UBIFS: introduce LPT dump function
[safe/jmp/linux-2.6] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36
37 #ifdef CONFIG_UBIFS_FS_DEBUG
38
39 DEFINE_SPINLOCK(dbg_lock);
40
41 static char dbg_key_buf0[128];
42 static char dbg_key_buf1[128];
43
44 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
45 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
46 unsigned int ubifs_tst_flags;
47
48 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
49 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
51
52 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
53 MODULE_PARM_DESC(debug_chks, "Debug check flags");
54 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
55
56 static const char *get_key_fmt(int fmt)
57 {
58         switch (fmt) {
59         case UBIFS_SIMPLE_KEY_FMT:
60                 return "simple";
61         default:
62                 return "unknown/invalid format";
63         }
64 }
65
66 static const char *get_key_hash(int hash)
67 {
68         switch (hash) {
69         case UBIFS_KEY_HASH_R5:
70                 return "R5";
71         case UBIFS_KEY_HASH_TEST:
72                 return "test";
73         default:
74                 return "unknown/invalid name hash";
75         }
76 }
77
78 static const char *get_key_type(int type)
79 {
80         switch (type) {
81         case UBIFS_INO_KEY:
82                 return "inode";
83         case UBIFS_DENT_KEY:
84                 return "direntry";
85         case UBIFS_XENT_KEY:
86                 return "xentry";
87         case UBIFS_DATA_KEY:
88                 return "data";
89         case UBIFS_TRUN_KEY:
90                 return "truncate";
91         default:
92                 return "unknown/invalid key";
93         }
94 }
95
96 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
97                         char *buffer)
98 {
99         char *p = buffer;
100         int type = key_type(c, key);
101
102         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
103                 switch (type) {
104                 case UBIFS_INO_KEY:
105                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
106                                get_key_type(type));
107                         break;
108                 case UBIFS_DENT_KEY:
109                 case UBIFS_XENT_KEY:
110                         sprintf(p, "(%lu, %s, %#08x)",
111                                 (unsigned long)key_inum(c, key),
112                                 get_key_type(type), key_hash(c, key));
113                         break;
114                 case UBIFS_DATA_KEY:
115                         sprintf(p, "(%lu, %s, %u)",
116                                 (unsigned long)key_inum(c, key),
117                                 get_key_type(type), key_block(c, key));
118                         break;
119                 case UBIFS_TRUN_KEY:
120                         sprintf(p, "(%lu, %s)",
121                                 (unsigned long)key_inum(c, key),
122                                 get_key_type(type));
123                         break;
124                 default:
125                         sprintf(p, "(bad key type: %#08x, %#08x)",
126                                 key->u32[0], key->u32[1]);
127                 }
128         } else
129                 sprintf(p, "bad key format %d", c->key_fmt);
130 }
131
132 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
133 {
134         /* dbg_lock must be held */
135         sprintf_key(c, key, dbg_key_buf0);
136         return dbg_key_buf0;
137 }
138
139 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
140 {
141         /* dbg_lock must be held */
142         sprintf_key(c, key, dbg_key_buf1);
143         return dbg_key_buf1;
144 }
145
146 const char *dbg_ntype(int type)
147 {
148         switch (type) {
149         case UBIFS_PAD_NODE:
150                 return "padding node";
151         case UBIFS_SB_NODE:
152                 return "superblock node";
153         case UBIFS_MST_NODE:
154                 return "master node";
155         case UBIFS_REF_NODE:
156                 return "reference node";
157         case UBIFS_INO_NODE:
158                 return "inode node";
159         case UBIFS_DENT_NODE:
160                 return "direntry node";
161         case UBIFS_XENT_NODE:
162                 return "xentry node";
163         case UBIFS_DATA_NODE:
164                 return "data node";
165         case UBIFS_TRUN_NODE:
166                 return "truncate node";
167         case UBIFS_IDX_NODE:
168                 return "indexing node";
169         case UBIFS_CS_NODE:
170                 return "commit start node";
171         case UBIFS_ORPH_NODE:
172                 return "orphan node";
173         default:
174                 return "unknown node";
175         }
176 }
177
178 static const char *dbg_gtype(int type)
179 {
180         switch (type) {
181         case UBIFS_NO_NODE_GROUP:
182                 return "no node group";
183         case UBIFS_IN_NODE_GROUP:
184                 return "in node group";
185         case UBIFS_LAST_OF_NODE_GROUP:
186                 return "last of node group";
187         default:
188                 return "unknown";
189         }
190 }
191
192 const char *dbg_cstate(int cmt_state)
193 {
194         switch (cmt_state) {
195         case COMMIT_RESTING:
196                 return "commit resting";
197         case COMMIT_BACKGROUND:
198                 return "background commit requested";
199         case COMMIT_REQUIRED:
200                 return "commit required";
201         case COMMIT_RUNNING_BACKGROUND:
202                 return "BACKGROUND commit running";
203         case COMMIT_RUNNING_REQUIRED:
204                 return "commit running and required";
205         case COMMIT_BROKEN:
206                 return "broken commit";
207         default:
208                 return "unknown commit state";
209         }
210 }
211
212 static void dump_ch(const struct ubifs_ch *ch)
213 {
214         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
215         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
216         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
217                dbg_ntype(ch->node_type));
218         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
219                dbg_gtype(ch->group_type));
220         printk(KERN_DEBUG "\tsqnum          %llu\n",
221                (unsigned long long)le64_to_cpu(ch->sqnum));
222         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
223 }
224
225 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
226 {
227         const struct ubifs_inode *ui = ubifs_inode(inode);
228
229         printk(KERN_DEBUG "Dump in-memory inode:");
230         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
231         printk(KERN_DEBUG "\tsize           %llu\n",
232                (unsigned long long)i_size_read(inode));
233         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
234         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
235         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
236         printk(KERN_DEBUG "\tatime          %u.%u\n",
237                (unsigned int)inode->i_atime.tv_sec,
238                (unsigned int)inode->i_atime.tv_nsec);
239         printk(KERN_DEBUG "\tmtime          %u.%u\n",
240                (unsigned int)inode->i_mtime.tv_sec,
241                (unsigned int)inode->i_mtime.tv_nsec);
242         printk(KERN_DEBUG "\tctime          %u.%u\n",
243                (unsigned int)inode->i_ctime.tv_sec,
244                (unsigned int)inode->i_ctime.tv_nsec);
245         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
246         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
247         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
248         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
249         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
250         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
251         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
252         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
253                (unsigned long long)ui->synced_i_size);
254         printk(KERN_DEBUG "\tui_size        %llu\n",
255                (unsigned long long)ui->ui_size);
256         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
257         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
258         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
259         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
260         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
261 }
262
263 void dbg_dump_node(const struct ubifs_info *c, const void *node)
264 {
265         int i, n;
266         union ubifs_key key;
267         const struct ubifs_ch *ch = node;
268
269         if (dbg_failure_mode)
270                 return;
271
272         /* If the magic is incorrect, just hexdump the first bytes */
273         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
274                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
275                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
276                                (void *)node, UBIFS_CH_SZ, 1);
277                 return;
278         }
279
280         spin_lock(&dbg_lock);
281         dump_ch(node);
282
283         switch (ch->node_type) {
284         case UBIFS_PAD_NODE:
285         {
286                 const struct ubifs_pad_node *pad = node;
287
288                 printk(KERN_DEBUG "\tpad_len        %u\n",
289                        le32_to_cpu(pad->pad_len));
290                 break;
291         }
292         case UBIFS_SB_NODE:
293         {
294                 const struct ubifs_sb_node *sup = node;
295                 unsigned int sup_flags = le32_to_cpu(sup->flags);
296
297                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
298                        (int)sup->key_hash, get_key_hash(sup->key_hash));
299                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
300                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
301                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
302                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
303                        !!(sup_flags & UBIFS_FLG_BIGLPT));
304                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
305                        le32_to_cpu(sup->min_io_size));
306                 printk(KERN_DEBUG "\tleb_size       %u\n",
307                        le32_to_cpu(sup->leb_size));
308                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
309                        le32_to_cpu(sup->leb_cnt));
310                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
311                        le32_to_cpu(sup->max_leb_cnt));
312                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
313                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
314                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
315                        le32_to_cpu(sup->log_lebs));
316                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
317                        le32_to_cpu(sup->lpt_lebs));
318                 printk(KERN_DEBUG "\torph_lebs      %u\n",
319                        le32_to_cpu(sup->orph_lebs));
320                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
321                        le32_to_cpu(sup->jhead_cnt));
322                 printk(KERN_DEBUG "\tfanout         %u\n",
323                        le32_to_cpu(sup->fanout));
324                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
325                        le32_to_cpu(sup->lsave_cnt));
326                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
327                        (int)le16_to_cpu(sup->default_compr));
328                 printk(KERN_DEBUG "\trp_size        %llu\n",
329                        (unsigned long long)le64_to_cpu(sup->rp_size));
330                 printk(KERN_DEBUG "\trp_uid         %u\n",
331                        le32_to_cpu(sup->rp_uid));
332                 printk(KERN_DEBUG "\trp_gid         %u\n",
333                        le32_to_cpu(sup->rp_gid));
334                 printk(KERN_DEBUG "\tfmt_version    %u\n",
335                        le32_to_cpu(sup->fmt_version));
336                 printk(KERN_DEBUG "\ttime_gran      %u\n",
337                        le32_to_cpu(sup->time_gran));
338                 printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
339                        "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
340                        sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
341                        sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
342                        sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
343                        sup->uuid[12], sup->uuid[13], sup->uuid[14],
344                        sup->uuid[15]);
345                 break;
346         }
347         case UBIFS_MST_NODE:
348         {
349                 const struct ubifs_mst_node *mst = node;
350
351                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
352                        (unsigned long long)le64_to_cpu(mst->highest_inum));
353                 printk(KERN_DEBUG "\tcommit number  %llu\n",
354                        (unsigned long long)le64_to_cpu(mst->cmt_no));
355                 printk(KERN_DEBUG "\tflags          %#x\n",
356                        le32_to_cpu(mst->flags));
357                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
