43128395d63b7fba1e48a5e5732fe0252e205451
[safe/jmp/linux-2.6] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32
33 /*
34  *      The xfs_buf.c code provides an abstract buffer cache model on top
35  *      of the Linux page cache.  Cached metadata blocks for a file system
36  *      are hashed to the inode for the block device.  xfs_buf.c assembles
37  *      buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
38  *
39  *      Written by Steve Lord, Jim Mostek, Russell Cattelan
40  *                  and Rajagopal Ananthanarayanan ("ananth") at SGI.
41  *
42  */
43
44 #include <linux/stddef.h>
45 #include <linux/errno.h>
46 #include <linux/slab.h>
47 #include <linux/pagemap.h>
48 #include <linux/init.h>
49 #include <linux/vmalloc.h>
50 #include <linux/bio.h>
51 #include <linux/sysctl.h>
52 #include <linux/proc_fs.h>
53 #include <linux/workqueue.h>
54 #include <linux/percpu.h>
55 #include <linux/blkdev.h>
56 #include <linux/hash.h>
57 #include <linux/kthread.h>
58
59 #include "xfs_linux.h"
60
61 /*
62  * File wide globals
63  */
64
65 STATIC kmem_cache_t *pagebuf_zone;
66 STATIC kmem_shaker_t pagebuf_shake;
67 STATIC int xfsbufd_wakeup(int, gfp_t);
68 STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
69
70 STATIC struct workqueue_struct *xfslogd_workqueue;
71 struct workqueue_struct *xfsdatad_workqueue;
72
73 /*
74  * Pagebuf debugging
75  */
76
77 #ifdef PAGEBUF_TRACE
78 void
79 pagebuf_trace(
80         xfs_buf_t       *pb,
81         char            *id,
82         void            *data,
83         void            *ra)
84 {
85         ktrace_enter(pagebuf_trace_buf,
86                 pb, id,
87                 (void *)(unsigned long)pb->pb_flags,
88                 (void *)(unsigned long)pb->pb_hold.counter,
89                 (void *)(unsigned long)pb->pb_sema.count.counter,
90                 (void *)current,
91                 data, ra,
92                 (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
93                 (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
94                 (void *)(unsigned long)pb->pb_buffer_length,
95                 NULL, NULL, NULL, NULL, NULL);
96 }
97 ktrace_t *pagebuf_trace_buf;
98 #define PAGEBUF_TRACE_SIZE      4096
99 #define PB_TRACE(pb, id, data)  \
100         pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
101 #else
102 #define PB_TRACE(pb, id, data)  do { } while (0)
103 #endif
104
105 #ifdef PAGEBUF_LOCK_TRACKING
106 # define PB_SET_OWNER(pb)       ((pb)->pb_last_holder = current->pid)
107 # define PB_CLEAR_OWNER(pb)     ((pb)->pb_last_holder = -1)
108 # define PB_GET_OWNER(pb)       ((pb)->pb_last_holder)
109 #else
110 # define PB_SET_OWNER(pb)       do { } while (0)
111 # define PB_CLEAR_OWNER(pb)     do { } while (0)
112 # define PB_GET_OWNER(pb)       do { } while (0)
113 #endif
114
115 /*
116  * Pagebuf allocation / freeing.
117  */
118
119 #define pb_to_gfp(flags) \
120         ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
121           ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
122
123 #define pb_to_km(flags) \
124          (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
125
126
127 #define pagebuf_allocate(flags) \
128         kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
129 #define pagebuf_deallocate(pb) \
130         kmem_zone_free(pagebuf_zone, (pb));
131
132 /*
133  * Page Region interfaces.
134  *
135  * For pages in filesystems where the blocksize is smaller than the
136  * pagesize, we use the page->private field (long) to hold a bitmap
137  * of uptodate regions within the page.
138  *
139  * Each such region is "bytes per page / bits per long" bytes long.
140  *
141  * NBPPR == number-of-bytes-per-page-region
142  * BTOPR == bytes-to-page-region (rounded up)
143  * BTOPRT == bytes-to-page-region-truncated (rounded down)
144  */
145 #if (BITS_PER_LONG == 32)
146 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
147 #elif (BITS_PER_LONG == 64)
148 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
149 #else
150 #error BITS_PER_LONG must be 32 or 64
151 #endif
152 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
153 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
154 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
155
156 STATIC unsigned long
157 page_region_mask(
158         size_t          offset,
159         size_t          length)
160 {
161         unsigned long   mask;
162         int             first, final;
163
164         first = BTOPR(offset);
165         final = BTOPRT(offset + length - 1);
166         first = min(first, final);
167
168         mask = ~0UL;
169         mask <<= BITS_PER_LONG - (final - first);
170         mask >>= BITS_PER_LONG - (final);
171
172         ASSERT(offset + length <= PAGE_CACHE_SIZE);
173         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
174
175         return mask;
176 }
177
178 STATIC inline void
179 set_page_region(
180         struct page     *page,
181         size_t          offset,
182         size_t          length)
183 {
184         set_page_private(page,
185                 page_private(page) | page_region_mask(offset, length));
186         if (page_private(page) == ~0UL)
187                 SetPageUptodate(page);
188 }
189
190 STATIC inline int
191 test_page_region(
192         struct page     *page,
193         size_t          offset,
194         size_t          length)
195 {
196         unsigned long   mask = page_region_mask(offset, length);
197
198         return (mask && (page_private(page) & mask) == mask);
199 }
200
201 /*
202  * Mapping of multi-page buffers into contiguous virtual space
203  */
204
205 typedef struct a_list {
206         void            *vm_addr;
207         struct a_list   *next;
208 } a_list_t;
209
210 STATIC a_list_t         *as_free_head;
211 STATIC int              as_list_len;
212 STATIC DEFINE_SPINLOCK(as_lock);
213
214 /*
215  * Try to batch vunmaps because they are costly.
216  */
217 STATIC void
218 free_address(
219         void            *addr)
220 {
221         a_list_t        *aentry;
222
223         aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
224         if (likely(aentry)) {
225                 spin_lock(&as_lock);
226                 aentry->next = as_free_head;
227                 aentry->vm_addr = addr;
228                 as_free_head = aentry;
229                 as_list_len++;
230                 spin_unlock(&as_lock);
231         } else {
232                 vunmap(addr);
233         }
234 }
235
236 STATIC void
237 purge_addresses(void)
238 {
239         a_list_t        *aentry, *old;
240
241         if (as_free_head == NULL)
242                 return;
243
244         spin_lock(&as_lock);
245         aentry = as_free_head;
246         as_free_head = NULL;
247         as_list_len = 0;
248         spin_unlock(&as_lock);
249
250         while ((old = aentry) != NULL) {
251                 vunmap(aentry->vm_addr);
252                 aentry = aentry->next;
253                 kfree(old);
254         }
255 }
256
257 /*
258  *      Internal pagebuf object manipulation
259  */
260
261 STATIC void
262 _pagebuf_initialize(
263         xfs_buf_t               *pb,
264         xfs_buftarg_t           *target,
265         loff_t                  range_base,
266         size_t                  range_length,
267         page_buf_flags_t        flags)
268 {
269         /*
270          * We don't want certain flags to appear in pb->pb_flags.
271          */
272         flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
273
274         memset(pb, 0, sizeof(xfs_buf_t));
275         atomic_set(&pb->pb_hold, 1);
276         init_MUTEX_LOCKED(&pb->pb_iodonesema);
277         INIT_LIST_HEAD(&pb->pb_list);
278         INIT_LIST_HEAD(&pb->pb_hash_list);
279         init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
280         PB_SET_OWNER(pb);
281         pb->pb_target = target;
282         pb->pb_file_offset = range_base;
283         /*
284          * Set buffer_length and count_desired to the same value initially.
