&ailp->xa_lock);
3094         return error;
3095 }
3096
3097 /*
3098  * This routine performs a transaction to null out a bad inode pointer
3099  * in an agi unlinked inode hash bucket.
3100  */
3101 STATIC void
3102 xlog_recover_clear_agi_bucket(
3103         xfs_mount_t     *mp,
3104         xfs_agnumber_t  agno,
3105         int             bucket)
3106 {
3107         xfs_trans_t     *tp;
3108         xfs_agi_t       *agi;
3109         xfs_buf_t       *agibp;
3110         int             offset;
3111         int             error;
3112
3113         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3114         error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3115                                   0, 0, 0);
3116         if (error)
3117                 goto out_abort;
3118
3119         error = xfs_read_agi(mp, tp, agno, &agibp);
3120         if (error)
3121                 goto out_abort;
3122
3123         agi = XFS_BUF_TO_AGI(agibp);
3124         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3125         offset = offsetof(xfs_agi_t, agi_unlinked) +
3126                  (sizeof(xfs_agino_t) * bucket);
3127         xfs_trans_log_buf(tp, agibp, offset,
3128                           (offset + sizeof(xfs_agino_t) - 1));
3129
3130         error = xfs_trans_commit(tp, 0);
3131         if (error)
3132                 goto out_error;
3133         return;
3134
3135 out_abort:
3136         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3137 out_error:
3138         xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3139                         "failed to clear agi %d. Continuing.", agno);
3140         return;
3141 }
3142
3143 STATIC xfs_agino_t
3144 xlog_recover_process_one_iunlink(
3145         struct xfs_mount                *mp,
3146         xfs_agnumber_t                  agno,
3147         xfs_agino_t                     agino,
3148         int                             bucket)
3149 {
3150         struct xfs_buf                  *ibp;
3151         struct xfs_dinode               *dip;
3152         struct xfs_inode                *ip;
3153         xfs_ino_t                       ino;
3154         int                             error;
3155
3156         ino = XFS_AGINO_TO_INO(mp, agno, agino);
3157         error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3158         if (error)
3159                 goto fail;
3160
3161         /*
3162          * Get the on disk inode to find the next inode in the bucket.
3163          */
3164         error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
3165         if (error)
3166                 goto fail_iput;
3167
3168         ASSERT(ip->i_d.di_nlink == 0);
3169         ASSERT(ip->i_d.di_mode != 0);
3170
3171         /* setup for the next pass */
3172         agino = be32_to_cpu(dip->di_next_unlinked);
3173         xfs_buf_relse(ibp);
3174
3175         /*
3176          * Prevent any DMAPI event from being sent when the reference on
3177          * the inode is dropped.
3178          */
3179         ip->i_d.di_dmevmask = 0;
3180
3181         IRELE(ip);
3182         return agino;
3183
3184  fail_iput:
3185         IRELE(ip);
3186  fail:
3187         /*
3188          * We can't read in the inode this bucket points to, or this inode
3189          * is messed up.  Just ditch this bucket of inodes.  We will lose
3190          * some inodes and space, but at least we won't hang.
3191          *
3192          * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3193          * clear the inode pointer in the bucket.
3194          */
3195         xlog_recover_clear_agi_bucket(mp, agno, bucket);
3196         return NULLAGINO;
3197 }
3198
3199 /*
3200  * xlog_iunlink_recover
3201  *
3202  * This is called during recovery to process any inodes which
3203  * we unlinked but not freed when the system crashed.  These
3204  * inodes will be on the lists in the AGI blocks.  What we do
3205  * here is scan all the AGIs and fully truncate and free any
3206  * inodes found on the lists.  Each inode is removed from the
3207  * lists when it has been fully truncated and is freed.  The
3208  * freeing of the inode and its removal from the list must be
3209  * atomic.