358                        le32_to_cpu(mst->log_lnum));
359                 printk(KERN_DEBUG "\troot_lnum      %u\n",
360                        le32_to_cpu(mst->root_lnum));
361                 printk(KERN_DEBUG "\troot_offs      %u\n",
362                        le32_to_cpu(mst->root_offs));
363                 printk(KERN_DEBUG "\troot_len       %u\n",
364                        le32_to_cpu(mst->root_len));
365                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
366                        le32_to_cpu(mst->gc_lnum));
367                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
368                        le32_to_cpu(mst->ihead_lnum));
369                 printk(KERN_DEBUG "\tihead_offs     %u\n",
370                        le32_to_cpu(mst->ihead_offs));
371                 printk(KERN_DEBUG "\tindex_size     %llu\n",
372                        (unsigned long long)le64_to_cpu(mst->index_size));
373                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
374                        le32_to_cpu(mst->lpt_lnum));
375                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
376                        le32_to_cpu(mst->lpt_offs));
377                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
378                        le32_to_cpu(mst->nhead_lnum));
379                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
380                        le32_to_cpu(mst->nhead_offs));
381                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
382                        le32_to_cpu(mst->ltab_lnum));
383                 printk(KERN_DEBUG "\tltab_offs      %u\n",
384                        le32_to_cpu(mst->ltab_offs));
385                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
386                        le32_to_cpu(mst->lsave_lnum));
387                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
388                        le32_to_cpu(mst->lsave_offs));
389                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
390                        le32_to_cpu(mst->lscan_lnum));
391                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
392                        le32_to_cpu(mst->leb_cnt));
393                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
394                        le32_to_cpu(mst->empty_lebs));
395                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
396                        le32_to_cpu(mst->idx_lebs));
397                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
398                        (unsigned long long)le64_to_cpu(mst->total_free));
399                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
400                        (unsigned long long)le64_to_cpu(mst->total_dirty));
401                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
402                        (unsigned long long)le64_to_cpu(mst->total_used));
403                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
404                        (unsigned long long)le64_to_cpu(mst->total_dead));
405                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
406                        (unsigned long long)le64_to_cpu(mst->total_dark));
407                 break;
408         }
409         case UBIFS_REF_NODE:
410         {
411                 const struct ubifs_ref_node *ref = node;
412
413                 printk(KERN_DEBUG "\tlnum           %u\n",
414                        le32_to_cpu(ref->lnum));
415                 printk(KERN_DEBUG "\toffs           %u\n",
416                        le32_to_cpu(ref->offs));
417                 printk(KERN_DEBUG "\tjhead          %u\n",
418                        le32_to_cpu(ref->jhead));
419                 break;
420         }
421         case UBIFS_INO_NODE:
422         {
423                 const struct ubifs_ino_node *ino = node;
424
425                 key_read(c, &ino->key, &key);
426                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
427                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
428                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
429                 printk(KERN_DEBUG "\tsize           %llu\n",
430                        (unsigned long long)le64_to_cpu(ino->size));
431                 printk(KERN_DEBUG "\tnlink          %u\n",
432                        le32_to_cpu(ino->nlink));
433                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->atime_sec),
435                        le32_to_cpu(ino->atime_nsec));
436                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
437                        (long long)le64_to_cpu(ino->mtime_sec),
438                        le32_to_cpu(ino->mtime_nsec));
439                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
440                        (long long)le64_to_cpu(ino->ctime_sec),
441                        le32_to_cpu(ino->ctime_nsec));
442                 printk(KERN_DEBUG "\tuid            %u\n",
443                        le32_to_cpu(ino->uid));
444                 printk(KERN_DEBUG "\tgid            %u\n",
445                        le32_to_cpu(ino->gid));
446                 printk(KERN_DEBUG "\tmode           %u\n",
447                        le32_to_cpu(ino->mode));
448                 printk(KERN_DEBUG "\tflags          %#x\n",
449                        le32_to_cpu(ino->flags));
450                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
451                        le32_to_cpu(ino->xattr_cnt));
452                 printk(KERN_DEBUG "\txattr_size     %u\n",
453                        le32_to_cpu(ino->xattr_size));
454                 printk(KERN_DEBUG "\txattr_names    %u\n",
455                        le32_to_cpu(ino->xattr_names));
456                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
457                        (int)le16_to_cpu(ino->compr_type));
458                 printk(KERN_DEBUG "\tdata len       %u\n",
459                        le32_to_cpu(ino->data_len));
460                 break;
461         }
462         case UBIFS_DENT_NODE:
463         case UBIFS_XENT_NODE:
464         {
465                 const struct ubifs_dent_node *dent = node;
466                 int nlen = le16_to_cpu(dent->nlen);
467
468                 key_read(c, &dent->key, &key);
469                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
470                 printk(KERN_DEBUG "\tinum           %llu\n",
471                        (unsigned long long)le64_to_cpu(dent->inum));
472                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
473                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
474                 printk(KERN_DEBUG "\tname           ");
475
476                 if (nlen > UBIFS_MAX_NLEN)
477                         printk(KERN_DEBUG "(bad name length, not printing, "
478                                           "bad or corrupted node)");
479                 else {
480                         for (i = 0; i < nlen && dent->name[i]; i++)
481                                 printk("%c", dent->name[i]);
482                 }
483                 printk("\n");
484
485                 break;
486         }
487         case UBIFS_DATA_NODE:
488         {
489                 const struct ubifs_data_node *dn = node;
490                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
491
492                 key_read(c, &dn->key, &key);
493                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
494                 printk(KERN_DEBUG "\tsize           %u\n",
495                        le32_to_cpu(dn->size));
496                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
497                        (int)le16_to_cpu(dn->compr_type));
498                 printk(KERN_DEBUG "\tdata size      %d\n",
499                        dlen);
500                 printk(KERN_DEBUG "\tdata:\n");
501                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
502                                (void *)&dn->data, dlen, 0);
503                 break;
504         }
505         case UBIFS_TRUN_NODE:
506         {
507                 const struct ubifs_trun_node *trun = node;
508
509                 printk(KERN_DEBUG "\tinum           %u\n",
510                        le32_to_cpu(trun->inum));
511                 printk(KERN_DEBUG "\told_size       %llu\n",
512                        (unsigned long long)le64_to_cpu(trun->old_size));
513                 printk(KERN_DEBUG "\tnew_size       %llu\n",
514                        (unsigned long long)le64_to_cpu(trun->new_size));
515                 break;
516         }
517         case UBIFS_IDX_NODE:
518         {
519                 const struct ubifs_idx_node *idx = node;
520
521                 n = le16_to_cpu(idx->child_cnt);
522                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
523                 printk(KERN_DEBUG "\tlevel          %d\n",
524                        (int)le16_to_cpu(idx->level));
525                 printk(KERN_DEBUG "\tBranches:\n");
526
527                 for (i = 0; i < n && i < c->fanout - 1; i++) {
528                         const struct ubifs_branch *br;
529
530                         br = ubifs_idx_branch(c, idx, i);
531                         key_read(c, &br->key, &key);
532                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
533                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
534                                le32_to_cpu(br->len), DBGKEY(&key));
535                 }
536                 break;
537         }
538         case UBIFS_CS_NODE:
539                 break;
540         case UBIFS_ORPH_NODE:
541         {
542                 const struct ubifs_orph_node *orph = node;
543
544                 printk(KERN_DEBUG "\tcommit number  %llu\n",
545                        (unsigned long long)
546                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
547                 printk(KERN_DEBUG "\tlast node flag %llu\n",
548                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
549                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
550                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
551                 for (i = 0; i < n; i++)
552                         printk(KERN_DEBUG "\t  ino %llu\n",
553                                (unsigned long long)le64_to_cpu(orph->inos[i]));
554                 break;
555         }
556         default:
557                 printk(KERN_DEBUG "node type %d was not recognized\n",
558                        (int)ch->node_type);
559         }
560         spin_unlock(&dbg_lock);
561 }
562
563 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
564 {
565         spin_lock(&dbg_lock);
566         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
567                req->new_ino, req->dirtied_ino);
568         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
569                req->new_ino_d, req->dirtied_ino_d);
570         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
571                req->new_page, req->dirtied_page);
572         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
573                req->new_dent, req->mod_dent);
574         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
575         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
576                req->data_growth, req->dd_growth);
577         spin_unlock(&dbg_lock);
578 }
579
580 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
581 {
582         spin_lock(&dbg_lock);
583         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
584                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
585         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
586                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
587                lst->total_dirty);
588         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
589                "total_dead %lld\n", lst->total_used, lst->total_dark,
590                lst->total_dead);
591         spin_unlock(&dbg_lock);
592 }
593
594 void dbg_dump_budg(struct ubifs_info *c)
595 {
596         int i;
597         struct rb_node *rb;
598         struct ubifs_bud *bud;
599         struct ubifs_gced_idx_leb *idx_gc;
600
601         spin_lock(&dbg_lock);
602         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
603                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
604                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
605         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
606                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
607                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
608                c->freeable_cnt);
609         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
610                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
611                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
612         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
613                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
614                atomic_long_read(&c->dirty_zn_cnt),
615                atomic_long_read(&c->clean_zn_cnt));
616         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
617                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
618         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
619                c->gc_lnum, c->ihead_lnum);
620         for (i = 0; i < c->jhead_cnt; i++)
621                 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
622                        c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