285          * I/O routines should use count_desired, which will be the same in
286          * most cases but may be reset (e.g. XFS recovery).
287          */
288         pb->pb_buffer_length = pb->pb_count_desired = range_length;
289         pb->pb_flags = flags | PBF_NONE;
290         pb->pb_bn = XFS_BUF_DADDR_NULL;
291         atomic_set(&pb->pb_pin_count, 0);
292         init_waitqueue_head(&pb->pb_waiters);
293
294         XFS_STATS_INC(pb_create);
295         PB_TRACE(pb, "initialize", target);
296 }
297
298 /*
299  * Allocate a page array capable of holding a specified number
300  * of pages, and point the page buf at it.
301  */
302 STATIC int
303 _pagebuf_get_pages(
304         xfs_buf_t               *pb,
305         int                     page_count,
306         page_buf_flags_t        flags)
307 {
308         /* Make sure that we have a page list */
309         if (pb->pb_pages == NULL) {
310                 pb->pb_offset = page_buf_poff(pb->pb_file_offset);
311                 pb->pb_page_count = page_count;
312                 if (page_count <= PB_PAGES) {
313                         pb->pb_pages = pb->pb_page_array;
314                 } else {
315                         pb->pb_pages = kmem_alloc(sizeof(struct page *) *
316                                         page_count, pb_to_km(flags));
317                         if (pb->pb_pages == NULL)
318                                 return -ENOMEM;
319                 }
320                 memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
321         }
322         return 0;
323 }
324
325 /*
326  *      Frees pb_pages if it was malloced.
327  */
328 STATIC void
329 _pagebuf_free_pages(
330         xfs_buf_t       *bp)
331 {
332         if (bp->pb_pages != bp->pb_page_array) {
333                 kmem_free(bp->pb_pages,
334                           bp->pb_page_count * sizeof(struct page *));
335         }
336 }
337
338 /*
339  *      Releases the specified buffer.
340  *
341  *      The modification state of any associated pages is left unchanged.
342  *      The buffer most not be on any hash - use pagebuf_rele instead for
343  *      hashed and refcounted buffers
344  */
345 void
346 pagebuf_free(
347         xfs_buf_t               *bp)
348 {
349         PB_TRACE(bp, "free", 0);
350
351         ASSERT(list_empty(&bp->pb_hash_list));
352
353         if (bp->pb_flags & _PBF_PAGE_CACHE) {
354                 uint            i;
355
356                 if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
357                         free_address(bp->pb_addr - bp->pb_offset);
358
359                 for (i = 0; i < bp->pb_page_count; i++)
360                         page_cache_release(bp->pb_pages[i]);
361                 _pagebuf_free_pages(bp);
362         } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
363                  /*
364                   * XXX(hch): bp->pb_count_desired might be incorrect (see
365                   * pagebuf_associate_memory for details), but fortunately
366                   * the Linux version of kmem_free ignores the len argument..
367                   */
368                 kmem_free(bp->pb_addr, bp->pb_count_desired);
369                 _pagebuf_free_pages(bp);
370         }
371
372         pagebuf_deallocate(bp);
373 }
374
375 /*
376  *      Finds all pages for buffer in question and builds it's page list.
377  */
378 STATIC int
379 _pagebuf_lookup_pages(
380         xfs_buf_t               *bp,
381         uint                    flags)
382 {
383         struct address_space    *mapping = bp->pb_target->pbr_mapping;
384         size_t                  blocksize = bp->pb_target->pbr_bsize;
385         size_t                  size = bp->pb_count_desired;
386         size_t                  nbytes, offset;
387         gfp_t                   gfp_mask = pb_to_gfp(flags);
388         unsigned short          page_count, i;
389         pgoff_t                 first;
390         loff_t                  end;
391         int                     error;
392
393         end = bp->pb_file_offset + bp->pb_buffer_length;
394         page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
395
396         error = _pagebuf_get_pages(bp, page_count, flags);
397         if (unlikely(error))
398                 return error;
399         bp->pb_flags |= _PBF_PAGE_CACHE;
400
401         offset = bp->pb_offset;
402         first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
403
404         for (i = 0; i < bp->pb_page_count; i++) {
405                 struct page     *page;
406                 uint            retries = 0;
407
408               retry:
409                 page = find_or_create_page(mapping, first + i, gfp_mask);
410                 if (unlikely(page == NULL)) {
411                         if (flags & PBF_READ_AHEAD) {
412                                 bp->pb_page_count = i;
413                                 for (i = 0; i < bp->pb_page_count; i++)
414                                         unlock_page(bp->pb_pages[i]);
415                                 return -ENOMEM;
416                         }
417
418                         /*
419                          * This could deadlock.
420                          *
421                          * But until all the XFS lowlevel code is revamped to
422                          * handle buffer allocation failures we can't do much.
423                          */
424                         if (!(++retries % 100))
425                                 printk(KERN_ERR
426                                         "XFS: possible memory allocation "
427                                         "deadlock in %s (mode:0x%x)\n",
428                                         __FUNCTION__, gfp_mask);
429
430                         XFS_STATS_INC(pb_page_retries);
431                         xfsbufd_wakeup(0, gfp_mask);
432                         blk_congestion_wait(WRITE, HZ/50);
433                         goto retry;
434                 }
435
436                 XFS_STATS_INC(pb_page_found);
437
438                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
439                 size -= nbytes;
440
441                 if (!PageUptodate(page)) {
442                         page_count--;
443                         if (blocksize >= PAGE_CACHE_SIZE) {
444                                 if (flags & PBF_READ)
445                                         bp->pb_locked = 1;
446                         } else if (!PagePrivate(page)) {
447                                 if (test_page_region(page, offset, nbytes))
448                                         page_count++;
449                         }
450                 }
451
452                 bp->pb_pages[i] = page;
453                 offset = 0;
454         }
455
456         if (!bp->pb_locked) {
457                 for (i = 0; i < bp->pb_page_count; i++)
458                         unlock_page(bp->pb_pages[i]);
459         }
460
461         if (page_count) {
462                 /* if we have any uptodate pages, mark that in the buffer */
463                 bp->pb_flags &= ~PBF_NONE;
464
465                 /* if some pages aren't uptodate, mark that in the buffer */
466                 if (page_count != bp->pb_page_count)
467                         bp->pb_flags |= PBF_PARTIAL;
468         }
469
470         PB_TRACE(bp, "lookup_pages", (long)page_count);
471         return error;
472 }
473
474 /*
475  *      Map buffer into kernel address-space if nessecary.
476  */
477 STATIC int
478 _pagebuf_map_pages(
479         xfs_buf_t               *bp,
480         uint                    flags)
481 {
482         /* A single page buffer is always mappable */
483         if (bp->pb_page_count == 1) {
484                 bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
485                 bp->pb_flags |= PBF_MAPPED;
486         } else if (flags & PBF_MAPPED) {
487                 if (as_list_len > 64)
488                         purge_addresses();
489                 bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
490                                 VM_MAP, PAGE_KERNEL);
491                 if (unlikely(bp->pb_addr == NULL))
492                         return -ENOMEM;
493                 bp->pb_addr += bp->pb_offset;
494                 bp->pb_flags |= PBF_MAPPED;
495         }
496
497         return 0;
498 }
499
500 /*
501  *      Finding and Reading Buffers
502  */
503
504 /*
505  *      _pagebuf_find
506  *
507  *      Looks up, and creates if absent, a lockable buffer for
508  *      a given range of an inode.  The buffer is returned
509  *      locked.  If other overlapping buffers exist, they are
510  *      released before the new buffer is created and locked,
511  *      which may imply that this call will block until those buffers
512  *      are unlocked.  No I/O is implied by this call.
