kill-the-BKL/reiserfs: release the write lock inside get_neighbors()
[safe/jmp/linux-2.6] / fs / reiserfs / fix_node.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 /**
6  ** old_item_num
7  ** old_entry_num
8  ** set_entry_sizes
9  ** create_virtual_node
10  ** check_left
11  ** check_right
12  ** directory_part_size
13  ** get_num_ver
14  ** set_parameters
15  ** is_leaf_removable
16  ** are_leaves_removable
17  ** get_empty_nodes
18  ** get_lfree
19  ** get_rfree
20  ** is_left_neighbor_in_cache
21  ** decrement_key
22  ** get_far_parent
23  ** get_parents
24  ** can_node_be_removed
25  ** ip_check_balance
26  ** dc_check_balance_internal
27  ** dc_check_balance_leaf
28  ** dc_check_balance
29  ** check_balance
30  ** get_direct_parent
31  ** get_neighbors
32  ** fix_nodes
33  **
34  **
35  **/
36
37 #include <linux/time.h>
38 #include <linux/string.h>
39 #include <linux/reiserfs_fs.h>
40 #include <linux/buffer_head.h>
41
42 /* To make any changes in the tree we find a node, that contains item
43    to be changed/deleted or position in the node we insert a new item
44    to. We call this node S. To do balancing we need to decide what we
45    will shift to left/right neighbor, or to a new node, where new item
46    will be etc. To make this analysis simpler we build virtual
47    node. Virtual node is an array of items, that will replace items of
48    node S. (For instance if we are going to delete an item, virtual
49    node does not contain it). Virtual node keeps information about
50    item sizes and types, mergeability of first and last items, sizes
51    of all entries in directory item. We use this array of items when
52    calculating what we can shift to neighbors and how many nodes we
53    have to have if we do not any shiftings, if we shift to left/right
54    neighbor or to both. */
55
56 /* taking item number in virtual node, returns number of item, that it has in source buffer */
57 static inline int old_item_num(int new_num, int affected_item_num, int mode)
58 {
59         if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60                 return new_num;
61
62         if (mode == M_INSERT) {
63
64                 RFALSE(new_num == 0,
65                        "vs-8005: for INSERT mode and item number of inserted item");
66
67                 return new_num - 1;
68         }
69
70         RFALSE(mode != M_DELETE,
71                "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72                mode);
73         /* delete mode */
74         return new_num + 1;
75 }
76
77 static void create_virtual_node(struct tree_balance *tb, int h)
78 {
79         struct item_head *ih;
80         struct virtual_node *vn = tb->tb_vn;
81         int new_num;
82         struct buffer_head *Sh; /* this comes from tb->S[h] */
83
84         Sh = PATH_H_PBUFFER(tb->tb_path, h);
85
86         /* size of changed node */
87         vn->vn_size =
88             MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
89
90         /* for internal nodes array if virtual items is not created */
91         if (h) {
92                 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93                 return;
94         }
95
96         /* number of items in virtual node  */
97         vn->vn_nr_item =
98             B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99             ((vn->vn_mode == M_DELETE) ? 1 : 0);
100
101         /* first virtual item */
102         vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103         memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104         vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105
106         /* first item in the node */
107         ih = B_N_PITEM_HEAD(Sh, 0);
108
109         /* define the mergeability for 0-th item (if it is not being deleted) */
110         if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111             && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112                 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113
114         /* go through all items those remain in the virtual node (except for the new (inserted) one) */
115         for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116                 int j;
117                 struct virtual_item *vi = vn->vn_vi + new_num;
118                 int is_affected =
119                     ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120
121                 if (is_affected && vn->vn_mode == M_INSERT)
122                         continue;
123
124                 /* get item number in source node */
125                 j = old_item_num(new_num, vn->vn_affected_item_num,
126                                  vn->vn_mode);
127
128                 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129                 vi->vi_ih = ih + j;
130                 vi->vi_item = B_I_PITEM(Sh, ih + j);
131                 vi->vi_uarea = vn->vn_free_ptr;
132
133                 // FIXME: there is no check, that item operation did not
134                 // consume too much memory
135                 vn->vn_free_ptr +=
136                     op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137                 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
138                         reiserfs_panic(tb->tb_sb, "vs-8030",
139                                        "virtual node space consumed");
140
141                 if (!is_affected)
142                         /* this is not being changed */
143                         continue;
144
145                 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
146                         vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
147                         vi->vi_new_data = vn->vn_data;  // pointer to data which is going to be pasted
148                 }
149         }
150
151         /* virtual inserted item is not defined yet */
152         if (vn->vn_mode == M_INSERT) {
153                 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
154
155                 RFALSE(vn->vn_ins_ih == NULL,
156                        "vs-8040: item header of inserted item is not specified");
157                 vi->vi_item_len = tb->insert_size[0];
158                 vi->vi_ih = vn->vn_ins_ih;
159                 vi->vi_item = vn->vn_data;
160                 vi->vi_uarea = vn->vn_free_ptr;
161
162                 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
163                              tb->insert_size[0]);
164         }
165
166         /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
167         if (tb->CFR[0]) {
168                 struct reiserfs_key *key;
169
170                 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
171                 if (op_is_left_mergeable(key, Sh->b_size)
172                     && (vn->vn_mode != M_DELETE
173                         || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
174                         vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
175                             VI_TYPE_RIGHT_MERGEABLE;
176
177 #ifdef CONFIG_REISERFS_CHECK
178                 if (op_is_left_mergeable(key, Sh->b_size) &&
179                     !(vn->vn_mode != M_DELETE
180                       || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
181                         /* we delete last item and it could be merged with right neighbor's first item */
182                         if (!