623         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
624                 bud = rb_entry(rb, struct ubifs_bud, rb);
625                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
626         }
627         list_for_each_entry(bud, &c->old_buds, list)
628                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
629         list_for_each_entry(idx_gc, &c->idx_gc, list)
630                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
631                        idx_gc->lnum, idx_gc->unmap);
632         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
633         spin_unlock(&dbg_lock);
634 }
635
636 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
637 {
638         printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
639                "flags %#x\n", lp->lnum, lp->free, lp->dirty,
640                c->leb_size - lp->free - lp->dirty, lp->flags);
641 }
642
643 void dbg_dump_lprops(struct ubifs_info *c)
644 {
645         int lnum, err;
646         struct ubifs_lprops lp;
647         struct ubifs_lp_stats lst;
648
649         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
650                current->pid);
651         ubifs_get_lp_stats(c, &lst);
652         dbg_dump_lstats(&lst);
653
654         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
655                 err = ubifs_read_one_lp(c, lnum, &lp);
656                 if (err)
657                         ubifs_err("cannot read lprops for LEB %d", lnum);
658
659                 dbg_dump_lprop(c, &lp);
660         }
661         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
662                current->pid);
663 }
664
665 void dbg_dump_lpt_info(struct ubifs_info *c)
666 {
667         int i;
668
669         spin_lock(&dbg_lock);
670         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
671         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
672         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
673         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
674         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
675         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
676         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
677         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
678         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
679         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
680         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
681         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
682         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
683         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
684         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
685         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
686         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
687         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
688         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
689         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
690         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
691                c->nhead_lnum, c->nhead_offs);
692         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
693         if (c->big_lpt)
694                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
695                        c->lsave_lnum, c->lsave_offs);
696         for (i = 0; i < c->lpt_lebs; i++)
697                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
698                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
699                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
700         spin_unlock(&dbg_lock);
701 }
702
703 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
704 {
705         struct ubifs_scan_leb *sleb;
706         struct ubifs_scan_node *snod;
707
708         if (dbg_failure_mode)
709                 return;
710
711         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
712                current->pid, lnum);
713         sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
714         if (IS_ERR(sleb)) {
715                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
716                 return;
717         }
718
719         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
720                sleb->nodes_cnt, sleb->endpt);
721
722         list_for_each_entry(snod, &sleb->nodes, list) {
723                 cond_resched();
724                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
725                        snod->offs, snod->len);
726                 dbg_dump_node(c, snod->node);
727         }
728
729         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
730                current->pid, lnum);
731         ubifs_scan_destroy(sleb);
732         return;
733 }
734
735 void dbg_dump_znode(const struct ubifs_info *c,
736                     const struct ubifs_znode *znode)
737 {
738         int n;
739         const struct ubifs_zbranch *zbr;
740
741         spin_lock(&dbg_lock);
742         if (znode->parent)
743                 zbr = &znode->parent->zbranch[znode->iip];
744         else
745                 zbr = &c->zroot;
746
747         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
748                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
749                zbr->len, znode->parent, znode->iip, znode->level,
750                znode->child_cnt, znode->flags);
751
752         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
753                 spin_unlock(&dbg_lock);
754                 return;
755         }
756
757         printk(KERN_DEBUG "zbranches:\n");
758         for (n = 0; n < znode->child_cnt; n++) {
759                 zbr = &znode->zbranch[n];
760                 if (znode->level > 0)
761                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
762                                           "%s\n", n, zbr->znode, zbr->lnum,
763                                           zbr->offs, zbr->len,
764                                           DBGKEY(&zbr->key));
765                 else
766                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
767                                           "%s\n", n, zbr->znode, zbr->lnum,
768                                           zbr->offs, zbr->len,
769                                           DBGKEY(&zbr->key));
770         }
771         spin_unlock(&dbg_lock);
772 }
773
774 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
775 {
776         int i;
777
778         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
779                current->pid, cat, heap->cnt);
780         for (i = 0; i < heap->cnt; i++) {
781                 struct ubifs_lprops *lprops = heap->arr[i];
782
783                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
784                        "flags %d\n", i, lprops->lnum, lprops->hpos,
785                        lprops->free, lprops->dirty, lprops->flags);
786         }
787         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
788 }
789
790 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
791                     struct ubifs_nnode *parent, int iip)
792 {
793         int i;
794
795         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
796         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
797                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
798         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
799                pnode->flags, iip, pnode->level, pnode->num);
800         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
801                 struct ubifs_lprops *lp = &pnode->lprops[i];
802
803                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
804                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
805         }
806 }
807
808 void dbg_dump_tnc(struct ubifs_info *c)
809 {
810         struct ubifs_znode *znode;
811         int level;
812
813         printk(KERN_DEBUG "\n");
814         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
815         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
816         level = znode->level;
817         printk(KERN_DEBUG "== Level %d ==\n", level);
818         while (znode) {
819                 if (level != znode->level) {
820                         level = znode->level;
821                         printk(KERN_DEBUG "== Level %d ==\n", level);
822                 }
823                 dbg_dump_znode(c, znode);
824                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
825         }
826         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
827 }
828
829 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
830                       void *priv)
831 {
832         dbg_dump_znode(c, znode);
833         return 0;
834 }
835
836 /**
837  * dbg_dump_index - dump the on-flash index.
838  * @c: UBIFS file-system description object
839  *
840  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
841  * which dumps only in-memory znodes and does not read znodes which from flash.
842  */
843 void dbg_dump_index(struct ubifs_info *c)
844 {
845         dbg_walk_index(c, NULL, dump_znode, NULL);
846 }
847
848 /**
849  * dbg_check_synced_i_size - check synchronized inode size.
850  * @inode: inode to check
851  *
852  * If inode is clean, synchronized inode size has to be equivalent to current
853  * inode size. This function has to be called only for locked inodes (@i_mutex
854  * has to be locked). Returns %0 if synchronized inode size if correct, and
855  * %-EINVAL if not.
856  */
857 int dbg_check_synced_i_size(struct inode *inode)
858 {
859         int err = 0;
860         struct ubifs_inode *ui = ubifs_inode(inode);
861
862         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
863                 return 0;
864         if (!S_ISREG(inode->i_mode))
865                 return 0;
866
867         mutex_lock(&ui->ui_mutex);
868         spin_lock(&ui->ui_lock);
869         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
870                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
871                           "is clean", ui->ui_size, ui->synced_i_size);
872                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
873                           inode->i_mode, i_size_read(inode));
874                 dbg_dump_stack();
875                 err = -EINVAL;
876         }
877         spin_unlock(&ui->ui_lock);
878         mutex_unlock(&ui->ui_mutex);
879         return err;
880 }
881
882 /*
883  * dbg_check_dir - check directory inode size and link count.
884  * @c: UBIFS file-system description object
885  * @dir: the directory to calculate size for
886  * @size: the result is returned here
887  *
888  * This function makes sure that directory size and link count are correct.
889  * Returns zero in case of success and a negative error code in case of
890  * failure.
891  *
892  * Note, it is good idea to make sure the @dir->i_mutex is locked before
893  * calling this function.
894  */
895 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
896 {
897         unsigned int nlink = 2;
898         union ubifs_key key;
899         struct ubifs_dent_node *dent, *pdent = NULL;
900         struct qstr nm = { .name = NULL };
901         loff_t size = UBIFS_INO_NODE_SZ;
902
903         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
904                 return 0;
905
906         if (!S_ISDIR(dir->i_mode))
907                 return 0;
908
909         lowest_dent_key(c, &key, dir->i_ino);
910         while (1) {
911                 int err;
912
913                 dent = ubifs_tnc_next_ent(c, &key, &nm);
914                 if (IS_ERR(dent)) {
915                         err = PTR_ERR(dent);
916                         if (err == -ENOENT)
917                                 break;
918                         return err;
919                 }
920
921                 nm.name = dent->name;
922                 nm.len = le16_to_cpu(dent->nlen);
923                 size += CALC_DENT_SIZE(nm.len);
924                 if (dent->type == UBIFS_ITYPE_DIR)
925                         nlink += 1;
926                 kfree(pdent);
927                 pdent = dent;
928                 key_read(c, &dent->key, &key);
929         }
930         kfree(pdent);
931
932         if (i_size_read(dir) != size) {
933                 ubifs_err("directory inode %lu has size %llu, "
934                           "but calculated size is %llu", dir->i_ino,
935                           (unsigned long long)i_size_read(dir),
936                           (unsigned long long)size);
937                 dump_stack();
938                 return -EINVAL;
939         }
940         if (dir->i_nlink != nlink) {
941                 ubifs_err("directory inode %lu has nlink %u, but calculated "
942                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
943                 dump_stack();
944                 return -EINVAL;
945         }
946
947         return 0;
948 }
949
950 /**
951  * dbg_check_key_order - make sure that colliding keys are properly ordered.
952  * @c: UBIFS file-system description object
953  * @zbr1: first zbranch
954  * @zbr2: following zbranch
955  *
956  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
957  * names of the direntries/xentries which are referred by the keys. This
958  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
959  * sure the name of direntry/xentry referred by @zbr1 is less than
960  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
961  * and a negative error code in case of failure.