513  */
514 xfs_buf_t *
515 _pagebuf_find(
516         xfs_buftarg_t           *btp,   /* block device target          */
517         loff_t                  ioff,   /* starting offset of range     */
518         size_t                  isize,  /* length of range              */
519         page_buf_flags_t        flags,  /* PBF_TRYLOCK                  */
520         xfs_buf_t               *new_pb)/* newly allocated buffer       */
521 {
522         loff_t                  range_base;
523         size_t                  range_length;
524         xfs_bufhash_t           *hash;
525         xfs_buf_t               *pb, *n;
526
527         range_base = (ioff << BBSHIFT);
528         range_length = (isize << BBSHIFT);
529
530         /* Check for IOs smaller than the sector size / not sector aligned */
531         ASSERT(!(range_length < (1 << btp->pbr_sshift)));
532         ASSERT(!(range_base & (loff_t)btp->pbr_smask));
533
534         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
535
536         spin_lock(&hash->bh_lock);
537
538         list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
539                 ASSERT(btp == pb->pb_target);
540                 if (pb->pb_file_offset == range_base &&
541                     pb->pb_buffer_length == range_length) {
542                         /*
543                          * If we look at something bring it to the
544                          * front of the list for next time.
545                          */
546                         atomic_inc(&pb->pb_hold);
547                         list_move(&pb->pb_hash_list, &hash->bh_list);
548                         goto found;
549                 }
550         }
551
552         /* No match found */
553         if (new_pb) {
554                 _pagebuf_initialize(new_pb, btp, range_base,
555                                 range_length, flags);
556                 new_pb->pb_hash = hash;
557                 list_add(&new_pb->pb_hash_list, &hash->bh_list);
558         } else {
559                 XFS_STATS_INC(pb_miss_locked);
560         }
561
562         spin_unlock(&hash->bh_lock);
563         return new_pb;
564
565 found:
566         spin_unlock(&hash->bh_lock);
567
568         /* Attempt to get the semaphore without sleeping,
569          * if this does not work then we need to drop the
570          * spinlock and do a hard attempt on the semaphore.
571          */
572         if (down_trylock(&pb->pb_sema)) {
573                 if (!(flags & PBF_TRYLOCK)) {
574                         /* wait for buffer ownership */
575                         PB_TRACE(pb, "get_lock", 0);
576                         pagebuf_lock(pb);
577                         XFS_STATS_INC(pb_get_locked_waited);
578                 } else {
579                         /* We asked for a trylock and failed, no need
580                          * to look at file offset and length here, we
581                          * know that this pagebuf at least overlaps our
582                          * pagebuf and is locked, therefore our buffer
583                          * either does not exist, or is this buffer
584                          */
585
586                         pagebuf_rele(pb);
587                         XFS_STATS_INC(pb_busy_locked);
588                         return (NULL);
589                 }
590         } else {
591                 /* trylock worked */
592                 PB_SET_OWNER(pb);
593         }
594
595         if (pb->pb_flags & PBF_STALE) {
596                 ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
597                 pb->pb_flags &= PBF_MAPPED;
598         }
599         PB_TRACE(pb, "got_lock", 0);
600         XFS_STATS_INC(pb_get_locked);
601         return (pb);
602 }
603
604 /*
605  *      xfs_buf_get_flags assembles a buffer covering the specified range.
606  *
607  *      Storage in memory for all portions of the buffer will be allocated,
608  *      although backing storage may not be.
609  */
610 xfs_buf_t *
611 xfs_buf_get_flags(                      /* allocate a buffer            */
612         xfs_buftarg_t           *target,/* target for buffer            */
613         loff_t                  ioff,   /* starting offset of range     */
614         size_t                  isize,  /* length of range              */
615         page_buf_flags_t        flags)  /* PBF_TRYLOCK                  */
616 {
617         xfs_buf_t               *pb, *new_pb;
618         int                     error = 0, i;
619
620         new_pb = pagebuf_allocate(flags);
621         if (unlikely(!new_pb))
622                 return NULL;
623
624         pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
625         if (pb == new_pb) {
626                 error = _pagebuf_lookup_pages(pb, flags);
627                 if (error)
628                         goto no_buffer;
629         } else {
630                 pagebuf_deallocate(new_pb);
631                 if (unlikely(pb == NULL))
632                         return NULL;
633         }
634
635         for (i = 0; i < pb->pb_page_count; i++)
636                 mark_page_accessed(pb->pb_pages[i]);
637
638         if (!(pb->pb_flags & PBF_MAPPED)) {
639                 error = _pagebuf_map_pages(pb, flags);
640                 if (unlikely(error)) {
641                         printk(KERN_WARNING "%s: failed to map pages\n",
642                                         __FUNCTION__);
643                         goto no_buffer;
644                 }
645         }
646
647         XFS_STATS_INC(pb_get);
648
649         /*
650          * Always fill in the block number now, the mapped cases can do
651          * their own overlay of this later.
652          */
653         pb->pb_bn = ioff;
654         pb->pb_count_desired = pb->pb_buffer_length;
655
656         PB_TRACE(pb, "get", (unsigned long)flags);
657         return pb;
658
659  no_buffer:
660         if (flags & (PBF_LOCK | PBF_TRYLOCK))
661                 pagebuf_unlock(pb);
662         pagebuf_rele(pb);
663         return NULL;
664 }
665
666 xfs_buf_t *
667 xfs_buf_read_flags(
668         xfs_buftarg_t           *target,
669         loff_t                  ioff,
670         size_t                  isize,
671         page_buf_flags_t        flags)
672 {
673         xfs_buf_t               *pb;
674
675         flags |= PBF_READ;
676
677         pb = xfs_buf_get_flags(target, ioff, isize, flags);
678         if (pb) {
679                 if (PBF_NOT_DONE(pb)) {
680                         PB_TRACE(pb, "read", (unsigned long)flags);
681                         XFS_STATS_INC(pb_get_read);
682                         pagebuf_iostart(pb, flags);
683                 } else if (flags & PBF_ASYNC) {
684                         PB_TRACE(pb, "read_async", (unsigned long)flags);
685                         /*
686                          * Read ahead call which is already satisfied,
687                          * drop the buffer
688                          */
689                         goto no_buffer;
690                 } else {
691                         PB_TRACE(pb, "read_done", (unsigned long)flags);
692                         /* We do not want read in the flags */
693                         pb->pb_flags &= ~PBF_READ;
694                 }
695         }
696
697         return pb;
698
699  no_buffer:
700         if (flags & (PBF_LOCK | PBF_TRYLOCK))
701                 pagebuf_unlock(pb);
702         pagebuf_rele(pb);
703         return NULL;
704 }
705
706 /*
707  * If we are not low on memory then do the readahead in a deadlock
708  * safe manner.
