xfs: remove dead XFS_LOUD_RECOVERY code
[safe/jmp/linux-2.6] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49 #include "xfs_trace.h"
50
51 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 #if defined(DEBUG)
54 STATIC void     xlog_recover_check_summary(xlog_t *);
55 #else
56 #define xlog_recover_check_summary(log)
57 #endif
58
59 /*
60  * Sector aligned buffer routines for buffer create/read/write/access
61  */
62
63 /* Number of basic blocks in a log sector */
64 #define xlog_sectbb(log) (1 << (log)->l_sectbb_log)
65
66 /*
67  * Verify the given count of basic blocks is valid number of blocks
68  * to specify for an operation involving the given XFS log buffer.
69  * Returns nonzero if the count is valid, 0 otherwise.
70  */
71
72 static inline int
73 xlog_buf_bbcount_valid(
74         xlog_t          *log,
75         int             bbcount)
76 {
77         return bbcount > 0 && bbcount <= log->l_logBBsize;
78 }
79
80 /*
81  * Allocate a buffer to hold log data.  The buffer needs to be able
82  * to map to a range of nbblks basic blocks at any valid (basic
83  * block) offset within the log.
84  */
85 STATIC xfs_buf_t *
86 xlog_get_bp(
87         xlog_t          *log,
88         int             nbblks)
89 {
90         if (!xlog_buf_bbcount_valid(log, nbblks)) {
91                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
92                         nbblks);
93                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
94                 return NULL;
95         }
96
97         /*
98          * We do log I/O in units of log sectors (a power-of-2
99          * multiple of the basic block size), so we round up the
100          * requested size to acommodate the basic blocks required
101          * for complete log sectors.
102          *
103          * In addition, the buffer may be used for a non-sector-
104          * aligned block offset, in which case an I/O of the
105          * requested size could extend beyond the end of the
106          * buffer.  If the requested size is only 1 basic block it
107          * will never straddle a sector boundary, so this won't be
108          * an issue.  Nor will this be a problem if the log I/O is
109          * done in basic blocks (sector size 1).  But otherwise we
110          * extend the buffer by one extra log sector to ensure
111          * there's space to accomodate this possiblility.
112          */
113         if (nbblks > 1 && log->l_sectbb_log)
114                 nbblks += xlog_sectbb(log);
115         nbblks = round_up(nbblks, xlog_sectbb(log));
116
117         return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
118 }
119
120 STATIC void
121 xlog_put_bp(
122         xfs_buf_t       *bp)
123 {
124         xfs_buf_free(bp);
125 }
126
127 STATIC xfs_caddr_t
128 xlog_align(
129         xlog_t          *log,
130         xfs_daddr_t     blk_no,
131         int             nbblks,
132         xfs_buf_t       *bp)
133 {
134         xfs_caddr_t     ptr;
135
136         if (!log->l_sectbb_log)
137                 return XFS_BUF_PTR(bp);
138
139         ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
140         ASSERT(XFS_BUF_SIZE(bp) >=
141                 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
142         return ptr;
143 }
144
145
146 /*
147  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
148  */
149 STATIC int
150 xlog_bread_noalign(
151         xlog_t          *log,
152         xfs_daddr_t     blk_no,
153         int             nbblks,
154         xfs_buf_t       *bp)
155 {
156         int             error;
157
158         if (!xlog_buf_bbcount_valid(log, nbblks)) {
159                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
160                         nbblks);
161                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
162                 return EFSCORRUPTED;
163         }
164
165         blk_no = round_down(blk_no, xlog_sectbb(log));
166         nbblks = round_up(nbblks, xlog_sectbb(log));
167
168         ASSERT(nbblks > 0);
169         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
170
171         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
172         XFS_BUF_READ(bp);
173         XFS_BUF_BUSY(bp);
174         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
175         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
176
177         xfsbdstrat(log->l_mp, bp);
178         error = xfs_iowait(bp);
179         if (error)
180                 xfs_ioerror_alert("xlog_bread", log->l_mp,
181                                   bp, XFS_BUF_ADDR(bp));
182         return error;
183 }
184
185 STATIC int
186 xlog_bread(
187         xlog_t          *log,
188         xfs_daddr_t     blk_no,
189         int             nbblks,
190         xfs_buf_t       *bp,
191         xfs_caddr_t     *offset)
192 {
193         int             error;
194
195         error = xlog_bread_noalign(log, blk_no, nbblks, bp);
196         if (error)
197                 return error;
198
199         *offset = xlog_align(log, blk_no, nbblks, bp);
200         return 0;
201 }
202
203 /*
204  * Write out the buffer at the given block for the given number of blocks.
205  * The buffer is kept locked across the write and is returned locked.
206  * This can only be used for synchronous log writes.
207  */
208 STATIC int
209 xlog_bwrite(
210         xlog_t          *log,
211         xfs_daddr_t     blk_no,
212         int             nbblks,
213         xfs_buf_t       *bp)
214 {
215         int             error;
216
217         if (!xlog_buf_bbcount_valid(log, nbblks)) {
218                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
219                         nbblks);
220                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
221                 return EFSCORRUPTED;
222         }
223
224         blk_no = round_down(blk_no, xlog_sectbb(log));
225         nbblks = round_up(nbblks, xlog_sectbb(log));
226
227         ASSERT(nbblks > 0);
228         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
229
230         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
231         XFS_BUF_ZEROFLAGS(bp);
232         XFS_BUF_BUSY(bp);
233         XFS_BUF_HOLD(bp);
234         XFS_BUF_PSEMA(bp, PRIBIO);
235         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
236         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
237
238         if ((error = xfs_bwrite(log->l_mp, bp)))
239                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
240                                   bp, XFS_BUF_ADDR(bp));
241         return error;
242 }
243
244 #ifdef DEBUG
245 /*
246  * dump debug superblock and log record information
247  */
248 STATIC void
249 xlog_header_check_dump(
250         xfs_mount_t             *mp,
251         xlog_rec_header_t       *head)
252 {
253         cmn_err(CE_DEBUG, "%s:  SB : uuid = %pU, fmt = %d\n",
254                 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
255         cmn_err(CE_DEBUG, "    log : uuid = %pU, fmt = %d\n",
256                 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
257 }
258 #else
259 #define xlog_header_check_dump(mp, head)
260 #endif
261
262 /*
263  * check log record header for recovery
264  */
265 STATIC int
266 xlog_header_check_recover(
267         xfs_mount_t             *mp,
268         xlog_rec_header_t       *head)
269 {
270         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
271
272         /*
273          * IRIX doesn't write the h_fmt field and leaves it zeroed
274          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
275          * a dirty log created in IRIX.
276          */
277         if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
278                 xlog_warn(
279         "XFS: dirty log written in incompatible format - can't recover");
280                 xlog_header_check_dump(mp, head);
281                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
282                                  XFS_ERRLEVEL_HIGH, mp);
283                 return XFS_ERROR(EFSCORRUPTED);
284         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
285                 xlog_warn(
286         "XFS: dirty log entry has mismatched uuid - can't recover");
287                 xlog_header_check_dump(mp, head);
288                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
289                                  XFS_ERRLEVEL_HIGH, mp);
290                 return XFS_ERROR(EFSCORRUPTED);
291         }
292         return 0;
293 }
294
295 /*
296  * read the head block of the log and check the header
297  */
298 STATIC int
299 xlog_header_check_mount(
300         xfs_mount_t             *mp,
301         xlog_rec_header_t       *head)
302 {
303         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
304
305         if (uuid_is_nil(&head->h_fs_uuid)) {
306                 /*
307                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
308                  * h_fs_uuid is nil, we assume this log was last mounted
309                  * by IRIX and continue.
310                  */
311                 xlog_warn("XFS: nil uuid in log - IRIX style log");
312         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
313                 xlog_warn("XFS: log has mismatched uuid - can't recover");
314                 xlog_header_check_dump(mp, head);
315                 XFS_ERROR_REPORT("xlog_header_check_mount",
316                                  XFS_ERRLEVEL_HIGH, mp);
317                 return XFS_ERROR(EFSCORRUPTED);
318         }
319         return 0;
320 }
321
322 STATIC void
323 xlog_recover_iodone(
324         struct xfs_buf  *bp)
325 {
326         if (XFS_BUF_GETERROR(bp)) {
327                 /*
328                  * We're not going to bother about retrying
329                  * this during recovery. One strike!
330                  */
331                 xfs_ioerror_alert("xlog_recover_iodone",
332                                   bp->b_mount, bp, XFS_BUF_ADDR(bp));
333                 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
334         }
335         bp->b_mount = NULL;
336         XFS_BUF_CLR_IODONE_FUNC(bp);
337         xfs_biodone(bp);
338 }
339
340 /*
341  * This routine finds (to an approximation) the first block in the physical
342  * log which contains the given cycle.  It uses a binary search algorithm.
343  * Note that the algorithm can not be perfect because the disk will not
344  * necessarily be perfect.
345  */
346 STATIC int
347 xlog_find_cycle_start(
348         xlog_t          *log,
349         xfs_buf_t       *bp,
350         xfs_daddr_t     first_blk,
351         xfs_daddr_t     *last_blk,
352         uint            cycle)
353 {
354         xfs_caddr_t     offset;
355         xfs_daddr_t     mid_blk;
356         xfs_daddr_t     end_blk;
357         uint            mid_cycle;
358         int             error;
359
360         end_blk = *last_blk;
361         mid_blk = BLK_AVG(first_blk, end_blk);
362         while (mid_blk != first_blk && mid_blk != end_blk) {
363                 error = xlog_bread(log, mid_blk, 1, bp, &offset);
364                 if (error)
365                         return error;
366                 mid_cycle = xlog_get_cycle(offset);
367                 if (mid_cycle == cycle)
368                         end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
369                 else
370                         first_blk = mid_blk; /* first_half_cycle == mid_cycle */
371                 mid_blk = BLK_AVG(first_blk, end_blk);
372         }
373         ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
374                (mid_blk == end_blk && mid_blk-1 == first_blk));
375
376         *last_blk = end_blk;
377
378         return 0;
379 }
380
381 /*
382  * Check that a range of blocks does not contain stop_on_cycle_no.
383  * Fill in *new_blk with the block offset where such a block is
384  * found, or with -1 (an invalid block number) if there is no such
385  * block in the range.  The scan needs to occur from front to back
386  * and the pointer into the region must be updated since a later
387  * routine will need to perform another test.
388  */
389 STATIC int
390 xlog_find_verify_cycle(
391         xlog_t          *log,
392         xfs_daddr_t     start_blk,
393         int             nbblks,
394         uint            stop_on_cycle_no,
395         xfs_daddr_t     *new_blk)
396 {
397         xfs_daddr_t     i, j;
398         uint            cycle;
399         xfs_buf_t       *bp;
400         xfs_daddr_t     bufblks;
401         xfs_caddr_t     buf = NULL;
402         int             error = 0;
403
404         /*
405          * Greedily allocate a buffer big enough to handle the full
406          * range of basic blocks we'll be examining.  If that fails,
407          * try a smaller size.  We need to be able to read at least
408          * a log sector, or we're out of luck.
409          */
410         bufblks = 1 << ffs(nbblks);
411         while (!(bp = xlog_get_bp(log, bufblks))) {
412                 bufblks >>= 1;
413                 if (bufblks < xlog_sectbb(log))
414                         return ENOMEM;
415         }
416
417         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
418                 int     bcount;
419
420                 bcount = min(bufblks, (start_blk + nbblks - i));
421
422                 error = xlog_bread(log, i, bcount, bp, &buf);
423                 if (error)
424                         goto out;
425
426                 for (j = 0; j < bcount; j++) {
427                         cycle = xlog_get_cycle(buf);
428                         if (cycle == stop_on_cycle_no) {
429                                 *new_blk = i+j;
430                                 goto out;
431                         }
432
433                         buf += BBSIZE;
434                 }
435         }
436
437         *new_blk = -1;
438
439 out:
440         xlog_put_bp(bp);
441         return error;
442 }
443
444 /*
445  * Potentially backup over partial log record write.
446  *
447  * In the typical case, last_blk is the number of the block directly after
448  * a good log record.  Therefore, we subtract one to get the block number
449  * of the last block in the given buffer.  extra_bblks contains the number
450  * of blocks we would have read on a previous read.  This happens when the
451  * last log record is split over the end of the physical log.
452  *
453  * extra_bblks is the number of blocks potentially verified on a previous
454  * call to this routine.
455  */
456 STATIC int
457 xlog_find_verify_log_record(
458         xlog_t                  *log,
459         xfs_daddr_t             start_blk,
460         xfs_daddr_t             *last_blk,
461         int                     extra_bblks)
462 {
463         xfs_daddr_t             i;
464         xfs_buf_t               *bp;
465         xfs_caddr_t             offset = NULL;
466         xlog_rec_header_t       *head = NULL;
467         int                     error = 0;
468         int                     smallmem = 0;
469         int                     num_blks = *last_blk - start_blk;
470         int                     xhdrs;
471
472         ASSERT(start_blk != 0 || *last_blk != start_blk);
473
474         if (!(bp = xlog_get_bp(log, num_blks))) {
475                 if (!(bp = xlog_get_bp(log, 1)))
476                         return ENOMEM;
477                 smallmem = 1;
478         } else {
479                 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
480                 if (error)
481                         goto out;
482                 offset += ((num_blks - 1) << BBSHIFT);
483         }
484
485         for (i = (*last_blk) - 1; i >= 0; i--) {
486                 if (i < start_blk) {
487                         /* valid log record not found */
488                         xlog_warn(
489                 "XFS: Log inconsistent (didn't find previous header)");
490                         ASSERT(0);
491                         error = XFS_ERROR(EIO);
492                         goto out;
493                 }
494
495                 if (smallmem) {
496                         error = xlog_bread(log, i, 1, bp, &offset);
497                         if (error)
498                                 goto out;
499                 }
500
501                 head = (xlog_rec_header_t *)offset;
502
503                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
504                         break;
505
506                 if (!smallmem)
507                         offset -= BBSIZE;
508         }
509
510         /*
511          * We hit the beginning of the physical log & still no header.  Return
512          * to caller.  If caller can handle a return of -1, then this routine
513          * will be called again for the end of the physical log.
514          */
515         if (i == -1) {
516                 error = -1;
517                 goto out;
518         }
519
520         /*
521          * We have the final block of the good log (the first block
522          * of the log record _before_ the head. So we check the uuid.
523          */
524         if ((error = xlog_header_check_mount(log->l_mp, head)))
525                 goto out;
526
527         /*
528          * We may have found a log record header before we expected one.
529          * last_blk will be the 1st block # with a given cycle #.  We may end
530          * up reading an entire log record.  In this case, we don't want to
531          * reset last_blk.  Only when last_blk points in the middle of a log
532          * record do we update last_blk.
533          */
534         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
535                 uint    h_size = be32_to_cpu(head->h_size);
536
537                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
538                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
539                         xhdrs++;
540         } else {
541                 xhdrs = 1;
542         }
543
544         if (*last_blk - i + extra_bblks !=
545             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
546                 *last_blk = i;
547
548 out:
549         xlog_put_bp(bp);
550         return error;
551 }
552
553 /*
554  * Head is defined to be the point of the log where the next log write
555  * write could go.  This means that incomplete LR writes at the end are
556  * eliminated when calculating the head.  We aren't guaranteed that previous
557  * LR have complete transactions.  We only know that a cycle number of
558  * current cycle number -1 won't be present in the log if we start writing
559  * from our current block number.
560  *
561  * last_blk contains the block number of the first block with a given
562  * cycle number.
563  *
564  * Return: zero if normal, non-zero if error.