183                             (B_NR_ITEMS(Sh) == 1
184                              && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
185                              && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
186                                 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
187                                 print_block(Sh, 0, -1, -1);
188                                 reiserfs_panic(tb->tb_sb, "vs-8045",
189                                                "rdkey %k, affected item==%d "
190                                                "(mode==%c) Must be %c",
191                                                key, vn->vn_affected_item_num,
192                                                vn->vn_mode, M_DELETE);
193                         }
194                 }
195 #endif
196
197         }
198 }
199
200 /* using virtual node check, how many items can be shifted to left
201    neighbor */
202 static void check_left(struct tree_balance *tb, int h, int cur_free)
203 {
204         int i;
205         struct virtual_node *vn = tb->tb_vn;
206         struct virtual_item *vi;
207         int d_size, ih_size;
208
209         RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
210
211         /* internal level */
212         if (h > 0) {
213                 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214                 return;
215         }
216
217         /* leaf level */
218
219         if (!cur_free || !vn->vn_nr_item) {
220                 /* no free space or nothing to move */
221                 tb->lnum[h] = 0;
222                 tb->lbytes = -1;
223                 return;
224         }
225
226         RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227                "vs-8055: parent does not exist or invalid");
228
229         vi = vn->vn_vi;
230         if ((unsigned int)cur_free >=
231             (vn->vn_size -
232              ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233                 /* all contents of S[0] fits into L[0] */
234
235                 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236                        "vs-8055: invalid mode or balance condition failed");
237
238                 tb->lnum[0] = vn->vn_nr_item;
239                 tb->lbytes = -1;
240                 return;
241         }
242
243         d_size = 0, ih_size = IH_SIZE;
244
245         /* first item may be merge with last item in left neighbor */
246         if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247                 d_size = -((int)IH_SIZE), ih_size = 0;
248
249         tb->lnum[0] = 0;
250         for (i = 0; i < vn->vn_nr_item;
251              i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252                 d_size += vi->vi_item_len;
253                 if (cur_free >= d_size) {
254                         /* the item can be shifted entirely */
255                         cur_free -= d_size;
256                         tb->lnum[0]++;
257                         continue;
258                 }
259
260                 /* the item cannot be shifted entirely, try to split it */
261                 /* check whether L[0] can hold ih and at least one byte of the item body */
262                 if (cur_free <= ih_size) {
263                         /* cannot shift even a part of the current item */
264                         tb->lbytes = -1;
265                         return;
266                 }
267                 cur_free -= ih_size;
268
269                 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270                 if (tb->lbytes != -1)
271                         /* count partially shifted item */
272                         tb->lnum[0]++;
273
274                 break;
275         }
276
277         return;
278 }
279
280 /* using virtual node check, how many items can be shifted to right
281    neighbor */
282 static void check_right(struct tree_balance *tb, int h, int cur_free)
283 {
284         int i;
285         struct virtual_node *vn = tb->tb_vn;
286         struct virtual_item *vi;
287         int d_size, ih_size;
288
289         RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290
291         /* internal level */
292         if (h > 0) {
293                 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294                 return;
295         }
296
297         /* leaf level */
298
299         if (!cur_free || !vn->vn_nr_item) {
300                 /* no free space  */
301                 tb->rnum[h] = 0;
302                 tb->rbytes = -1;
303                 return;
304         }
305
306         RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307                "vs-8075: parent does not exist or invalid");
308
309         vi = vn->vn_vi + vn->vn_nr_item - 1;
310         if ((unsigned int)cur_free >=
311             (vn->vn_size -
312              ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313                 /* all contents of S[0] fits into R[0] */
314
315                 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316                        "vs-8080: invalid mode or balance condition failed");
317
318                 tb->rnum[h] = vn->vn_nr_item;
319                 tb->rbytes = -1;
320                 return;
321         }
322
323         d_size = 0, ih_size = IH_SIZE;
324
325         /* last item may be merge with first item in right neighbor */
326         if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327                 d_size = -(int)IH_SIZE, ih_size = 0;
328
329         tb->rnum[0] = 0;
330         for (i = vn->vn_nr_item - 1; i >= 0;
331              i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332                 d_size += vi->vi_item_len;
333                 if (cur_free >= d_size) {
334                         /* the item can be shifted entirely */
335                         cur_free -= d_size;
336                         tb->rnum[0]++;
337                         continue;
338                 }
339
340                 /* check whether R[0] can hold ih and at least one byte of the item body */
341                 if (cur_free <= ih_size) {      /* cannot shift even a part of the current item */
342                         tb->rbytes = -1;
343                         return;
344                 }
345
346                 /* R[0] can hold the header of the item and at least one byte of its body */
347                 cur_free -= ih_size;    /* cur_free is still > 0 */
348
349                 tb->rbytes = op_check_right(vi, cur_free);
350                 if (tb->rbytes != -1)
351                         /* count partially shifted item */
352                         tb->rnum[0]++;
353
354                 break;
355         }
356
357         return;
358 }
359
360 /*
361  * from - number of items, which are shifted to left neighbor entirely
362  * to - number of item, which are shifted to right neighbor entirely
363  * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364  * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
365 static int get_num_ver(int mode, struct tree_balance *tb, int h,
366                        int from, int from_bytes,
367                        int to, int to_bytes, short *snum012, int flow)
368 {
369         int i;
370         int cur_free;
371         //    int bytes;
372         int units;
373         struct virtual_node *vn = tb->tb_vn;
374         //    struct virtual_item * vi;
375
376         int total_node_size, max_node_size, current_item_size;
377         int needed_nodes;
378         int start_item,         /* position of item we start filling node from */
379          end_item,              /* position of item we finish filling node by */
380          start_bytes,           /* number of first bytes (entries for directory) of start_item-th item
381                                    we do not include into node that is being filled */
382          end_bytes;             /* number of last bytes (entries for directory) of end_item-th item
383                                    we do node include into node that is being filled */
384         int split_item_positions[2];    /* these are positions in virtual item of
385                                            items, that are split between S[0] and
386                                            S1new and S1new and S2new */
387
388         split_item_positions[0] = -1;
389         split_item_positions[1] = -1;
390
391         /* We only create additional nodes if we are in insert or paste mode
392            or we are in replace mode at the internal level. If h is 0 and
393            the mode is M_REPLACE then in fix_nodes we change the mode to
394            paste or insert before we get here in the code.  */
395         RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396                "vs-8100: insert_size < 0 in overflow");
397
398         max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399
400         /* snum012 [0-2] - number of items, that lay
401            to S[0], first new node and second new node */
402         snum012[3] = -1;        /* s1bytes */
403         snum012[4] = -1;        /* s2bytes */
404
405         /* internal level */
406         if (h > 0) {
407                 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408                 if (i == max_node_size)
409                         return 1;
410                 return (i / max_node_size + 1);
411         }
412
413         /* leaf level */
414         needed_nodes = 1;
415         total_node_size = 0;
416         cur_free = max_node_size;
417
418         // start from 'from'-th item
419         start_item = from;
420         // skip its first 'start_bytes' units
421         start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422
423         // last included item is the 'end_item'-th one
424         end_item = vn->vn_nr_item - to - 1;
425         // do not count last 'end_bytes' units of 'end_item'-th item
426         end_bytes = (to_bytes != -1) ? to_bytes : 0;
427
428         /* go through all item beginning from the start_item-th item and ending by
429            the end_item-th item. Do not count first 'start_bytes' units of
430            'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431
432         for (i = start_item; i <= end_item; i++) {
433                 struct virtual_item *vi = vn->vn_vi + i;
434                 int skip_from_end = ((i == end_item) ? end_bytes : 0);
435
436                 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437
438                 /* get size of current item */
439                 current_item_size = vi->vi_item_len;
440
441                 /* do not take in calculation head part (from_bytes) of from-th item */
442                 current_item_size -=
443                     op_part_size(vi, 0 /*from start */ , start_bytes);
444
445                 /* do not take in calculation tail part of last item */
446                 current_item_size -=
447                     op_part_size(vi, 1 /*from end */ , skip_from_end);
448
449                 /* if item fits into current node entierly */
450                 if (total_node_size + current_item_size <= max_node_size) {
451                         snum012[needed_nodes - 1]++;
452                         total_node_size += current_item_size;
453                         start_bytes = 0;
454                         continue;
455                 }
456
457                 if (current_item_size > max_node_size) {
458                         /* virtual item length is longer, than max size of item in
459                            a node. It is impossible for direct item */
460                         RFALSE(is_direct_le_ih(vi->vi_ih),
461                                "vs-8110: "
462                                "direct item length is %d. It can not be longer than %d",
463                                current_item_size, max_node_size);
464                         /* we will try to split it */
465                         flow = 1;
466                 }
467
468                 if (!flow) {
469                         /* as we do not split items, take new node and continue */
470                         needed_nodes++;
471                         i--;
472                         total_node_size = 0;
473                         continue;
474                 }
475                 // calculate number of item units which fit into node being
476                 // filled
477                 {
478                         int free_space;
479
480                         free_space = max_node_size - total_node_size - IH_SIZE;
481                         units =
482                             op_check_left(vi, free_space, start_bytes,
483                                           skip_from_end);
484                         if (units == -1) {
485                                 /* nothing fits into current node, take new node and continue */
486                                 needed_nodes++, i--, total_node_size = 0;
487                                 continue;
488                         }
489                 }
490
491                 /* something fits into the current node */
492                 //if (snum012[3] != -1 || needed_nodes != 1)
493                 //  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494                 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495                 start_bytes += units;
496                 snum012[needed_nodes - 1 + 3] = units;
497
498                 if (needed_nodes > 2)
499                         reiserfs_warning(tb->tb_sb, "vs-8111",
500                                          "split_item_position is out of range");
501                 snum012[needed_nodes - 1]++;
502                 split_item_positions[needed_nodes - 1] = i;
503                 needed_nodes++;
504                 /* continue from the same item with start_bytes != -1 */
505                 start_item = i;
506                 i--;
507                 total_node_size = 0;
508         }
509
510         // sum012[4] (if it is not -1) contains number of units of which
511         // are to be in S1new, snum012[3] - to be in S0. They are supposed
512         // to be S1bytes and S2bytes correspondingly, so recalculate
513         if (snum012[4] > 0) {
514                 int split_item_num;
515                 int bytes_to_r, bytes_to_l;
516                 int bytes_to_S1new;
517
518                 split_item_num = split_item_positions[1];
519                 bytes_to_l =
520                     ((from == split_item_num
521                       && from_bytes != -1) ? from_bytes : 0);
522                 bytes_to_r =
523                     ((end_item == split_item_num
524                       && end_bytes != -1) ? end_bytes : 0);
525                 bytes_to_S1new =
526                     ((split_item_positions[0] ==
527                       split_item_positions[1]) ? snum012[3] : 0);
528
529                 // s2bytes
530                 snum012[4] =
531                     op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532                     bytes_to_r - bytes_to_l - bytes_to_S1new;
533
534                 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535                     vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
536                         reiserfs_warning(tb->tb_sb, "vs-8115",
537                                          "not directory or indirect item");
538         }
539
540         /* now we know S2bytes, calculate S1bytes */
541         if (snum012[3] > 0) {
542                 int split_item_num;
543                 int bytes_to_r, bytes_to_l;
544                 int bytes_to_S2new;
545
546                 split_item_num = split_item_positions[0];
547                 bytes_to_l =
548                     ((from == split_item_num
549                       && from_bytes != -1) ? from_bytes : 0);
550                 bytes_to_r =
551                     ((end_item == split_item_num
552                       && end_bytes != -1) ? end_bytes : 0);
553                 bytes_to_S2new =
554                     ((split_item_positions[0] == split_item_positions[1]
555                       && snum012[4] != -1) ? snum012[4] : 0);
556
557                 // s1bytes
558                 snum012[3] =
559                     op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560                     bytes_to_r - bytes_to_l - bytes_to_S2new;
561         }
562
563         return needed_nodes;
564 }
565
566 #ifdef CONFIG_REISERFS_CHECK
567 extern struct tree_balance *cur_tb;
568 #endif
569
570 /* Set parameters for balancing.