709  */
710 void
711 pagebuf_readahead(
712         xfs_buftarg_t           *target,
713         loff_t                  ioff,
714         size_t                  isize,
715         page_buf_flags_t        flags)
716 {
717         struct backing_dev_info *bdi;
718
719         bdi = target->pbr_mapping->backing_dev_info;
720         if (bdi_read_congested(bdi))
721                 return;
722
723         flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
724         xfs_buf_read_flags(target, ioff, isize, flags);
725 }
726
727 xfs_buf_t *
728 pagebuf_get_empty(
729         size_t                  len,
730         xfs_buftarg_t           *target)
731 {
732         xfs_buf_t               *pb;
733
734         pb = pagebuf_allocate(0);
735         if (pb)
736                 _pagebuf_initialize(pb, target, 0, len, 0);
737         return pb;
738 }
739
740 static inline struct page *
741 mem_to_page(
742         void                    *addr)
743 {
744         if (((unsigned long)addr < VMALLOC_START) ||
745             ((unsigned long)addr >= VMALLOC_END)) {
746                 return virt_to_page(addr);
747         } else {
748                 return vmalloc_to_page(addr);
749         }
750 }
751
752 int
753 pagebuf_associate_memory(
754         xfs_buf_t               *pb,
755         void                    *mem,
756         size_t                  len)
757 {
758         int                     rval;
759         int                     i = 0;
760         size_t                  ptr;
761         size_t                  end, end_cur;
762         off_t                   offset;
763         int                     page_count;
764
765         page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
766         offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
767         if (offset && (len > PAGE_CACHE_SIZE))
768                 page_count++;
769
770         /* Free any previous set of page pointers */
771         if (pb->pb_pages)
772                 _pagebuf_free_pages(pb);
773
774         pb->pb_pages = NULL;
775         pb->pb_addr = mem;
776
777         rval = _pagebuf_get_pages(pb, page_count, 0);
778         if (rval)
779                 return rval;
780
781         pb->pb_offset = offset;
782         ptr = (size_t) mem & PAGE_CACHE_MASK;
783         end = PAGE_CACHE_ALIGN((size_t) mem + len);
784         end_cur = end;
785         /* set up first page */
786         pb->pb_pages[0] = mem_to_page(mem);
787
788         ptr += PAGE_CACHE_SIZE;
789         pb->pb_page_count = ++i;
790         while (ptr < end) {
791                 pb->pb_pages[i] = mem_to_page((void *)ptr);
792                 pb->pb_page_count = ++i;
793                 ptr += PAGE_CACHE_SIZE;
794         }
795         pb->pb_locked = 0;
796
797         pb->pb_count_desired = pb->pb_buffer_length = len;
798         pb->pb_flags |= PBF_MAPPED;
799
800         return 0;
801 }
802
803 xfs_buf_t *
804 pagebuf_get_no_daddr(
805         size_t                  len,
806         xfs_buftarg_t           *target)
807 {
808         size_t                  malloc_len = len;
809         xfs_buf_t               *bp;
810         void                    *data;
811         int                     error;
812
813         bp = pagebuf_allocate(0);
814         if (unlikely(bp == NULL))
815                 goto fail;
816         _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO);
817
818  try_again:
819         data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
820         if (unlikely(data == NULL))
821                 goto fail_free_buf;
822
823         /* check whether alignment matches.. */
824         if ((__psunsigned_t)data !=
825             ((__psunsigned_t)data & ~target->pbr_smask)) {
826                 /* .. else double the size and try again */
827                 kmem_free(data, malloc_len);
828                 malloc_len <<= 1;
829                 goto try_again;
830         }
831
832         error = pagebuf_associate_memory(bp, data, len);
833         if (error)
834                 goto fail_free_mem;
835         bp->pb_flags |= _PBF_KMEM_ALLOC;
836
837         pagebuf_unlock(bp);
838
839         PB_TRACE(bp, "no_daddr", data);
840         return bp;
841  fail_free_mem:
842         kmem_free(data, malloc_len);
843  fail_free_buf:
844         pagebuf_free(bp);
845  fail:
846         return NULL;
847 }
848
849 /*
850  *      pagebuf_hold
851  *
852  *      Increment reference count on buffer, to hold the buffer concurrently
853  *      with another thread which may release (free) the buffer asynchronously.
854  *
855  *      Must hold the buffer already to call this function.
856  */
857 void
858 pagebuf_hold(
859         xfs_buf_t               *pb)
860 {
861         atomic_inc(&pb->pb_hold);
862         PB_TRACE(pb, "hold", 0);
863 }
864
865 /*
866  *      pagebuf_rele
867  *
868  *      pagebuf_rele releases a hold on the specified buffer.  If the
869  *      the hold count is 1, pagebuf_rele calls pagebuf_free.
870  */
871 void
872 pagebuf_rele(
873         xfs_buf_t               *pb)
874 {
875         xfs_bufhash_t           *hash = pb->pb_hash;
876
877         PB_TRACE(pb, "rele", pb->pb_relse);
878
879         /*
880          * pagebuf_lookup buffers are not hashed, not delayed write,
881          * and don't have their own release routines.  Special case.
882          */
883         if (unlikely(!hash)) {
884                 ASSERT(!pb->pb_relse);
885                 if (atomic_dec_and_test(&pb->pb_hold))
886                         xfs_buf_free(pb);
887                 return;
888         }
889
890         if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
891                 int             do_free = 1;
892
893                 if (pb->pb_relse) {
894                         atomic_inc(&pb->pb_hold);
895                         spin_unlock(&hash->bh_lock);
896                         (*(pb->pb_relse)) (pb);
897                         spin_lock(&hash->bh_lock);
898                         do_free = 0;
899                 }
900
901                 if (pb->pb_flags & PBF_FS_MANAGED) {
902                         do_free = 0;
903                 }
904
905                 if (do_free) {
906                         ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
907                         list_del_init(&pb->pb_hash_list);
908                         spin_unlock(&hash->bh_lock);
909                         pagebuf_free(pb);
910                 } else {
911                         spin_unlock(&hash->bh_lock);
912                 }
913         } else {
914                 /*
915                  * Catch reference count leaks
916                  */
917                 ASSERT(atomic_read(&pb->pb_hold) >= 0);
918         }
919 }
920
921
922 /*
923  *      Mutual exclusion on buffers.  Locking model:
924  *
925  *      Buffers associated with inodes for which buffer locking
926  *      is not enabled are not protected by semaphores, and are
927  *      assumed to be exclusively owned by the caller.  There is a
928  *      spinlock in the buffer, used by the caller when concurrent
929  *      access is possible.
930  */
931
932 /*
933  *      pagebuf_cond_lock
934  *
935  *      pagebuf_cond_lock locks a buffer object, if it is not already locked.
936  *      Note that this in no way
937  *      locks the underlying pages, so it is only useful for synchronizing
938  *      concurrent use of page buffer objects, not for synchronizing independent
939  *      access to the underlying pages.
940  */
941 int
942 pagebuf_cond_lock(                      /* lock buffer, if not locked   */
943                                         /* returns -EBUSY if locked)    */
944         xfs_buf_t               *pb)
945 {
946         int                     locked;
947
948         locked = down_trylock(&pb->pb_sema) == 0;
949         if (locked) {
950                 PB_SET_OWNER(pb);
951         }
952         PB_TRACE(pb, "cond_lock", (long)locked);
953         return(locked ? 0 : -EBUSY);
954 }
955
956 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
957 /*
958  *      pagebuf_lock_value
959  *
960  *      Return lock value for a pagebuf
961  */
962 int
963 pagebuf_lock_value(
964         xfs_buf_t               *pb)
965 {
966         return(atomic_read(&pb->pb_sema.count));
967 }
968 #endif
969
970 /*
971  *      pagebuf_lock
972  *
973  *      pagebuf_lock locks a buffer object.  Note that this in no way
974  *      locks the underlying pages, so it is only useful for synchronizing
975  *      concurrent use of page buffer objects, not for synchronizing independent
976  *      access to the underlying pages.
977  */
978 int
979 pagebuf_lock(
980         xfs_buf_t               *pb)
981 {
982         PB_TRACE(pb, "lock", 0);
983         if (atomic_read(&pb->pb_io_remaining))
984                 blk_run_address_space(pb->pb_target->pbr_mapping);
985         down(&pb->pb_sema);
986         PB_SET_OWNER(pb);
987         PB_TRACE(pb, "locked", 0);
988         return 0;
989 }
990
991 /*
992  *      pagebuf_unlock
993  *
994  *      pagebuf_unlock releases the lock on the buffer object created by
995  *      pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
996  *      created by pagebuf_pin).
997  *
998  *      If the buffer is marked delwri but is not queued, do so before we
999  *      unlock the buffer as we need to set flags correctly. We also need to
1000  *      take a reference for the delwri queue because the unlocker is going to
1001  *      drop their's and they don't know we just queued it.