565  */
566 STATIC int
567 xlog_find_head(
568         xlog_t          *log,
569         xfs_daddr_t     *return_head_blk)
570 {
571         xfs_buf_t       *bp;
572         xfs_caddr_t     offset;
573         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
574         int             num_scan_bblks;
575         uint            first_half_cycle, last_half_cycle;
576         uint            stop_on_cycle;
577         int             error, log_bbnum = log->l_logBBsize;
578
579         /* Is the end of the log device zeroed? */
580         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
581                 *return_head_blk = first_blk;
582
583                 /* Is the whole lot zeroed? */
584                 if (!first_blk) {
585                         /* Linux XFS shouldn't generate totally zeroed logs -
586                          * mkfs etc write a dummy unmount record to a fresh
587                          * log so we can store the uuid in there
588                          */
589                         xlog_warn("XFS: totally zeroed log");
590                 }
591
592                 return 0;
593         } else if (error) {
594                 xlog_warn("XFS: empty log check failed");
595                 return error;
596         }
597
598         first_blk = 0;                  /* get cycle # of 1st block */
599         bp = xlog_get_bp(log, 1);
600         if (!bp)
601                 return ENOMEM;
602
603         error = xlog_bread(log, 0, 1, bp, &offset);
604         if (error)
605                 goto bp_err;
606
607         first_half_cycle = xlog_get_cycle(offset);
608
609         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
610         error = xlog_bread(log, last_blk, 1, bp, &offset);
611         if (error)
612                 goto bp_err;
613
614         last_half_cycle = xlog_get_cycle(offset);
615         ASSERT(last_half_cycle != 0);
616
617         /*
618          * If the 1st half cycle number is equal to the last half cycle number,
619          * then the entire log is stamped with the same cycle number.  In this
620          * case, head_blk can't be set to zero (which makes sense).  The below
621          * math doesn't work out properly with head_blk equal to zero.  Instead,
622          * we set it to log_bbnum which is an invalid block number, but this
623          * value makes the math correct.  If head_blk doesn't changed through
624          * all the tests below, *head_blk is set to zero at the very end rather
625          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
626          * in a circular file.
627          */
628         if (first_half_cycle == last_half_cycle) {
629                 /*
630                  * In this case we believe that the entire log should have
631                  * cycle number last_half_cycle.  We need to scan backwards
632                  * from the end verifying that there are no holes still
633                  * containing last_half_cycle - 1.  If we find such a hole,
634                  * then the start of that hole will be the new head.  The
635                  * simple case looks like
636                  *        x | x ... | x - 1 | x
637                  * Another case that fits this picture would be
638                  *        x | x + 1 | x ... | x
639                  * In this case the head really is somewhere at the end of the
640                  * log, as one of the latest writes at the beginning was
641                  * incomplete.
642                  * One more case is
643                  *        x | x + 1 | x ... | x - 1 | x
644                  * This is really the combination of the above two cases, and
645                  * the head has to end up at the start of the x-1 hole at the
646                  * end of the log.
647                  *
648                  * In the 256k log case, we will read from the beginning to the
649                  * end of the log and search for cycle numbers equal to x-1.
650                  * We don't worry about the x+1 blocks that we encounter,
651                  * because we know that they cannot be the head since the log
652                  * started with x.
653                  */
654                 head_blk = log_bbnum;
655                 stop_on_cycle = last_half_cycle - 1;
656         } else {
657                 /*
658                  * In this case we want to find the first block with cycle
659                  * number matching last_half_cycle.  We expect the log to be
660                  * some variation on
661                  *        x + 1 ... | x ... | x
662                  * The first block with cycle number x (last_half_cycle) will
663                  * be where the new head belongs.  First we do a binary search
664                  * for the first occurrence of last_half_cycle.  The binary
665                  * search may not be totally accurate, so then we scan back
666                  * from there looking for occurrences of last_half_cycle before
667                  * us.  If that backwards scan wraps around the beginning of
668                  * the log, then we look for occurrences of last_half_cycle - 1
669                  * at the end of the log.  The cases we're looking for look
670                  * like
671                  *                               v binary search stopped here
672                  *        x + 1 ... | x | x + 1 | x ... | x
673                  *                   ^ but we want to locate this spot
674                  * or
675                  *        <---------> less than scan distance
676                  *        x + 1 ... | x ... | x - 1 | x
677                  *                           ^ we want to locate this spot
678                  */
679                 stop_on_cycle = last_half_cycle;
680                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
681                                                 &head_blk, last_half_cycle)))
682                         goto bp_err;
683         }
684
685         /*
686          * Now validate the answer.  Scan back some number of maximum possible
687          * blocks and make sure each one has the expected cycle number.  The
688          * maximum is determined by the total possible amount of buffering
689          * in the in-core log.  The following number can be made tighter if
690          * we actually look at the block size of the filesystem.
691          */
692         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
693         if (head_blk >= num_scan_bblks) {
694                 /*
695                  * We are guaranteed that the entire check can be performed
696                  * in one buffer.
697                  */
698                 start_blk = head_blk - num_scan_bblks;
699                 if ((error = xlog_find_verify_cycle(log,
700                                                 start_blk, num_scan_bblks,
701                                                 stop_on_cycle, &new_blk)))
702                         goto bp_err;
703                 if (new_blk != -1)
704                         head_blk = new_blk;
705         } else {                /* need to read 2 parts of log */
706                 /*
707                  * We are going to scan backwards in the log in two parts.
708                  * First we scan the physical end of the log.  In this part
709                  * of the log, we are looking for blocks with cycle number
710                  * last_half_cycle - 1.
711                  * If we find one, then we know that the log starts there, as
712                  * we've found a hole that didn't get written in going around
713                  * the end of the physical log.  The simple case for this is
714                  *        x + 1 ... | x ... | x - 1 | x
715                  *        <---------> less than scan distance
716                  * If all of the blocks at the end of the log have cycle number
717                  * last_half_cycle, then we check the blocks at the start of
718                  * the log looking for occurrences of last_half_cycle.  If we
719                  * find one, then our current estimate for the location of the
720                  * first occurrence of last_half_cycle is wrong and we move
721                  * back to the hole we've found.  This case looks like
722                  *        x + 1 ... | x | x + 1 | x ...
723                  *                               ^ binary search stopped here
724                  * Another case we need to handle that only occurs in 256k
725                  * logs is
726                  *        x + 1 ... | x ... | x+1 | x ...
727                  *                   ^ binary search stops here
728                  * In a 256k log, the scan at the end of the log will see the
729                  * x + 1 blocks.  We need to skip past those since that is
730                  * certainly not the head of the log.  By searching for
731                  * last_half_cycle-1 we accomplish that.
732                  */
733                 ASSERT(head_blk <= INT_MAX &&
734                         (xfs_daddr_t) num_scan_bblks >= head_blk);
735                 start_blk = log_bbnum - (num_scan_bblks - head_blk);
736                 if ((error = xlog_find_verify_cycle(log, start_blk,
737                                         num_scan_bblks - (int)head_blk,
738                                         (stop_on_cycle - 1), &new_blk)))
739                         goto bp_err;
740                 if (new_blk != -1) {
741                         head_blk = new_blk;
742                         goto validate_head;
743                 }
744
745                 /*
746                  * Scan beginning of log now.  The last part of the physical
747                  * log is good.  This scan needs to verify that it doesn't find
748                  * the last_half_cycle.
749                  */
750                 start_blk = 0;
751                 ASSERT(head_blk <= INT_MAX);
752                 if ((error = xlog_find_verify_cycle(log,
753                                         start_blk, (int)head_blk,
754                                         stop_on_cycle, &new_blk)))
755                         goto bp_err;
756                 if (new_blk != -1)
757                         head_blk = new_blk;
758         }
759
760 validate_head:
761         /*
762          * Now we need to make sure head_blk is not pointing to a block in
763          * the middle of a log record.
764          */
765         num_scan_bblks = XLOG_REC_SHIFT(log);
766         if (head_blk >= num_scan_bblks) {
767                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
768
769                 /* start ptr at last block ptr before head_blk */
770                 if ((error = xlog_find_verify_log_record(log, start_blk,
771                                                         &head_blk, 0)) == -1) {
772                         error = XFS_ERROR(EIO);
773                         goto bp_err;
774                 } else if (error)
775                         goto bp_err;
776         } else {
777                 start_blk = 0;
778                 ASSERT(head_blk <= INT_MAX);
779                 if ((error = xlog_find_verify_log_record(log, start_blk,
780                                                         &head_blk, 0)) == -1) {
781                         /* We hit the beginning of the log during our search */
782                         start_blk = log_bbnum - (num_scan_bblks - head_blk);
783                         new_blk = log_bbnum;
784                         ASSERT(start_blk <= INT_MAX &&
785                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
786                         ASSERT(head_blk <= INT_MAX);
787                         if ((error = xlog_find_verify_log_record(log,
788                                                         start_blk, &new_blk,
789                                                         (int)head_blk)) == -1) {
790                                 error = XFS_ERROR(EIO);
791                                 goto bp_err;
792                         } else if (error)
793                                 goto bp_err;
794                         if (new_blk != log_bbnum)
795                                 head_blk = new_blk;
796                 } else if (error)
797                         goto bp_err;
798         }
799
800         xlog_put_bp(bp);
801         if (head_blk == log_bbnum)
802                 *return_head_blk = 0;
803         else
804                 *return_head_blk = head_blk;
805         /*
806          * When returning here, we have a good block number.  Bad block
807          * means that during a previous crash, we didn't have a clean break
808          * from cycle number N to cycle number N-1.  In this case, we need
809          * to find the first block with cycle number N-1.
810          */
811         return 0;
812
813  bp_err:
814         xlog_put_bp(bp);
815
816         if (error)
817             xlog_warn("XFS: failed to find log head");
818         return error;
819 }
820
821 /*
822  * Find the sync block number or the tail of the log.
823  *
824  * This will be the block number of the last record to have its
825  * associated buffers synced to disk.  Every log record header has
826  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
827  * to get a sync block number.  The only concern is to figure out which
828  * log record header to believe.
829  *
830  * The following algorithm uses the log record header with the largest
831  * lsn.  The entire log record does not need to be valid.  We only care
832  * that the header is valid.
833  *
834  * We could speed up search by using current head_blk buffer, but it is not
835  * available.
836  */
837 STATIC int
838 xlog_find_tail(
839         xlog_t                  *log,
840         xfs_daddr_t             *head_blk,
841         xfs_daddr_t             *tail_blk)
842 {
843         xlog_rec_header_t       *rhead;
844         xlog_op_header_t        *op_head;
845         xfs_caddr_t             offset = NULL;
846         xfs_buf_t               *bp;
847         int                     error, i, found;
848         xfs_daddr_t             umount_data_blk;
849         xfs_daddr_t             after_umount_blk;
850         xfs_lsn_t               tail_lsn;
851         int                     hblks;
852
853         found = 0;
854
855         /*
856          * Find previous log record
857          */
858         if ((error = xlog_find_head(log, head_blk)))
859                 return error;
860
861         bp = xlog_get_bp(log, 1);
862         if (!bp)
863                 return ENOMEM;
864         if (*head_blk == 0) {                           /* special case */
865                 error = xlog_bread(log, 0, 1, bp, &offset);
866                 if (error)
867                         goto done;
868
869                 if (xlog_get_cycle(offset) == 0) {
870                         *tail_blk = 0;
871                         /* leave all other log inited values alone */
872                         goto done;
873                 }
874         }
875
876         /*
877          * Search backwards looking for log record header block
878          */
879         ASSERT(*head_blk < INT_MAX);
880         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
881                 error = xlog_bread(log, i, 1, bp, &offset);
882                 if (error)
883                         goto done;
884
885                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
886                         found = 1;
887                         break;
888                 }
889         }
890         /*
891          * If we haven't found the log record header block, start looking
892          * again from the end of the physical log.  XXXmiken: There should be
893          * a check here to make sure we didn't search more than N blocks in
894          * the previous code.
895          */
896         if (!found) {
897                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
898                         error = xlog_bread(log, i, 1, bp, &offset);
899                         if (error)
900                                 goto done;
901
902                         if (XLOG_HEADER_MAGIC_NUM ==
903                             be32_to_cpu(*(__be32 *)offset)) {
904                                 found = 2;
905                                 break;
906                         }
907                 }
908         }
909         if (!found) {
910                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
911                 ASSERT(0);
912                 return XFS_ERROR(EIO);
913         }
914
915         /* find blk_no of tail of log */
916         rhead = (xlog_rec_header_t *)offset;
917         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
918
919         /*
920          * Reset log values according to the state of the log when we
921          * crashed.  In the case where head_blk == 0, we bump curr_cycle
922          * one because the next write starts a new cycle rather than
923          * continuing the cycle of the last good log record.  At this
924          * point we have guaranteed that all partial log records have been
925          * accounted for.  Therefore, we know that the last good log record
926          * written was complete and ended exactly on the end boundary
927          * of the physical log.
928          */
929         log->l_prev_block = i;
930         log->l_curr_block = (int)*head_blk;
931         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
932         if (found == 2)
933                 log->l_curr_cycle++;
934         log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
935         log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
936         log->l_grant_reserve_cycle = log->l_curr_cycle;
937         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
938         log->l_grant_write_cycle = log->l_curr_cycle;
939         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
940
941         /*
942          * Look for unmount record.  If we find it, then we know there
943          * was a clean unmount.  Since 'i' could be the last block in
944          * the physical log, we convert to a log block before comparing
945          * to the head_blk.
946          *
947          * Save the current tail lsn to use to pass to
948          * xlog_clear_stale_blocks() below.  We won't want to clear the
949          * unmount record if there is one, so we pass the lsn of the
950          * unmount record rather than the block after it.
951          */
952         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
953                 int     h_size = be32_to_cpu(rhead->h_size);
954                 int     h_version = be32_to_cpu(rhead->h_version);
955
956                 if ((h_version & XLOG_VERSION_2) &&
957                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
958                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
959                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
960                                 hblks++;
961                 } else {
962                         hblks = 1;
963                 }
964         } else {
965                 hblks = 1;
966         }
967         after_umount_blk = (i + hblks + (int)
968                 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
969         tail_lsn = log->l_tail_lsn;
970         if (*head_blk == after_umount_blk &&
971             be32_to_cpu(rhead->h_num_logops) == 1) {
972                 umount_data_blk = (i + hblks) % log->l_logBBsize;
973                 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
974                 if (error)
975                         goto done;
976
977                 op_head = (xlog_op_header_t *)offset;
978                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
979                         /*
980                          * Set tail and last sync so that newly written
981                          * log records will point recovery to after the
982                          * current unmount record.
983                          */
984                         log->l_tail_lsn =
985                                 xlog_assign_lsn(log->l_curr_cycle,
986                                                 after_umount_blk);
987                         log->l_last_sync_lsn =
988                                 xlog_assign_lsn(log->l_curr_cycle,
989                                                 after_umount_blk);
990                         *tail_blk = after_umount_blk;
991
992                         /*
993                          * Note that the unmount was clean. If the unmount
994                          * was not clean, we need to know this to rebuild the
995                          * superblock counters from the perag headers if we
996                          * have a filesystem using non-persistent counters.
997                          */
998                         log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
999                 }
1000         }
1001
1002         /*
1003          * Make sure that there are no blocks in front of the head
1004          * with the same cycle number as the head.  This can happen
1005          * because we allow multiple outstanding log writes concurrently,
1006          * and the later writes might make it out before earlier ones.
1007          *
1008          * We use the lsn from before modifying it so that we'll never
1009          * overwrite the unmount record after a clean unmount.
1010          *
1011          * Do this only if we are going to recover the filesystem
1012          *
1013          * NOTE: This used to say "if (!readonly)"
1014          * However on Linux, we can & do recover a read-only filesystem.
1015          * We only skip recovery if NORECOVERY is specified on mount,
1016          * in which case we would not be here.
1017          *
1018          * But... if the -device- itself is readonly, just skip this.
1019          * We can't recover this device anyway, so it won't matter.
1020          */
1021         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1022                 error = xlog_clear_stale_blocks(log, tail_lsn);
1023
1024 done:
1025         xlog_put_bp(bp);
1026
1027         if (error)
1028                 xlog_warn("XFS: failed to locate log tail");
1029         return error;
1030 }
1031
1032 /*
1033  * Is the log zeroed at all?
1034  *
1035  * The last binary search should be changed to perform an X block read
1036  * once X becomes small enough.  You can then search linearly through
1037  * the X blocks.  This will cut down on the number of reads we need to do.
1038  *
1039  * If the log is partially zeroed, this routine will pass back the blkno
1040  * of the first block with cycle number 0.  It won't have a complete LR
1041  * preceding it.