571  * Performs write of results of analysis of balancing into structure tb,
572  * where it will later be used by the functions that actually do the balancing.
573  * Parameters:
574  *      tb      tree_balance structure;
575  *      h       current level of the node;
576  *      lnum    number of items from S[h] that must be shifted to L[h];
577  *      rnum    number of items from S[h] that must be shifted to R[h];
578  *      blk_num number of blocks that S[h] will be splitted into;
579  *      s012    number of items that fall into splitted nodes.
580  *      lbytes  number of bytes which flow to the left neighbor from the item that is not
581  *              not shifted entirely
582  *      rbytes  number of bytes which flow to the right neighbor from the item that is not
583  *              not shifted entirely
584  *      s1bytes number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array)
585  */
586
587 static void set_parameters(struct tree_balance *tb, int h, int lnum,
588                            int rnum, int blk_num, short *s012, int lb, int rb)
589 {
590
591         tb->lnum[h] = lnum;
592         tb->rnum[h] = rnum;
593         tb->blknum[h] = blk_num;
594
595         if (h == 0) {           /* only for leaf level */
596                 if (s012 != NULL) {
597                         tb->s0num = *s012++,
598                             tb->s1num = *s012++, tb->s2num = *s012++;
599                         tb->s1bytes = *s012++;
600                         tb->s2bytes = *s012;
601                 }
602                 tb->lbytes = lb;
603                 tb->rbytes = rb;
604         }
605         PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
606         PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
607
608         PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
609         PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
610 }
611
612 /* check, does node disappear if we shift tb->lnum[0] items to left
613    neighbor and tb->rnum[0] to the right one. */
614 static int is_leaf_removable(struct tree_balance *tb)
615 {
616         struct virtual_node *vn = tb->tb_vn;
617         int to_left, to_right;
618         int size;
619         int remain_items;
620
621         /* number of items, that will be shifted to left (right) neighbor
622            entirely */
623         to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
624         to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
625         remain_items = vn->vn_nr_item;
626
627         /* how many items remain in S[0] after shiftings to neighbors */
628         remain_items -= (to_left + to_right);
629
630         if (remain_items < 1) {
631                 /* all content of node can be shifted to neighbors */
632                 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
633                                NULL, -1, -1);
634                 return 1;
635         }
636
637         if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
638                 /* S[0] is not removable */
639                 return 0;
640
641         /* check, whether we can divide 1 remaining item between neighbors */
642
643         /* get size of remaining item (in item units) */
644         size = op_unit_num(&(vn->vn_vi[to_left]));
645
646         if (tb->lbytes + tb->rbytes >= size) {
647                 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
648                                tb->lbytes, -1);
649                 return 1;
650         }
651
652         return 0;
653 }
654
655 /* check whether L, S, R can be joined in one node */
656 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
657 {
658         struct virtual_node *vn = tb->tb_vn;
659         int ih_size;
660         struct buffer_head *S0;
661
662         S0 = PATH_H_PBUFFER(tb->tb_path, 0);
663
664         ih_size = 0;
665         if (vn->vn_nr_item) {
666                 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
667                         ih_size += IH_SIZE;
668
669                 if (vn->vn_vi[vn->vn_nr_item - 1].
670                     vi_type & VI_TYPE_RIGHT_MERGEABLE)
671                         ih_size += IH_SIZE;
672         } else {
673                 /* there was only one item and it will be deleted */
674                 struct item_head *ih;
675
676                 RFALSE(B_NR_ITEMS(S0) != 1,
677                        "vs-8125: item number must be 1: it is %d",
678                        B_NR_ITEMS(S0));
679
680                 ih = B_N_PITEM_HEAD(S0, 0);
681                 if (tb->CFR[0]
682                     && !comp_short_le_keys(&(ih->ih_key),
683                                            B_N_PDELIM_KEY(tb->CFR[0],
684                                                           tb->rkey[0])))
685                         if (is_direntry_le_ih(ih)) {
686                                 /* Directory must be in correct state here: that is
687                                    somewhere at the left side should exist first directory
688                                    item. But the item being deleted can not be that first
689                                    one because its right neighbor is item of the same
690                                    directory. (But first item always gets deleted in last
691                                    turn). So, neighbors of deleted item can be merged, so
692                                    we can save ih_size */
693                                 ih_size = IH_SIZE;
694
695                                 /* we might check that left neighbor exists and is of the
696                                    same directory */
697                                 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
698                                        "vs-8130: first directory item can not be removed until directory is not empty");
699                         }
700
701         }
702
703         if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
704                 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
705                 PROC_INFO_INC(tb->tb_sb, leaves_removable);
706                 return 1;
707         }
708         return 0;
709
710 }
711
712 /* when we do not split item, lnum and rnum are numbers of entire items */
713 #define SET_PAR_SHIFT_LEFT \
714 if (h)\
715 {\
716    int to_l;\
717    \
718    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
719               (MAX_NR_KEY(Sh) + 1 - lpar);\
720               \
721               set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
722 }\
723 else \
724 {\
725    if (lset==LEFT_SHIFT_FLOW)\
726      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
727                      tb->lbytes, -1);\
728    else\
729      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
730                      -1, -1);\
731 }
732
733 #define SET_PAR_SHIFT_RIGHT \
734 if (h)\
735 {\
736    int to_r;\
737    \
738    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
739    \
740    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
741 }\
742 else \
743 {\
744    if (rset==RIGHT_SHIFT_FLOW)\
745      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
746                   -1, tb->rbytes);\
747    else\
748      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
749                   -1, -1);\
750 }
751
752 static void free_buffers_in_tb(struct tree_balance *tb)
753 {
754         int i;
755
756         pathrelse(tb->tb_path);
757
758         for (i = 0; i < MAX_HEIGHT; i++) {
759                 brelse(tb->L[i]);
760                 brelse(tb->R[i]);
761                 brelse(tb->FL[i]);
762                 brelse(tb->FR[i]);
763                 brelse(tb->CFL[i]);
764                 brelse(tb->CFR[i]);
765
766                 tb->L[i] = NULL;
767                 tb->R[i] = NULL;
768                 tb->FL[i] = NULL;
769                 tb->FR[i] = NULL;
770                 tb->CFL[i] = NULL;
771                 tb->CFR[i] = NULL;
772         }
773 }
774
775 /* Get new buffers for storing new nodes that are created while balancing.