3210  */
3211 void
3212 xlog_recover_process_iunlinks(
3213         xlog_t          *log)
3214 {
3215         xfs_mount_t     *mp;
3216         xfs_agnumber_t  agno;
3217         xfs_agi_t       *agi;
3218         xfs_buf_t       *agibp;
3219         xfs_agino_t     agino;
3220         int             bucket;
3221         int             error;
3222         uint            mp_dmevmask;
3223
3224         mp = log->l_mp;
3225
3226         /*
3227          * Prevent any DMAPI event from being sent while in this function.
3228          */
3229         mp_dmevmask = mp->m_dmevmask;
3230         mp->m_dmevmask = 0;
3231
3232         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3233                 /*
3234                  * Find the agi for this ag.
3235                  */
3236                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3237                 if (error) {
3238                         /*
3239                          * AGI is b0rked. Don't process it.
3240                          *
3241                          * We should probably mark the filesystem as corrupt
3242                          * after we've recovered all the ag's we can....
3243                          */
3244                         continue;
3245                 }
3246                 agi = XFS_BUF_TO_AGI(agibp);
3247
3248                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3249                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3250                         while (agino != NULLAGINO) {
3251                                 /*
3252                                  * Release the agi buffer so that it can
3253                                  * be acquired in the normal course of the
3254                                  * transaction to truncate and free the inode.
3255                                  */
3256                                 xfs_buf_relse(agibp);
3257
3258                                 agino = xlog_recover_process_one_iunlink(mp,
3259                                                         agno, agino, bucket);
3260
3261                                 /*
3262                                  * Reacquire the agibuffer and continue around
3263                                  * the loop. This should never fail as we know
3264                                  * the buffer was good earlier on.
3265                                  */
3266                                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3267                                 ASSERT(error == 0);
3268                                 agi = XFS_BUF_TO_AGI(agibp);
3269                         }
3270                 }
3271
3272                 /*
3273                  * Release the buffer for the current agi so we can
3274                  * go on to the next one.
3275                  */
3276                 xfs_buf_relse(agibp);
3277         }
3278
3279         mp->m_dmevmask = mp_dmevmask;
3280 }
3281
3282
3283 #ifdef DEBUG
3284 STATIC void
3285 xlog_pack_data_checksum(
3286         xlog_t          *log,
3287         xlog_in_core_t  *iclog,
3288         int             size)
3289 {
3290         int             i;
3291         __be32          *up;
3292         uint            chksum = 0;
3293
3294         up = (__be32 *)iclog->ic_datap;
3295         /* divide length by 4 to get # words */
3296         for (i = 0; i < (size >> 2); i++) {
3297                 chksum ^= be32_to_cpu(*up);
3298                 up++;
3299         }
3300         iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3301 }
3302 #else
3303 #define xlog_pack_data_checksum(log, iclog, size)
3304 #endif
3305
3306 /*
3307  * Stamp cycle number in every block
3308  */
3309 void
3310 xlog_pack_data(
3311         xlog_t                  *log,
3312         xlog_in_core_t          *iclog,
3313         int                     roundoff)
3314 {
3315         int                     i, j, k;
3316         int                     size = iclog->ic_offset + roundoff;
3317         __be32                  cycle_lsn;
3318         xfs_caddr_t             dp;
3319
3320         xlog_pack_data_checksum(log, iclog, size);
3321
3322         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3323
3324         dp = iclog->ic_datap;
3325         for (i = 0; i < BTOBB(size) &&
3326                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3327                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3328                 *(__be32 *)dp = cycle_lsn;
3329                 dp += BBSIZE;
3330         }
3331
3332         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3333                 xlog_in_core_2_t *xhdr = iclog->ic_data;
3334
3335                 for ( ; i < BTOBB(size); i++) {
3336                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3337                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3338                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3339                         *(__be32 *)dp = cycle_lsn;
3340                         dp += BBSIZE;
3341                 }
3342
3343                 for (i = 1; i < log->l_iclog_heads; i++) {
3344                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3345                 }
3346         }
3347 }
3348
3349 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3350 STATIC void