1042  *
1043  * Return:
1044  *      0  => the log is completely written to
1045  *      -1 => use *blk_no as the first block of the log
1046  *      >0 => error has occurred
1047  */
1048 STATIC int
1049 xlog_find_zeroed(
1050         xlog_t          *log,
1051         xfs_daddr_t     *blk_no)
1052 {
1053         xfs_buf_t       *bp;
1054         xfs_caddr_t     offset;
1055         uint            first_cycle, last_cycle;
1056         xfs_daddr_t     new_blk, last_blk, start_blk;
1057         xfs_daddr_t     num_scan_bblks;
1058         int             error, log_bbnum = log->l_logBBsize;
1059
1060         *blk_no = 0;
1061
1062         /* check totally zeroed log */
1063         bp = xlog_get_bp(log, 1);
1064         if (!bp)
1065                 return ENOMEM;
1066         error = xlog_bread(log, 0, 1, bp, &offset);
1067         if (error)
1068                 goto bp_err;
1069
1070         first_cycle = xlog_get_cycle(offset);
1071         if (first_cycle == 0) {         /* completely zeroed log */
1072                 *blk_no = 0;
1073                 xlog_put_bp(bp);
1074                 return -1;
1075         }
1076
1077         /* check partially zeroed log */
1078         error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1079         if (error)
1080                 goto bp_err;
1081
1082         last_cycle = xlog_get_cycle(offset);
1083         if (last_cycle != 0) {          /* log completely written to */
1084                 xlog_put_bp(bp);
1085                 return 0;
1086         } else if (first_cycle != 1) {
1087                 /*
1088                  * If the cycle of the last block is zero, the cycle of
1089                  * the first block must be 1. If it's not, maybe we're
1090                  * not looking at a log... Bail out.
1091                  */
1092                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1093                 return XFS_ERROR(EINVAL);
1094         }
1095
1096         /* we have a partially zeroed log */
1097         last_blk = log_bbnum-1;
1098         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1099                 goto bp_err;
1100
1101         /*
1102          * Validate the answer.  Because there is no way to guarantee that
1103          * the entire log is made up of log records which are the same size,
1104          * we scan over the defined maximum blocks.  At this point, the maximum
1105          * is not chosen to mean anything special.   XXXmiken
1106          */
1107         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1108         ASSERT(num_scan_bblks <= INT_MAX);
1109
1110         if (last_blk < num_scan_bblks)
1111                 num_scan_bblks = last_blk;
1112         start_blk = last_blk - num_scan_bblks;
1113
1114         /*
1115          * We search for any instances of cycle number 0 that occur before
1116          * our current estimate of the head.  What we're trying to detect is
1117          *        1 ... | 0 | 1 | 0...
1118          *                       ^ binary search ends here
1119          */
1120         if ((error = xlog_find_verify_cycle(log, start_blk,
1121                                          (int)num_scan_bblks, 0, &new_blk)))
1122                 goto bp_err;
1123         if (new_blk != -1)
1124                 last_blk = new_blk;
1125
1126         /*
1127          * Potentially backup over partial log record write.  We don't need
1128          * to search the end of the log because we know it is zero.
1129          */
1130         if ((error = xlog_find_verify_log_record(log, start_blk,
1131                                 &last_blk, 0)) == -1) {
1132             error = XFS_ERROR(EIO);
1133             goto bp_err;
1134         } else if (error)
1135             goto bp_err;
1136
1137         *blk_no = last_blk;
1138 bp_err:
1139         xlog_put_bp(bp);
1140         if (error)
1141                 return error;
1142         return -1;
1143 }
1144
1145 /*
1146  * These are simple subroutines used by xlog_clear_stale_blocks() below
1147  * to initialize a buffer full of empty log record headers and write
1148  * them into the log.
1149  */
1150 STATIC void
1151 xlog_add_record(
1152         xlog_t                  *log,
1153         xfs_caddr_t             buf,
1154         int                     cycle,
1155         int                     block,
1156         int                     tail_cycle,
1157         int                     tail_block)
1158 {
1159         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1160
1161         memset(buf, 0, BBSIZE);
1162         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1163         recp->h_cycle = cpu_to_be32(cycle);
1164         recp->h_version = cpu_to_be32(
1165                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1166         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1167         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1168         recp->h_fmt = cpu_to_be32(XLOG_FMT);
1169         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1170 }
1171
1172 STATIC int
1173 xlog_write_log_records(
1174         xlog_t          *log,
1175         int             cycle,
1176         int             start_block,
1177         int             blocks,
1178         int             tail_cycle,
1179         int             tail_block)
1180 {
1181         xfs_caddr_t     offset;
1182         xfs_buf_t       *bp;
1183         int             balign, ealign;
1184         int             sectbb = xlog_sectbb(log);
1185         int             end_block = start_block + blocks;
1186         int             bufblks;
1187         int             error = 0;
1188         int             i, j = 0;
1189
1190         /*
1191          * Greedily allocate a buffer big enough to handle the full
1192          * range of basic blocks to be written.  If that fails, try
1193          * a smaller size.  We need to be able to write at least a
1194          * log sector, or we're out of luck.
1195          */
1196         bufblks = 1 << ffs(blocks);
1197         while (!(bp = xlog_get_bp(log, bufblks))) {
1198                 bufblks >>= 1;
1199                 if (bufblks < xlog_sectbb(log))
1200                         return ENOMEM;
1201         }
1202
1203         /* We may need to do a read at the start to fill in part of
1204          * the buffer in the starting sector not covered by the first
1205          * write below.
1206          */
1207         balign = round_down(start_block, sectbb);
1208         if (balign != start_block) {
1209                 error = xlog_bread_noalign(log, start_block, 1, bp);
1210                 if (error)
1211                         goto out_put_bp;
1212
1213                 j = start_block - balign;
1214         }
1215
1216         for (i = start_block; i < end_block; i += bufblks) {
1217                 int             bcount, endcount;
1218
1219                 bcount = min(bufblks, end_block - start_block);
1220                 endcount = bcount - j;
1221
1222                 /* We may need to do a read at the end to fill in part of
1223                  * the buffer in the final sector not covered by the write.
1224                  * If this is the same sector as the above read, skip it.
1225                  */
1226                 ealign = round_down(end_block, sectbb);
1227                 if (j == 0 && (start_block + endcount > ealign)) {
1228                         offset = XFS_BUF_PTR(bp);
1229                         balign = BBTOB(ealign - start_block);
1230                         error = XFS_BUF_SET_PTR(bp, offset + balign,
1231                                                 BBTOB(sectbb));
1232                         if (error)
1233                                 break;
1234
1235                         error = xlog_bread_noalign(log, ealign, sectbb, bp);
1236                         if (error)
1237                                 break;
1238
1239                         error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1240                         if (error)
1241                                 break;
1242                 }
1243
1244                 offset = xlog_align(log, start_block, endcount, bp);
1245                 for (; j < endcount; j++) {
1246                         xlog_add_record(log, offset, cycle, i+j,
1247                                         tail_cycle, tail_block);
1248                         offset += BBSIZE;
1249                 }
1250                 error = xlog_bwrite(log, start_block, endcount, bp);
1251                 if (error)
1252                         break;
1253                 start_block += endcount;
1254                 j = 0;
1255         }
1256
1257  out_put_bp:
1258         xlog_put_bp(bp);
1259         return error;
1260 }
1261
1262 /*
1263  * This routine is called to blow away any incomplete log writes out
1264  * in front of the log head.  We do this so that we won't become confused
1265  * if we come up, write only a little bit more, and then crash again.
1266  * If we leave the partial log records out there, this situation could
1267  * cause us to think those partial writes are valid blocks since they
1268  * have the current cycle number.  We get rid of them by overwriting them
1269  * with empty log records with the old cycle number rather than the
1270  * current one.
1271  *
1272  * The tail lsn is passed in rather than taken from
1273  * the log so that we will not write over the unmount record after a
1274  * clean unmount in a 512 block log.  Doing so would leave the log without
1275  * any valid log records in it until a new one was written.  If we crashed
1276  * during that time we would not be able to recover.
1277  */
1278 STATIC int
1279 xlog_clear_stale_blocks(
1280         xlog_t          *log,
1281         xfs_lsn_t       tail_lsn)
1282 {
1283         int             tail_cycle, head_cycle;
1284         int             tail_block, head_block;
1285         int             tail_distance, max_distance;
1286         int             distance;
1287         int             error;
1288
1289         tail_cycle = CYCLE_LSN(tail_lsn);
1290         tail_block = BLOCK_LSN(tail_lsn);
1291         head_cycle = log->l_curr_cycle;
1292         head_block = log->l_curr_block;
1293
1294         /*
1295          * Figure out the distance between the new head of the log
1296          * and the tail.  We want to write over any blocks beyond the
1297          * head that we may have written just before the crash, but
1298          * we don't want to overwrite the tail of the log.
1299          */
1300         if (head_cycle == tail_cycle) {
1301                 /*
1302                  * The tail is behind the head in the physical log,
1303                  * so the distance from the head to the tail is the
1304                  * distance from the head to the end of the log plus
1305                  * the distance from the beginning of the log to the
1306                  * tail.
1307                  */
1308                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1309                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1310                                          XFS_ERRLEVEL_LOW, log->l_mp);
1311                         return XFS_ERROR(EFSCORRUPTED);
1312                 }
1313                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1314         } else {
1315                 /*
1316                  * The head is behind the tail in the physical log,
1317                  * so the distance from the head to the tail is just
1318                  * the tail block minus the head block.
1319                  */
1320                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1321                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1322                                          XFS_ERRLEVEL_LOW, log->l_mp);
1323                         return XFS_ERROR(EFSCORRUPTED);
1324                 }
1325                 tail_distance = tail_block - head_block;
1326         }
1327
1328         /*
1329          * If the head is right up against the tail, we can't clear
1330          * anything.
1331          */
1332         if (tail_distance <= 0) {
1333                 ASSERT(tail_distance == 0);
1334                 return 0;
1335         }
1336
1337         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1338         /*
1339          * Take the smaller of the maximum amount of outstanding I/O
1340          * we could have and the distance to the tail to clear out.
1341          * We take the smaller so that we don't overwrite the tail and
1342          * we don't waste all day writing from the head to the tail
1343          * for no reason.
1344          */
1345         max_distance = MIN(max_distance, tail_distance);
1346
1347         if ((head_block + max_distance) <= log->l_logBBsize) {
1348                 /*
1349                  * We can stomp all the blocks we need to without
1350                  * wrapping around the end of the log.  Just do it
1351                  * in a single write.  Use the cycle number of the
1352                  * current cycle minus one so that the log will look like:
1353                  *     n ... | n - 1 ...
1354                  */
1355                 error = xlog_write_log_records(log, (head_cycle - 1),
1356                                 head_block, max_distance, tail_cycle,
1357                                 tail_block);
1358                 if (error)
1359                         return error;
1360         } else {
1361                 /*
1362                  * We need to wrap around the end of the physical log in
1363                  * order to clear all the blocks.  Do it in two separate
1364                  * I/Os.  The first write should be from the head to the
1365                  * end of the physical log, and it should use the current
1366                  * cycle number minus one just like above.
1367                  */
1368                 distance = log->l_logBBsize - head_block;
1369                 error = xlog_write_log_records(log, (head_cycle - 1),
1370                                 head_block, distance, tail_cycle,
1371                                 tail_block);
1372
1373                 if (error)
1374                         return error;
1375
1376                 /*
1377                  * Now write the blocks at the start of the physical log.
1378                  * This writes the remainder of the blocks we want to clear.
1379                  * It uses the current cycle number since we're now on the
1380                  * same cycle as the head so that we get:
1381                  *    n ... n ... | n - 1 ...
1382                  *    ^^^^^ blocks we're writing
1383                  */
1384                 distance = max_distance - (log->l_logBBsize - head_block);
1385                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1386                                 tail_cycle, tail_block);
1387                 if (error)
1388                         return error;
1389         }
1390
1391         return 0;
1392 }
1393
1394 /******************************************************************************
1395  *
1396  *              Log recover routines
1397  *
1398  ******************************************************************************
1399  */
1400
1401 STATIC xlog_recover_t *
1402 xlog_recover_find_tid(
1403         struct hlist_head       *head,
1404         xlog_tid_t              tid)
1405 {
1406         xlog_recover_t          *trans;
1407         struct hlist_node       *n;
1408
1409         hlist_for_each_entry(trans, n, head, r_list) {
1410                 if (trans->r_log_tid == tid)
1411                         return trans;
1412         }
1413         return NULL;
1414 }
1415
1416 STATIC void
1417 xlog_recover_new_tid(
1418         struct hlist_head       *head,
1419         xlog_tid_t              tid,
1420         xfs_lsn_t               lsn)
1421 {
1422         xlog_recover_t          *trans;
1423
1424         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1425         trans->r_log_tid   = tid;
1426         trans->r_lsn       = lsn;
1427         INIT_LIST_HEAD(&trans->r_itemq);
1428
1429         INIT_HLIST_NODE(&trans->r_list);
1430         hlist_add_head(&trans->r_list, head);
1431 }
1432
1433 STATIC void
1434 xlog_recover_add_item(
1435         struct list_head        *head)
1436 {
1437         xlog_recover_item_t     *item;
1438
1439         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1440         INIT_LIST_HEAD(&item->ri_list);
1441         list_add_tail(&item->ri_list, head);
1442 }
1443
1444 STATIC int
1445 xlog_recover_add_to_cont_trans(
1446         struct log              *log,
1447         xlog_recover_t          *trans,
1448         xfs_caddr_t             dp,
1449         int                     len)
1450 {
1451         xlog_recover_item_t     *item;
1452         xfs_caddr_t             ptr, old_ptr;
1453         int                     old_len;
1454
1455         if (list_empty(&trans->r_itemq)) {
1456                 /* finish copying rest of trans header */
1457                 xlog_recover_add_item(&trans->r_itemq);
1458                 ptr = (xfs_caddr_t) &trans->r_theader +
1459                                 sizeof(xfs_trans_header_t) - len;
1460                 memcpy(ptr, dp, len); /* d, s, l */
1461                 return 0;
1462         }
1463         /* take the tail entry */
1464         item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1465
1466         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1467         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1468
1469         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1470         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1471         item->ri_buf[item->ri_cnt-1].i_len += len;
1472         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1473         trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1474         return 0;
1475 }
1476
1477 /*
1478  * The next region to add is the start of a new region.  It could be
1479  * a whole region or it could be the first part of a new region.  Because
1480  * of this, the assumption here is that the type and size fields of all
1481  * format structures fit into the first 32 bits of the structure.
1482  *
1483  * This works because all regions must be 32 bit aligned.  Therefore, we
1484  * either have both fields or we have neither field.  In the case we have
1485  * neither field, the data part of the region is zero length.  We only have
1486  * a log_op_header and can throw away the header since a new one will appear
1487  * later.  If we have at least 4 bytes, then we can determine how many regions
1488  * will appear in the current log item.