1002  */
1003 void
1004 pagebuf_unlock(                         /* unlock buffer                */
1005         xfs_buf_t               *pb)    /* buffer to unlock             */
1006 {
1007         if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
1008                 atomic_inc(&pb->pb_hold);
1009                 pb->pb_flags |= PBF_ASYNC;
1010                 pagebuf_delwri_queue(pb, 0);
1011         }
1012
1013         PB_CLEAR_OWNER(pb);
1014         up(&pb->pb_sema);
1015         PB_TRACE(pb, "unlock", 0);
1016 }
1017
1018
1019 /*
1020  *      Pinning Buffer Storage in Memory
1021  */
1022
1023 /*
1024  *      pagebuf_pin
1025  *
1026  *      pagebuf_pin locks all of the memory represented by a buffer in
1027  *      memory.  Multiple calls to pagebuf_pin and pagebuf_unpin, for
1028  *      the same or different buffers affecting a given page, will
1029  *      properly count the number of outstanding "pin" requests.  The
1030  *      buffer may be released after the pagebuf_pin and a different
1031  *      buffer used when calling pagebuf_unpin, if desired.
1032  *      pagebuf_pin should be used by the file system when it wants be
1033  *      assured that no attempt will be made to force the affected
1034  *      memory to disk.  It does not assure that a given logical page
1035  *      will not be moved to a different physical page.
1036  */
1037 void
1038 pagebuf_pin(
1039         xfs_buf_t               *pb)
1040 {
1041         atomic_inc(&pb->pb_pin_count);
1042         PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
1043 }
1044
1045 /*
1046  *      pagebuf_unpin
1047  *
1048  *      pagebuf_unpin reverses the locking of memory performed by
1049  *      pagebuf_pin.  Note that both functions affected the logical
1050  *      pages associated with the buffer, not the buffer itself.
1051  */
1052 void
1053 pagebuf_unpin(
1054         xfs_buf_t               *pb)
1055 {
1056         if (atomic_dec_and_test(&pb->pb_pin_count)) {
1057                 wake_up_all(&pb->pb_waiters);
1058         }
1059         PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
1060 }
1061
1062 int
1063 pagebuf_ispin(
1064         xfs_buf_t               *pb)
1065 {
1066         return atomic_read(&pb->pb_pin_count);
1067 }
1068
1069 /*
1070  *      pagebuf_wait_unpin
1071  *
1072  *      pagebuf_wait_unpin waits until all of the memory associated
1073  *      with the buffer is not longer locked in memory.  It returns
1074  *      immediately if none of the affected pages are locked.
1075  */
1076 static inline void
1077 _pagebuf_wait_unpin(
1078         xfs_buf_t               *pb)
1079 {
1080         DECLARE_WAITQUEUE       (wait, current);
1081
1082         if (atomic_read(&pb->pb_pin_count) == 0)
1083                 return;
1084
1085         add_wait_queue(&pb->pb_waiters, &wait);
1086         for (;;) {
1087                 set_current_state(TASK_UNINTERRUPTIBLE);
1088                 if (atomic_read(&pb->pb_pin_count) == 0)
1089                         break;
1090                 if (atomic_read(&pb->pb_io_remaining))
1091                         blk_run_address_space(pb->pb_target->pbr_mapping);
1092                 schedule();
1093         }
1094         remove_wait_queue(&pb->pb_waiters, &wait);
1095         set_current_state(TASK_RUNNING);
1096 }
1097
1098 /*
1099  *      Buffer Utility Routines
1100  */
1101
1102 /*
1103  *      pagebuf_iodone
1104  *
1105  *      pagebuf_iodone marks a buffer for which I/O is in progress
1106  *      done with respect to that I/O.  The pb_iodone routine, if
1107  *      present, will be called as a side-effect.
1108  */
1109 STATIC void
1110 pagebuf_iodone_work(
1111         void                    *v)
1112 {
1113         xfs_buf_t               *bp = (xfs_buf_t *)v;
1114
1115         if (bp->pb_iodone)
1116                 (*(bp->pb_iodone))(bp);
1117         else if (bp->pb_flags & PBF_ASYNC)
1118                 xfs_buf_relse(bp);
1119 }
1120
1121 void
1122 pagebuf_iodone(
1123         xfs_buf_t               *pb,
1124         int                     dataio,
1125         int                     schedule)
1126 {
1127         pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
1128         if (pb->pb_error == 0) {
1129                 pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
1130         }
1131
1132         PB_TRACE(pb, "iodone", pb->pb_iodone);
1133
1134         if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
1135                 if (schedule) {
1136                         INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
1137                         queue_work(dataio ? xfsdatad_workqueue :
1138                                 xfslogd_workqueue, &pb->pb_iodone_work);
1139                 } else {
1140                         pagebuf_iodone_work(pb);
1141                 }
1142         } else {
1143                 up(&pb->pb_iodonesema);
1144         }
1145 }
1146
1147 /*
1148  *      pagebuf_ioerror
1149  *
1150  *      pagebuf_ioerror sets the error code for a buffer.
1151  */
1152 void
1153 pagebuf_ioerror(                        /* mark/clear buffer error flag */
1154         xfs_buf_t               *pb,    /* buffer to mark               */
1155         int                     error)  /* error to store (0 if none)   */
1156 {
1157         ASSERT(error >= 0 && error <= 0xffff);
1158         pb->pb_error = (unsigned short)error;
1159         PB_TRACE(pb, "ioerror", (unsigned long)error);
1160 }
1161
1162 /*
1163  *      pagebuf_iostart
1164  *
1165  *      pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
1166  *      If necessary, it will arrange for any disk space allocation required,
1167  *      and it will break up the request if the block mappings require it.
1168  *      The pb_iodone routine in the buffer supplied will only be called
1169  *      when all of the subsidiary I/O requests, if any, have been completed.
1170  *      pagebuf_iostart calls the pagebuf_ioinitiate routine or
1171  *      pagebuf_iorequest, if the former routine is not defined, to start
1172  *      the I/O on a given low-level request.
1173  */
1174 int
1175 pagebuf_iostart(                        /* start I/O on a buffer          */
1176         xfs_buf_t               *pb,    /* buffer to start                */
1177         page_buf_flags_t        flags)  /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
1178                                         /* PBF_WRITE, PBF_DELWRI,         */
1179                                         /* PBF_DONT_BLOCK                 */
1180 {
1181         int                     status = 0;
1182
1183         PB_TRACE(pb, "iostart", (unsigned long)flags);
1184
1185         if (flags & PBF_DELWRI) {
1186                 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
1187                 pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
1188                 pagebuf_delwri_queue(pb, 1);
1189                 return status;
1190         }
1191
1192         pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
1193                         PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1194         pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
1195                         PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1196
1197         BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
1198
1199         /* For writes allow an alternate strategy routine to precede
1200          * the actual I/O request (which may not be issued at all in
1201          * a shutdown situation, for example).
1202          */
1203         status = (flags & PBF_WRITE) ?
1204                 pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
1205
1206         /* Wait for I/O if we are not an async request.
1207          * Note: async I/O request completion will release the buffer,
1208          * and that can already be done by this point.  So using the
1209          * buffer pointer from here on, after async I/O, is invalid.