3351 xlog_unpack_data_checksum(
3352         xlog_rec_header_t       *rhead,
3353         xfs_caddr_t             dp,
3354         xlog_t                  *log)
3355 {
3356         __be32                  *up = (__be32 *)dp;
3357         uint                    chksum = 0;
3358         int                     i;
3359
3360         /* divide length by 4 to get # words */
3361         for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3362                 chksum ^= be32_to_cpu(*up);
3363                 up++;
3364         }
3365         if (chksum != be32_to_cpu(rhead->h_chksum)) {
3366             if (rhead->h_chksum ||
3367                 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3368                     cmn_err(CE_DEBUG,
3369                         "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3370                             be32_to_cpu(rhead->h_chksum), chksum);
3371                     cmn_err(CE_DEBUG,
3372 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3373                     if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3374                             cmn_err(CE_DEBUG,
3375                                 "XFS: LogR this is a LogV2 filesystem\n");
3376                     }
3377                     log->l_flags |= XLOG_CHKSUM_MISMATCH;
3378             }
3379         }
3380 }
3381 #else
3382 #define xlog_unpack_data_checksum(rhead, dp, log)
3383 #endif
3384
3385 STATIC void
3386 xlog_unpack_data(
3387         xlog_rec_header_t       *rhead,
3388         xfs_caddr_t             dp,
3389         xlog_t                  *log)
3390 {
3391         int                     i, j, k;
3392
3393         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3394                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3395                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3396                 dp += BBSIZE;
3397         }
3398
3399         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3400                 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3401                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3402                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3403                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3404                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3405                         dp += BBSIZE;
3406                 }
3407         }
3408
3409         xlog_unpack_data_checksum(rhead, dp, log);
3410 }
3411
3412 STATIC int
3413 xlog_valid_rec_header(
3414         xlog_t                  *log,
3415         xlog_rec_header_t       *rhead,
3416         xfs_daddr_t             blkno)
3417 {
3418         int                     hlen;
3419
3420         if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3421                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3422                                 XFS_ERRLEVEL_LOW, log->l_mp);
3423                 return XFS_ERROR(EFSCORRUPTED);
3424         }
3425         if (unlikely(
3426             (!rhead->h_version ||
3427             (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3428                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3429                         __func__, be32_to_cpu(rhead->h_version));
3430                 return XFS_ERROR(EIO);
3431         }
3432
3433         /* LR body must have data or it wouldn't have been written */
3434         hlen = be32_to_cpu(rhead->h_len);
3435         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3436                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3437                                 XFS_ERRLEVEL_LOW, log->l_mp);
3438                 return XFS_ERROR(EFSCORRUPTED);
3439         }
3440         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3441                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3442                                 XFS_ERRLEVEL_LOW, log->l_mp);
3443                 return XFS_ERROR(EFSCORRUPTED);
3444         }
3445         return 0;
3446 }
3447
3448 /*
3449  * Read the log from tail to head and process the log records found.
3450  * Handle the two cases where the tail and head are in the same cycle
3451  * and where the active portion of the log wraps around the end of
3452  * the physical log separately.  The pass parameter is passed through
3453  * to the routines called to process the data and is not looked at
3454  * here.
3455  */
3456 STATIC int
3457 xlog_do_recovery_pass(
3458         xlog_t                  *log,
3459         xfs_daddr_t             head_blk,
3460         xfs_daddr_t             tail_blk,
3461         int                     pass)
3462 {
3463         xlog_rec_header_t       *rhead;
3464         xfs_daddr_t             blk_no;
3465         xfs_caddr_t             bufaddr, offset;
3466         xfs_buf_t               *hbp, *dbp;
3467         int                     error = 0, h_size;
3468         int                     bblks, split_bblks;
3469         int                     hblks, split_hblks, wrapped_hblks;
3470         xlog_recover_t          *rhash[XLOG_RHASH_SIZE];
3471
3472         ASSERT(head_blk != tail_blk);
3473
3474         /*
3475          * Read the header of the tail block and get the iclog buffer size from
3476          * h_size.  Use this to tell how many sectors make up the log header.