1489  */
1490 STATIC int
1491 xlog_recover_add_to_trans(
1492         struct log              *log,
1493         xlog_recover_t          *trans,
1494         xfs_caddr_t             dp,
1495         int                     len)
1496 {
1497         xfs_inode_log_format_t  *in_f;                  /* any will do */
1498         xlog_recover_item_t     *item;
1499         xfs_caddr_t             ptr;
1500
1501         if (!len)
1502                 return 0;
1503         if (list_empty(&trans->r_itemq)) {
1504                 /* we need to catch log corruptions here */
1505                 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1506                         xlog_warn("XFS: xlog_recover_add_to_trans: "
1507                                   "bad header magic number");
1508                         ASSERT(0);
1509                         return XFS_ERROR(EIO);
1510                 }
1511                 if (len == sizeof(xfs_trans_header_t))
1512                         xlog_recover_add_item(&trans->r_itemq);
1513                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1514                 return 0;
1515         }
1516
1517         ptr = kmem_alloc(len, KM_SLEEP);
1518         memcpy(ptr, dp, len);
1519         in_f = (xfs_inode_log_format_t *)ptr;
1520
1521         /* take the tail entry */
1522         item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1523         if (item->ri_total != 0 &&
1524              item->ri_total == item->ri_cnt) {
1525                 /* tail item is in use, get a new one */
1526                 xlog_recover_add_item(&trans->r_itemq);
1527                 item = list_entry(trans->r_itemq.prev,
1528                                         xlog_recover_item_t, ri_list);
1529         }
1530
1531         if (item->ri_total == 0) {              /* first region to be added */
1532                 if (in_f->ilf_size == 0 ||
1533                     in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1534                         xlog_warn(
1535         "XFS: bad number of regions (%d) in inode log format",
1536                                   in_f->ilf_size);
1537                         ASSERT(0);
1538                         return XFS_ERROR(EIO);
1539                 }
1540
1541                 item->ri_total = in_f->ilf_size;
1542                 item->ri_buf =
1543                         kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1544                                     KM_SLEEP);
1545         }
1546         ASSERT(item->ri_total > item->ri_cnt);
1547         /* Description region is ri_buf[0] */
1548         item->ri_buf[item->ri_cnt].i_addr = ptr;
1549         item->ri_buf[item->ri_cnt].i_len  = len;
1550         item->ri_cnt++;
1551         trace_xfs_log_recover_item_add(log, trans, item, 0);
1552         return 0;
1553 }
1554
1555 /*
1556  * Sort the log items in the transaction. Cancelled buffers need
1557  * to be put first so they are processed before any items that might
1558  * modify the buffers. If they are cancelled, then the modifications
1559  * don't need to be replayed.
1560  */
1561 STATIC int
1562 xlog_recover_reorder_trans(
1563         struct log              *log,
1564         xlog_recover_t          *trans,
1565         int                     pass)
1566 {
1567         xlog_recover_item_t     *item, *n;
1568         LIST_HEAD(sort_list);
1569
1570         list_splice_init(&trans->r_itemq, &sort_list);
1571         list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1572                 xfs_buf_log_format_t    *buf_f;
1573
1574                 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1575
1576                 switch (ITEM_TYPE(item)) {
1577                 case XFS_LI_BUF:
1578                         if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
1579                                 trace_xfs_log_recover_item_reorder_head(log,
1580                                                         trans, item, pass);
1581                                 list_move(&item->ri_list, &trans->r_itemq);
1582                                 break;
1583                         }
1584                 case XFS_LI_INODE:
1585                 case XFS_LI_DQUOT:
1586                 case XFS_LI_QUOTAOFF:
1587                 case XFS_LI_EFD:
1588                 case XFS_LI_EFI:
1589                         trace_xfs_log_recover_item_reorder_tail(log,
1590                                                         trans, item, pass);
1591                         list_move_tail(&item->ri_list, &trans->r_itemq);
1592                         break;
1593                 default:
1594                         xlog_warn(
1595         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1596                         ASSERT(0);
1597                         return XFS_ERROR(EIO);
1598                 }
1599         }
1600         ASSERT(list_empty(&sort_list));
1601         return 0;
1602 }
1603
1604 /*
1605  * Build up the table of buf cancel records so that we don't replay
1606  * cancelled data in the second pass.  For buffer records that are
1607  * not cancel records, there is nothing to do here so we just return.
1608  *
1609  * If we get a cancel record which is already in the table, this indicates
1610  * that the buffer was cancelled multiple times.  In order to ensure
1611  * that during pass 2 we keep the record in the table until we reach its
1612  * last occurrence in the log, we keep a reference count in the cancel
1613  * record in the table to tell us how many times we expect to see this
1614  * record during the second pass.
1615  */
1616 STATIC void
1617 xlog_recover_do_buffer_pass1(
1618         xlog_t                  *log,
1619         xfs_buf_log_format_t    *buf_f)
1620 {
1621         xfs_buf_cancel_t        *bcp;
1622         xfs_buf_cancel_t        *nextp;
1623         xfs_buf_cancel_t        *prevp;
1624         xfs_buf_cancel_t        **bucket;
1625         xfs_daddr_t             blkno = 0;
1626         uint                    len = 0;
1627         ushort                  flags = 0;
1628
1629         switch (buf_f->blf_type) {
1630         case XFS_LI_BUF:
1631                 blkno = buf_f->blf_blkno;
1632                 len = buf_f->blf_len;
1633                 flags = buf_f->blf_flags;
1634                 break;
1635         }
1636
1637         /*
1638          * If this isn't a cancel buffer item, then just return.
1639          */
1640         if (!(flags & XFS_BLI_CANCEL)) {
1641                 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1642                 return;
1643         }
1644
1645         /*
1646          * Insert an xfs_buf_cancel record into the hash table of
1647          * them.  If there is already an identical record, bump
1648          * its reference count.
1649          */
1650         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1651                                           XLOG_BC_TABLE_SIZE];
1652         /*
1653          * If the hash bucket is empty then just insert a new record into
1654          * the bucket.
1655          */
1656         if (*bucket == NULL) {
1657                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1658                                                      KM_SLEEP);
1659                 bcp->bc_blkno = blkno;
1660                 bcp->bc_len = len;
1661                 bcp->bc_refcount = 1;
1662                 bcp->bc_next = NULL;
1663                 *bucket = bcp;
1664                 return;
1665         }
1666
1667         /*
1668          * The hash bucket is not empty, so search for duplicates of our
1669          * record.  If we find one them just bump its refcount.  If not
1670          * then add us at the end of the list.
1671          */
1672         prevp = NULL;
1673         nextp = *bucket;
1674         while (nextp != NULL) {
1675                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1676                         nextp->bc_refcount++;
1677                         trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1678                         return;
1679                 }
1680                 prevp = nextp;
1681                 nextp = nextp->bc_next;
1682         }
1683         ASSERT(prevp != NULL);
1684         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1685                                              KM_SLEEP);
1686         bcp->bc_blkno = blkno;
1687         bcp->bc_len = len;
1688         bcp->bc_refcount = 1;
1689         bcp->bc_next = NULL;
1690         prevp->bc_next = bcp;
1691         trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1692 }
1693
1694 /*
1695  * Check to see whether the buffer being recovered has a corresponding
1696  * entry in the buffer cancel record table.  If it does then return 1
1697  * so that it will be cancelled, otherwise return 0.  If the buffer is
1698  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1699  * the refcount on the entry in the table and remove it from the table
1700  * if this is the last reference.
1701  *
1702  * We remove the cancel record from the table when we encounter its
1703  * last occurrence in the log so that if the same buffer is re-used
1704  * again after its last cancellation we actually replay the changes
1705  * made at that point.
1706  */
1707 STATIC int
1708 xlog_check_buffer_cancelled(
1709         xlog_t                  *log,
1710         xfs_daddr_t             blkno,
1711         uint                    len,
1712         ushort                  flags)
1713 {
1714         xfs_buf_cancel_t        *bcp;
1715         xfs_buf_cancel_t        *prevp;
1716         xfs_buf_cancel_t        **bucket;
1717
1718         if (log->l_buf_cancel_table == NULL) {
1719                 /*
1720                  * There is nothing in the table built in pass one,
1721                  * so this buffer must not be cancelled.
1722                  */
1723                 ASSERT(!(flags & XFS_BLI_CANCEL));
1724                 return 0;
1725         }
1726
1727         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1728                                           XLOG_BC_TABLE_SIZE];
1729         bcp = *bucket;
1730         if (bcp == NULL) {
1731                 /*
1732                  * There is no corresponding entry in the table built
1733                  * in pass one, so this buffer has not been cancelled.
1734                  */
1735                 ASSERT(!(flags & XFS_BLI_CANCEL));
1736                 return 0;
1737         }
1738
1739         /*
1740          * Search for an entry in the buffer cancel table that
1741          * matches our buffer.
1742          */
1743         prevp = NULL;
1744         while (bcp != NULL) {
1745                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1746                         /*
1747                          * We've go a match, so return 1 so that the
1748                          * recovery of this buffer is cancelled.
1749                          * If this buffer is actually a buffer cancel
1750                          * log item, then decrement the refcount on the
1751                          * one in the table and remove it if this is the
1752                          * last reference.
1753                          */
1754                         if (flags & XFS_BLI_CANCEL) {
1755                                 bcp->bc_refcount--;
1756                                 if (bcp->bc_refcount == 0) {
1757                                         if (prevp == NULL) {
1758                                                 *bucket = bcp->bc_next;
1759                                         } else {
1760                                                 prevp->bc_next = bcp->bc_next;
1761                                         }
1762                                         kmem_free(bcp);
1763                                 }
1764                         }
1765                         return 1;
1766                 }
1767                 prevp = bcp;
1768                 bcp = bcp->bc_next;
1769         }
1770         /*
1771          * We didn't find a corresponding entry in the table, so
1772          * return 0 so that the buffer is NOT cancelled.
1773          */
1774         ASSERT(!(flags & XFS_BLI_CANCEL));
1775         return 0;
1776 }
1777
1778 STATIC int
1779 xlog_recover_do_buffer_pass2(
1780         xlog_t                  *log,
1781         xfs_buf_log_format_t    *buf_f)
1782 {
1783         xfs_daddr_t             blkno = 0;
1784         ushort                  flags = 0;
1785         uint                    len = 0;
1786
1787         switch (buf_f->blf_type) {
1788         case XFS_LI_BUF:
1789                 blkno = buf_f->blf_blkno;
1790                 flags = buf_f->blf_flags;
1791                 len = buf_f->blf_len;
1792                 break;
1793         }
1794
1795         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1796 }
1797
1798 /*
1799  * Perform recovery for a buffer full of inodes.  In these buffers,
1800  * the only data which should be recovered is that which corresponds
1801  * to the di_next_unlinked pointers in the on disk inode structures.
1802  * The rest of the data for the inodes is always logged through the
1803  * inodes themselves rather than the inode buffer and is recovered
1804  * in xlog_recover_do_inode_trans().
1805  *
1806  * The only time when buffers full of inodes are fully recovered is
1807  * when the buffer is full of newly allocated inodes.  In this case
1808  * the buffer will not be marked as an inode buffer and so will be
1809  * sent to xlog_recover_do_reg_buffer() below during recovery.
1810  */
1811 STATIC int
1812 xlog_recover_do_inode_buffer(
1813         xfs_mount_t             *mp,
1814         xlog_recover_item_t     *item,
1815         xfs_buf_t               *bp,
1816         xfs_buf_log_format_t    *buf_f)
1817 {
1818         int                     i;
1819         int                     item_index;
1820         int                     bit;
1821         int                     nbits;
1822         int                     reg_buf_offset;
1823         int                     reg_buf_bytes;
1824         int                     next_unlinked_offset;
1825         int                     inodes_per_buf;
1826         xfs_agino_t             *logged_nextp;
1827         xfs_agino_t             *buffer_nextp;
1828         unsigned int            *data_map = NULL;
1829         unsigned int            map_size = 0;
1830
1831         trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1832
1833         switch (buf_f->blf_type) {
1834         case XFS_LI_BUF:
1835                 data_map = buf_f->blf_data_map;
1836                 map_size = buf_f->blf_map_size;
1837                 break;
1838         }
1839         /*
1840          * Set the variables corresponding to the current region to
1841          * 0 so that we'll initialize them on the first pass through
1842          * the loop.
1843          */
1844         reg_buf_offset = 0;
1845         reg_buf_bytes = 0;
1846         bit = 0;
1847         nbits = 0;
1848         item_index = 0;
1849         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1850         for (i = 0; i < inodes_per_buf; i++) {
1851                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1852                         offsetof(xfs_dinode_t, di_next_unlinked);
1853
1854                 while (next_unlinked_offset >=
1855                        (reg_buf_offset + reg_buf_bytes)) {
1856                         /*
1857                          * The next di_next_unlinked field is beyond
1858                          * the current logged region.  Find the next
1859                          * logged region that contains or is beyond
1860                          * the current di_next_unlinked field.
1861                          */
1862                         bit += nbits;
1863                         bit = xfs_next_bit(data_map, map_size, bit);
1864
1865                         /*
1866                          * If there are no more logged regions in the
1867                          * buffer, then we're done.
1868                          */
1869                         if (bit == -1) {
1870                                 return 0;
1871                         }
1872
1873                         nbits = xfs_contig_bits(data_map, map_size,
1874                                                          bit);
1875                         ASSERT(nbits > 0);
1876                         reg_buf_offset = bit << XFS_BLI_SHIFT;
1877                         reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1878                         item_index++;
1879                 }
1880
1881                 /*
1882                  * If the current logged region starts after the current
1883                  * di_next_unlinked field, then move on to the next
1884                  * di_next_unlinked field.
1885                  */
1886                 if (next_unlinked_offset < reg_buf_offset) {
1887                         continue;
1888                 }
1889
1890                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1891                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1892                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1893
1894                 /*
1895                  * The current logged region contains a copy of the
1896                  * current di_next_unlinked field.  Extract its value
1897                  * and copy it to the buffer copy.
1898                  */
1899                 logged_nextp = (xfs_agino_t *)
1900                                ((char *)(item->ri_buf[item_index].i_addr) +
1901                                 (next_unlinked_offset - reg_buf_offset));
1902                 if (unlikely(*logged_nextp == 0)) {
1903                         xfs_fs_cmn_err(CE_ALERT, mp,
1904                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1905                                 item, bp);
1906                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1907                                          XFS_ERRLEVEL_LOW, mp);
1908                         return XFS_ERROR(EFSCORRUPTED);
1909                 }
1910
1911                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1912                                               next_unlinked_offset);
1913                 *buffer_nextp = *logged_nextp;
1914         }
1915
1916         return 0;
1917 }
1918
1919 /*
1920  * Perform a 'normal' buffer recovery.  Each logged region of the
1921  * buffer should be copied over the corresponding region in the
1922  * given buffer.  The bitmap in the buf log format structure indicates
1923  * where to place the logged data.
1924  */
1925 /*ARGSUSED*/
1926 STATIC void
1927 xlog_recover_do_reg_buffer(
1928         struct xfs_mount        *mp,
1929         xlog_recover_item_t     *item,
1930         xfs_buf_t               *bp,
1931         xfs_buf_log_format_t    *buf_f)
1932 {
1933         int                     i;
1934         int                     bit;
1935         int                     nbits;
1936         unsigned int            *data_map = NULL;
1937         unsigned int            map_size = 0;
1938         int                     error;
1939
1940         trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1941
1942         switch (buf_f->blf_type) {
1943         case XFS_LI_BUF:
1944                 data_map = buf_f->blf_data_map;
1945                 map_size = buf_f->blf_map_size;
1946                 break;
1947         }
1948         bit = 0;
1949         i = 1;  /* 0 is the buf format structure */
1950         while (1) {
1951                 bit = xfs_next_bit(data_map, map_size, bit);
1952                 if (bit == -1)
1953                         break;
1954                 nbits = xfs_contig_bits(data_map, map_size, bit);
1955                 ASSERT(nbits > 0);
1956                 ASSERT(item->ri_buf[i].i_addr != NULL);
1957                 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1958                 ASSERT(XFS_BUF_COUNT(bp) >=
1959                        ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1960
1961                 /*
1962                  * Do a sanity check if this is a dquot buffer. Just checking
1963                  * the first dquot in the buffer should do. XXXThis is
1964                  * probably a good thing to do for other buf types also.
1965                  */
1966                 error = 0;
1967                 if (buf_f->blf_flags &
1968                    (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1969                         if (item->ri_buf[i].i_addr == NULL) {
1970                                 cmn_err(CE_ALERT,
1971                                         "XFS: NULL dquot in %s.", __func__);
1972                                 goto next;
1973                         }
1974                         if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1975                                 cmn_err(CE_ALERT,
1976                                         "XFS: dquot too small (%d) in %s.",
1977                                         item->ri_buf[i].i_len, __func__);
1978                                 goto next;
1979                         }
1980                         error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1981                                                item->ri_buf[i].i_addr,
1982                                                -1, 0, XFS_QMOPT_DOWARN,
1983                                                "dquot_buf_recover");
1984                         if (error)
1985                                 goto next;
1986                 }
1987
1988                 memcpy(xfs_buf_offset(bp,
1989                         (uint)bit << XFS_BLI_SHIFT),    /* dest */
1990                         item->ri_buf[i].i_addr,         /* source */
1991                         nbits<<XFS_BLI_SHIFT);          /* length */
1992  next:
1993                 i++;
1994                 bit += nbits;
1995         }
1996
1997         /* Shouldn't be any more regions */
1998         ASSERT(i == item->ri_total);
1999 }
2000
2001 /*
2002  * Do some primitive error checking on ondisk dquot data structures.