1210          */
1211         if (!status && !(flags & PBF_ASYNC))
1212                 status = pagebuf_iowait(pb);
1213
1214         return status;
1215 }
1216
1217 /*
1218  * Helper routine for pagebuf_iorequest
1219  */
1220
1221 STATIC __inline__ int
1222 _pagebuf_iolocked(
1223         xfs_buf_t               *pb)
1224 {
1225         ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
1226         if (pb->pb_flags & PBF_READ)
1227                 return pb->pb_locked;
1228         return 0;
1229 }
1230
1231 STATIC __inline__ void
1232 _pagebuf_iodone(
1233         xfs_buf_t               *pb,
1234         int                     schedule)
1235 {
1236         if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
1237                 pb->pb_locked = 0;
1238                 pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule);
1239         }
1240 }
1241
1242 STATIC int
1243 bio_end_io_pagebuf(
1244         struct bio              *bio,
1245         unsigned int            bytes_done,
1246         int                     error)
1247 {
1248         xfs_buf_t               *pb = (xfs_buf_t *)bio->bi_private;
1249         unsigned int            blocksize = pb->pb_target->pbr_bsize;
1250         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1251
1252         if (bio->bi_size)
1253                 return 1;
1254
1255         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1256                 pb->pb_error = EIO;
1257
1258         do {
1259                 struct page     *page = bvec->bv_page;
1260
1261                 if (unlikely(pb->pb_error)) {
1262                         if (pb->pb_flags & PBF_READ)
1263                                 ClearPageUptodate(page);
1264                         SetPageError(page);
1265                 } else if (blocksize == PAGE_CACHE_SIZE) {
1266                         SetPageUptodate(page);
1267                 } else if (!PagePrivate(page) &&
1268                                 (pb->pb_flags & _PBF_PAGE_CACHE)) {
1269                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1270                 }
1271
1272                 if (--bvec >= bio->bi_io_vec)
1273                         prefetchw(&bvec->bv_page->flags);
1274
1275                 if (_pagebuf_iolocked(pb)) {
1276                         unlock_page(page);
1277                 }
1278         } while (bvec >= bio->bi_io_vec);
1279
1280         _pagebuf_iodone(pb, 1);
1281         bio_put(bio);
1282         return 0;
1283 }
1284
1285 STATIC void
1286 _pagebuf_ioapply(
1287         xfs_buf_t               *pb)
1288 {
1289         int                     i, rw, map_i, total_nr_pages, nr_pages;
1290         struct bio              *bio;
1291         int                     offset = pb->pb_offset;
1292         int                     size = pb->pb_count_desired;
1293         sector_t                sector = pb->pb_bn;
1294         unsigned int            blocksize = pb->pb_target->pbr_bsize;
1295         int                     locking = _pagebuf_iolocked(pb);
1296
1297         total_nr_pages = pb->pb_page_count;
1298         map_i = 0;
1299
1300         if (pb->pb_flags & _PBF_RUN_QUEUES) {
1301                 pb->pb_flags &= ~_PBF_RUN_QUEUES;
1302                 rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
1303         } else {
1304                 rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
1305         }
1306
1307         /* Special code path for reading a sub page size pagebuf in --
1308          * we populate up the whole page, and hence the other metadata
1309          * in the same page.  This optimization is only valid when the
1310          * filesystem block size and the page size are equal.
1311          */
1312         if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
1313             (pb->pb_flags & PBF_READ) && locking &&
1314             (blocksize == PAGE_CACHE_SIZE)) {
1315                 bio = bio_alloc(GFP_NOIO, 1);
1316
1317                 bio->bi_bdev = pb->pb_target->pbr_bdev;
1318                 bio->bi_sector = sector - (offset >> BBSHIFT);
1319                 bio->bi_end_io = bio_end_io_pagebuf;
1320                 bio->bi_private = pb;
1321
1322                 bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
1323                 size = 0;
1324
1325                 atomic_inc(&pb->pb_io_remaining);
1326
1327                 goto submit_io;
1328         }
1329
1330         /* Lock down the pages which we need to for the request */
1331         if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
1332                 for (i = 0; size; i++) {
1333                         int             nbytes = PAGE_CACHE_SIZE - offset;
1334                         struct page     *page = pb->pb_pages[i];
1335
1336                         if (nbytes > size)
1337                                 nbytes = size;
1338
1339                         lock_page(page);
1340
1341                         size -= nbytes;
1342                         offset = 0;
1343                 }
1344                 offset = pb->pb_offset;
1345                 size = pb->pb_count_desired;
1346         }
1347
1348 next_chunk:
1349         atomic_inc(&pb->pb_io_remaining);
1350         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1351         if (nr_pages > total_nr_pages)
1352                 nr_pages = total_nr_pages;
1353
1354         bio = bio_alloc(GFP_NOIO, nr_pages);
1355         bio->bi_bdev = pb->pb_target->pbr_bdev;
1356         bio->bi_sector = sector;
1357         bio->bi_end_io = bio_end_io_pagebuf;
1358         bio->bi_private = pb;
1359
1360         for (; size && nr_pages; nr_pages--, map_i++) {
1361                 int     nbytes = PAGE_CACHE_SIZE - offset;
1362
1363                 if (nbytes > size)
1364                         nbytes = size;
1365
1366                 if (bio_add_page(bio, pb->pb_pages[map_i],
1367                                         nbytes, offset) < nbytes)
1368                         break;
1369
1370                 offset = 0;
1371                 sector += nbytes >> BBSHIFT;
1372                 size -= nbytes;
1373                 total_nr_pages--;
1374         }
1375
1376 submit_io:
1377         if (likely(bio->bi_size)) {
1378                 submit_bio(rw, bio);
1379                 if (size)
1380                         goto next_chunk;
1381         } else {
1382                 bio_put(bio);
1383                 pagebuf_ioerror(pb, EIO);
1384         }
1385 }
1386
1387 /*
1388  *      pagebuf_iorequest -- the core I/O request routine.
1389  */
1390 int
1391 pagebuf_iorequest(                      /* start real I/O               */
1392         xfs_buf_t               *pb)    /* buffer to convey to device   */
1393 {
1394         PB_TRACE(pb, "iorequest", 0);
1395
1396         if (pb->pb_flags & PBF_DELWRI) {
1397                 pagebuf_delwri_queue(pb, 1);
1398                 return 0;
1399         }
1400
1401         if (pb->pb_flags & PBF_WRITE) {
1402                 _pagebuf_wait_unpin(pb);
1403         }
1404
1405         pagebuf_hold(pb);
1406
1407         /* Set the count to 1 initially, this will stop an I/O
1408          * completion callout which happens before we have started
1409          * all the I/O from calling pagebuf_iodone too early.
1410          */
1411         atomic_set(&pb->pb_io_remaining, 1);
1412         _pagebuf_ioapply(pb);
1413         _pagebuf_iodone(pb, 0);
1414
1415         pagebuf_rele(pb);
1416         return 0;
1417 }
1418
1419 /*
1420  *      pagebuf_iowait
1421  *
1422  *      pagebuf_iowait waits for I/O to complete on the buffer supplied.
1423  *      It returns immediately if no I/O is pending.  In any case, it returns
1424  *      the error code, if any, or 0 if there is no error.
1425  */
1426 int
1427 pagebuf_iowait(
1428         xfs_buf_t               *pb)
1429 {
1430         PB_TRACE(pb, "iowait", 0);
1431         if (atomic_read(&pb->pb_io_remaining))
1432                 blk_run_address_space(pb->pb_target->pbr_mapping);
1433         down(&pb->pb_iodonesema);
1434         PB_TRACE(pb, "iowaited", (long)pb->pb_error);
1435         return pb->pb_error;
1436 }
1437
1438 caddr_t
1439 pagebuf_offset(
1440         xfs_buf_t               *pb,
1441         size_t                  offset)
1442 {
1443         struct page             *page;
1444
1445         offset += pb->pb_offset;
1446
1447         page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
1448         return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
1449 }
1450
1451 /*
1452  *      pagebuf_iomove
1453  *
1454  *      Move data into or out of a buffer.