3477          */
3478         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3479                 /*
3480                  * When using variable length iclogs, read first sector of
3481                  * iclog header and extract the header size from it.  Get a
3482                  * new hbp that is the correct size.
3483                  */
3484                 hbp = xlog_get_bp(log, 1);
3485                 if (!hbp)
3486                         return ENOMEM;
3487                 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3488                         goto bread_err1;
3489                 offset = xlog_align(log, tail_blk, 1, hbp);
3490                 rhead = (xlog_rec_header_t *)offset;
3491                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3492                 if (error)
3493                         goto bread_err1;
3494                 h_size = be32_to_cpu(rhead->h_size);
3495                 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3496                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3497                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3498                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3499                                 hblks++;
3500                         xlog_put_bp(hbp);
3501                         hbp = xlog_get_bp(log, hblks);
3502                 } else {
3503                         hblks = 1;
3504                 }
3505         } else {
3506                 ASSERT(log->l_sectbb_log == 0);
3507                 hblks = 1;
3508                 hbp = xlog_get_bp(log, 1);
3509                 h_size = XLOG_BIG_RECORD_BSIZE;
3510         }
3511
3512         if (!hbp)
3513                 return ENOMEM;
3514         dbp = xlog_get_bp(log, BTOBB(h_size));
3515         if (!dbp) {
3516                 xlog_put_bp(hbp);
3517                 return ENOMEM;
3518         }
3519
3520         memset(rhash, 0, sizeof(rhash));
3521         if (tail_blk <= head_blk) {
3522                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3523                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3524                                 goto bread_err2;
3525                         offset = xlog_align(log, blk_no, hblks, hbp);
3526                         rhead = (xlog_rec_header_t *)offset;
3527                         error = xlog_valid_rec_header(log, rhead, blk_no);
3528                         if (error)
3529                                 goto bread_err2;
3530
3531                         /* blocks in data section */
3532                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3533                         error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3534                         if (error)
3535                                 goto bread_err2;
3536                         offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3537                         xlog_unpack_data(rhead, offset, log);
3538                         if ((error = xlog_recover_process_data(log,
3539                                                 rhash, rhead, offset, pass)))
3540                                 goto bread_err2;
3541                         blk_no += bblks + hblks;
3542                 }
3543         } else {
3544                 /*
3545                  * Perform recovery around the end of the physical log.
3546                  * When the head is not on the same cycle number as the tail,
3547                  * we can't do a sequential recovery as above.
3548                  */
3549                 blk_no = tail_blk;
3550                 while (blk_no < log->l_logBBsize) {
3551                         /*
3552                          * Check for header wrapping around physical end-of-log
3553                          */
3554                         offset = NULL;
3555                         split_hblks = 0;
3556                         wrapped_hblks = 0;
3557                         if (blk_no + hblks <= log->l_logBBsize) {
3558                                 /* Read header in one read */
3559                                 error = xlog_bread(log, blk_no, hblks, hbp);
3560                                 if (error)
3561                                         goto bread_err2;
3562                                 offset = xlog_align(log, blk_no, hblks, hbp);
3563                         } else {
3564                                 /* This LR is split across physical log end */
3565                                 if (blk_no != log->l_logBBsize) {
3566                                         /* some data before physical log end */
3567                                         ASSERT(blk_no <= INT_MAX);
3568                                         split_hblks = log->l_logBBsize - (int)blk_no;
3569                                         ASSERT(split_hblks > 0);
3570                                         if ((error = xlog_bread(log, blk_no,
3571                                                         split_hblks, hbp)))
3572                                                 goto bread_err2;
3573                                         offset = xlog_align(log, blk_no,
3574                                                         split_hblks, hbp);
3575                                 }
3576                                 /*
3577                                  * Note: this black magic still works with
3578                                  * large sector sizes (non-512) only because:
3579                                  * - we increased the buffer size originally
3580                                  *   by 1 sector giving us enough extra space
3581                                  *   for the second read;
3582                                  * - the log start is guaranteed to be sector
3583                                  *   aligned;
3584                                  * - we read the log end (LR header start)
3585                                  *   _first_, then the log start (LR header end)
3586                                  *   - order is important.