776  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
777  *              CARRY_ON - schedule didn't occur while the function worked;
778  *              NO_DISK_SPACE - no disk space.
779  */
780 /* The function is NOT SCHEDULE-SAFE! */
781 static int get_empty_nodes(struct tree_balance *tb, int h)
782 {
783         struct buffer_head *new_bh,
784             *Sh = PATH_H_PBUFFER(tb->tb_path, h);
785         b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
786         int counter, number_of_freeblk, amount_needed,  /* number of needed empty blocks */
787          retval = CARRY_ON;
788         struct super_block *sb = tb->tb_sb;
789
790         /* number_of_freeblk is the number of empty blocks which have been
791            acquired for use by the balancing algorithm minus the number of
792            empty blocks used in the previous levels of the analysis,
793            number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
794            after empty blocks are acquired, and the balancing analysis is
795            then restarted, amount_needed is the number needed by this level
796            (h) of the balancing analysis.
797
798            Note that for systems with many processes writing, it would be
799            more layout optimal to calculate the total number needed by all
800            levels and then to run reiserfs_new_blocks to get all of them at once.  */
801
802         /* Initiate number_of_freeblk to the amount acquired prior to the restart of
803            the analysis or 0 if not restarted, then subtract the amount needed
804            by all of the levels of the tree below h. */
805         /* blknum includes S[h], so we subtract 1 in this calculation */
806         for (counter = 0, number_of_freeblk = tb->cur_blknum;
807              counter < h; counter++)
808                 number_of_freeblk -=
809                     (tb->blknum[counter]) ? (tb->blknum[counter] -
810                                                    1) : 0;
811
812         /* Allocate missing empty blocks. */
813         /* if Sh == 0  then we are getting a new root */
814         amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
815         /*  Amount_needed = the amount that we need more than the amount that we have. */
816         if (amount_needed > number_of_freeblk)
817                 amount_needed -= number_of_freeblk;
818         else                    /* If we have enough already then there is nothing to do. */
819                 return CARRY_ON;
820
821         /* No need to check quota - is not allocated for blocks used for formatted nodes */
822         if (reiserfs_new_form_blocknrs(tb, blocknrs,
823                                        amount_needed) == NO_DISK_SPACE)
824                 return NO_DISK_SPACE;
825
826         /* for each blocknumber we just got, get a buffer and stick it on FEB */
827         for (blocknr = blocknrs, counter = 0;
828              counter < amount_needed; blocknr++, counter++) {
829
830                 RFALSE(!*blocknr,
831                        "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
832
833                 new_bh = sb_getblk(sb, *blocknr);
834                 RFALSE(buffer_dirty(new_bh) ||
835                        buffer_journaled(new_bh) ||
836                        buffer_journal_dirty(new_bh),
837                        "PAP-8140: journlaled or dirty buffer %b for the new block",
838                        new_bh);
839
840                 /* Put empty buffers into the array. */
841                 RFALSE(tb->FEB[tb->cur_blknum],
842                        "PAP-8141: busy slot for new buffer");
843
844                 set_buffer_journal_new(new_bh);
845                 tb->FEB[tb->cur_blknum++] = new_bh;
846         }
847
848         if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
849                 retval = REPEAT_SEARCH;
850
851         return retval;
852 }
853
854 /* Get free space of the left neighbor, which is stored in the parent
855  * node of the left neighbor.  */
856 static int get_lfree(struct tree_balance *tb, int h)
857 {
858         struct buffer_head *l, *f;
859         int order;
860
861         if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
862             (l = tb->FL[h]) == NULL)
863                 return 0;
864
865         if (f == l)
866                 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
867         else {
868                 order = B_NR_ITEMS(l);
869                 f = l;
870         }
871
872         return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
873 }
874
875 /* Get free space of the right neighbor,
876  * which is stored in the parent node of the right neighbor.
877  */
878 static int get_rfree(struct tree_balance *tb, int h)
879 {
880         struct buffer_head *r, *f;
881         int order;
882
883         if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
884             (r = tb->FR[h]) == NULL)
885                 return 0;
886
887         if (f == r)
888                 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
889         else {
890                 order = 0;
891                 f = r;
892         }
893
894         return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
895
896 }
897
898 /* Check whether left neighbor is in memory. */
899 static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
900 {
901         struct buffer_head *father, *left;
902         struct super_block *sb = tb->tb_sb;
903         b_blocknr_t left_neighbor_blocknr;
904         int left_neighbor_position;
905
906         /* Father of the left neighbor does not exist. */
907         if (!tb->FL[h])
908                 return 0;
909
910         /* Calculate father of the node to be balanced. */
911         father = PATH_H_PBUFFER(tb->tb_path, h + 1);
912
913         RFALSE(!father ||
914                !B_IS_IN_TREE(father) ||
915                !B_IS_IN_TREE(tb->FL[h]) ||
916                !buffer_uptodate(father) ||
917                !buffer_uptodate(tb->FL[h]),
918                "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
919                father, tb->FL[h]);
920
921         /* Get position of the pointer to the left neighbor into the left father. */
922         left_neighbor_position = (father == tb->FL[h]) ?
923             tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
924         /* Get left neighbor block number. */
925         left_neighbor_blocknr =
926             B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
927         /* Look for the left neighbor in the cache. */
928         if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
929
930                 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
931                        "vs-8170: left neighbor (%b %z) is not in the tree",
932                        left, left);
933                 put_bh(left);
934                 return 1;
935         }
936
937         return 0;
938 }
939
940 #define LEFT_PARENTS  'l'
941 #define RIGHT_PARENTS 'r'
942
943 static void decrement_key(struct cpu_key *key)
944 {
945         // call item specific function for this key
946         item_ops[cpu_key_k_type(key)]->decrement_key(key);
947 }
948
949 /* Calculate far left/right parent of the left/right neighbor of the current node, that
950  * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
951  * Calculate left/right common parent of the current node and L[h]/R[h].
952  * Calculate left/right delimiting key position.