2003  */
2004 int
2005 xfs_qm_dqcheck(
2006         xfs_disk_dquot_t *ddq,
2007         xfs_dqid_t       id,
2008         uint             type,    /* used only when IO_dorepair is true */
2009         uint             flags,
2010         char             *str)
2011 {
2012         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
2013         int             errs = 0;
2014
2015         /*
2016          * We can encounter an uninitialized dquot buffer for 2 reasons:
2017          * 1. If we crash while deleting the quotainode(s), and those blks got
2018          *    used for user data. This is because we take the path of regular
2019          *    file deletion; however, the size field of quotainodes is never
2020          *    updated, so all the tricks that we play in itruncate_finish
2021          *    don't quite matter.
2022          *
2023          * 2. We don't play the quota buffers when there's a quotaoff logitem.
2024          *    But the allocation will be replayed so we'll end up with an
2025          *    uninitialized quota block.
2026          *
2027          * This is all fine; things are still consistent, and we haven't lost
2028          * any quota information. Just don't complain about bad dquot blks.
2029          */
2030         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2031                 if (flags & XFS_QMOPT_DOWARN)
2032                         cmn_err(CE_ALERT,
2033                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2034                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2035                 errs++;
2036         }
2037         if (ddq->d_version != XFS_DQUOT_VERSION) {
2038                 if (flags & XFS_QMOPT_DOWARN)
2039                         cmn_err(CE_ALERT,
2040                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2041                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
2042                 errs++;
2043         }
2044
2045         if (ddq->d_flags != XFS_DQ_USER &&
2046             ddq->d_flags != XFS_DQ_PROJ &&
2047             ddq->d_flags != XFS_DQ_GROUP) {
2048                 if (flags & XFS_QMOPT_DOWARN)
2049                         cmn_err(CE_ALERT,
2050                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2051                         str, id, ddq->d_flags);
2052                 errs++;
2053         }
2054
2055         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2056                 if (flags & XFS_QMOPT_DOWARN)
2057                         cmn_err(CE_ALERT,
2058                         "%s : ondisk-dquot 0x%p, ID mismatch: "
2059                         "0x%x expected, found id 0x%x",
2060                         str, ddq, id, be32_to_cpu(ddq->d_id));
2061                 errs++;
2062         }
2063
2064         if (!errs && ddq->d_id) {
2065                 if (ddq->d_blk_softlimit &&
2066                     be64_to_cpu(ddq->d_bcount) >=
2067                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2068                         if (!ddq->d_btimer) {
2069                                 if (flags & XFS_QMOPT_DOWARN)
2070                                         cmn_err(CE_ALERT,
2071                                         "%s : Dquot ID 0x%x (0x%p) "
2072                                         "BLK TIMER NOT STARTED",
2073                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2074                                 errs++;
2075                         }
2076                 }
2077                 if (ddq->d_ino_softlimit &&
2078                     be64_to_cpu(ddq->d_icount) >=
2079                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2080                         if (!ddq->d_itimer) {
2081                                 if (flags & XFS_QMOPT_DOWARN)
2082                                         cmn_err(CE_ALERT,
2083                                         "%s : Dquot ID 0x%x (0x%p) "
2084                                         "INODE TIMER NOT STARTED",
2085                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2086                                 errs++;
2087                         }
2088                 }
2089                 if (ddq->d_rtb_softlimit &&
2090                     be64_to_cpu(ddq->d_rtbcount) >=
2091                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2092                         if (!ddq->d_rtbtimer) {
2093                                 if (flags & XFS_QMOPT_DOWARN)
2094                                         cmn_err(CE_ALERT,
2095                                         "%s : Dquot ID 0x%x (0x%p) "
2096                                         "RTBLK TIMER NOT STARTED",
2097                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2098                                 errs++;
2099                         }
2100                 }
2101         }
2102
2103         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2104                 return errs;
2105
2106         if (flags & XFS_QMOPT_DOWARN)
2107                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2108
2109         /*
2110          * Typically, a repair is only requested by quotacheck.
2111          */
2112         ASSERT(id != -1);
2113         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2114         memset(d, 0, sizeof(xfs_dqblk_t));
2115
2116         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2117         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2118         d->dd_diskdq.d_flags = type;
2119         d->dd_diskdq.d_id = cpu_to_be32(id);
2120
2121         return errs;
2122 }
2123
2124 /*
2125  * Perform a dquot buffer recovery.
2126  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2127  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2128  * Else, treat it as a regular buffer and do recovery.
2129  */
2130 STATIC void
2131 xlog_recover_do_dquot_buffer(
2132         xfs_mount_t             *mp,
2133         xlog_t                  *log,
2134         xlog_recover_item_t     *item,
2135         xfs_buf_t               *bp,
2136         xfs_buf_log_format_t    *buf_f)
2137 {
2138         uint                    type;
2139
2140         trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2141
2142         /*
2143          * Filesystems are required to send in quota flags at mount time.
2144          */
2145         if (mp->m_qflags == 0) {
2146                 return;
2147         }
2148
2149         type = 0;
2150         if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2151                 type |= XFS_DQ_USER;
2152         if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2153                 type |= XFS_DQ_PROJ;
2154         if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2155                 type |= XFS_DQ_GROUP;
2156         /*
2157          * This type of quotas was turned off, so ignore this buffer
2158          */
2159         if (log->l_quotaoffs_flag & type)
2160                 return;
2161
2162         xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2163 }
2164
2165 /*
2166  * This routine replays a modification made to a buffer at runtime.
2167  * There are actually two types of buffer, regular and inode, which
2168  * are handled differently.  Inode buffers are handled differently
2169  * in that we only recover a specific set of data from them, namely
2170  * the inode di_next_unlinked fields.  This is because all other inode
2171  * data is actually logged via inode records and any data we replay
2172  * here which overlaps that may be stale.
2173  *
2174  * When meta-data buffers are freed at run time we log a buffer item
2175  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2176  * of the buffer in the log should not be replayed at recovery time.
2177  * This is so that if the blocks covered by the buffer are reused for
2178  * file data before we crash we don't end up replaying old, freed
2179  * meta-data into a user's file.
2180  *
2181  * To handle the cancellation of buffer log items, we make two passes
2182  * over the log during recovery.  During the first we build a table of
2183  * those buffers which have been cancelled, and during the second we
2184  * only replay those buffers which do not have corresponding cancel
2185  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2186  * for more details on the implementation of the table of cancel records.
2187  */
2188 STATIC int
2189 xlog_recover_do_buffer_trans(
2190         xlog_t                  *log,
2191         xlog_recover_item_t     *item,
2192         int                     pass)
2193 {
2194         xfs_buf_log_format_t    *buf_f;
2195         xfs_mount_t             *mp;
2196         xfs_buf_t               *bp;
2197         int                     error;
2198         int                     cancel;
2199         xfs_daddr_t             blkno;
2200         int                     len;
2201         ushort                  flags;
2202         uint                    buf_flags;
2203
2204         buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2205
2206         if (pass == XLOG_RECOVER_PASS1) {
2207                 /*
2208                  * In this pass we're only looking for buf items
2209                  * with the XFS_BLI_CANCEL bit set.
2210                  */
2211                 xlog_recover_do_buffer_pass1(log, buf_f);
2212                 return 0;
2213         } else {
2214                 /*
2215                  * In this pass we want to recover all the buffers
2216                  * which have not been cancelled and are not
2217                  * cancellation buffers themselves.  The routine
2218                  * we call here will tell us whether or not to
2219                  * continue with the replay of this buffer.
2220                  */
2221                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2222                 if (cancel) {
2223                         trace_xfs_log_recover_buf_cancel(log, buf_f);
2224                         return 0;
2225                 }
2226         }
2227         trace_xfs_log_recover_buf_recover(log, buf_f);
2228         switch (buf_f->blf_type) {
2229         case XFS_LI_BUF:
2230                 blkno = buf_f->blf_blkno;
2231                 len = buf_f->blf_len;
2232                 flags = buf_f->blf_flags;
2233                 break;
2234         default:
2235                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2236                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2237                         buf_f->blf_type, log->l_mp->m_logname ?
2238                         log->l_mp->m_logname : "internal");
2239                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2240                                  XFS_ERRLEVEL_LOW, log->l_mp);
2241                 return XFS_ERROR(EFSCORRUPTED);
2242         }
2243
2244         mp = log->l_mp;
2245         buf_flags = XBF_LOCK;
2246         if (!(flags & XFS_BLI_INODE_BUF))
2247                 buf_flags |= XBF_MAPPED;
2248
2249         bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2250         if (XFS_BUF_ISERROR(bp)) {
2251                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2252                                   bp, blkno);
2253                 error = XFS_BUF_GETERROR(bp);
2254                 xfs_buf_relse(bp);
2255                 return error;
2256         }
2257
2258         error = 0;
2259         if (flags & XFS_BLI_INODE_BUF) {
2260                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2261         } else if (flags &
2262                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2263                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2264         } else {
2265                 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2266         }
2267         if (error)
2268                 return XFS_ERROR(error);
2269
2270         /*
2271          * Perform delayed write on the buffer.  Asynchronous writes will be
2272          * slower when taking into account all the buffers to be flushed.
2273          *
2274          * Also make sure that only inode buffers with good sizes stay in
2275          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2276          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2277          * buffers in the log can be a different size if the log was generated
2278          * by an older kernel using unclustered inode buffers or a newer kernel
2279          * running with a different inode cluster size.  Regardless, if the
2280          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2281          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2282          * the buffer out of the buffer cache so that the buffer won't
2283          * overlap with future reads of those inodes.
2284          */
2285         if (XFS_DINODE_MAGIC ==
2286             be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2287             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2288                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2289                 XFS_BUF_STALE(bp);
2290                 error = xfs_bwrite(mp, bp);
2291         } else {
2292                 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2293                 bp->b_mount = mp;
2294                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2295                 xfs_bdwrite(mp, bp);
2296         }
2297
2298         return (error);
2299 }
2300
2301 STATIC int
2302 xlog_recover_do_inode_trans(
2303         xlog_t                  *log,
2304         xlog_recover_item_t     *item,
2305         int                     pass)
2306 {
2307         xfs_inode_log_format_t  *in_f;
2308         xfs_mount_t             *mp;
2309         xfs_buf_t               *bp;
2310         xfs_dinode_t            *dip;
2311         xfs_ino_t               ino;
2312         int                     len;
2313         xfs_caddr_t             src;
2314         xfs_caddr_t             dest;
2315         int                     error;
2316         int                     attr_index;
2317         uint                    fields;
2318         xfs_icdinode_t          *dicp;
2319         int                     need_free = 0;
2320
2321         if (pass == XLOG_RECOVER_PASS1) {
2322                 return 0;
2323         }
2324
2325         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2326                 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2327         } else {
2328                 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2329                         sizeof(xfs_inode_log_format_t), KM_SLEEP);
2330                 need_free = 1;
2331                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2332                 if (error)
2333                         goto error;
2334         }
2335         ino = in_f->ilf_ino;
2336         mp = log->l_mp;
2337
2338         /*
2339          * Inode buffers can be freed, look out for it,
2340          * and do not replay the inode.
2341          */
2342         if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2343                                         in_f->ilf_len, 0)) {
2344                 error = 0;
2345                 trace_xfs_log_recover_inode_cancel(log, in_f);
2346                 goto error;
2347         }
2348         trace_xfs_log_recover_inode_recover(log, in_f);
2349
2350         bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2351                           XBF_LOCK);
2352         if (XFS_BUF_ISERROR(bp)) {
2353                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2354                                   bp, in_f->ilf_blkno);
2355                 error = XFS_BUF_GETERROR(bp);
2356                 xfs_buf_relse(bp);
2357                 goto error;
2358         }
2359         error = 0;
2360         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2361         dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2362
2363         /*
2364          * Make sure the place we're flushing out to really looks
2365          * like an inode!
2366          */
2367         if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2368                 xfs_buf_relse(bp);
2369                 xfs_fs_cmn_err(CE_ALERT, mp,
2370                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2371                         dip, bp, ino);
2372                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2373                                  XFS_ERRLEVEL_LOW, mp);
2374                 error = EFSCORRUPTED;
2375                 goto error;
2376         }
2377         dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2378         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2379                 xfs_buf_relse(bp);
2380                 xfs_fs_cmn_err(CE_ALERT, mp,
2381                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2382                         item, ino);
2383                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2384                                  XFS_ERRLEVEL_LOW, mp);
2385                 error = EFSCORRUPTED;
2386                 goto error;
2387         }
2388
2389         /* Skip replay when the on disk inode is newer than the log one */
2390         if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2391                 /*
2392                  * Deal with the wrap case, DI_MAX_FLUSH is less
2393                  * than smaller numbers
2394                  */
2395                 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2396                     dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2397                         /* do nothing */
2398                 } else {
2399                         xfs_buf_relse(bp);
2400                         trace_xfs_log_recover_inode_skip(log, in_f);
2401                         error = 0;
2402                         goto error;
2403                 }
2404         }
2405         /* Take the opportunity to reset the flush iteration count */
2406         dicp->di_flushiter = 0;
2407
2408         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2409                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2410                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2411                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2412                                          XFS_ERRLEVEL_LOW, mp, dicp);
2413                         xfs_buf_relse(bp);
2414                         xfs_fs_cmn_err(CE_ALERT, mp,
2415                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2416                                 item, dip, bp, ino);
2417                         error = EFSCORRUPTED;
2418                         goto error;
2419                 }
2420         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2421                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2422                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2423                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2424                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2425                                              XFS_ERRLEVEL_LOW, mp, dicp);
2426                         xfs_buf_relse(bp);
2427                         xfs_fs_cmn_err(CE_ALERT, mp,
2428                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2429                                 item, dip, bp, ino);
2430                         error = EFSCORRUPTED;
2431                         goto error;
2432                 }
2433         }
2434         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2435                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2436                                      XFS_ERRLEVEL_LOW, mp, dicp);
2437                 xfs_buf_relse(bp);
2438                 xfs_fs_cmn_err(CE_ALERT, mp,
2439                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2440                         item, dip, bp, ino,
2441                         dicp->di_nextents + dicp->di_anextents,
2442                         dicp->di_nblocks);
2443                 error = EFSCORRUPTED;
2444                 goto error;
2445         }
2446         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2447                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2448                                      XFS_ERRLEVEL_LOW, mp, dicp);
2449                 xfs_buf_relse(bp);
2450                 xfs_fs_cmn_err(CE_ALERT, mp,
2451                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2452                         item, dip, bp, ino, dicp->di_forkoff);
2453                 error = EFSCORRUPTED;
2454                 goto error;
2455         }
2456         if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2457                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2458                                      XFS_ERRLEVEL_LOW, mp, dicp);
2459                 xfs_buf_relse(bp);
2460                 xfs_fs_cmn_err(CE_ALERT, mp,
2461                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2462                         item->ri_buf[1].i_len, item);
2463                 error = EFSCORRUPTED;
2464                 goto error;
2465         }
2466
2467         /* The core is in in-core format */
2468         xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2469
2470         /* the rest is in on-disk format */
2471         if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2472                 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2473                         item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2474                         item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2475         }
2476
2477         fields = in_f->ilf_fields;
2478         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2479         case XFS_ILOG_DEV:
2480                 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2481                 break;
2482         case XFS_ILOG_UUID:
2483                 memcpy(XFS_DFORK_DPTR(dip),
2484                        &in_f->ilf_u.ilfu_uuid,
2485                        sizeof(uuid_t));
2486                 break;
2487         }
2488
2489         if (in_f->ilf_size == 2)
2490                 goto write_inode_buffer;
2491         len = item->ri_buf[2].i_len;
2492         src = item->ri_buf[2].i_addr;
2493         ASSERT(in_f->ilf_size <= 4);
2494         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2495         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2496                (len == in_f->ilf_dsize));
2497
2498         switch (fields & XFS_ILOG_DFORK) {
2499         case XFS_ILOG_DDATA:
2500         case XFS_ILOG_DEXT:
2501                 memcpy(XFS_DFORK_DPTR(dip), src, len);
2502                 break;
2503
2504         case XFS_ILOG_DBROOT:
2505                 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2506                                  (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2507                                  XFS_DFORK_DSIZE(dip, mp));
2508                 break;
2509
2510         default:
2511                 /*
2512                  * There are no data fork flags set.