3587                                  */
3588                                 wrapped_hblks = hblks - split_hblks;
3589                                 bufaddr = XFS_BUF_PTR(hbp);
3590                                 error = XFS_BUF_SET_PTR(hbp,
3591                                                 bufaddr + BBTOB(split_hblks),
3592                                                 BBTOB(hblks - split_hblks));
3593                                 if (!error)
3594                                         error = xlog_bread(log, 0,
3595                                                         wrapped_hblks, hbp);
3596                                 if (!error)
3597                                         error = XFS_BUF_SET_PTR(hbp, bufaddr,
3598                                                         BBTOB(hblks));
3599                                 if (error)
3600                                         goto bread_err2;
3601                                 if (!offset)
3602                                         offset = xlog_align(log, 0,
3603                                                         wrapped_hblks, hbp);
3604                         }
3605                         rhead = (xlog_rec_header_t *)offset;
3606                         error = xlog_valid_rec_header(log, rhead,
3607                                                 split_hblks ? blk_no : 0);
3608                         if (error)
3609                                 goto bread_err2;
3610
3611                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3612                         blk_no += hblks;
3613
3614                         /* Read in data for log record */
3615                         if (blk_no + bblks <= log->l_logBBsize) {
3616                                 error = xlog_bread(log, blk_no, bblks, dbp);
3617                                 if (error)
3618                                         goto bread_err2;
3619                                 offset = xlog_align(log, blk_no, bblks, dbp);
3620                         } else {
3621                                 /* This log record is split across the
3622                                  * physical end of log */
3623                                 offset = NULL;
3624                                 split_bblks = 0;
3625                                 if (blk_no != log->l_logBBsize) {
3626                                         /* some data is before the physical
3627                                          * end of log */
3628                                         ASSERT(!wrapped_hblks);
3629                                         ASSERT(blk_no <= INT_MAX);
3630                                         split_bblks =
3631                                                 log->l_logBBsize - (int)blk_no;
3632                                         ASSERT(split_bblks > 0);
3633                                         if ((error = xlog_bread(log, blk_no,
3634                                                         split_bblks, dbp)))
3635                                                 goto bread_err2;
3636                                         offset = xlog_align(log, blk_no,
3637                                                         split_bblks, dbp);
3638                                 }
3639                                 /*
3640                                  * Note: this black magic still works with
3641                                  * large sector sizes (non-512) only because:
3642                                  * - we increased the buffer size originally
3643                                  *   by 1 sector giving us enough extra space
3644                                  *   for the second read;
3645                                  * - the log start is guaranteed to be sector
3646                                  *   aligned;
3647                                  * - we read the log end (LR header start)
3648                                  *   _first_, then the log start (LR header end)
3649                                  *   - order is important.