962  */
963 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
964                                struct ubifs_zbranch *zbr2)
965 {
966         int err, nlen1, nlen2, cmp;
967         struct ubifs_dent_node *dent1, *dent2;
968         union ubifs_key key;
969
970         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
971         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
972         if (!dent1)
973                 return -ENOMEM;
974         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
975         if (!dent2) {
976                 err = -ENOMEM;
977                 goto out_free;
978         }
979
980         err = ubifs_tnc_read_node(c, zbr1, dent1);
981         if (err)
982                 goto out_free;
983         err = ubifs_validate_entry(c, dent1);
984         if (err)
985                 goto out_free;
986
987         err = ubifs_tnc_read_node(c, zbr2, dent2);
988         if (err)
989                 goto out_free;
990         err = ubifs_validate_entry(c, dent2);
991         if (err)
992                 goto out_free;
993
994         /* Make sure node keys are the same as in zbranch */
995         err = 1;
996         key_read(c, &dent1->key, &key);
997         if (keys_cmp(c, &zbr1->key, &key)) {
998                 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
999                           zbr1->offs, DBGKEY(&key));
1000                 ubifs_err("but it should have key %s according to tnc",
1001                           DBGKEY(&zbr1->key));
1002                 dbg_dump_node(c, dent1);
1003                 goto out_free;
1004         }
1005
1006         key_read(c, &dent2->key, &key);
1007         if (keys_cmp(c, &zbr2->key, &key)) {
1008                 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1009                           zbr1->offs, DBGKEY(&key));
1010                 ubifs_err("but it should have key %s according to tnc",
1011                           DBGKEY(&zbr2->key));
1012                 dbg_dump_node(c, dent2);
1013                 goto out_free;
1014         }
1015
1016         nlen1 = le16_to_cpu(dent1->nlen);
1017         nlen2 = le16_to_cpu(dent2->nlen);
1018
1019         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1020         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1021                 err = 0;
1022                 goto out_free;
1023         }
1024         if (cmp == 0 && nlen1 == nlen2)
1025                 ubifs_err("2 xent/dent nodes with the same name");
1026         else
1027                 ubifs_err("bad order of colliding key %s",
1028                         DBGKEY(&key));
1029
1030         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1031         dbg_dump_node(c, dent1);
1032         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1033         dbg_dump_node(c, dent2);
1034
1035 out_free:
1036         kfree(dent2);
1037         kfree(dent1);
1038         return err;
1039 }
1040
1041 /**
1042  * dbg_check_znode - check if znode is all right.
1043  * @c: UBIFS file-system description object
1044  * @zbr: zbranch which points to this znode
1045  *
1046  * This function makes sure that znode referred to by @zbr is all right.
1047  * Returns zero if it is, and %-EINVAL if it is not.
1048  */
1049 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1050 {
1051         struct ubifs_znode *znode = zbr->znode;
1052         struct ubifs_znode *zp = znode->parent;
1053         int n, err, cmp;
1054
1055         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1056                 err = 1;
1057                 goto out;
1058         }
1059         if (znode->level < 0) {
1060                 err = 2;
1061                 goto out;
1062         }
1063         if (znode->iip < 0 || znode->iip >= c->fanout) {
1064                 err = 3;
1065                 goto out;
1066         }
1067
1068         if (zbr->len == 0)
1069                 /* Only dirty zbranch may have no on-flash nodes */
1070                 if (!ubifs_zn_dirty(znode)) {
1071                         err = 4;
1072                         goto out;
1073                 }
1074
1075         if (ubifs_zn_dirty(znode)) {
1076                 /*
1077                  * If znode is dirty, its parent has to be dirty as well. The
1078                  * order of the operation is important, so we have to have
1079                  * memory barriers.
1080                  */
1081                 smp_mb();
1082                 if (zp && !ubifs_zn_dirty(zp)) {
1083                         /*
1084                          * The dirty flag is atomic and is cleared outside the
1085                          * TNC mutex, so znode's dirty flag may now have
1086                          * been cleared. The child is always cleared before the
1087                          * parent, so we just need to check again.
1088                          */
1089                         smp_mb();
1090                         if (ubifs_zn_dirty(znode)) {
1091                                 err = 5;
1092                                 goto out;
1093                         }
1094                 }
1095         }
1096
1097         if (zp) {
1098                 const union ubifs_key *min, *max;
1099
1100                 if (znode->level != zp->level - 1) {
1101                         err = 6;
1102                         goto out;
1103                 }
1104
1105                 /* Make sure the 'parent' pointer in our znode is correct */
1106                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1107                 if (!err) {
1108                         /* This zbranch does not exist in the parent */
1109                         err = 7;
1110                         goto out;
1111                 }
1112
1113                 if (znode->iip >= zp->child_cnt) {
1114                         err = 8;
1115                         goto out;
1116                 }
1117
1118                 if (znode->iip != n) {
1119                         /* This may happen only in case of collisions */
1120                         if (keys_cmp(c, &zp->zbranch[n].key,
1121                                      &zp->zbranch[znode->iip].key)) {
1122                                 err = 9;
1123                                 goto out;
1124                         }
1125                         n = znode->iip;
1126                 }
1127
1128                 /*
1129                  * Make sure that the first key in our znode is greater than or
1130                  * equal to the key in the pointing zbranch.
1131                  */
1132                 min = &zbr->key;
1133                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1134                 if (cmp == 1) {
1135                         err = 10;
1136                         goto out;
1137                 }
1138
1139                 if (n + 1 < zp->child_cnt) {
1140                         max = &zp->zbranch[n + 1].key;
1141
1142                         /*
1143                          * Make sure the last key in our znode is less or
1144                          * equivalent than the the key in zbranch which goes
1145                          * after our pointing zbranch.
1146                          */
1147                         cmp = keys_cmp(c, max,
1148                                 &znode->zbranch[znode->child_cnt - 1].key);
1149                         if (cmp == -1) {
1150                                 err = 11;
1151                                 goto out;
1152                         }
1153                 }
1154         } else {
1155                 /* This may only be root znode */
1156                 if (zbr != &c->zroot) {
1157                         err = 12;
1158                         goto out;
1159                 }
1160         }
1161
1162         /*
1163          * Make sure that next key is greater or equivalent then the previous
1164          * one.
1165          */
1166         for (n = 1; n < znode->child_cnt; n++) {
1167                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1168                                &znode->zbranch[n].key);
1169                 if (cmp > 0) {
1170                         err = 13;
1171                         goto out;
1172                 }
1173                 if (cmp == 0) {
1174                         /* This can only be keys with colliding hash */
1175                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1176                                 err = 14;
1177                                 goto out;
1178                         }
1179
1180                         if (znode->level != 0 || c->replaying)
1181                                 continue;
1182
1183                         /*
1184                          * Colliding keys should follow binary order of
1185                          * corresponding xentry/dentry names.
1186                          */
1187                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1188                                                   &znode->zbranch[n]);
1189                         if (err < 0)
1190                                 return err;
1191                         if (err) {
1192                                 err = 15;
1193                                 goto out;
1194                         }
1195                 }
1196         }
1197
1198         for (n = 0; n < znode->child_cnt; n++) {
1199                 if (!znode->zbranch[n].znode &&
1200                     (znode->zbranch[n].lnum == 0 ||
1201                      znode->zbranch[n].len == 0)) {
1202                         err = 16;
1203                         goto out;
1204                 }
1205
1206                 if (znode->zbranch[n].lnum != 0 &&
1207                     znode->zbranch[n].len == 0) {
1208                         err = 17;
1209                         goto out;
1210                 }
1211
1212                 if (znode->zbranch[n].lnum == 0 &&
1213                     znode->zbranch[n].len != 0) {
1214                         err = 18;
1215                         goto out;
1216                 }
1217
1218                 if (znode->zbranch[n].lnum == 0 &&
1219                     znode->zbranch[n].offs != 0) {
1220                         err = 19;
1221                         goto out;
1222                 }
1223
1224                 if (znode->level != 0 && znode->zbranch[n].znode)
1225                         if (znode->zbranch[n].znode->parent != znode) {
1226                                 err = 20;
1227                                 goto out;
1228                         }
1229         }
1230
1231         return 0;
1232
1233 out:
1234         ubifs_err("failed, error %d", err);
1235         ubifs_msg("dump of the znode");
1236         dbg_dump_znode(c, znode);
1237         if (zp) {
1238                 ubifs_msg("dump of the parent znode");
1239                 dbg_dump_znode(c, zp);
1240         }
1241         dump_stack();
1242         return -EINVAL;
1243 }
1244
1245 /**
1246  * dbg_check_tnc - check TNC tree.
1247  * @c: UBIFS file-system description object
1248  * @extra: do extra checks that are possible at start commit
1249  *
1250  * This function traverses whole TNC tree and checks every znode. Returns zero
1251  * if everything is all right and %-EINVAL if something is wrong with TNC.
1252  */
1253 int dbg_check_tnc(struct ubifs_info *c, int extra)
1254 {
1255         struct ubifs_znode *znode;
1256         long clean_cnt = 0, dirty_cnt = 0;
1257         int err, last;
1258
1259         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1260                 return 0;
1261
1262         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1263         if (!c->zroot.znode)
1264                 return 0;
1265
1266         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1267         while (1) {
1268                 struct ubifs_znode *prev;
1269                 struct ubifs_zbranch *zbr;
1270
1271                 if (!znode->parent)
1272                         zbr = &c->zroot;
1273                 else
1274                         zbr = &znode->parent->zbranch[znode->iip];
1275
1276                 err = dbg_check_znode(c, zbr);
1277                 if (err)
1278                         return err;
1279
1280                 if (extra) {
1281                         if (ubifs_zn_dirty(znode))
1282                                 dirty_cnt += 1;
1283                         else
1284                                 clean_cnt += 1;
1285                 }
1286
1287                 prev = znode;
1288                 znode = ubifs_tnc_postorder_next(znode);
1289                 if (!znode)
1290                         break;
1291
1292                 /*
1293                  * If the last key of this znode is equivalent to the first key
1294                  * of the next znode (collision), then check order of the keys.
1295                  */
1296                 last = prev->child_cnt - 1;
1297                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1298                     !keys_cmp(c, &prev->zbranch[last].key,
1299                               &znode->zbranch[0].key)) {
1300                         err = dbg_check_key_order(c, &prev->zbranch[last],
1301                                                   &znode->zbranch[0]);
1302                         if (err < 0)
1303                                 return err;
1304                         if (err) {
1305                                 ubifs_msg("first znode");
1306                                 dbg_dump_znode(c, prev);
1307                                 ubifs_msg("second znode");
1308                                 dbg_dump_znode(c, znode);
1309                                 return -EINVAL;
1310                         }
1311                 }
1312         }
1313
1314         if (extra) {
1315                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1316                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1317                                   atomic_long_read(&c->clean_zn_cnt),
1318                                   clean_cnt);
1319                         return -EINVAL;
1320                 }
1321                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1322                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1323                                   atomic_long_read(&c->dirty_zn_cnt),
1324                                   dirty_cnt);
1325                         return -EINVAL;
1326                 }
1327         }
1328
1329         return 0;
1330 }
1331
1332 /**
1333  * dbg_walk_index - walk the on-flash index.