2513                  */
2514                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2515                 break;
2516         }
2517
2518         /*
2519          * If we logged any attribute data, recover it.  There may or
2520          * may not have been any other non-core data logged in this
2521          * transaction.
2522          */
2523         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2524                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2525                         attr_index = 3;
2526                 } else {
2527                         attr_index = 2;
2528                 }
2529                 len = item->ri_buf[attr_index].i_len;
2530                 src = item->ri_buf[attr_index].i_addr;
2531                 ASSERT(len == in_f->ilf_asize);
2532
2533                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2534                 case XFS_ILOG_ADATA:
2535                 case XFS_ILOG_AEXT:
2536                         dest = XFS_DFORK_APTR(dip);
2537                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2538                         memcpy(dest, src, len);
2539                         break;
2540
2541                 case XFS_ILOG_ABROOT:
2542                         dest = XFS_DFORK_APTR(dip);
2543                         xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2544                                          len, (xfs_bmdr_block_t*)dest,
2545                                          XFS_DFORK_ASIZE(dip, mp));
2546                         break;
2547
2548                 default:
2549                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2550                         ASSERT(0);
2551                         xfs_buf_relse(bp);
2552                         error = EIO;
2553                         goto error;
2554                 }
2555         }
2556
2557 write_inode_buffer:
2558         ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2559         bp->b_mount = mp;
2560         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2561         xfs_bdwrite(mp, bp);
2562 error:
2563         if (need_free)
2564                 kmem_free(in_f);
2565         return XFS_ERROR(error);
2566 }
2567
2568 /*
2569  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2570  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2571  * of that type.
2572  */
2573 STATIC int
2574 xlog_recover_do_quotaoff_trans(
2575         xlog_t                  *log,
2576         xlog_recover_item_t     *item,
2577         int                     pass)
2578 {
2579         xfs_qoff_logformat_t    *qoff_f;
2580
2581         if (pass == XLOG_RECOVER_PASS2) {
2582                 return (0);
2583         }
2584
2585         qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2586         ASSERT(qoff_f);
2587
2588         /*
2589          * The logitem format's flag tells us if this was user quotaoff,
2590          * group/project quotaoff or both.
2591          */
2592         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2593                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2594         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2595                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2596         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2597                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2598
2599         return (0);
2600 }
2601
2602 /*
2603  * Recover a dquot record
2604  */
2605 STATIC int
2606 xlog_recover_do_dquot_trans(
2607         xlog_t                  *log,
2608         xlog_recover_item_t     *item,
2609         int                     pass)
2610 {
2611         xfs_mount_t             *mp;
2612         xfs_buf_t               *bp;
2613         struct xfs_disk_dquot   *ddq, *recddq;
2614         int                     error;
2615         xfs_dq_logformat_t      *dq_f;
2616         uint                    type;
2617
2618         if (pass == XLOG_RECOVER_PASS1) {
2619                 return 0;
2620         }
2621         mp = log->l_mp;
2622
2623         /*
2624          * Filesystems are required to send in quota flags at mount time.
2625          */
2626         if (mp->m_qflags == 0)
2627                 return (0);
2628
2629         recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2630
2631         if (item->ri_buf[1].i_addr == NULL) {
2632                 cmn_err(CE_ALERT,
2633                         "XFS: NULL dquot in %s.", __func__);
2634                 return XFS_ERROR(EIO);
2635         }
2636         if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2637                 cmn_err(CE_ALERT,
2638                         "XFS: dquot too small (%d) in %s.",
2639                         item->ri_buf[1].i_len, __func__);
2640                 return XFS_ERROR(EIO);
2641         }
2642
2643         /*
2644          * This type of quotas was turned off, so ignore this record.
2645          */
2646         type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2647         ASSERT(type);
2648         if (log->l_quotaoffs_flag & type)
2649                 return (0);
2650
2651         /*
2652          * At this point we know that quota was _not_ turned off.
2653          * Since the mount flags are not indicating to us otherwise, this
2654          * must mean that quota is on, and the dquot needs to be replayed.
2655          * Remember that we may not have fully recovered the superblock yet,
2656          * so we can't do the usual trick of looking at the SB quota bits.
2657          *
2658          * The other possibility, of course, is that the quota subsystem was
2659          * removed since the last mount - ENOSYS.
2660          */
2661         dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2662         ASSERT(dq_f);
2663         if ((error = xfs_qm_dqcheck(recddq,
2664                            dq_f->qlf_id,
2665                            0, XFS_QMOPT_DOWARN,
2666                            "xlog_recover_do_dquot_trans (log copy)"))) {
2667                 return XFS_ERROR(EIO);
2668         }
2669         ASSERT(dq_f->qlf_len == 1);
2670
2671         error = xfs_read_buf(mp, mp->m_ddev_targp,
2672                              dq_f->qlf_blkno,
2673                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2674                              0, &bp);
2675         if (error) {
2676                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2677                                   bp, dq_f->qlf_blkno);
2678                 return error;
2679         }
2680         ASSERT(bp);
2681         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2682
2683         /*
2684          * At least the magic num portion should be on disk because this
2685          * was among a chunk of dquots created earlier, and we did some
2686          * minimal initialization then.
2687          */
2688         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2689                            "xlog_recover_do_dquot_trans")) {
2690                 xfs_buf_relse(bp);
2691                 return XFS_ERROR(EIO);
2692         }
2693
2694         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2695
2696         ASSERT(dq_f->qlf_size == 2);
2697         ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2698         bp->b_mount = mp;
2699         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2700         xfs_bdwrite(mp, bp);
2701
2702         return (0);
2703 }
2704
2705 /*
2706  * This routine is called to create an in-core extent free intent
2707  * item from the efi format structure which was logged on disk.
2708  * It allocates an in-core efi, copies the extents from the format
2709  * structure into it, and adds the efi to the AIL with the given
2710  * LSN.
2711  */
2712 STATIC int
2713 xlog_recover_do_efi_trans(
2714         xlog_t                  *log,
2715         xlog_recover_item_t     *item,
2716         xfs_lsn_t               lsn,
2717         int                     pass)
2718 {
2719         int                     error;
2720         xfs_mount_t             *mp;
2721         xfs_efi_log_item_t      *efip;
2722         xfs_efi_log_format_t    *efi_formatp;
2723
2724         if (pass == XLOG_RECOVER_PASS1) {
2725                 return 0;
2726         }
2727
2728         efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2729
2730         mp = log->l_mp;
2731         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2732         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2733                                          &(efip->efi_format)))) {
2734                 xfs_efi_item_free(efip);
2735                 return error;
2736         }
2737         efip->efi_next_extent = efi_formatp->efi_nextents;
2738         efip->efi_flags |= XFS_EFI_COMMITTED;
2739
2740         spin_lock(&log->l_ailp->xa_lock);
2741         /*
2742          * xfs_trans_ail_update() drops the AIL lock.
2743          */
2744         xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2745         return 0;
2746 }
2747
2748
2749 /*
2750  * This routine is called when an efd format structure is found in
2751  * a committed transaction in the log.  It's purpose is to cancel
2752  * the corresponding efi if it was still in the log.  To do this
2753  * it searches the AIL for the efi with an id equal to that in the
2754  * efd format structure.  If we find it, we remove the efi from the
2755  * AIL and free it.
2756  */
2757 STATIC void
2758 xlog_recover_do_efd_trans(
2759         xlog_t                  *log,
2760         xlog_recover_item_t     *item,
2761         int                     pass)
2762 {
2763         xfs_efd_log_format_t    *efd_formatp;
2764         xfs_efi_log_item_t      *efip = NULL;
2765         xfs_log_item_t          *lip;
2766         __uint64_t              efi_id;
2767         struct xfs_ail_cursor   cur;
2768         struct xfs_ail          *ailp = log->l_ailp;
2769
2770         if (pass == XLOG_RECOVER_PASS1) {
2771                 return;
2772         }
2773
2774         efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2775         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2776                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2777                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2778                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2779         efi_id = efd_formatp->efd_efi_id;
2780
2781         /*
2782          * Search for the efi with the id in the efd format structure
2783          * in the AIL.
2784          */
2785         spin_lock(&ailp->xa_lock);
2786         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2787         while (lip != NULL) {
2788                 if (lip->li_type == XFS_LI_EFI) {
2789                         efip = (xfs_efi_log_item_t *)lip;
2790                         if (efip->efi_format.efi_id == efi_id) {
2791                                 /*
2792                                  * xfs_trans_ail_delete() drops the
2793                                  * AIL lock.
2794                                  */
2795                                 xfs_trans_ail_delete(ailp, lip);
2796                                 xfs_efi_item_free(efip);
2797                                 spin_lock(&ailp->xa_lock);
2798                                 break;
2799                         }
2800                 }
2801                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2802         }
2803         xfs_trans_ail_cursor_done(ailp, &cur);
2804         spin_unlock(&ailp->xa_lock);
2805 }
2806
2807 /*
2808  * Perform the transaction
2809  *
2810  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2811  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2812  */
2813 STATIC int
2814 xlog_recover_do_trans(
2815         xlog_t                  *log,
2816         xlog_recover_t          *trans,
2817         int                     pass)
2818 {
2819         int                     error = 0;
2820         xlog_recover_item_t     *item;
2821
2822         error = xlog_recover_reorder_trans(log, trans, pass);
2823         if (error)
2824                 return error;
2825
2826         list_for_each_entry(item, &trans->r_itemq, ri_list) {
2827                 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2828                 switch (ITEM_TYPE(item)) {
2829                 case XFS_LI_BUF:
2830                         error = xlog_recover_do_buffer_trans(log, item, pass);
2831                         break;
2832                 case XFS_LI_INODE:
2833                         error = xlog_recover_do_inode_trans(log, item, pass);
2834                         break;
2835                 case XFS_LI_EFI:
2836                         error = xlog_recover_do_efi_trans(log, item,
2837                                                           trans->r_lsn, pass);
2838                         break;
2839                 case XFS_LI_EFD:
2840                         xlog_recover_do_efd_trans(log, item, pass);
2841                         error = 0;
2842                         break;
2843                 case XFS_LI_DQUOT:
2844                         error = xlog_recover_do_dquot_trans(log, item, pass);
2845                         break;
2846                 case XFS_LI_QUOTAOFF:
2847                         error = xlog_recover_do_quotaoff_trans(log, item,
2848                                                                pass);
2849                         break;
2850                 default:
2851                         xlog_warn(
2852         "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2853                         ASSERT(0);
2854                         error = XFS_ERROR(EIO);
2855                         break;
2856                 }
2857
2858                 if (error)
2859                         return error;
2860         }
2861
2862         return 0;
2863 }
2864
2865 /*
2866  * Free up any resources allocated by the transaction
2867  *
2868  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2869  */
2870 STATIC void
2871 xlog_recover_free_trans(
2872         xlog_recover_t          *trans)
2873 {
2874         xlog_recover_item_t     *item, *n;
2875         int                     i;
2876
2877         list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2878                 /* Free the regions in the item. */
2879                 list_del(&item->ri_list);
2880                 for (i = 0; i < item->ri_cnt; i++)
2881                         kmem_free(item->ri_buf[i].i_addr);
2882                 /* Free the item itself */
2883                 kmem_free(item->ri_buf);
2884                 kmem_free(item);
2885         }
2886         /* Free the transaction recover structure */
2887         kmem_free(trans);
2888 }
2889
2890 STATIC int
2891 xlog_recover_commit_trans(
2892         xlog_t                  *log,
2893         xlog_recover_t          *trans,
2894         int                     pass)
2895 {
2896         int                     error;
2897
2898         hlist_del(&trans->r_list);
2899         if ((error = xlog_recover_do_trans(log, trans, pass)))
2900                 return error;
2901         xlog_recover_free_trans(trans);                 /* no error */
2902         return 0;
2903 }
2904
2905 STATIC int
2906 xlog_recover_unmount_trans(
2907         xlog_recover_t          *trans)
2908 {
2909         /* Do nothing now */
2910         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2911         return 0;
2912 }
2913
2914 /*
2915  * There are two valid states of the r_state field.  0 indicates that the
2916  * transaction structure is in a normal state.  We have either seen the
2917  * start of the transaction or the last operation we added was not a partial
2918  * operation.  If the last operation we added to the transaction was a
2919  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2920  *
2921  * NOTE: skip LRs with 0 data length.
2922  */
2923 STATIC int
2924 xlog_recover_process_data(
2925         xlog_t                  *log,
2926         struct hlist_head       rhash[],
2927         xlog_rec_header_t       *rhead,
2928         xfs_caddr_t             dp,
2929         int                     pass)
2930 {
2931         xfs_caddr_t             lp;
2932         int                     num_logops;
2933         xlog_op_header_t        *ohead;
2934         xlog_recover_t          *trans;
2935         xlog_tid_t              tid;
2936         int                     error;
2937         unsigned long           hash;
2938         uint                    flags;
2939
2940         lp = dp + be32_to_cpu(rhead->h_len);
2941         num_logops = be32_to_cpu(rhead->h_num_logops);
2942
2943         /* check the log format matches our own - else we can't recover */
2944         if (xlog_header_check_recover(log->l_mp, rhead))
2945                 return (XFS_ERROR(EIO));
2946
2947         while ((dp < lp) && num_logops) {
2948                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2949                 ohead = (xlog_op_header_t *)dp;
2950                 dp += sizeof(xlog_op_header_t);
2951                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2952                     ohead->oh_clientid != XFS_LOG) {
2953                         xlog_warn(
2954                 "XFS: xlog_recover_process_data: bad clientid");
2955                         ASSERT(0);
2956                         return (XFS_ERROR(EIO));
2957                 }
2958                 tid = be32_to_cpu(ohead->oh_tid);
2959                 hash = XLOG_RHASH(tid);
2960                 trans = xlog_recover_find_tid(&rhash[hash], tid);
2961                 if (trans == NULL) {               /* not found; add new tid */
2962                         if (ohead->oh_flags & XLOG_START_TRANS)
2963                                 xlog_recover_new_tid(&rhash[hash], tid,
2964                                         be64_to_cpu(rhead->h_lsn));
2965                 } else {
2966                         if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2967                                 xlog_warn(
2968                         "XFS: xlog_recover_process_data: bad length");
2969                                 WARN_ON(1);
2970                                 return (XFS_ERROR(EIO));
2971                         }
2972                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2973                         if (flags & XLOG_WAS_CONT_TRANS)
2974                                 flags &= ~XLOG_CONTINUE_TRANS;
2975                         switch (flags) {
2976                         case XLOG_COMMIT_TRANS:
2977                                 error = xlog_recover_commit_trans(log,
2978                                                                 trans, pass);
2979                                 break;
2980                         case XLOG_UNMOUNT_TRANS:
2981                                 error = xlog_recover_unmount_trans(trans);
2982                                 break;
2983                         case XLOG_WAS_CONT_TRANS:
2984                                 error = xlog_recover_add_to_cont_trans(log,
2985                                                 trans, dp,
2986                                                 be32_to_cpu(ohead->oh_len));
2987                                 break;
2988                         case XLOG_START_TRANS:
2989                                 xlog_warn(
2990                         "XFS: xlog_recover_process_data: bad transaction");
2991                                 ASSERT(0);
2992                                 error = XFS_ERROR(EIO);
2993                                 break;
2994                         case 0:
2995                         case XLOG_CONTINUE_TRANS:
2996                                 error = xlog_recover_add_to_trans(log, trans,
2997                                                 dp, be32_to_cpu(ohead->oh_len));
2998                                 break;
2999                         default:
3000                                 xlog_warn(
3001                         "XFS: xlog_recover_process_data: bad flag");
3002                                 ASSERT(0);
3003                                 error = XFS_ERROR(EIO);
3004                                 break;
3005                         }
3006                         if (error)
3007                                 return error;
3008                 }
3009                 dp += be32_to_cpu(ohead->oh_len);
3010                 num_logops--;
3011         }
3012         return 0;
3013 }
3014
3015 /*
3016  * Process an extent free intent item that was recovered from
3017  * the log.  We need to free the extents that it describes.