3650                                  */
3651                                 bufaddr = XFS_BUF_PTR(dbp);
3652                                 error = XFS_BUF_SET_PTR(dbp,
3653                                                 bufaddr + BBTOB(split_bblks),
3654                                                 BBTOB(bblks - split_bblks));
3655                                 if (!error)
3656                                         error = xlog_bread(log, wrapped_hblks,
3657                                                         bblks - split_bblks,
3658                                                         dbp);
3659                                 if (!error)
3660                                         error = XFS_BUF_SET_PTR(dbp, bufaddr,
3661                                                         h_size);
3662                                 if (error)
3663                                         goto bread_err2;
3664                                 if (!offset)
3665                                         offset = xlog_align(log, wrapped_hblks,
3666                                                 bblks - split_bblks, dbp);
3667                         }
3668                         xlog_unpack_data(rhead, offset, log);
3669                         if ((error = xlog_recover_process_data(log, rhash,
3670                                                         rhead, offset, pass)))
3671                                 goto bread_err2;
3672                         blk_no += bblks;
3673                 }
3674
3675                 ASSERT(blk_no >= log->l_logBBsize);
3676                 blk_no -= log->l_logBBsize;
3677
3678                 /* read first part of physical log */
3679                 while (blk_no < head_blk) {
3680                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3681                                 goto bread_err2;
3682                         offset = xlog_align(log, blk_no, hblks, hbp);
3683                         rhead = (xlog_rec_header_t *)offset;
3684                         error = xlog_valid_rec_header(log, rhead, blk_no);
3685                         if (error)
3686                                 goto bread_err2;
3687                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3688                         if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3689                                 goto bread_err2;
3690                         offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3691                         xlog_unpack_data(rhead, offset, log);
3692                         if ((error = xlog_recover_process_data(log, rhash,
3693                                                         rhead, offset, pass)))
3694                                 goto bread_err2;
3695                         blk_no += bblks + hblks;
3696                 }
3697         }
3698
3699  bread_err2:
3700         xlog_put_bp(dbp);
3701  bread_err1:
3702         xlog_put_bp(hbp);
3703         return error;
3704 }
3705
3706 /*
3707  * Do the recovery of the log.  We actually do this in two phases.
3708  * The two passes are necessary in order to implement the function
3709  * of cancelling a record written into the log.  The first pass
3710  * determines those things which have been cancelled, and the
3711  * second pass replays log items normally except for those which
3712  * have been cancelled.  The handling of the replay and cancellations
3713  * takes place in the log item type specific routines.
3714  *
3715  * The table of items which have cancel records in the log is allocated
3716  * and freed at this level, since only here do we know when all of
3717  * the log recovery has been completed.
3718  */
3719 STATIC int
3720 xlog_do_log_recovery(
3721         xlog_t          *log,
3722         xfs_daddr_t     head_blk,
3723         xfs_daddr_t     tail_blk)
3724 {
3725         int             error;
3726
3727         ASSERT(head_blk != tail_blk);
3728
3729         /*
3730          * First do a pass to find all of the cancelled buf log items.
3731          * Store them in the buf_cancel_table for use in the second pass.
3732          */
3733         log->l_buf_cancel_table =
3734                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3735                                                  sizeof(xfs_buf_cancel_t*),
3736                                                  KM_SLEEP);
3737         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3738                                       XLOG_RECOVER_PASS1);
3739         if (error != 0) {
3740                 kmem_free(log->l_buf_cancel_table);
3741                 log->l_buf_cancel_table = NULL;
3742                 return error;
3743         }
3744         /*
3745          * Then do a second pass to actually recover the items in the log.
3746          * When it is complete free the table of buf cancel items.
3747          */
3748         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3749                                       XLOG_RECOVER_PASS2);
3750 #ifdef DEBUG
3751         if (!error) {
3752                 int     i;
3753
3754                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3755                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3756         }
3757 #endif  /* DEBUG */
3758
3759         kmem_free(log->l_buf_cancel_table);
3760         log->l_buf_cancel_table = NULL;
3761
3762         return error;
3763 }
3764
3765 /*
3766  * Do the actual recovery
3767  */
3768 STATIC int
3769 xlog_do_recover(
3770         xlog_t          *log,
3771         xfs_daddr_t     head_blk,
3772         xfs_daddr_t     tail_blk)
3773 {
3774         int             error;
3775         xfs_buf_t       *bp;
3776         xfs_sb_t        *sbp;
3777
3778         /*
3779          * First replay the images in the log.
3780          */
3781         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3782         if (error) {
3783                 return error;
3784         }
3785
3786         XFS_bflush(log->l_mp->m_ddev_targp);
3787
3788         /*
3789          * If IO errors happened during recovery, bail out.