953  * Returns:     PATH_INCORRECT   - path in the tree is not correct;
954                 SCHEDULE_OCCURRED - schedule occurred while the function worked;
955  *              CARRY_ON         - schedule didn't occur while the function worked;
956  */
957 static int get_far_parent(struct tree_balance *tb,
958                           int h,
959                           struct buffer_head **pfather,
960                           struct buffer_head **pcom_father, char c_lr_par)
961 {
962         struct buffer_head *parent;
963         INITIALIZE_PATH(s_path_to_neighbor_father);
964         struct treepath *path = tb->tb_path;
965         struct cpu_key s_lr_father_key;
966         int counter,
967             position = INT_MAX,
968             first_last_position = 0,
969             path_offset = PATH_H_PATH_OFFSET(path, h);
970
971         /* Starting from F[h] go upwards in the tree, and look for the common
972            ancestor of F[h], and its neighbor l/r, that should be obtained. */
973
974         counter = path_offset;
975
976         RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
977                "PAP-8180: invalid path length");
978
979         for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
980                 /* Check whether parent of the current buffer in the path is really parent in the tree. */
981                 if (!B_IS_IN_TREE
982                     (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
983                         return REPEAT_SEARCH;
984                 /* Check whether position in the parent is correct. */
985                 if ((position =
986                      PATH_OFFSET_POSITION(path,
987                                           counter - 1)) >
988                     B_NR_ITEMS(parent))
989                         return REPEAT_SEARCH;
990                 /* Check whether parent at the path really points to the child. */
991                 if (B_N_CHILD_NUM(parent, position) !=
992                     PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
993                         return REPEAT_SEARCH;
994                 /* Return delimiting key if position in the parent is not equal to first/last one. */
995                 if (c_lr_par == RIGHT_PARENTS)
996                         first_last_position = B_NR_ITEMS(parent);
997                 if (position != first_last_position) {
998                         *pcom_father = parent;
999                         get_bh(*pcom_father);
1000                         /*(*pcom_father = parent)->b_count++; */
1001                         break;
1002                 }
1003         }
1004
1005         /* if we are in the root of the tree, then there is no common father */
1006         if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1007                 /* Check whether first buffer in the path is the root of the tree. */
1008                 if (PATH_OFFSET_PBUFFER
1009                     (tb->tb_path,
1010                      FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1011                     SB_ROOT_BLOCK(tb->tb_sb)) {
1012                         *pfather = *pcom_father = NULL;
1013                         return CARRY_ON;
1014                 }
1015                 return REPEAT_SEARCH;
1016         }
1017
1018         RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1019                "PAP-8185: (%b %z) level too small",
1020                *pcom_father, *pcom_father);
1021
1022         /* Check whether the common parent is locked. */
1023
1024         if (buffer_locked(*pcom_father)) {
1025
1026                 /* Release the write lock while the buffer is busy */
1027                 reiserfs_write_unlock(tb->tb_sb);
1028                 __wait_on_buffer(*pcom_father);
1029                 reiserfs_write_lock(tb->tb_sb);
1030                 if (FILESYSTEM_CHANGED_TB(tb)) {
1031                         brelse(*pcom_father);
1032                         return REPEAT_SEARCH;
1033                 }
1034         }
1035
1036         /* So, we got common parent of the current node and its left/right neighbor.
1037            Now we are geting the parent of the left/right neighbor. */
1038
1039         /* Form key to get parent of the left/right neighbor. */
1040         le_key2cpu_key(&s_lr_father_key,
1041                        B_N_PDELIM_KEY(*pcom_father,
1042                                       (c_lr_par ==
1043                                        LEFT_PARENTS) ? (tb->lkey[h - 1] =
1044                                                         position -
1045                                                         1) : (tb->rkey[h -
1046                                                                            1] =
1047                                                               position)));
1048
1049         if (c_lr_par == LEFT_PARENTS)
1050                 decrement_key(&s_lr_father_key);
1051
1052         if (search_by_key
1053             (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1054              h + 1) == IO_ERROR)
1055                 // path is released
1056                 return IO_ERROR;
1057
1058         if (FILESYSTEM_CHANGED_TB(tb)) {
1059                 pathrelse(&s_path_to_neighbor_father);
1060                 brelse(*pcom_father);
1061                 return REPEAT_SEARCH;
1062         }
1063
1064         *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1065
1066         RFALSE(B_LEVEL(*pfather) != h + 1,
1067                "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1068         RFALSE(s_path_to_neighbor_father.path_length <
1069                FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1070
1071         s_path_to_neighbor_father.path_length--;
1072         pathrelse(&s_path_to_neighbor_father);
1073         return CARRY_ON;
1074 }
1075
1076 /* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1077  * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1078  * FR[path_offset], CFL[path_offset], CFR[path_offset].
1079  * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1080  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
1081  *              CARRY_ON - schedule didn't occur while the function worked;
1082  */
1083 static int get_parents(struct tree_balance *tb, int h)
1084 {
1085         struct treepath *path = tb->tb_path;
1086         int position,
1087             ret,
1088             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1089         struct buffer_head *curf, *curcf;
1090
1091         /* Current node is the root of the tree or will be root of the tree */
1092         if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1093                 /* The root can not have parents.
1094                    Release nodes which previously were obtained as parents of the current node neighbors. */
1095                 brelse(tb->FL[h]);
1096                 brelse(tb->CFL[h]);
1097                 brelse(tb->FR[h]);
1098                 brelse(tb->CFR[h]);
1099                 tb->FL[h]  = NULL;
1100                 tb->CFL[h] = NULL;
1101                 tb->FR[h]  = NULL;
1102                 tb->CFR[h] = NULL;
1103                 return CARRY_ON;
1104         }
1105
1106         /* Get parent FL[path_offset] of L[path_offset]. */
1107         position = PATH_OFFSET_POSITION(path, path_offset - 1);
1108         if (position) {
1109                 /* Current node is not the first child of its parent. */
1110                 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1111                 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1112                 get_bh(curf);
1113                 get_bh(curf);
1114                 tb->lkey[h] = position - 1;
1115         } else {
1116                 /* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1117                    Calculate current common parent of L[path_offset] and the current node. Note that
1118                    CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1119                    Calculate lkey[path_offset]. */
1120                 if ((ret = get_far_parent(tb, h + 1, &curf,
1121                                                   &curcf,
1122                                                   LEFT_PARENTS)) != CARRY_ON)
1123                         return ret;
1124         }
1125
1126         brelse(tb->FL[h]);
1127         tb->FL[h] = curf;       /* New initialization of FL[h]. */
1128         brelse(tb->CFL[h]);
1129         tb->CFL[h] = curcf;     /* New initialization of CFL[h]. */
1130
1131         RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1132                (curcf && !B_IS_IN_TREE(curcf)),
1133                "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1134
1135 /* Get parent FR[h] of R[h]. */
1136
1137 /* Current node is the last child of F[h]. FR[h] != F[h]. */
1138         if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1139 /* Calculate current parent of R[h], which is the right neighbor of F[h].
1140    Calculate current common parent of R[h] and current node. Note that CFR[h]
1141    not equal FR[path_offset] and CFR[h] not equal F[h]. */
1142                 if ((ret =
1143                      get_far_parent(tb, h + 1, &curf, &curcf,
1144                                     RIGHT_PARENTS)) != CARRY_ON)
1145                         return ret;
1146         } else {
1147 /* Current node is not the last child of its parent F[h]. */
1148                 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1149                 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1150                 get_bh(curf);
1151                 get_bh(curf);
1152                 tb->rkey[h] = position;
1153         }
1154
1155         brelse(tb->FR[h]);
1156         /* New initialization of FR[path_offset]. */
1157         tb->FR[h] = curf;
1158
1159         brelse(tb->CFR[h]);
1160         /* New initialization of CFR[path_offset]. */
1161         tb->CFR[h] = curcf;
1162
1163         RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1164                (curcf && !B_IS_IN_TREE(curcf)),
1165                "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1166
1167         return CARRY_ON;
1168 }
1169
1170 /* it is possible to remove node as result of shiftings to
1171    neighbors even when we insert or paste item. */
1172 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1173                                       struct tree_balance *tb, int h)
1174 {
1175         struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1176         int levbytes = tb->insert_size[h];
1177         struct item_head *ih;
1178         struct reiserfs_key *r_key = NULL;
1179
1180         ih = B_N_PITEM_HEAD(Sh, 0);
1181         if (tb->CFR[h])
1182                 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1183
1184         if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1185             /* shifting may merge items which might save space */
1186             -
1187             ((!h
1188               && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1189             -
1190             ((!h && r_key
1191               && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1192             + ((h) ? KEY_SIZE : 0)) {
1193                 /* node can not be removed */
1194                 if (sfree >= levbytes) {        /* new item fits into node S[h] without any shifting */
1195                         if (!h)
1196                                 tb->s0num =
1197                                     B_NR_ITEMS(Sh) +
1198                                     ((mode == M_INSERT) ? 1 : 0);
1199                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1200                         return NO_BALANCING_NEEDED;
1201                 }
1202         }
1203         PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1204         return !NO_BALANCING_NEEDED;
1205 }
1206
1207 /* Check whether current node S[h] is balanced when increasing its size by
1208  * Inserting or Pasting.