3018  */
3019 STATIC int
3020 xlog_recover_process_efi(
3021         xfs_mount_t             *mp,
3022         xfs_efi_log_item_t      *efip)
3023 {
3024         xfs_efd_log_item_t      *efdp;
3025         xfs_trans_t             *tp;
3026         int                     i;
3027         int                     error = 0;
3028         xfs_extent_t            *extp;
3029         xfs_fsblock_t           startblock_fsb;
3030
3031         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3032
3033         /*
3034          * First check the validity of the extents described by the
3035          * EFI.  If any are bad, then assume that all are bad and
3036          * just toss the EFI.
3037          */
3038         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3039                 extp = &(efip->efi_format.efi_extents[i]);
3040                 startblock_fsb = XFS_BB_TO_FSB(mp,
3041                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
3042                 if ((startblock_fsb == 0) ||
3043                     (extp->ext_len == 0) ||
3044                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3045                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3046                         /*
3047                          * This will pull the EFI from the AIL and
3048                          * free the memory associated with it.
3049                          */
3050                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
3051                         return XFS_ERROR(EIO);
3052                 }
3053         }
3054
3055         tp = xfs_trans_alloc(mp, 0);
3056         error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3057         if (error)
3058                 goto abort_error;
3059         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3060
3061         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3062                 extp = &(efip->efi_format.efi_extents[i]);
3063                 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3064                 if (error)
3065                         goto abort_error;
3066                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3067                                          extp->ext_len);
3068         }
3069
3070         efip->efi_flags |= XFS_EFI_RECOVERED;
3071         error = xfs_trans_commit(tp, 0);
3072         return error;
3073
3074 abort_error:
3075         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3076         return error;
3077 }
3078
3079 /*
3080  * When this is called, all of the EFIs which did not have
3081  * corresponding EFDs should be in the AIL.  What we do now
3082  * is free the extents associated with each one.
3083  *
3084  * Since we process the EFIs in normal transactions, they
3085  * will be removed at some point after the commit.  This prevents
3086  * us from just walking down the list processing each one.
3087  * We'll use a flag in the EFI to skip those that we've already
3088  * processed and use the AIL iteration mechanism's generation
3089  * count to try to speed this up at least a bit.
3090  *
3091  * When we start, we know that the EFIs are the only things in
3092  * the AIL.  As we process them, however, other items are added
3093  * to the AIL.  Since everything added to the AIL must come after
3094  * everything already in the AIL, we stop processing as soon as
3095  * we see something other than an EFI in the AIL.
3096  */
3097 STATIC int
3098 xlog_recover_process_efis(
3099         xlog_t                  *log)
3100 {
3101         xfs_log_item_t          *lip;
3102         xfs_efi_log_item_t      *efip;
3103         int                     error = 0;
3104         struct xfs_ail_cursor   cur;
3105         struct xfs_ail          *ailp;
3106
3107         ailp = log->l_ailp;
3108         spin_lock(&ailp->xa_lock);
3109         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3110         while (lip != NULL) {
3111                 /*
3112                  * We're done when we see something other than an EFI.
3113                  * There should be no EFIs left in the AIL now.
3114                  */
3115                 if (lip->li_type != XFS_LI_EFI) {
3116 #ifdef DEBUG
3117                         for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3118                                 ASSERT(lip->li_type != XFS_LI_EFI);
3119 #endif
3120                         break;
3121                 }
3122
3123                 /*
3124                  * Skip EFIs that we've already processed.
3125                  */
3126                 efip = (xfs_efi_log_item_t *)lip;
3127                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3128                         lip = xfs_trans_ail_cursor_next(ailp, &cur);
3129                         continue;
3130                 }
3131
3132                 spin_unlock(&ailp->xa_lock);
3133                 error = xlog_recover_process_efi(log->l_mp, efip);
3134                 spin_lock(&ailp->xa_lock);
3135                 if (error)
3136                         goto out;
3137                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3138         }
3139 out:
3140         xfs_trans_ail_cursor_done(ailp, &cur);
3141         spin_unlock(&ailp->xa_lock);
3142         return error;
3143 }
3144
3145 /*
3146  * This routine performs a transaction to null out a bad inode pointer
3147  * in an agi unlinked inode hash bucket.
3148  */
3149 STATIC void
3150 xlog_recover_clear_agi_bucket(
3151         xfs_mount_t     *mp,
3152         xfs_agnumber_t  agno,
3153         int             bucket)
3154 {
3155         xfs_trans_t     *tp;
3156         xfs_agi_t       *agi;
3157         xfs_buf_t       *agibp;
3158         int             offset;
3159         int             error;
3160
3161         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3162         error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3163                                   0, 0, 0);
3164         if (error)
3165                 goto out_abort;
3166
3167         error = xfs_read_agi(mp, tp, agno, &agibp);
3168         if (error)
3169                 goto out_abort;
3170
3171         agi = XFS_BUF_TO_AGI(agibp);
3172         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3173         offset = offsetof(xfs_agi_t, agi_unlinked) +
3174                  (sizeof(xfs_agino_t) * bucket);
3175         xfs_trans_log_buf(tp, agibp, offset,
3176                           (offset + sizeof(xfs_agino_t) - 1));
3177
3178         error = xfs_trans_commit(tp, 0);
3179         if (error)
3180                 goto out_error;
3181         return;
3182
3183 out_abort:
3184         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3185 out_error:
3186         xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3187                         "failed to clear agi %d. Continuing.", agno);
3188         return;
3189 }
3190
3191 STATIC xfs_agino_t
3192 xlog_recover_process_one_iunlink(
3193         struct xfs_mount                *mp,
3194         xfs_agnumber_t                  agno,
3195         xfs_agino_t                     agino,
3196         int                             bucket)
3197 {
3198         struct xfs_buf                  *ibp;
3199         struct xfs_dinode               *dip;
3200         struct xfs_inode                *ip;
3201         xfs_ino_t                       ino;
3202         int                             error;
3203
3204         ino = XFS_AGINO_TO_INO(mp, agno, agino);
3205         error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3206         if (error)
3207                 goto fail;
3208
3209         /*
3210          * Get the on disk inode to find the next inode in the bucket.
3211          */
3212         error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3213         if (error)
3214                 goto fail_iput;
3215
3216         ASSERT(ip->i_d.di_nlink == 0);
3217         ASSERT(ip->i_d.di_mode != 0);
3218
3219         /* setup for the next pass */
3220         agino = be32_to_cpu(dip->di_next_unlinked);
3221         xfs_buf_relse(ibp);
3222
3223         /*
3224          * Prevent any DMAPI event from being sent when the reference on
3225          * the inode is dropped.
3226          */
3227         ip->i_d.di_dmevmask = 0;
3228
3229         IRELE(ip);
3230         return agino;
3231
3232  fail_iput:
3233         IRELE(ip);
3234  fail:
3235         /*
3236          * We can't read in the inode this bucket points to, or this inode
3237          * is messed up.  Just ditch this bucket of inodes.  We will lose
3238          * some inodes and space, but at least we won't hang.
3239          *
3240          * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3241          * clear the inode pointer in the bucket.
3242          */
3243         xlog_recover_clear_agi_bucket(mp, agno, bucket);
3244         return NULLAGINO;
3245 }
3246
3247 /*
3248  * xlog_iunlink_recover
3249  *
3250  * This is called during recovery to process any inodes which
3251  * we unlinked but not freed when the system crashed.  These
3252  * inodes will be on the lists in the AGI blocks.  What we do
3253  * here is scan all the AGIs and fully truncate and free any
3254  * inodes found on the lists.  Each inode is removed from the
3255  * lists when it has been fully truncated and is freed.  The
3256  * freeing of the inode and its removal from the list must be
3257  * atomic.
3258  */
3259 STATIC void
3260 xlog_recover_process_iunlinks(
3261         xlog_t          *log)
3262 {
3263         xfs_mount_t     *mp;
3264         xfs_agnumber_t  agno;
3265         xfs_agi_t       *agi;
3266         xfs_buf_t       *agibp;
3267         xfs_agino_t     agino;
3268         int             bucket;
3269         int             error;
3270         uint            mp_dmevmask;
3271
3272         mp = log->l_mp;
3273
3274         /*
3275          * Prevent any DMAPI event from being sent while in this function.
3276          */
3277         mp_dmevmask = mp->m_dmevmask;
3278         mp->m_dmevmask = 0;
3279
3280         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3281                 /*
3282                  * Find the agi for this ag.
3283                  */
3284                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3285                 if (error) {
3286                         /*
3287                          * AGI is b0rked. Don't process it.
3288                          *
3289                          * We should probably mark the filesystem as corrupt
3290                          * after we've recovered all the ag's we can....
3291                          */
3292                         continue;
3293                 }
3294                 agi = XFS_BUF_TO_AGI(agibp);
3295
3296                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3297                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3298                         while (agino != NULLAGINO) {
3299                                 /*
3300                                  * Release the agi buffer so that it can
3301                                  * be acquired in the normal course of the
3302                                  * transaction to truncate and free the inode.
3303                                  */
3304                                 xfs_buf_relse(agibp);
3305
3306                                 agino = xlog_recover_process_one_iunlink(mp,
3307                                                         agno, agino, bucket);
3308
3309                                 /*
3310                                  * Reacquire the agibuffer and continue around
3311                                  * the loop. This should never fail as we know
3312                                  * the buffer was good earlier on.
3313                                  */
3314                                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3315                                 ASSERT(error == 0);
3316                                 agi = XFS_BUF_TO_AGI(agibp);
3317                         }
3318                 }
3319
3320                 /*
3321                  * Release the buffer for the current agi so we can
3322                  * go on to the next one.
3323                  */
3324                 xfs_buf_relse(agibp);
3325         }
3326
3327         mp->m_dmevmask = mp_dmevmask;
3328 }
3329
3330
3331 #ifdef DEBUG
3332 STATIC void
3333 xlog_pack_data_checksum(
3334         xlog_t          *log,
3335         xlog_in_core_t  *iclog,
3336         int             size)
3337 {
3338         int             i;
3339         __be32          *up;
3340         uint            chksum = 0;
3341
3342         up = (__be32 *)iclog->ic_datap;
3343         /* divide length by 4 to get # words */
3344         for (i = 0; i < (size >> 2); i++) {
3345                 chksum ^= be32_to_cpu(*up);
3346                 up++;
3347         }
3348         iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3349 }
3350 #else
3351 #define xlog_pack_data_checksum(log, iclog, size)
3352 #endif
3353
3354 /*
3355  * Stamp cycle number in every block
3356  */
3357 void
3358 xlog_pack_data(
3359         xlog_t                  *log,
3360         xlog_in_core_t          *iclog,
3361         int                     roundoff)
3362 {
3363         int                     i, j, k;
3364         int                     size = iclog->ic_offset + roundoff;
3365         __be32                  cycle_lsn;
3366         xfs_caddr_t             dp;
3367
3368         xlog_pack_data_checksum(log, iclog, size);
3369
3370         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3371
3372         dp = iclog->ic_datap;
3373         for (i = 0; i < BTOBB(size) &&
3374                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3375                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3376                 *(__be32 *)dp = cycle_lsn;
3377                 dp += BBSIZE;
3378         }
3379
3380         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3381                 xlog_in_core_2_t *xhdr = iclog->ic_data;
3382
3383                 for ( ; i < BTOBB(size); i++) {
3384                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3385                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3386                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3387                         *(__be32 *)dp = cycle_lsn;
3388                         dp += BBSIZE;
3389                 }
3390
3391                 for (i = 1; i < log->l_iclog_heads; i++) {
3392                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3393                 }
3394         }
3395 }
3396
3397 STATIC void
3398 xlog_unpack_data(
3399         xlog_rec_header_t       *rhead,
3400         xfs_caddr_t             dp,
3401         xlog_t                  *log)
3402 {
3403         int                     i, j, k;
3404
3405         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3406                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3407                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3408                 dp += BBSIZE;
3409         }
3410
3411         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3412                 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3413                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3414                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3415                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3416                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3417                         dp += BBSIZE;
3418                 }
3419         }
3420 }
3421
3422 STATIC int
3423 xlog_valid_rec_header(
3424         xlog_t                  *log,
3425         xlog_rec_header_t       *rhead,
3426         xfs_daddr_t             blkno)
3427 {
3428         int                     hlen;
3429
3430         if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3431                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3432                                 XFS_ERRLEVEL_LOW, log->l_mp);
3433                 return XFS_ERROR(EFSCORRUPTED);
3434         }
3435         if (unlikely(
3436             (!rhead->h_version ||
3437             (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3438                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3439                         __func__, be32_to_cpu(rhead->h_version));
3440                 return XFS_ERROR(EIO);
3441         }
3442
3443         /* LR body must have data or it wouldn't have been written */
3444         hlen = be32_to_cpu(rhead->h_len);
3445         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3446                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3447                                 XFS_ERRLEVEL_LOW, log->l_mp);
3448                 return XFS_ERROR(EFSCORRUPTED);
3449         }
3450         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3451                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3452                                 XFS_ERRLEVEL_LOW, log->l_mp);
3453                 return XFS_ERROR(EFSCORRUPTED);
3454         }
3455         return 0;
3456 }
3457
3458 /*
3459  * Read the log from tail to head and process the log records found.
3460  * Handle the two cases where the tail and head are in the same cycle
3461  * and where the active portion of the log wraps around the end of
3462  * the physical log separately.  The pass parameter is passed through
3463  * to the routines called to process the data and is not looked at
3464  * here.
3465  */
3466 STATIC int
3467 xlog_do_recovery_pass(
3468         xlog_t                  *log,
3469         xfs_daddr_t             head_blk,
3470         xfs_daddr_t             tail_blk,
3471         int                     pass)
3472 {
3473         xlog_rec_header_t       *rhead;
3474         xfs_daddr_t             blk_no;
3475         xfs_caddr_t             offset;
3476         xfs_buf_t               *hbp, *dbp;
3477         int                     error = 0, h_size;
3478         int                     bblks, split_bblks;
3479         int                     hblks, split_hblks, wrapped_hblks;
3480         struct hlist_head       rhash[XLOG_RHASH_SIZE];
3481
3482         ASSERT(head_blk != tail_blk);
3483
3484         /*
3485          * Read the header of the tail block and get the iclog buffer size from
3486          * h_size.  Use this to tell how many sectors make up the log header.
3487          */
3488         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3489                 /*
3490                  * When using variable length iclogs, read first sector of
3491                  * iclog header and extract the header size from it.  Get a
3492                  * new hbp that is the correct size.