3790          */
3791         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3792                 return (EIO);
3793         }
3794
3795         /*
3796          * We now update the tail_lsn since much of the recovery has completed
3797          * and there may be space available to use.  If there were no extent
3798          * or iunlinks, we can free up the entire log and set the tail_lsn to
3799          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3800          * lsn of the last known good LR on disk.  If there are extent frees
3801          * or iunlinks they will have some entries in the AIL; so we look at
3802          * the AIL to determine how to set the tail_lsn.
3803          */
3804         xlog_assign_tail_lsn(log->l_mp);
3805
3806         /*
3807          * Now that we've finished replaying all buffer and inode
3808          * updates, re-read in the superblock.
3809          */
3810         bp = xfs_getsb(log->l_mp, 0);
3811         XFS_BUF_UNDONE(bp);
3812         ASSERT(!(XFS_BUF_ISWRITE(bp)));
3813         ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3814         XFS_BUF_READ(bp);
3815         XFS_BUF_UNASYNC(bp);
3816         xfsbdstrat(log->l_mp, bp);
3817         error = xfs_iowait(bp);
3818         if (error) {
3819                 xfs_ioerror_alert("xlog_do_recover",
3820                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3821                 ASSERT(0);
3822                 xfs_buf_relse(bp);
3823                 return error;
3824         }
3825
3826         /* Convert superblock from on-disk format */
3827         sbp = &log->l_mp->m_sb;
3828         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3829         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3830         ASSERT(xfs_sb_good_version(sbp));
3831         xfs_buf_relse(bp);
3832
3833         /* We've re-read the superblock so re-initialize per-cpu counters */
3834         xfs_icsb_reinit_counters(log->l_mp);
3835
3836         xlog_recover_check_summary(log);
3837
3838         /* Normal transactions can now occur */
3839         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3840         return 0;
3841 }
3842
3843 /*
3844  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3845  *
3846  * Return error or zero.
3847  */
3848 int
3849 xlog_recover(
3850         xlog_t          *log)
3851 {
3852         xfs_daddr_t     head_blk, tail_blk;
3853         int             error;
3854
3855         /* find the tail of the log */
3856         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3857                 return error;
3858
3859         if (tail_blk != head_blk) {
3860                 /* There used to be a comment here:
3861                  *
3862                  * disallow recovery on read-only mounts.  note -- mount
3863                  * checks for ENOSPC and turns it into an intelligent
3864                  * error message.
3865                  * ...but this is no longer true.  Now, unless you specify
3866                  * NORECOVERY (in which case this function would never be
3867                  * called), we just go ahead and recover.  We do this all
3868                  * under the vfs layer, so we can get away with it unless
3869                  * the device itself is read-only, in which case we fail.
3870                  */
3871                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3872                         return error;
3873                 }
3874
3875                 cmn_err(CE_NOTE,
3876                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3877                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3878                         log->l_mp->m_logname : "internal");
3879
3880                 error = xlog_do_recover(log, head_blk, tail_blk);
3881                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3882         }
3883         return error;
3884 }
3885
3886 /*
3887  * In the first part of recovery we replay inodes and buffers and build
3888  * up the list of extent free items which need to be processed.  Here
3889  * we process the extent free items and clean up the on disk unlinked
3890  * inode lists.  This is separated from the first part of recovery so
3891  * that the root and real-time bitmap inodes can be read in from disk in
3892  * between the two stages.  This is necessary so that we can free space
3893  * in the real-time portion of the file system.
3894  */
3895 int
3896 xlog_recover_finish(
3897         xlog_t          *log)
3898 {
3899         /*
3900          * Now we're ready to do the transactions needed for the
3901          * rest of recovery.  Start with completing all the extent
3902          * free intent records and then process the unlinked inode
3903          * lists.  At this point, we essentially run in normal mode
3904          * except that we're still performing recovery actions
3905          * rather than accepting new requests.