1334  * @c: UBIFS file-system description object
1335  * @leaf_cb: called for each leaf node
1336  * @znode_cb: called for each indexing node
1337  * @priv: private date which is passed to callbacks
1338  *
1339  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1340  * node and @znode_cb for each indexing node. Returns zero in case of success
1341  * and a negative error code in case of failure.
1342  *
1343  * It would be better if this function removed every znode it pulled to into
1344  * the TNC, so that the behavior more closely matched the non-debugging
1345  * behavior.
1346  */
1347 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1348                    dbg_znode_callback znode_cb, void *priv)
1349 {
1350         int err;
1351         struct ubifs_zbranch *zbr;
1352         struct ubifs_znode *znode, *child;
1353
1354         mutex_lock(&c->tnc_mutex);
1355         /* If the root indexing node is not in TNC - pull it */
1356         if (!c->zroot.znode) {
1357                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1358                 if (IS_ERR(c->zroot.znode)) {
1359                         err = PTR_ERR(c->zroot.znode);
1360                         c->zroot.znode = NULL;
1361                         goto out_unlock;
1362                 }
1363         }
1364
1365         /*
1366          * We are going to traverse the indexing tree in the postorder manner.
1367          * Go down and find the leftmost indexing node where we are going to
1368          * start from.
1369          */
1370         znode = c->zroot.znode;
1371         while (znode->level > 0) {
1372                 zbr = &znode->zbranch[0];
1373                 child = zbr->znode;
1374                 if (!child) {
1375                         child = ubifs_load_znode(c, zbr, znode, 0);
1376                         if (IS_ERR(child)) {
1377                                 err = PTR_ERR(child);
1378                                 goto out_unlock;
1379                         }
1380                         zbr->znode = child;
1381                 }
1382
1383                 znode = child;
1384         }
1385
1386         /* Iterate over all indexing nodes */
1387         while (1) {
1388                 int idx;
1389
1390                 cond_resched();
1391
1392                 if (znode_cb) {
1393                         err = znode_cb(c, znode, priv);
1394                         if (err) {
1395                                 ubifs_err("znode checking function returned "
1396                                           "error %d", err);
1397                                 dbg_dump_znode(c, znode);
1398                                 goto out_dump;
1399                         }
1400                 }
1401                 if (leaf_cb && znode->level == 0) {
1402                         for (idx = 0; idx < znode->child_cnt; idx++) {
1403                                 zbr = &znode->zbranch[idx];
1404                                 err = leaf_cb(c, zbr, priv);
1405                                 if (err) {
1406                                         ubifs_err("leaf checking function "
1407                                                   "returned error %d, for leaf "
1408                                                   "at LEB %d:%d",
1409                                                   err, zbr->lnum, zbr->offs);
1410                                         goto out_dump;
1411                                 }
1412                         }
1413                 }
1414
1415                 if (!znode->parent)
1416                         break;
1417
1418                 idx = znode->iip + 1;
1419                 znode = znode->parent;
1420                 if (idx < znode->child_cnt) {
1421                         /* Switch to the next index in the parent */
1422                         zbr = &znode->zbranch[idx];
1423                         child = zbr->znode;
1424                         if (!child) {
1425                                 child = ubifs_load_znode(c, zbr, znode, idx);
1426                                 if (IS_ERR(child)) {
1427                                         err = PTR_ERR(child);
1428                                         goto out_unlock;
1429                                 }
1430                                 zbr->znode = child;
1431                         }
1432                         znode = child;
1433                 } else
1434                         /*
1435                          * This is the last child, switch to the parent and
1436                          * continue.
1437                          */
1438                         continue;
1439
1440                 /* Go to the lowest leftmost znode in the new sub-tree */
1441                 while (znode->level > 0) {
1442                         zbr = &znode->zbranch[0];
1443                         child = zbr->znode;
1444                         if (!child) {
1445                                 child = ubifs_load_znode(c, zbr, znode, 0);
1446                                 if (IS_ERR(child)) {
1447                                         err = PTR_ERR(child);
1448                                         goto out_unlock;
1449                                 }
1450                                 zbr->znode = child;
1451                         }
1452                         znode = child;
1453                 }
1454         }
1455
1456         mutex_unlock(&c->tnc_mutex);
1457         return 0;
1458
1459 out_dump:
1460         if (znode->parent)
1461                 zbr = &znode->parent->zbranch[znode->iip];
1462         else
1463                 zbr = &c->zroot;
1464         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1465         dbg_dump_znode(c, znode);
1466 out_unlock:
1467         mutex_unlock(&c->tnc_mutex);
1468         return err;
1469 }
1470
1471 /**
1472  * add_size - add znode size to partially calculated index size.
1473  * @c: UBIFS file-system description object
1474  * @znode: znode to add size for
1475  * @priv: partially calculated index size
1476  *
1477  * This is a helper function for 'dbg_check_idx_size()' which is called for
1478  * every indexing node and adds its size to the 'long long' variable pointed to
1479  * by @priv.
1480  */
1481 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1482 {
1483         long long *idx_size = priv;
1484         int add;
1485
1486         add = ubifs_idx_node_sz(c, znode->child_cnt);
1487         add = ALIGN(add, 8);
1488         *idx_size += add;
1489         return 0;
1490 }
1491
1492 /**
1493  * dbg_check_idx_size - check index size.
1494  * @c: UBIFS file-system description object
1495  * @idx_size: size to check
1496  *
1497  * This function walks the UBIFS index, calculates its size and checks that the
1498  * size is equivalent to @idx_size. Returns zero in case of success and a
1499  * negative error code in case of failure.
1500  */
1501 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1502 {
1503         int err;
1504         long long calc = 0;
1505
1506         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1507                 return 0;
1508
1509         err = dbg_walk_index(c, NULL, add_size, &calc);
1510         if (err) {
1511                 ubifs_err("error %d while walking the index", err);
1512                 return err;
1513         }
1514
1515         if (calc != idx_size) {
1516                 ubifs_err("index size check failed: calculated size is %lld, "
1517                           "should be %lld", calc, idx_size);
1518                 dump_stack();
1519                 return -EINVAL;
1520         }
1521
1522         return 0;
1523 }
1524
1525 /**
1526  * struct fsck_inode - information about an inode used when checking the file-system.
1527  * @rb: link in the RB-tree of inodes
1528  * @inum: inode number
1529  * @mode: inode type, permissions, etc
1530  * @nlink: inode link count
1531  * @xattr_cnt: count of extended attributes
1532  * @references: how many directory/xattr entries refer this inode (calculated
1533  *              while walking the index)
1534  * @calc_cnt: for directory inode count of child directories
1535  * @size: inode size (read from on-flash inode)
1536  * @xattr_sz: summary size of all extended attributes (read from on-flash
1537  *            inode)
1538  * @calc_sz: for directories calculated directory size
1539  * @calc_xcnt: count of extended attributes
1540  * @calc_xsz: calculated summary size of all extended attributes
1541  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1542  *             inode (read from on-flash inode)
1543  * @calc_xnms: calculated sum of lengths of all extended attribute names
1544  */
1545 struct fsck_inode {
1546         struct rb_node rb;
1547         ino_t inum;
1548         umode_t mode;
1549         unsigned int nlink;
1550         unsigned int xattr_cnt;
1551         int references;
1552         int calc_cnt;
1553         long long size;
1554         unsigned int xattr_sz;
1555         long long calc_sz;
1556         long long calc_xcnt;
1557         long long calc_xsz;
1558         unsigned int xattr_nms;
1559         long long calc_xnms;
1560 };
1561
1562 /**
1563  * struct fsck_data - private FS checking information.
1564  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1565  */
1566 struct fsck_data {
1567         struct rb_root inodes;
1568 };
1569
1570 /**
1571  * add_inode - add inode information to RB-tree of inodes.
1572  * @c: UBIFS file-system description object
1573  * @fsckd: FS checking information
1574  * @ino: raw UBIFS inode to add
1575  *
1576  * This is a helper function for 'check_leaf()' which adds information about
1577  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1578  * case of success and a negative error code in case of failure.
1579  */
1580 static struct fsck_inode *add_inode(struct ubifs_info *c,
1581                                     struct fsck_data *fsckd,
1582                                     struct ubifs_ino_node *ino)
1583 {
1584         struct rb_node **p, *parent = NULL;
1585         struct fsck_inode *fscki;
1586         ino_t inum = key_inum_flash(c, &ino->key);
1587
1588         p = &fsckd->inodes.rb_node;
1589         while (*p) {
1590                 parent = *p;
1591                 fscki = rb_entry(parent, struct fsck_inode, rb);
1592                 if (inum < fscki->inum)
1593                         p = &(*p)->rb_left;
1594                 else if (inum > fscki->inum)
1595                         p = &(*p)->rb_right;
1596                 else
1597                         return fscki;
1598         }
1599
1600         if (inum > c->highest_inum) {
1601                 ubifs_err("too high inode number, max. is %lu",
1602                           (unsigned long)c->highest_inum);
1603                 return ERR_PTR(-EINVAL);
1604         }
1605
1606         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1607         if (!fscki)
1608                 return ERR_PTR(-ENOMEM);
1609
1610         fscki->inum = inum;
1611         fscki->nlink = le32_to_cpu(ino->nlink);
1612         fscki->size = le64_to_cpu(ino->size);
1613         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1614         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1615         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1616         fscki->mode = le32_to_cpu(ino->mode);
1617         if (S_ISDIR(fscki->mode)) {
1618                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1619                 fscki->calc_cnt = 2;
1620         }
1621         rb_link_node(&fscki->rb, parent, p);
1622         rb_insert_color(&fscki->rb, &fsckd->inodes);
1623         return fscki;
1624 }
1625
1626 /**
1627  * search_inode - search inode in the RB-tree of inodes.