1209  * Calculate parameters for balancing for current level h.
1210  * Parameters:
1211  *      tb      tree_balance structure;
1212  *      h       current level of the node;
1213  *      inum    item number in S[h];
1214  *      mode    i - insert, p - paste;
1215  * Returns:     1 - schedule occurred;
1216  *              0 - balancing for higher levels needed;
1217  *             -1 - no balancing for higher levels needed;
1218  *             -2 - no disk space.
1219  */
1220 /* ip means Inserting or Pasting */
1221 static int ip_check_balance(struct tree_balance *tb, int h)
1222 {
1223         struct virtual_node *vn = tb->tb_vn;
1224         int levbytes,           /* Number of bytes that must be inserted into (value
1225                                    is negative if bytes are deleted) buffer which
1226                                    contains node being balanced.  The mnemonic is
1227                                    that the attempted change in node space used level
1228                                    is levbytes bytes. */
1229          ret;
1230
1231         int lfree, sfree, rfree /* free space in L, S and R */ ;
1232
1233         /* nver is short for number of vertixes, and lnver is the number if
1234            we shift to the left, rnver is the number if we shift to the
1235            right, and lrnver is the number if we shift in both directions.
1236            The goal is to minimize first the number of vertixes, and second,
1237            the number of vertixes whose contents are changed by shifting,
1238            and third the number of uncached vertixes whose contents are
1239            changed by shifting and must be read from disk.  */
1240         int nver, lnver, rnver, lrnver;
1241
1242         /* used at leaf level only, S0 = S[0] is the node being balanced,
1243            sInum [ I = 0,1,2 ] is the number of items that will
1244            remain in node SI after balancing.  S1 and S2 are new
1245            nodes that might be created. */
1246
1247         /* we perform 8 calls to get_num_ver().  For each call we calculate five parameters.
1248            where 4th parameter is s1bytes and 5th - s2bytes
1249          */
1250         short snum012[40] = { 0, };     /* s0num, s1num, s2num for 8 cases
1251                                            0,1 - do not shift and do not shift but bottle
1252                                            2 - shift only whole item to left
1253                                            3 - shift to left and bottle as much as possible
1254                                            4,5 - shift to right (whole items and as much as possible
1255                                            6,7 - shift to both directions (whole items and as much as possible)
1256                                          */
1257
1258         /* Sh is the node whose balance is currently being checked */
1259         struct buffer_head *Sh;
1260
1261         Sh = PATH_H_PBUFFER(tb->tb_path, h);
1262         levbytes = tb->insert_size[h];
1263
1264         /* Calculate balance parameters for creating new root. */
1265         if (!Sh) {
1266                 if (!h)
1267                         reiserfs_panic(tb->tb_sb, "vs-8210",
1268                                        "S[0] can not be 0");
1269                 switch (ret = get_empty_nodes(tb, h)) {
1270                 case CARRY_ON:
1271                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1272                         return NO_BALANCING_NEEDED;     /* no balancing for higher levels needed */
1273
1274                 case NO_DISK_SPACE:
1275                 case REPEAT_SEARCH:
1276                         return ret;
1277                 default:
1278                         reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1279                                        "return value of get_empty_nodes");
1280                 }
1281         }
1282
1283         if ((ret = get_parents(tb, h)) != CARRY_ON)     /* get parents of S[h] neighbors. */
1284                 return ret;
1285
1286         sfree = B_FREE_SPACE(Sh);
1287
1288         /* get free space of neighbors */
1289         rfree = get_rfree(tb, h);
1290         lfree = get_lfree(tb, h);
1291
1292         if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1293             NO_BALANCING_NEEDED)
1294                 /* and new item fits into node S[h] without any shifting */
1295                 return NO_BALANCING_NEEDED;
1296
1297         create_virtual_node(tb, h);
1298
1299         /*
1300            determine maximal number of items we can shift to the left neighbor (in tb structure)
1301            and the maximal number of bytes that can flow to the left neighbor
1302            from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1303          */
1304         check_left(tb, h, lfree);
1305
1306         /*
1307            determine maximal number of items we can shift to the right neighbor (in tb structure)
1308            and the maximal number of bytes that can flow to the right neighbor
1309            from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1310          */
1311         check_right(tb, h, rfree);
1312
1313         /* all contents of internal node S[h] can be moved into its
1314            neighbors, S[h] will be removed after balancing */
1315         if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1316                 int to_r;
1317
1318                 /* Since we are working on internal nodes, and our internal
1319                    nodes have fixed size entries, then we can balance by the
1320                    number of items rather than the space they consume.  In this
1321                    routine we set the left node equal to the right node,
1322                    allowing a difference of less than or equal to 1 child
1323                    pointer. */
1324                 to_r =
1325                     ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1326                      vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1327                                                 tb->rnum[h]);
1328                 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1329                                -1, -1);
1330                 return CARRY_ON;
1331         }
1332
1333         /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1334         RFALSE(h &&
1335                (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1336                 tb->rnum[h] >= vn->vn_nr_item + 1),
1337                "vs-8220: tree is not balanced on internal level");
1338         RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1339                       (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1340                "vs-8225: tree is not balanced on leaf level");
1341
1342         /* all contents of S[0] can be moved into its neighbors
1343            S[0] will be removed after balancing. */
1344         if (!h && is_leaf_removable(tb))
1345                 return CARRY_ON;
1346
1347         /* why do we perform this check here rather than earlier??