3906          */
3907         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3908                 int     error;
3909                 error = xlog_recover_process_efis(log);
3910                 if (error) {
3911                         cmn_err(CE_ALERT,
3912                                 "Failed to recover EFIs on filesystem: %s",
3913                                 log->l_mp->m_fsname);
3914                         return error;
3915                 }
3916                 /*
3917                  * Sync the log to get all the EFIs out of the AIL.
3918                  * This isn't absolutely necessary, but it helps in
3919                  * case the unlink transactions would have problems
3920                  * pushing the EFIs out of the way.
3921                  */
3922                 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3923                               (XFS_LOG_FORCE | XFS_LOG_SYNC));
3924
3925                 xlog_recover_process_iunlinks(log);
3926
3927                 xlog_recover_check_summary(log);
3928
3929                 cmn_err(CE_NOTE,
3930                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3931                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3932                         log->l_mp->m_logname : "internal");
3933                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3934         } else {
3935                 cmn_err(CE_DEBUG,
3936                         "!Ending clean XFS mount for filesystem: %s\n",
3937                         log->l_mp->m_fsname);
3938         }
3939         return 0;
3940 }
3941
3942
3943 #if defined(DEBUG)
3944 /*
3945  * Read all of the agf and agi counters and check that they
3946  * are consistent with the superblock counters.
3947  */
3948 void
3949 xlog_recover_check_summary(
3950         xlog_t          *log)
3951 {
3952         xfs_mount_t     *mp;
3953         xfs_agf_t       *agfp;
3954         xfs_buf_t       *agfbp;
3955         xfs_buf_t       *agibp;
3956         xfs_buf_t       *sbbp;
3957 #ifdef XFS_LOUD_RECOVERY
3958         xfs_sb_t        *sbp;
3959 #endif
3960         xfs_agnumber_t  agno;
3961         __uint64_t      freeblks;
3962         __uint64_t      itotal;
3963         __uint64_t      ifree;
3964         int             error;
3965
3966         mp = log->l_mp;
3967
3968         freeblks = 0LL;
3969         itotal = 0LL;
3970         ifree = 0LL;
3971         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3972                 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3973                 if (error) {
3974                         xfs_fs_cmn_err(CE_ALERT, mp,
3975                                         "xlog_recover_check_summary(agf)"
3976                                         "agf read failed agno %d error %d",
3977                                                         agno, error);
3978                 } else {
3979                         agfp = XFS_BUF_TO_AGF(agfbp);
3980                         freeblks += be32_to_cpu(agfp->agf_freeblks) +
3981                                     be32_to_cpu(agfp->agf_flcount);
3982                         xfs_buf_relse(agfbp);
3983                 }
3984
3985                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3986                 if (!error) {
3987                         struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
3988
3989                         itotal += be32_to_cpu(agi->agi_count);
3990                         ifree += be32_to_cpu(agi->agi_freecount);
3991                         xfs_buf_relse(agibp);
3992                 }
3993         }
3994
3995         sbbp = xfs_getsb(mp, 0);
3996 #ifdef XFS_LOUD_RECOVERY
3997         sbp = &mp->m_sb;
3998         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
3999         cmn_err(CE_NOTE,
4000                 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4001                 sbp->sb_icount, itotal);
4002         cmn_err(CE_NOTE,
4003                 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4004                 sbp->sb_ifree, ifree);
4005         cmn_err(CE_NOTE,
4006                 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4007                 sbp->sb_fdblocks, freeblks);
4008 #if 0
4009         /*
4010          * This is turned off until I account for the allocation
4011          * btree blocks which live in free space.
4012          */
4013         ASSERT(sbp->sb_icount == itotal);
4014         ASSERT(sbp->sb_ifree == ifree);
4015         ASSERT(sbp->sb_fdblocks == freeblks);
4016 #endif
4017 #endif
4018         xfs_buf_relse(sbbp);
4019 }
4020 #endif /* DEBUG */