1628  * @fsckd: FS checking information
1629  * @inum: inode number to search
1630  *
1631  * This is a helper function for 'check_leaf()' which searches inode @inum in
1632  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1633  * the inode was not found.
1634  */
1635 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1636 {
1637         struct rb_node *p;
1638         struct fsck_inode *fscki;
1639
1640         p = fsckd->inodes.rb_node;
1641         while (p) {
1642                 fscki = rb_entry(p, struct fsck_inode, rb);
1643                 if (inum < fscki->inum)
1644                         p = p->rb_left;
1645                 else if (inum > fscki->inum)
1646                         p = p->rb_right;
1647                 else
1648                         return fscki;
1649         }
1650         return NULL;
1651 }
1652
1653 /**
1654  * read_add_inode - read inode node and add it to RB-tree of inodes.
1655  * @c: UBIFS file-system description object
1656  * @fsckd: FS checking information
1657  * @inum: inode number to read
1658  *
1659  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1660  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1661  * information pointer in case of success and a negative error code in case of
1662  * failure.
1663  */
1664 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1665                                          struct fsck_data *fsckd, ino_t inum)
1666 {
1667         int n, err;
1668         union ubifs_key key;
1669         struct ubifs_znode *znode;
1670         struct ubifs_zbranch *zbr;
1671         struct ubifs_ino_node *ino;
1672         struct fsck_inode *fscki;
1673
1674         fscki = search_inode(fsckd, inum);
1675         if (fscki)
1676                 return fscki;
1677
1678         ino_key_init(c, &key, inum);
1679         err = ubifs_lookup_level0(c, &key, &znode, &n);
1680         if (!err) {
1681                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1682                 return ERR_PTR(-ENOENT);
1683         } else if (err < 0) {
1684                 ubifs_err("error %d while looking up inode %lu",
1685                           err, (unsigned long)inum);
1686                 return ERR_PTR(err);
1687         }
1688
1689         zbr = &znode->zbranch[n];
1690         if (zbr->len < UBIFS_INO_NODE_SZ) {
1691                 ubifs_err("bad node %lu node length %d",
1692                           (unsigned long)inum, zbr->len);
1693                 return ERR_PTR(-EINVAL);
1694         }
1695
1696         ino = kmalloc(zbr->len, GFP_NOFS);
1697         if (!ino)
1698                 return ERR_PTR(-ENOMEM);
1699
1700         err = ubifs_tnc_read_node(c, zbr, ino);
1701         if (err) {
1702                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1703                           zbr->lnum, zbr->offs, err);
1704                 kfree(ino);
1705                 return ERR_PTR(err);
1706         }
1707
1708         fscki = add_inode(c, fsckd, ino);
1709         kfree(ino);
1710         if (IS_ERR(fscki)) {
1711                 ubifs_err("error %ld while adding inode %lu node",
1712                           PTR_ERR(fscki), (unsigned long)inum);
1713                 return fscki;
1714         }
1715
1716         return fscki;
1717 }
1718
1719 /**
1720  * check_leaf - check leaf node.
1721  * @c: UBIFS file-system description object
1722  * @zbr: zbranch of the leaf node to check
1723  * @priv: FS checking information
1724  *
1725  * This is a helper function for 'dbg_check_filesystem()' which is called for
1726  * every single leaf node while walking the indexing tree. It checks that the
1727  * leaf node referred from the indexing tree exists, has correct CRC, and does
1728  * some other basic validation. This function is also responsible for building
1729  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1730  * calculates reference count, size, etc for each inode in order to later
1731  * compare them to the information stored inside the inodes and detect possible
1732  * inconsistencies. Returns zero in case of success and a negative error code
1733  * in case of failure.
1734  */
1735 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1736                       void *priv)
1737 {
1738         ino_t inum;
1739         void *node;
1740         struct ubifs_ch *ch;
1741         int err, type = key_type(c, &zbr->key);
1742         struct fsck_inode *fscki;
1743
1744         if (zbr->len < UBIFS_CH_SZ) {
1745                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1746                           zbr->len, zbr->lnum, zbr->offs);
1747                 return -EINVAL;
1748         }
1749
1750         node = kmalloc(zbr->len, GFP_NOFS);
1751         if (!node)
1752                 return -ENOMEM;
1753
1754         err = ubifs_tnc_read_node(c, zbr, node);
1755         if (err) {
1756                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1757                           zbr->lnum, zbr->offs, err);
1758                 goto out_free;
1759         }
1760
1761         /* If this is an inode node, add it to RB-tree of inodes */
1762         if (type == UBIFS_INO_KEY) {
1763                 fscki = add_inode(c, priv, node);
1764                 if (IS_ERR(fscki)) {
1765                         err = PTR_ERR(fscki);
1766                         ubifs_err("error %d while adding inode node", err);
1767                         goto out_dump;
1768                 }
1769                 goto out;
1770         }
1771
1772         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1773             type != UBIFS_DATA_KEY) {
1774                 ubifs_err("unexpected node type %d at LEB %d:%d",
1775                           type, zbr->lnum, zbr->offs);
1776                 err = -EINVAL;
1777                 goto out_free;
1778         }
1779
1780         ch = node;
1781         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1782                 ubifs_err("too high sequence number, max. is %llu",
1783                           c->max_sqnum);
1784                 err = -EINVAL;
1785                 goto out_dump;
1786         }
1787
1788         if (type == UBIFS_DATA_KEY) {
1789                 long long blk_offs;
1790                 struct ubifs_data_node *dn = node;
1791
1792                 /*
1793                  * Search the inode node this data node belongs to and insert
1794                  * it to the RB-tree of inodes.
1795                  */
1796                 inum = key_inum_flash(c, &dn->key);
1797                 fscki = read_add_inode(c, priv, inum);
1798                 if (IS_ERR(fscki)) {
1799                         err = PTR_ERR(fscki);
1800                         ubifs_err("error %d while processing data node and "
1801                                   "trying to find inode node %lu",
1802                                   err, (unsigned long)inum);
1803                         goto out_dump;
1804                 }
1805
1806                 /* Make sure the data node is within inode size */
1807                 blk_offs = key_block_flash(c, &dn->key);
1808                 blk_offs <<= UBIFS_BLOCK_SHIFT;
1809                 blk_offs += le32_to_cpu(dn->size);
1810                 if (blk_offs > fscki->size) {
1811                         ubifs_err("data node at LEB %d:%d is not within inode "
1812                                   "size %lld", zbr->lnum, zbr->offs,
1813                                   fscki->size);
1814                         err = -EINVAL;
1815                         goto out_dump;
1816                 }
1817         } else {
1818                 int nlen;
1819                 struct ubifs_dent_node *dent = node;
1820                 struct fsck_inode *fscki1;
1821
1822                 err = ubifs_validate_entry(c, dent);
1823                 if (err)
1824                         goto out_dump;
1825
1826                 /*
1827                  * Search the inode node this entry refers to and the parent
1828                  * inode node and insert them to the RB-tree of inodes.
1829                  */
1830                 inum = le64_to_cpu(dent->inum);
1831                 fscki = read_add_inode(c, priv, inum);
1832                 if (IS_ERR(fscki)) {
1833                         err = PTR_ERR(fscki);
1834                         ubifs_err("error %d while processing entry node and "
1835                                   "trying to find inode node %lu",
1836                                   err, (unsigned long)inum);
1837                         goto out_dump;
1838                 }
1839
1840                 /* Count how many direntries or xentries refers this inode */
1841                 fscki->references += 1;
1842
1843                 inum = key_inum_flash(c, &dent->key);
1844                 fscki1 = read_add_inode(c, priv, inum);
1845                 if (IS_ERR(fscki1)) {
1846                         err = PTR_ERR(fscki);
1847                         ubifs_err("error %d while processing entry node and "
1848                                   "trying to find parent inode node %lu",
1849                                   err, (unsigned long)inum);
1850                         goto out_dump;
1851                 }
1852
1853                 nlen = le16_to_cpu(dent->nlen);
1854                 if (type == UBIFS_XENT_KEY) {
1855                         fscki1->calc_xcnt += 1;
1856                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1857                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1858                         fscki1->calc_xnms += nlen;
1859                 } else {
1860                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1861                         if (dent->type == UBIFS_ITYPE_DIR)
1862                                 fscki1->calc_cnt += 1;
1863                 }
1864         }
1865
1866 out:
1867         kfree(node);
1868         return 0;
1869
1870 out_dump:
1871         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1872         dbg_dump_node(c, node);
1873 out_free:
1874         kfree(node);
1875         return err;
1876 }
1877
1878 /**
1879  * free_inodes - free RB-tree of inodes.
1880  * @fsckd: FS checking information
1881  */
1882 static void free_inodes(struct fsck_data *fsckd)
1883 {
1884         struct rb_node *this = fsckd->inodes.rb_node;
1885         struct fsck_inode *fscki;
1886
1887         while (this) {
1888                 if (this->rb_left)
1889                         this = this->rb_left;
1890                 else if (this->rb_right)
1891                         this = this->rb_right;
1892                 else {
1893                         fscki = rb_entry(this, struct fsck_inode, rb);
1894                         this = rb_parent(this);
1895                         if (this) {
1896                                 if (this->rb_left == &fscki->rb)
1897                                         this->rb_left = NULL;
1898                                 else
1899                                         this->rb_right = NULL;
1900                         }
1901                         kfree(fscki);
1902                 }
1903         }
1904 }
1905
1906 /**
1907  * check_inodes - checks all inodes.