3493                  */
3494                 hbp = xlog_get_bp(log, 1);
3495                 if (!hbp)
3496                         return ENOMEM;
3497
3498                 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3499                 if (error)
3500                         goto bread_err1;
3501
3502                 rhead = (xlog_rec_header_t *)offset;
3503                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3504                 if (error)
3505                         goto bread_err1;
3506                 h_size = be32_to_cpu(rhead->h_size);
3507                 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3508                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3509                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3510                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3511                                 hblks++;
3512                         xlog_put_bp(hbp);
3513                         hbp = xlog_get_bp(log, hblks);
3514                 } else {
3515                         hblks = 1;
3516                 }
3517         } else {
3518                 ASSERT(log->l_sectbb_log == 0);
3519                 hblks = 1;
3520                 hbp = xlog_get_bp(log, 1);
3521                 h_size = XLOG_BIG_RECORD_BSIZE;
3522         }
3523
3524         if (!hbp)
3525                 return ENOMEM;
3526         dbp = xlog_get_bp(log, BTOBB(h_size));
3527         if (!dbp) {
3528                 xlog_put_bp(hbp);
3529                 return ENOMEM;
3530         }
3531
3532         memset(rhash, 0, sizeof(rhash));
3533         if (tail_blk <= head_blk) {
3534                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3535                         error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3536                         if (error)
3537                                 goto bread_err2;
3538
3539                         rhead = (xlog_rec_header_t *)offset;
3540                         error = xlog_valid_rec_header(log, rhead, blk_no);
3541                         if (error)
3542                                 goto bread_err2;
3543
3544                         /* blocks in data section */
3545                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3546                         error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3547                                            &offset);
3548                         if (error)
3549                                 goto bread_err2;
3550
3551                         xlog_unpack_data(rhead, offset, log);
3552                         if ((error = xlog_recover_process_data(log,
3553                                                 rhash, rhead, offset, pass)))
3554                                 goto bread_err2;
3555                         blk_no += bblks + hblks;
3556                 }
3557         } else {
3558                 /*
3559                  * Perform recovery around the end of the physical log.
3560                  * When the head is not on the same cycle number as the tail,
3561                  * we can't do a sequential recovery as above.
3562                  */
3563                 blk_no = tail_blk;
3564                 while (blk_no < log->l_logBBsize) {
3565                         /*
3566                          * Check for header wrapping around physical end-of-log
3567                          */
3568                         offset = XFS_BUF_PTR(hbp);
3569                         split_hblks = 0;
3570                         wrapped_hblks = 0;
3571                         if (blk_no + hblks <= log->l_logBBsize) {
3572                                 /* Read header in one read */
3573                                 error = xlog_bread(log, blk_no, hblks, hbp,
3574                                                    &offset);
3575                                 if (error)
3576                                         goto bread_err2;
3577                         } else {
3578                                 /* This LR is split across physical log end */
3579                                 if (blk_no != log->l_logBBsize) {
3580                                         /* some data before physical log end */
3581                                         ASSERT(blk_no <= INT_MAX);
3582                                         split_hblks = log->l_logBBsize - (int)blk_no;
3583                                         ASSERT(split_hblks > 0);
3584                                         error = xlog_bread(log, blk_no,
3585                                                            split_hblks, hbp,
3586                                                            &offset);
3587                                         if (error)
3588                                                 goto bread_err2;
3589                                 }
3590
3591                                 /*
3592                                  * Note: this black magic still works with
3593                                  * large sector sizes (non-512) only because:
3594                                  * - we increased the buffer size originally
3595                                  *   by 1 sector giving us enough extra space
3596                                  *   for the second read;
3597                                  * - the log start is guaranteed to be sector
3598                                  *   aligned;
3599                                  * - we read the log end (LR header start)
3600                                  *   _first_, then the log start (LR header end)
3601                                  *   - order is important.
3602                                  */
3603                                 wrapped_hblks = hblks - split_hblks;
3604                                 error = XFS_BUF_SET_PTR(hbp,
3605                                                 offset + BBTOB(split_hblks),
3606                                                 BBTOB(hblks - split_hblks));
3607                                 if (error)
3608                                         goto bread_err2;
3609
3610                                 error = xlog_bread_noalign(log, 0,
3611                                                            wrapped_hblks, hbp);
3612                                 if (error)
3613                                         goto bread_err2;
3614
3615                                 error = XFS_BUF_SET_PTR(hbp, offset,
3616                                                         BBTOB(hblks));
3617                                 if (error)
3618                                         goto bread_err2;
3619                         }
3620                         rhead = (xlog_rec_header_t *)offset;
3621                         error = xlog_valid_rec_header(log, rhead,
3622                                                 split_hblks ? blk_no : 0);
3623                         if (error)
3624                                 goto bread_err2;
3625
3626                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3627                         blk_no += hblks;
3628
3629                         /* Read in data for log record */
3630                         if (blk_no + bblks <= log->l_logBBsize) {
3631                                 error = xlog_bread(log, blk_no, bblks, dbp,
3632                                                    &offset);
3633                                 if (error)
3634                                         goto bread_err2;
3635                         } else {
3636                                 /* This log record is split across the
3637                                  * physical end of log */
3638                                 offset = XFS_BUF_PTR(dbp);
3639                                 split_bblks = 0;
3640                                 if (blk_no != log->l_logBBsize) {
3641                                         /* some data is before the physical
3642                                          * end of log */
3643                                         ASSERT(!wrapped_hblks);
3644                                         ASSERT(blk_no <= INT_MAX);
3645                                         split_bblks =
3646                                                 log->l_logBBsize - (int)blk_no;
3647                                         ASSERT(split_bblks > 0);
3648                                         error = xlog_bread(log, blk_no,
3649                                                         split_bblks, dbp,
3650                                                         &offset);
3651                                         if (error)
3652                                                 goto bread_err2;
3653                                 }
3654
3655                                 /*
3656                                  * Note: this black magic still works with
3657                                  * large sector sizes (non-512) only because:
3658                                  * - we increased the buffer size originally
3659                                  *   by 1 sector giving us enough extra space
3660                                  *   for the second read;
3661                                  * - the log start is guaranteed to be sector
3662                                  *   aligned;
3663                                  * - we read the log end (LR header start)
3664                                  *   _first_, then the log start (LR header end)
3665                                  *   - order is important.
3666                                  */
3667                                 error = XFS_BUF_SET_PTR(dbp,
3668                                                 offset + BBTOB(split_bblks),
3669                                                 BBTOB(bblks - split_bblks));
3670                                 if (error)
3671                                         goto bread_err2;
3672
3673                                 error = xlog_bread_noalign(log, wrapped_hblks,
3674                                                 bblks - split_bblks,
3675                                                 dbp);
3676                                 if (error)
3677                                         goto bread_err2;
3678
3679                                 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3680                                 if (error)
3681                                         goto bread_err2;
3682                         }
3683                         xlog_unpack_data(rhead, offset, log);
3684                         if ((error = xlog_recover_process_data(log, rhash,
3685                                                         rhead, offset, pass)))
3686                                 goto bread_err2;
3687                         blk_no += bblks;
3688                 }
3689
3690                 ASSERT(blk_no >= log->l_logBBsize);
3691                 blk_no -= log->l_logBBsize;
3692
3693                 /* read first part of physical log */
3694                 while (blk_no < head_blk) {
3695                         error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3696                         if (error)
3697                                 goto bread_err2;
3698
3699                         rhead = (xlog_rec_header_t *)offset;
3700                         error = xlog_valid_rec_header(log, rhead, blk_no);
3701                         if (error)
3702                                 goto bread_err2;
3703
3704                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3705                         error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3706                                            &offset);
3707                         if (error)
3708                                 goto bread_err2;
3709
3710                         xlog_unpack_data(rhead, offset, log);
3711                         if ((error = xlog_recover_process_data(log, rhash,
3712                                                         rhead, offset, pass)))
3713                                 goto bread_err2;
3714                         blk_no += bblks + hblks;
3715                 }
3716         }
3717
3718  bread_err2:
3719         xlog_put_bp(dbp);
3720  bread_err1:
3721         xlog_put_bp(hbp);
3722         return error;
3723 }
3724
3725 /*
3726  * Do the recovery of the log.  We actually do this in two phases.
3727  * The two passes are necessary in order to implement the function
3728  * of cancelling a record written into the log.  The first pass
3729  * determines those things which have been cancelled, and the
3730  * second pass replays log items normally except for those which
3731  * have been cancelled.  The handling of the replay and cancellations
3732  * takes place in the log item type specific routines.
3733  *
3734  * The table of items which have cancel records in the log is allocated
3735  * and freed at this level, since only here do we know when all of
3736  * the log recovery has been completed.
3737  */
3738 STATIC int
3739 xlog_do_log_recovery(
3740         xlog_t          *log,
3741         xfs_daddr_t     head_blk,
3742         xfs_daddr_t     tail_blk)
3743 {
3744         int             error;
3745
3746         ASSERT(head_blk != tail_blk);
3747
3748         /*
3749          * First do a pass to find all of the cancelled buf log items.
3750          * Store them in the buf_cancel_table for use in the second pass.
3751          */
3752         log->l_buf_cancel_table =
3753                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3754                                                  sizeof(xfs_buf_cancel_t*),
3755                                                  KM_SLEEP);
3756         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3757                                       XLOG_RECOVER_PASS1);
3758         if (error != 0) {
3759                 kmem_free(log->l_buf_cancel_table);
3760                 log->l_buf_cancel_table = NULL;
3761                 return error;
3762         }
3763         /*
3764          * Then do a second pass to actually recover the items in the log.
3765          * When it is complete free the table of buf cancel items.
3766          */
3767         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3768                                       XLOG_RECOVER_PASS2);
3769 #ifdef DEBUG
3770         if (!error) {
3771                 int     i;
3772
3773                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3774                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3775         }
3776 #endif  /* DEBUG */
3777
3778         kmem_free(log->l_buf_cancel_table);
3779         log->l_buf_cancel_table = NULL;
3780
3781         return error;
3782 }
3783
3784 /*
3785  * Do the actual recovery
3786  */
3787 STATIC int
3788 xlog_do_recover(
3789         xlog_t          *log,
3790         xfs_daddr_t     head_blk,
3791         xfs_daddr_t     tail_blk)
3792 {
3793         int             error;
3794         xfs_buf_t       *bp;
3795         xfs_sb_t        *sbp;
3796
3797         /*
3798          * First replay the images in the log.
3799          */
3800         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3801         if (error) {
3802                 return error;
3803         }
3804
3805         XFS_bflush(log->l_mp->m_ddev_targp);
3806
3807         /*
3808          * If IO errors happened during recovery, bail out.
3809          */
3810         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3811                 return (EIO);
3812         }
3813
3814         /*
3815          * We now update the tail_lsn since much of the recovery has completed
3816          * and there may be space available to use.  If there were no extent
3817          * or iunlinks, we can free up the entire log and set the tail_lsn to
3818          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3819          * lsn of the last known good LR on disk.  If there are extent frees
3820          * or iunlinks they will have some entries in the AIL; so we look at
3821          * the AIL to determine how to set the tail_lsn.
3822          */
3823         xlog_assign_tail_lsn(log->l_mp);
3824
3825         /*
3826          * Now that we've finished replaying all buffer and inode
3827          * updates, re-read in the superblock.
3828          */
3829         bp = xfs_getsb(log->l_mp, 0);
3830         XFS_BUF_UNDONE(bp);
3831         ASSERT(!(XFS_BUF_ISWRITE(bp)));
3832         ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3833         XFS_BUF_READ(bp);
3834         XFS_BUF_UNASYNC(bp);
3835         xfsbdstrat(log->l_mp, bp);
3836         error = xfs_iowait(bp);
3837         if (error) {
3838                 xfs_ioerror_alert("xlog_do_recover",
3839                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3840                 ASSERT(0);
3841                 xfs_buf_relse(bp);
3842                 return error;
3843         }
3844
3845         /* Convert superblock from on-disk format */
3846         sbp = &log->l_mp->m_sb;
3847         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3848         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3849         ASSERT(xfs_sb_good_version(sbp));
3850         xfs_buf_relse(bp);
3851
3852         /* We've re-read the superblock so re-initialize per-cpu counters */
3853         xfs_icsb_reinit_counters(log->l_mp);
3854
3855         xlog_recover_check_summary(log);
3856
3857         /* Normal transactions can now occur */
3858         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3859         return 0;
3860 }
3861
3862 /*
3863  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3864  *
3865  * Return error or zero.
3866  */
3867 int
3868 xlog_recover(
3869         xlog_t          *log)
3870 {
3871         xfs_daddr_t     head_blk, tail_blk;
3872         int             error;
3873
3874         /* find the tail of the log */
3875         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3876                 return error;
3877
3878         if (tail_blk != head_blk) {
3879                 /* There used to be a comment here:
3880                  *
3881                  * disallow recovery on read-only mounts.  note -- mount
3882                  * checks for ENOSPC and turns it into an intelligent
3883                  * error message.
3884                  * ...but this is no longer true.  Now, unless you specify
3885                  * NORECOVERY (in which case this function would never be
3886                  * called), we just go ahead and recover.  We do this all
3887                  * under the vfs layer, so we can get away with it unless
3888                  * the device itself is read-only, in which case we fail.
3889                  */
3890                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3891                         return error;
3892                 }
3893
3894                 cmn_err(CE_NOTE,
3895                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3896                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3897                         log->l_mp->m_logname : "internal");
3898
3899                 error = xlog_do_recover(log, head_blk, tail_blk);
3900                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3901         }
3902         return error;
3903 }
3904
3905 /*
3906  * In the first part of recovery we replay inodes and buffers and build
3907  * up the list of extent free items which need to be processed.  Here
3908  * we process the extent free items and clean up the on disk unlinked
3909  * inode lists.  This is separated from the first part of recovery so
3910  * that the root and real-time bitmap inodes can be read in from disk in
3911  * between the two stages.  This is necessary so that we can free space
3912  * in the real-time portion of the file system.
3913  */
3914 int
3915 xlog_recover_finish(
3916         xlog_t          *log)
3917 {
3918         /*
3919          * Now we're ready to do the transactions needed for the
3920          * rest of recovery.  Start with completing all the extent
3921          * free intent records and then process the unlinked inode
3922          * lists.  At this point, we essentially run in normal mode
3923          * except that we're still performing recovery actions
3924          * rather than accepting new requests.
3925          */
3926         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3927                 int     error;
3928                 error = xlog_recover_process_efis(log);
3929                 if (error) {
3930                         cmn_err(CE_ALERT,
3931                                 "Failed to recover EFIs on filesystem: %s",
3932                                 log->l_mp->m_fsname);
3933                         return error;
3934                 }
3935                 /*
3936                  * Sync the log to get all the EFIs out of the AIL.
3937                  * This isn't absolutely necessary, but it helps in
3938                  * case the unlink transactions would have problems
3939                  * pushing the EFIs out of the way.
3940                  */
3941                 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3942
3943                 xlog_recover_process_iunlinks(log);
3944
3945                 xlog_recover_check_summary(log);
3946
3947                 cmn_err(CE_NOTE,
3948                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3949                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3950                         log->l_mp->m_logname : "internal");
3951                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3952         } else {
3953                 cmn_err(CE_DEBUG,
3954                         "!Ending clean XFS mount for filesystem: %s\n",
3955                         log->l_mp->m_fsname);
3956         }
3957         return 0;
3958 }
3959
3960
3961 #if defined(DEBUG)
3962 /*
3963  * Read all of the agf and agi counters and check that they
3964  * are consistent with the superblock counters.
3965  */
3966 void
3967 xlog_recover_check_summary(
3968         xlog_t          *log)
3969 {
3970         xfs_mount_t     *mp;
3971         xfs_agf_t       *agfp;
3972         xfs_buf_t       *agfbp;
3973         xfs_buf_t       *agibp;
3974         xfs_agnumber_t  agno;
3975         __uint64_t      freeblks;
3976         __uint64_t      itotal;
3977         __uint64_t      ifree;
3978         int             error;
3979
3980         mp = log->l_mp;
3981
3982         freeblks = 0LL;
3983         itotal = 0LL;
3984         ifree = 0LL;
3985         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3986                 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3987                 if (error) {
3988                         xfs_fs_cmn_err(CE_ALERT, mp,
3989                                         "xlog_recover_check_summary(agf)"
3990                                         "agf read failed agno %d error %d",
3991                                                         agno, error);
3992                 } else {
3993                         agfp = XFS_BUF_TO_AGF(agfbp);
3994                         freeblks += be32_to_cpu(agfp->agf_freeblks) +
3995                                     be32_to_cpu(agfp->agf_flcount);
3996                         xfs_buf_relse(agfbp);
3997                 }
3998
3999                 error = xfs_read_agi(mp, NULL, agno, &agibp);
4000                 if (!error) {
4001                         struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
4002
4003                         itotal += be32_to_cpu(agi->agi_count);
4004                         ifree += be32_to_cpu(agi->agi_freecount);
4005                         xfs_buf_relse(agibp);
4006                 }
4007         }
4008 }
4009 #endif /* DEBUG */