1455  */
1456 void
1457 pagebuf_iomove(
1458         xfs_buf_t               *pb,    /* buffer to process            */
1459         size_t                  boff,   /* starting buffer offset       */
1460         size_t                  bsize,  /* length to copy               */
1461         caddr_t                 data,   /* data address                 */
1462         page_buf_rw_t           mode)   /* read/write flag              */
1463 {
1464         size_t                  bend, cpoff, csize;
1465         struct page             *page;
1466
1467         bend = boff + bsize;
1468         while (boff < bend) {
1469                 page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
1470                 cpoff = page_buf_poff(boff + pb->pb_offset);
1471                 csize = min_t(size_t,
1472                               PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
1473
1474                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1475
1476                 switch (mode) {
1477                 case PBRW_ZERO:
1478                         memset(page_address(page) + cpoff, 0, csize);
1479                         break;
1480                 case PBRW_READ:
1481                         memcpy(data, page_address(page) + cpoff, csize);
1482                         break;
1483                 case PBRW_WRITE:
1484                         memcpy(page_address(page) + cpoff, data, csize);
1485                 }
1486
1487                 boff += csize;
1488                 data += csize;
1489         }
1490 }
1491
1492 /*
1493  *      Handling of buftargs.
1494  */
1495
1496 /*
1497  * Wait for any bufs with callbacks that have been submitted but
1498  * have not yet returned... walk the hash list for the target.
1499  */
1500 void
1501 xfs_wait_buftarg(
1502         xfs_buftarg_t   *btp)
1503 {
1504         xfs_buf_t       *bp, *n;
1505         xfs_bufhash_t   *hash;
1506         uint            i;
1507
1508         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1509                 hash = &btp->bt_hash[i];
1510 again:
1511                 spin_lock(&hash->bh_lock);
1512                 list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
1513                         ASSERT(btp == bp->pb_target);
1514                         if (!(bp->pb_flags & PBF_FS_MANAGED)) {
1515                                 spin_unlock(&hash->bh_lock);
1516                                 /*
1517                                  * Catch superblock reference count leaks
1518                                  * immediately
1519                                  */
1520                                 BUG_ON(bp->pb_bn == 0);
1521                                 delay(100);
1522                                 goto again;
1523                         }
1524                 }
1525                 spin_unlock(&hash->bh_lock);
1526         }
1527 }
1528
1529 /*
1530  * Allocate buffer hash table for a given target.
1531  * For devices containing metadata (i.e. not the log/realtime devices)
1532  * we need to allocate a much larger hash table.
1533  */
1534 STATIC void
1535 xfs_alloc_bufhash(
1536         xfs_buftarg_t           *btp,
1537         int                     external)
1538 {
1539         unsigned int            i;
1540
1541         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1542         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1543         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1544                                         sizeof(xfs_bufhash_t), KM_SLEEP);
1545         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1546                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1547                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1548         }
1549 }
1550
1551 STATIC void
1552 xfs_free_bufhash(
1553         xfs_buftarg_t           *btp)
1554 {
1555         kmem_free(btp->bt_hash,
1556                         (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1557         btp->bt_hash = NULL;
1558 }
1559
1560 void
1561 xfs_free_buftarg(
1562         xfs_buftarg_t           *btp,
1563         int                     external)
1564 {
1565         xfs_flush_buftarg(btp, 1);
1566         if (external)
1567                 xfs_blkdev_put(btp->pbr_bdev);
1568         xfs_free_bufhash(btp);
1569         iput(btp->pbr_mapping->host);
1570         kmem_free(btp, sizeof(*btp));
1571 }
1572
1573 STATIC int
1574 xfs_setsize_buftarg_flags(
1575         xfs_buftarg_t           *btp,
1576         unsigned int            blocksize,
1577         unsigned int            sectorsize,
1578         int                     verbose)
1579 {
1580         btp->pbr_bsize = blocksize;
1581         btp->pbr_sshift = ffs(sectorsize) - 1;
1582         btp->pbr_smask = sectorsize - 1;
1583
1584         if (set_blocksize(btp->pbr_bdev, sectorsize)) {
1585                 printk(KERN_WARNING
1586                         "XFS: Cannot set_blocksize to %u on device %s\n",
1587                         sectorsize, XFS_BUFTARG_NAME(btp));
1588                 return EINVAL;
1589         }
1590
1591         if (verbose &&
1592             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1593                 printk(KERN_WARNING
1594                         "XFS: %u byte sectors in use on device %s.  "
1595                         "This is suboptimal; %u or greater is ideal.\n",
1596                         sectorsize, XFS_BUFTARG_NAME(btp),
1597                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1598         }
1599
1600         return 0;
1601 }
1602
1603 /*
1604 * When allocating the initial buffer target we have not yet
1605 * read in the superblock, so don't know what sized sectors
1606 * are being used is at this early stage.  Play safe.
1607 */
1608 STATIC int
1609 xfs_setsize_buftarg_early(
1610         xfs_buftarg_t           *btp,
1611         struct block_device     *bdev)
1612 {
1613         return xfs_setsize_buftarg_flags(btp,
1614                         PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1615 }
1616
1617 int
1618 xfs_setsize_buftarg(
1619         xfs_buftarg_t           *btp,
1620         unsigned int            blocksize,
1621         unsigned int            sectorsize)
1622 {
1623         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1624 }
1625
1626 STATIC int
1627 xfs_mapping_buftarg(
1628         xfs_buftarg_t           *btp,
1629         struct block_device     *bdev)
1630 {
1631         struct backing_dev_info *bdi;
1632         struct inode            *inode;
1633         struct address_space    *mapping;
1634         static struct address_space_operations mapping_aops = {
1635                 .sync_page = block_sync_page,
1636         };
1637
1638         inode = new_inode(bdev->bd_inode->i_sb);
1639         if (!inode) {
1640                 printk(KERN_WARNING
1641                         "XFS: Cannot allocate mapping inode for device %s\n",
1642                         XFS_BUFTARG_NAME(btp));
1643                 return ENOMEM;
1644         }
1645         inode->i_mode = S_IFBLK;
1646         inode->i_bdev = bdev;
1647         inode->i_rdev = bdev->bd_dev;
1648         bdi = blk_get_backing_dev_info(bdev);
1649         if (!bdi)
1650                 bdi = &default_backing_dev_info;
1651         mapping = &inode->i_data;
1652         mapping->a_ops = &mapping_aops;
1653         mapping->backing_dev_info = bdi;
1654         mapping_set_gfp_mask(mapping, GFP_NOFS);
1655         btp->pbr_mapping = mapping;
1656         return 0;
1657 }
1658
1659 xfs_buftarg_t *
1660 xfs_alloc_buftarg(
1661         struct block_device     *bdev,
1662         int                     external)
1663 {
1664         xfs_buftarg_t           *btp;
1665
1666         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1667
1668         btp->pbr_dev =  bdev->bd_dev;
1669         btp->pbr_bdev = bdev;
1670         if (xfs_setsize_buftarg_early(btp, bdev))
1671                 goto error;
1672         if (xfs_mapping_buftarg(btp, bdev))
1673                 goto error;
1674         xfs_alloc_bufhash(btp, external);
1675         return btp;
1676
1677 error:
1678         kmem_free(btp, sizeof(*btp));
1679         return NULL;
1680 }
1681
1682
1683 /*
1684  * Pagebuf delayed write buffer handling
1685  */
1686
1687 STATIC LIST_HEAD(pbd_delwrite_queue);
1688 STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
1689
1690 STATIC void
1691 pagebuf_delwri_queue(
1692         xfs_buf_t               *pb,
1693         int                     unlock)
1694 {
1695         PB_TRACE(pb, "delwri_q", (long)unlock);
1696         ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
1697                                         (PBF_DELWRI|PBF_ASYNC));
1698
1699         spin_lock(&pbd_delwrite_lock);