1908  * @c: UBIFS file-system description object
1909  * @fsckd: FS checking information
1910  *
1911  * This is a helper function for 'dbg_check_filesystem()' which walks the
1912  * RB-tree of inodes after the index scan has been finished, and checks that
1913  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1914  * %-EINVAL if not, and a negative error code in case of failure.
1915  */
1916 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1917 {
1918         int n, err;
1919         union ubifs_key key;
1920         struct ubifs_znode *znode;
1921         struct ubifs_zbranch *zbr;
1922         struct ubifs_ino_node *ino;
1923         struct fsck_inode *fscki;
1924         struct rb_node *this = rb_first(&fsckd->inodes);
1925
1926         while (this) {
1927                 fscki = rb_entry(this, struct fsck_inode, rb);
1928                 this = rb_next(this);
1929
1930                 if (S_ISDIR(fscki->mode)) {
1931                         /*
1932                          * Directories have to have exactly one reference (they
1933                          * cannot have hardlinks), although root inode is an
1934                          * exception.
1935                          */
1936                         if (fscki->inum != UBIFS_ROOT_INO &&
1937                             fscki->references != 1) {
1938                                 ubifs_err("directory inode %lu has %d "
1939                                           "direntries which refer it, but "
1940                                           "should be 1",
1941                                           (unsigned long)fscki->inum,
1942                                           fscki->references);
1943                                 goto out_dump;
1944                         }
1945                         if (fscki->inum == UBIFS_ROOT_INO &&
1946                             fscki->references != 0) {
1947                                 ubifs_err("root inode %lu has non-zero (%d) "
1948                                           "direntries which refer it",
1949                                           (unsigned long)fscki->inum,
1950                                           fscki->references);
1951                                 goto out_dump;
1952                         }
1953                         if (fscki->calc_sz != fscki->size) {
1954                                 ubifs_err("directory inode %lu size is %lld, "
1955                                           "but calculated size is %lld",
1956                                           (unsigned long)fscki->inum,
1957                                           fscki->size, fscki->calc_sz);
1958                                 goto out_dump;
1959                         }
1960                         if (fscki->calc_cnt != fscki->nlink) {
1961                                 ubifs_err("directory inode %lu nlink is %d, "
1962                                           "but calculated nlink is %d",
1963                                           (unsigned long)fscki->inum,
1964                                           fscki->nlink, fscki->calc_cnt);
1965                                 goto out_dump;
1966                         }
1967                 } else {
1968                         if (fscki->references != fscki->nlink) {
1969                                 ubifs_err("inode %lu nlink is %d, but "
1970                                           "calculated nlink is %d",
1971                                           (unsigned long)fscki->inum,
1972                                           fscki->nlink, fscki->references);
1973                                 goto out_dump;
1974                         }
1975                 }
1976                 if (fscki->xattr_sz != fscki->calc_xsz) {
1977                         ubifs_err("inode %lu has xattr size %u, but "
1978                                   "calculated size is %lld",
1979                                   (unsigned long)fscki->inum, fscki->xattr_sz,
1980                                   fscki->calc_xsz);
1981                         goto out_dump;
1982                 }
1983                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
1984                         ubifs_err("inode %lu has %u xattrs, but "
1985                                   "calculated count is %lld",
1986                                   (unsigned long)fscki->inum,
1987                                   fscki->xattr_cnt, fscki->calc_xcnt);
1988                         goto out_dump;
1989                 }
1990                 if (fscki->xattr_nms != fscki->calc_xnms) {
1991                         ubifs_err("inode %lu has xattr names' size %u, but "
1992                                   "calculated names' size is %lld",
1993                                   (unsigned long)fscki->inum, fscki->xattr_nms,
1994                                   fscki->calc_xnms);
1995                         goto out_dump;
1996                 }
1997         }
1998
1999         return 0;
2000
2001 out_dump:
2002         /* Read the bad inode and dump it */
2003         ino_key_init(c, &key, fscki->inum);
2004         err = ubifs_lookup_level0(c, &key, &znode, &n);
2005         if (!err) {
2006                 ubifs_err("inode %lu not found in index",
2007                           (unsigned long)fscki->inum);
2008                 return -ENOENT;
2009         } else if (err < 0) {
2010                 ubifs_err("error %d while looking up inode %lu",
2011                           err, (unsigned long)fscki->inum);
2012                 return err;
2013         }
2014
2015         zbr = &znode->zbranch[n];
2016         ino = kmalloc(zbr->len, GFP_NOFS);
2017         if (!ino)
2018                 return -ENOMEM;
2019
2020         err = ubifs_tnc_read_node(c, zbr, ino);
2021         if (err) {
2022                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2023                           zbr->lnum, zbr->offs, err);
2024                 kfree(ino);
2025                 return err;
2026         }
2027
2028         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2029                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2030         dbg_dump_node(c, ino);
2031         kfree(ino);
2032         return -EINVAL;
2033 }
2034
2035 /**
2036  * dbg_check_filesystem - check the file-system.
2037  * @c: UBIFS file-system description object
2038  *
2039  * This function checks the file system, namely:
2040  * o makes sure that all leaf nodes exist and their CRCs are correct;
2041  * o makes sure inode nlink, size, xattr size/count are correct (for all
2042  *   inodes).
2043  *
2044  * The function reads whole indexing tree and all nodes, so it is pretty
2045  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2046  * not, and a negative error code in case of failure.
2047  */
2048 int dbg_check_filesystem(struct ubifs_info *c)
2049 {
2050         int err;
2051         struct fsck_data fsckd;
2052
2053         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2054                 return 0;
2055
2056         fsckd.inodes = RB_ROOT;
2057         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2058         if (err)
2059                 goto out_free;
2060
2061         err = check_inodes(c, &fsckd);
2062         if (err)
2063                 goto out_free;
2064
2065         free_inodes(&fsckd);
2066         return 0;
2067
2068 out_free:
2069         ubifs_err("file-system check failed with error %d", err);
2070         dump_stack();
2071         free_inodes(&fsckd);
2072         return err;
2073 }
2074
2075 static int invocation_cnt;
2076
2077 int dbg_force_in_the_gaps(void)
2078 {
2079         if (!dbg_force_in_the_gaps_enabled)
2080                 return 0;
2081         /* Force in-the-gaps every 8th commit */
2082         return !((invocation_cnt++) & 0x7);
2083 }
2084
2085 /* Failure mode for recovery testing */
2086
2087 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2088
2089 struct failure_mode_info {
2090         struct list_head list;
2091         struct ubifs_info *c;
2092 };
2093
2094 static LIST_HEAD(fmi_list);
2095 static DEFINE_SPINLOCK(fmi_lock);
2096
2097 static unsigned int next;
2098
2099 static int simple_rand(void)
2100 {
2101         if (next == 0)
2102                 next = current->pid;
2103         next = next * 1103515245 + 12345;
2104         return (next >> 16) & 32767;
2105 }
2106
2107 static void failure_mode_init(struct ubifs_info *c)
2108 {
2109         struct failure_mode_info *fmi;
2110
2111         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2112         if (!fmi) {
2113                 ubifs_err("Failed to register failure mode - no memory");
2114                 return;
2115         }
2116         fmi->c = c;
2117         spin_lock(&fmi_lock);
2118         list_add_tail(&fmi->list, &fmi_list);
2119         spin_unlock(&fmi_lock);
2120 }
2121
2122 static void failure_mode_exit(struct ubifs_info *c)
2123 {
2124         struct failure_mode_info *fmi, *tmp;
2125
2126         spin_lock(&fmi_lock);
2127         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2128                 if (fmi->c == c) {
2129                         list_del(&fmi->list);
2130                         kfree(fmi);
2131                 }
2132         spin_unlock(&fmi_lock);
2133 }
2134
2135 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2136 {
2137         struct failure_mode_info *fmi;
2138
2139         spin_lock(&fmi_lock);
2140         list_for_each_entry(fmi, &fmi_list, list)
2141                 if (fmi->c->ubi == desc) {
2142                         struct ubifs_info *c = fmi->c;
2143
2144                         spin_unlock(&fmi_lock);
2145                         return c;
2146                 }
2147         spin_unlock(&fmi_lock);
2148         return NULL;
2149 }
2150
2151 static int in_failure_mode(struct ubi_volume_desc *desc)
2152 {
2153         struct ubifs_info *c = dbg_find_info(desc);
2154
2155         if (c && dbg_failure_mode)
2156                 return c->dbg->failure_mode;
2157         return 0;
2158 }
2159
2160 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2161 {
2162         struct ubifs_info *c = dbg_find_info(desc);
2163         struct ubifs_debug_info *d;
2164
2165         if (!c || !dbg_failure_mode)
2166                 return 0;
2167         d = c->dbg;
2168         if (d->failure_mode)
2169                 return 1;
2170         if (!d->fail_cnt) {
2171                 /* First call - decide delay to failure */
2172                 if (chance(1, 2)) {
2173                         unsigned int delay = 1 << (simple_rand() >> 11);
2174
2175                         if (chance(1, 2)) {
2176                                 d->fail_delay = 1;
2177                                 d->fail_timeout = jiffies +
2178                                                   msecs_to_jiffies(delay);
2179                                 dbg_rcvry("failing after %ums", delay);
2180                         } else {
2181                                 d->fail_delay = 2;
2182                                 d->fail_cnt_max = delay;
2183                                 dbg_rcvry("failing after %u calls", delay);
2184                         }
2185                 }
2186                 d->fail_cnt += 1;
2187         }
2188         /* Determine if failure delay has expired */
2189         if (d->fail_delay == 1) {
2190                 if (time_before(jiffies, d->fail_timeout))
2191                         return 0;
2192         } else if (d->fail_delay == 2)
2193                 if (d->fail_cnt++ < d->fail_cnt_max)
2194                         return 0;
2195         if (lnum == UBIFS_SB_LNUM) {
2196                 if (write) {