1348            Answer: we can win 1 node in some cases above. Moreover we
1349            checked it above, when we checked, that S[0] is not removable
1350            in principle */
1351         if (sfree >= levbytes) {        /* new item fits into node S[h] without any shifting */
1352                 if (!h)
1353                         tb->s0num = vn->vn_nr_item;
1354                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1355                 return NO_BALANCING_NEEDED;
1356         }
1357
1358         {
1359                 int lpar, rpar, nset, lset, rset, lrset;
1360                 /*
1361                  * regular overflowing of the node
1362                  */
1363
1364                 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1365                    lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1366                    nset, lset, rset, lrset - shows, whether flowing items give better packing
1367                  */
1368 #define FLOW 1
1369 #define NO_FLOW 0               /* do not any splitting */
1370
1371                 /* we choose one the following */
1372 #define NOTHING_SHIFT_NO_FLOW   0
1373 #define NOTHING_SHIFT_FLOW      5
1374 #define LEFT_SHIFT_NO_FLOW      10
1375 #define LEFT_SHIFT_FLOW         15
1376 #define RIGHT_SHIFT_NO_FLOW     20
1377 #define RIGHT_SHIFT_FLOW        25
1378 #define LR_SHIFT_NO_FLOW        30
1379 #define LR_SHIFT_FLOW           35
1380
1381                 lpar = tb->lnum[h];
1382                 rpar = tb->rnum[h];
1383
1384                 /* calculate number of blocks S[h] must be split into when
1385                    nothing is shifted to the neighbors,
1386                    as well as number of items in each part of the split node (s012 numbers),
1387                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1388                 nset = NOTHING_SHIFT_NO_FLOW;
1389                 nver = get_num_ver(vn->vn_mode, tb, h,
1390                                    0, -1, h ? vn->vn_nr_item : 0, -1,
1391                                    snum012, NO_FLOW);
1392
1393                 if (!h) {
1394                         int nver1;
1395
1396                         /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1397                         nver1 = get_num_ver(vn->vn_mode, tb, h,
1398                                             0, -1, 0, -1,
1399                                             snum012 + NOTHING_SHIFT_FLOW, FLOW);
1400                         if (nver > nver1)
1401                                 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1402                 }
1403
1404                 /* calculate number of blocks S[h] must be split into when
1405                    l_shift_num first items and l_shift_bytes of the right most
1406                    liquid item to be shifted are shifted to the left neighbor,
1407                    as well as number of items in each part of the splitted node (s012 numbers),
1408                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1409                  */
1410                 lset = LEFT_SHIFT_NO_FLOW;
1411                 lnver = get_num_ver(vn->vn_mode, tb, h,
1412                                     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1413                                     -1, h ? vn->vn_nr_item : 0, -1,
1414                                     snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1415                 if (!h) {
1416                         int lnver1;
1417
1418                         lnver1 = get_num_ver(vn->vn_mode, tb, h,
1419                                              lpar -
1420                                              ((tb->lbytes != -1) ? 1 : 0),
1421                                              tb->lbytes, 0, -1,
1422                                              snum012 + LEFT_SHIFT_FLOW, FLOW);
1423                         if (lnver > lnver1)
1424                                 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1425                 }
1426
1427                 /* calculate number of blocks S[h] must be split into when
1428                    r_shift_num first items and r_shift_bytes of the left most
1429                    liquid item to be shifted are shifted to the right neighbor,
1430                    as well as number of items in each part of the splitted node (s012 numbers),
1431                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1432                  */
1433                 rset = RIGHT_SHIFT_NO_FLOW;
1434                 rnver = get_num_ver(vn->vn_mode, tb, h,
1435                                     0, -1,
1436                                     h ? (vn->vn_nr_item - rpar) : (rpar -
1437                                                                    ((tb->
1438                                                                      rbytes !=
1439                                                                      -1) ? 1 :
1440                                                                     0)), -1,
1441                                     snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1442                 if (!h) {
1443                         int rnver1;
1444
1445                         rnver1 = get_num_ver(vn->vn_mode, tb, h,
1446                                              0, -1,
1447                                              (rpar -
1448                                               ((tb->rbytes != -1) ? 1 : 0)),
1449                                              tb->rbytes,
1450                                              snum012 + RIGHT_SHIFT_FLOW, FLOW);
1451
1452                         if (rnver > rnver1)
1453                                 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1454                 }
1455
1456                 /* calculate number of blocks S[h] must be split into when
1457                    items are shifted in both directions,
1458                    as well as number of items in each part of the splitted node (s012 numbers),
1459                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1460                  */
1461                 lrset = LR_SHIFT_NO_FLOW;
1462                 lrnver = get_num_ver(vn->vn_mode, tb, h,
1463                                      lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1464                                      -1,
1465                                      h ? (vn->vn_nr_item - rpar) : (rpar -
1466                                                                     ((tb->
1467                                                                       rbytes !=
1468                                                                       -1) ? 1 :
1469                                                                      0)), -1,
1470                                      snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1471                 if (!h) {
1472                         int lrnver1;
1473
1474                         lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1475                                               lpar -
1476                                               ((tb->lbytes != -1) ? 1 : 0),
1477                                               tb->lbytes,
1478                                               (rpar -
1479                                                ((tb->rbytes != -1) ? 1 : 0)),
1480                                               tb->rbytes,
1481                                               snum012 + LR_SHIFT_FLOW, FLOW);
1482                         if (lrnver > lrnver1)
1483                                 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1484                 }
1485
1486                 /* Our general shifting strategy is:
1487                    1) to minimized number of new nodes;
1488                    2) to minimized number of neighbors involved in shifting;
1489                    3) to minimized number of disk reads; */
1490
1491                 /* we can win TWO or ONE nodes by shifting in both directions */
1492                 if (lrnver < lnver && lrnver < rnver) {
1493                         RFALSE(h &&
1494                                (tb->lnum[h] != 1 ||
1495                                 tb->rnum[h] != 1 ||
1496                                 lrnver != 1 || rnver != 2 || lnver != 2
1497                                 || h != 1), "vs-8230: bad h");
1498                         if (lrset == LR_SHIFT_FLOW)
1499                                 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1500                                                lrnver, snum012 + lrset,
1501                                                tb->lbytes, tb->rbytes);
1502                         else
1503                                 set_parameters(tb, h,
1504                                                tb->lnum[h] -
1505                                                ((tb->lbytes == -1) ? 0 : 1),
1506                                                tb->rnum[h] -
1507                                                ((tb->rbytes == -1) ? 0 : 1),
1508                                                lrnver, snum012 + lrset, -1, -1);
1509
1510                         return CARRY_ON;
1511                 }
1512
1513                 /* if shifting doesn't lead to better packing then don't shift */
1514                 if (nver == lrnver) {
1515                         set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1516                                        -1);
1517                         return CARRY_ON;
1518                 }
1519
1520                 /* now we know that for better packing shifting in only one
1521                    direction either to the left or to the right is required */
1522
1523                 /*  if shifting to the left is better than shifting to the right */
1524                 if (lnver < rnver) {
1525                         SET_PAR_SHIFT_LEFT;
1526                         return CARRY_ON;
1527                 }
1528
1529                 /* if shifting to the right is better than shifting to the left */
1530                 if (lnver > rnver) {
1531                         SET_PAR_SHIFT_RIGHT;
1532                         return CARRY_ON;
1533                 }
1534
1535                 /* now shifting in either direction gives the same number
1536                    of nodes and we can make use of the cached neighbors */
1537                 if (is_left_neighbor_in_cache(tb, h)) {
1538                         SET_PAR_SHIFT_LEFT;
1539                         return CARRY_ON;
1540                 }
1541
1542                 /* shift to the right independently on whether the right neighbor in cache or not */
1543                 SET_PAR_SHIFT_RIGHT;
1544                 return CARRY_ON;
1545         }
1546 }
1547
1548 /* Check whether current node S[h] is balanced when Decreasing its size by
1549  * Deleting or Cutting for INTERNAL node of S+tree.
1550  * Calculate parameters for balancing for current level h.
1551  * Parameters:
1552  *      tb      tree_balance structure;
1553  *      h       current level of the node;
1554  *      inum    item number in S[h];
1555  *      mode    i - insert, p - paste;
1556  * Returns:     1 - schedule occurred;
1557  *              0 - balancing for higher levels needed;
1558  *             -1 - no balancing for higher levels needed;
1559  *             -2 - no disk space.
1560  *
1561  * Note: Items of internal nodes have fixed size, so the balance condition for
1562  * the internal part of S+tree is as for the B-trees.
1563  */
1564 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1565 {
1566         struct virtual_node *vn = tb->tb_vn;
1567
1568         /* Sh is the node whose balance is currently being checked,
1569            and Fh is its father.  */
1570         struct buffer_head *Sh, *Fh;
1571         int maxsize, ret;
1572         int lfree, rfree /* free space in L and R */ ;
1573
1574         Sh = PATH_H_PBUFFER(tb->tb_path, h);
1575         Fh = PATH_H_PPARENT(tb->tb_path, h);
1576
1577         maxsize = MAX_CHILD_SIZE(Sh);
1578
1579 /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1580 /*   new_nr_item = number of items node would have if operation is */
1581 /*      performed without balancing (new_nr_item); */
1582         create_virtual_node(tb, h);
1583
1584         if (!Fh) {              /* S[h] is the root. */
1585                 if (vn->vn_nr_item > 0) {
1586                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1587                         return NO_BALANCING_NEEDED;     /* no balancing for higher levels needed */
1588                 }
1589                 /* new_nr_item == 0.