1700         /* If already in the queue, dequeue and place at tail */
1701         if (!list_empty(&pb->pb_list)) {
1702                 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1703                 if (unlock) {
1704                         atomic_dec(&pb->pb_hold);
1705                 }
1706                 list_del(&pb->pb_list);
1707         }
1708
1709         pb->pb_flags |= _PBF_DELWRI_Q;
1710         list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
1711         pb->pb_queuetime = jiffies;
1712         spin_unlock(&pbd_delwrite_lock);
1713
1714         if (unlock)
1715                 pagebuf_unlock(pb);
1716 }
1717
1718 void
1719 pagebuf_delwri_dequeue(
1720         xfs_buf_t               *pb)
1721 {
1722         int                     dequeued = 0;
1723
1724         spin_lock(&pbd_delwrite_lock);
1725         if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
1726                 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1727                 list_del_init(&pb->pb_list);
1728                 dequeued = 1;
1729         }
1730         pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1731         spin_unlock(&pbd_delwrite_lock);
1732
1733         if (dequeued)
1734                 pagebuf_rele(pb);
1735
1736         PB_TRACE(pb, "delwri_dq", (long)dequeued);
1737 }
1738
1739 STATIC void
1740 pagebuf_runall_queues(
1741         struct workqueue_struct *queue)
1742 {
1743         flush_workqueue(queue);
1744 }
1745
1746 /* Defines for pagebuf daemon */
1747 STATIC struct task_struct *xfsbufd_task;
1748 STATIC int xfsbufd_force_flush;
1749 STATIC int xfsbufd_force_sleep;
1750
1751 STATIC int
1752 xfsbufd_wakeup(
1753         int             priority,
1754         gfp_t           mask)
1755 {
1756         if (xfsbufd_force_sleep)
1757                 return 0;
1758         xfsbufd_force_flush = 1;
1759         barrier();
1760         wake_up_process(xfsbufd_task);
1761         return 0;
1762 }
1763
1764 STATIC int
1765 xfsbufd(
1766         void                    *data)
1767 {
1768         struct list_head        tmp;
1769         unsigned long           age;
1770         xfs_buftarg_t           *target;
1771         xfs_buf_t               *pb, *n;
1772
1773         current->flags |= PF_MEMALLOC;
1774
1775         INIT_LIST_HEAD(&tmp);
1776         do {
1777                 if (unlikely(freezing(current))) {
1778                         xfsbufd_force_sleep = 1;
1779                         refrigerator();
1780                 } else {
1781                         xfsbufd_force_sleep = 0;
1782                 }
1783
1784                 schedule_timeout_interruptible
1785                         (xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1786
1787                 age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1788                 spin_lock(&pbd_delwrite_lock);
1789                 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1790                         PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
1791                         ASSERT(pb->pb_flags & PBF_DELWRI);
1792
1793                         if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
1794                                 if (!xfsbufd_force_flush &&
1795                                     time_before(jiffies,
1796                                                 pb->pb_queuetime + age)) {
1797                                         pagebuf_unlock(pb);
1798                                         break;
1799                                 }
1800
1801                                 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1802                                 pb->pb_flags |= PBF_WRITE;
1803                                 list_move(&pb->pb_list, &tmp);
1804                         }
1805                 }
1806                 spin_unlock(&pbd_delwrite_lock);
1807
1808                 while (!list_empty(&tmp)) {
1809                         pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1810                         target = pb->pb_target;
1811
1812                         list_del_init(&pb->pb_list);
1813                         pagebuf_iostrategy(pb);
1814
1815                         blk_run_address_space(target->pbr_mapping);
1816                 }
1817
1818                 if (as_list_len > 0)
1819                         purge_addresses();
1820
1821                 xfsbufd_force_flush = 0;
1822         } while (!kthread_should_stop());
1823
1824         return 0;
1825 }
1826
1827 /*
1828  * Go through all incore buffers, and release buffers if they belong to
1829  * the given device. This is used in filesystem error handling to
1830  * preserve the consistency of its metadata.
1831  */
1832 int
1833 xfs_flush_buftarg(
1834         xfs_buftarg_t           *target,
1835         int                     wait)
1836 {
1837         struct list_head        tmp;
1838         xfs_buf_t               *pb, *n;
1839         int                     pincount = 0;
1840
1841         pagebuf_runall_queues(xfsdatad_workqueue);
1842         pagebuf_runall_queues(xfslogd_workqueue);
1843
1844         INIT_LIST_HEAD(&tmp);
1845         spin_lock(&pbd_delwrite_lock);
1846         list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1847
1848                 if (pb->pb_target != target)
1849                         continue;
1850
1851                 ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
1852                 PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
1853                 if (pagebuf_ispin(pb)) {
1854                         pincount++;
1855                         continue;
1856                 }
1857
1858                 list_move(&pb->pb_list, &tmp);
1859         }
1860         spin_unlock(&pbd_delwrite_lock);
1861
1862         /*
1863          * Dropped the delayed write list lock, now walk the temporary list
1864          */
1865         list_for_each_entry_safe(pb, n, &tmp, pb_list) {
1866                 pagebuf_lock(pb);
1867                 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1868                 pb->pb_flags |= PBF_WRITE;
1869                 if (wait)
1870                         pb->pb_flags &= ~PBF_ASYNC;
1871                 else
1872                         list_del_init(&pb->pb_list);
1873
1874                 pagebuf_iostrategy(pb);
1875         }
1876
1877         /*
1878          * Remaining list items must be flushed before returning
1879          */
1880         while (!list_empty(&tmp)) {
1881                 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1882
1883                 list_del_init(&pb->pb_list);
1884                 xfs_iowait(pb);
1885                 xfs_buf_relse(pb);
1886         }
1887
1888         if (wait)
1889                 blk_run_address_space(target->pbr_mapping);
1890
1891         return pincount;
1892 }
1893
1894 int __init
1895 pagebuf_init(void)
1896 {
1897         int             error = -ENOMEM;
1898
1899 #ifdef PAGEBUF_TRACE
1900         pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
1901 #endif
1902
1903         pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
1904         if (!pagebuf_zone)
1905                 goto out_free_trace_buf;
1906
1907         xfslogd_workqueue = create_workqueue("xfslogd");
1908         if (!xfslogd_workqueue)
1909                 goto out_free_buf_zone;
1910
1911         xfsdatad_workqueue = create_workqueue("xfsdatad");
1912         if (!xfsdatad_workqueue)
1913                 goto out_destroy_xfslogd_workqueue;
1914
1915         xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
1916         if (IS_ERR(xfsbufd_task)) {
1917                 error = PTR_ERR(xfsbufd_task);
1918                 goto out_destroy_xfsdatad_workqueue;
1919         }
1920
1921         pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
1922         if (!pagebuf_shake)
1923                 goto out_stop_xfsbufd;
1924
1925         return 0;
1926
1927  out_stop_xfsbufd:
1928         kthread_stop(xfsbufd_task);
1929  out_destroy_xfsdatad_workqueue:
1930         destroy_workqueue(xfsdatad_workqueue);
1931  out_destroy_xfslogd_workqueue:
1932         destroy_workqueue(xfslogd_workqueue);
1933  out_free_buf_zone:
1934         kmem_zone_destroy(pagebuf_zone);
1935  out_free_trace_buf:
1936 #ifdef PAGEBUF_TRACE
1937         ktrace_free(pagebuf_trace_buf);
1938 #endif
1939         return error;
1940 }
1941
1942 void
1943 pagebuf_terminate(void)
1944 {
1945         kmem_shake_deregister(pagebuf_shake);
1946         kthread_stop(xfsbufd_task);
1947         destroy_workqueue(xfsdatad_workqueue);
1948         destroy_workqueue(xfslogd_workqueue);
1949         kmem_zone_destroy(pagebuf_zone);
1950 #ifdef PAGEBUF_TRACE
1951         ktrace_free(pagebuf_trace_buf);
1952 #endif
1953 }