2197                         if (chance(1, 2))
2198                                 return 0;
2199                 } else if (chance(19, 20))
2200                         return 0;
2201                 dbg_rcvry("failing in super block LEB %d", lnum);
2202         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2203                 if (chance(19, 20))
2204                         return 0;
2205                 dbg_rcvry("failing in master LEB %d", lnum);
2206         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2207                 if (write) {
2208                         if (chance(99, 100))
2209                                 return 0;
2210                 } else if (chance(399, 400))
2211                         return 0;
2212                 dbg_rcvry("failing in log LEB %d", lnum);
2213         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2214                 if (write) {
2215                         if (chance(7, 8))
2216                                 return 0;
2217                 } else if (chance(19, 20))
2218                         return 0;
2219                 dbg_rcvry("failing in LPT LEB %d", lnum);
2220         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2221                 if (write) {
2222                         if (chance(1, 2))
2223                                 return 0;
2224                 } else if (chance(9, 10))
2225                         return 0;
2226                 dbg_rcvry("failing in orphan LEB %d", lnum);
2227         } else if (lnum == c->ihead_lnum) {
2228                 if (chance(99, 100))
2229                         return 0;
2230                 dbg_rcvry("failing in index head LEB %d", lnum);
2231         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2232                 if (chance(9, 10))
2233                         return 0;
2234                 dbg_rcvry("failing in GC head LEB %d", lnum);
2235         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2236                    !ubifs_search_bud(c, lnum)) {
2237                 if (chance(19, 20))
2238                         return 0;
2239                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2240         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2241                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2242                 if (chance(999, 1000))
2243                         return 0;
2244                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2245         } else {
2246                 if (chance(9999, 10000))
2247                         return 0;
2248                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2249         }
2250         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2251         d->failure_mode = 1;
2252         dump_stack();
2253         return 1;
2254 }
2255
2256 static void cut_data(const void *buf, int len)
2257 {
2258         int flen, i;
2259         unsigned char *p = (void *)buf;
2260
2261         flen = (len * (long long)simple_rand()) >> 15;
2262         for (i = flen; i < len; i++)
2263                 p[i] = 0xff;
2264 }
2265
2266 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2267                  int len, int check)
2268 {
2269         if (in_failure_mode(desc))
2270                 return -EIO;
2271         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2272 }
2273
2274 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2275                   int offset, int len, int dtype)
2276 {
2277         int err, failing;
2278
2279         if (in_failure_mode(desc))
2280                 return -EIO;
2281         failing = do_fail(desc, lnum, 1);
2282         if (failing)
2283                 cut_data(buf, len);
2284         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2285         if (err)
2286                 return err;
2287         if (failing)
2288                 return -EIO;
2289         return 0;
2290 }
2291
2292 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2293                    int len, int dtype)
2294 {
2295         int err;
2296
2297         if (do_fail(desc, lnum, 1))
2298                 return -EIO;
2299         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2300         if (err)
2301                 return err;
2302         if (do_fail(desc, lnum, 1))
2303                 return -EIO;
2304         return 0;
2305 }
2306
2307 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2308 {
2309         int err;
2310
2311         if (do_fail(desc, lnum, 0))
2312                 return -EIO;
2313         err = ubi_leb_erase(desc, lnum);
2314         if (err)
2315                 return err;
2316         if (do_fail(desc, lnum, 0))
2317                 return -EIO;
2318         return 0;
2319 }
2320
2321 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2322 {
2323         int err;
2324
2325         if (do_fail(desc, lnum, 0))
2326                 return -EIO;
2327         err = ubi_leb_unmap(desc, lnum);
2328         if (err)
2329                 return err;
2330         if (do_fail(desc, lnum, 0))
2331                 return -EIO;
2332         return 0;
2333 }
2334
2335 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2336 {
2337         if (in_failure_mode(desc))
2338                 return -EIO;
2339         return ubi_is_mapped(desc, lnum);
2340 }
2341
2342 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2343 {
2344         int err;
2345
2346         if (do_fail(desc, lnum, 0))
2347                 return -EIO;
2348         err = ubi_leb_map(desc, lnum, dtype);
2349         if (err)
2350                 return err;
2351         if (do_fail(desc, lnum, 0))
2352                 return -EIO;
2353         return 0;
2354 }
2355
2356 /**
2357  * ubifs_debugging_init - initialize UBIFS debugging.
2358  * @c: UBIFS file-system description object
2359  *
2360  * This function initializes debugging-related data for the file system.
2361  * Returns zero in case of success and a negative error code in case of
2362  * failure.
2363  */
2364 int ubifs_debugging_init(struct ubifs_info *c)
2365 {
2366         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2367         if (!c->dbg)
2368                 return -ENOMEM;
2369
2370         c->dbg->buf = vmalloc(c->leb_size);
2371         if (!c->dbg->buf)
2372                 goto out;
2373
2374         failure_mode_init(c);
2375         return 0;
2376
2377 out:
2378         kfree(c->dbg);
2379         return -ENOMEM;
2380 }
2381
2382 /**
2383  * ubifs_debugging_exit - free debugging data.
2384  * @c: UBIFS file-system description object
2385  */
2386 void ubifs_debugging_exit(struct ubifs_info *c)
2387 {
2388         failure_mode_exit(c);
2389         vfree(c->dbg->buf);
2390         kfree(c->dbg);
2391 }
2392
2393 /*
2394  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2395  * contain the stuff specific to particular file-system mounts.
2396  */
2397 static struct dentry *debugfs_rootdir;
2398
2399 /**
2400  * dbg_debugfs_init - initialize debugfs file-system.
2401  *
2402  * UBIFS uses debugfs file-system to expose various debugging knobs to
2403  * user-space. This function creates "ubifs" directory in the debugfs
2404  * file-system. Returns zero in case of success and a negative error code in
2405  * case of failure.
2406  */
2407 int dbg_debugfs_init(void)
2408 {
2409         debugfs_rootdir = debugfs_create_dir("ubifs", NULL);
2410         if (IS_ERR(debugfs_rootdir)) {
2411                 int err = PTR_ERR(debugfs_rootdir);
2412                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2413                           "error %d\n", err);
2414                 return err;
2415         }
2416
2417         return 0;
2418 }
2419
2420 /**
2421  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2422  */
2423 void dbg_debugfs_exit(void)
2424 {
2425         debugfs_remove(debugfs_rootdir);
2426 }
2427
2428 static int open_debugfs_file(struct inode *inode, struct file *file)
2429 {
2430         file->private_data = inode->i_private;
2431         return 0;
2432 }
2433
2434 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2435                                   size_t count, loff_t *ppos)
2436 {
2437         struct ubifs_info *c = file->private_data;
2438         struct ubifs_debug_info *d = c->dbg;
2439
2440         if (file->f_path.dentry == d->dump_lprops)
2441                 dbg_dump_lprops(c);
2442         else if (file->f_path.dentry == d->dump_budg) {
2443                 spin_lock(&c->space_lock);
2444                 dbg_dump_budg(c);
2445                 spin_unlock(&c->space_lock);
2446         } else if (file->f_path.dentry == d->dump_budg) {
2447                 mutex_lock(&c->tnc_mutex);
2448                 dbg_dump_tnc(c);
2449                 mutex_unlock(&c->tnc_mutex);
2450         } else
2451                 return -EINVAL;
2452
2453         *ppos += count;
2454         return count;
2455 }
2456
2457 static const struct file_operations debugfs_fops = {
2458         .open = open_debugfs_file,
2459         .write = write_debugfs_file,
2460         .owner = THIS_MODULE,
2461 };
2462
2463 /**
2464  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2465  * @c: UBIFS file-system description object
2466  *
2467  * This function creates all debugfs files for this instance of UBIFS. Returns
2468  * zero in case of success and a negative error code in case of failure.
2469  *
2470  * Note, the only reason we have not merged this function with the
2471  * 'ubifs_debugging_init()' function is because it is better to initialize
2472  * debugfs interfaces at the very end of the mount process, and remove them at
2473  * the very beginning of the mount process.
2474  */
2475 int dbg_debugfs_init_fs(struct ubifs_info *c)
2476 {
2477         int err;
2478         const char *fname;
2479         struct dentry *dent;
2480         struct ubifs_debug_info *d = c->dbg;
2481
2482         sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2483         d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name,
2484                                               debugfs_rootdir);
2485         if (IS_ERR(d->debugfs_dir)) {
2486                 err = PTR_ERR(d->debugfs_dir);
2487                 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2488                           d->debugfs_dir_name, err);
2489                 goto out;
2490         }
2491
2492         fname = "dump_lprops";
2493         dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2494                                    &debugfs_fops);
2495         if (IS_ERR(dent))
2496                 goto out_remove;
2497         d->dump_lprops = dent;
2498
2499         fname = "dump_budg";
2500         dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2501                                    &debugfs_fops);
2502         if (IS_ERR(dent))
2503                 goto out_remove;
2504         d->dump_budg = dent;
2505
2506         fname = "dump_tnc";
2507         dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2508                                    &debugfs_fops);
2509         if (IS_ERR(dent))
2510                 goto out_remove;
2511         d->dump_tnc = dent;
2512
2513         return 0;
2514
2515 out_remove:
2516         err = PTR_ERR(dent);
2517         ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2518                   fname, err);
2519         debugfs_remove_recursive(d->debugfs_dir);
2520 out:
2521         return err;
2522 }
2523
2524 /**
2525  * dbg_debugfs_exit_fs - remove all debugfs files.
2526  * @c: UBIFS file-system description object
2527  */
2528 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2529 {
2530         debugfs_remove_recursive(c->dbg->debugfs_dir);
2531 }
2532
2533 #endif /* CONFIG_UBIFS_FS_DEBUG */