1590                  * Current root will be deleted resulting in
1591                  * decrementing the tree height. */
1592                 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1593                 return CARRY_ON;
1594         }
1595
1596         if ((ret = get_parents(tb, h)) != CARRY_ON)
1597                 return ret;
1598
1599         /* get free space of neighbors */
1600         rfree = get_rfree(tb, h);
1601         lfree = get_lfree(tb, h);
1602
1603         /* determine maximal number of items we can fit into neighbors */
1604         check_left(tb, h, lfree);
1605         check_right(tb, h, rfree);
1606
1607         if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1608                                                  * In this case we balance only if it leads to better packing. */
1609                 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1610                                                          * which is impossible with greater values of new_nr_item. */
1611                         if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1612                                 /* All contents of S[h] can be moved to L[h]. */
1613                                 int n;
1614                                 int order_L;
1615
1616                                 order_L =
1617                                     ((n =
1618                                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1619                                                           h)) ==
1620                                      0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1621                                 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1622                                     (DC_SIZE + KEY_SIZE);
1623                                 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1624                                                -1);
1625                                 return CARRY_ON;
1626                         }
1627
1628                         if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1629                                 /* All contents of S[h] can be moved to R[h]. */
1630                                 int n;
1631                                 int order_R;
1632
1633                                 order_R =
1634                                     ((n =
1635                                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1636                                                           h)) ==
1637                                      B_NR_ITEMS(Fh)) ? 0 : n + 1;
1638                                 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1639                                     (DC_SIZE + KEY_SIZE);
1640                                 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1641                                                -1);
1642                                 return CARRY_ON;
1643                         }
1644                 }
1645
1646                 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1647                         /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1648                         int to_r;
1649
1650                         to_r =
1651                             ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1652                              tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1653                             (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1654                         set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1655                                        0, NULL, -1, -1);
1656                         return CARRY_ON;
1657                 }
1658
1659                 /* Balancing does not lead to better packing. */
1660                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1661                 return NO_BALANCING_NEEDED;
1662         }
1663
1664         /* Current node contain insufficient number of items. Balancing is required. */
1665         /* Check whether we can merge S[h] with left neighbor. */
1666         if (tb->lnum[h] >= vn->vn_nr_item + 1)
1667                 if (is_left_neighbor_in_cache(tb, h)
1668                     || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1669                         int n;
1670                         int order_L;
1671
1672                         order_L =
1673                             ((n =
1674                               PATH_H_B_ITEM_ORDER(tb->tb_path,
1675                                                   h)) ==
1676                              0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1677                         n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1678                                                                       KEY_SIZE);
1679                         set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1680                         return CARRY_ON;
1681                 }
1682
1683         /* Check whether we can merge S[h] with right neighbor. */
1684         if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1685                 int n;
1686                 int order_R;
1687
1688                 order_R =
1689                     ((n =
1690                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1691                                           h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1692                 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1693                                                               KEY_SIZE);
1694                 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1695                 return CARRY_ON;
1696         }
1697
1698         /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1699         if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1700                 int to_r;
1701
1702                 to_r =
1703                     ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1704                      vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1705                                                 tb->rnum[h]);
1706                 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1707                                -1, -1);
1708                 return CARRY_ON;
1709         }
1710
1711         /* For internal nodes try to borrow item from a neighbor */
1712         RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1713
1714         /* Borrow one or two items from caching neighbor */
1715         if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1716                 int from_l;
1717
1718                 from_l =
1719                     (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1720                      1) / 2 - (vn->vn_nr_item + 1);
1721                 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1722                 return CARRY_ON;
1723         }
1724
1725         set_parameters(tb, h, 0,
1726                        -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1727                           1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1728         return CARRY_ON;
1729 }
1730
1731 /* Check whether current node S[h] is balanced when Decreasing its size by
1732  * Deleting or Truncating for LEAF node of S+tree.
1733  * Calculate parameters for balancing for current level h.
1734  * Parameters:
1735  *      tb      tree_balance structure;
1736  *      h       current level of the node;
1737  *      inum    item number in S[h];
1738  *      mode    i - insert, p - paste;
1739  * Returns:     1 - schedule occurred;
1740  *              0 - balancing for higher levels needed;
1741  *             -1 - no balancing for higher levels needed;
1742  *             -2 - no disk space.
1743  */
1744 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1745 {
1746         struct virtual_node *vn = tb->tb_vn;
1747
1748         /* Number of bytes that must be deleted from
1749            (value is negative if bytes are deleted) buffer which
1750            contains node being balanced.  The mnemonic is that the
1751            attempted change in node space used level is levbytes bytes. */
1752         int levbytes;
1753         /* the maximal item size */
1754         int maxsize, ret;
1755         /* S0 is the node whose balance is currently being checked,
1756            and F0 is its father.  */
1757         struct buffer_head *S0, *F0;
1758         int lfree, rfree /* free space in L and R */ ;
1759
1760         S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1761         F0 = PATH_H_PPARENT(tb->tb_path, 0);
1762
1763         levbytes = tb->insert_size[h];
1764
1765         maxsize = MAX_CHILD_SIZE(S0);   /* maximal possible size of an item */
1766
1767         if (!F0) {              /* S[0] is the root now. */
1768
1769                 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1770                        "vs-8240: attempt to create empty buffer tree");
1771
1772                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1773                 return NO_BALANCING_NEEDED;
1774         }
1775
1776         if ((ret = get_parents(tb, h)) != CARRY_ON)
1777                 return ret;
1778
1779         /* get free space of neighbors */
1780         rfree = get_rfree(tb, h);
1781         lfree = get_lfree(tb, h);
1782
1783         create_virtual_node(tb, h);
1784
1785         /* if 3 leaves can be merge to one, set parameters and return */
1786         if (are_leaves_removable(tb, lfree, rfree))
1787                 return CARRY_ON;
1788
1789         /* determine maximal number of items we can shift to the left/right  neighbor
1790            and the maximal number of bytes that can flow to the left/right neighbor
1791            from the left/right most liquid item that cannot be shifted from S[0] entirely
1792          */
1793         check_left(tb, h, lfree);
1794         check_right(tb, h, rfree);
1795
1796         /* check whether we can merge S with left neighbor. */
1797         if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1798                 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||      /* S can not be merged with R */
1799                     !tb->FR[h]) {
1800
1801                         RFALSE(!tb->FL[h],
1802                                "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1803
1804                         /* set parameter to merge S[0] with its left neighbor */
1805                         set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1806                         return CARRY_ON;
1807                 }
1808
1809         /* check whether we can merge S[0] with right neighbor. */
1810         if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1811                 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1812                 return CARRY_ON;
1813         }
1814
1815         /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1816         if (is_leaf_removable(tb))
1817                 return CARRY_ON;
1818
1819         /* Balancing is not required. */
1820         tb->s0num = vn->vn_nr_item;
1821         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1822         return NO_BALANCING_NEEDED;
1823 }
1824
1825 /* Check whether current node S[h] is balanced when Decreasing its size by
1826  * Deleting or Cutting.
1827  * Calculate parameters for balancing for current level h.
1828  * Parameters:
1829  *      tb      tree_balance structure;
1830  *      h       current level of the node;
1831  *      inum    item number in S[h];
1832  *      mode    d - delete, c - cut.
1833  * Returns:     1 - schedule occurred;
1834  *              0 - balancing for higher levels needed;
1835  *             -1 - no balancing for higher levels needed;
1836  *             -2 - no disk space.
1837  */
1838 static int dc_check_balance(struct tree_balance *tb, int h)
1839 {
1840         RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1841                "vs-8250: S is not initialized");
1842
1843         if (h)
1844                 return dc_check_balance_internal(tb, h);
1845         else
1846                 return dc_check_balance_leaf(tb, h);
1847 }
1848
1849 /* Check whether current node S[h] is balanced.
1850  * Calculate parameters for balancing for current level h.
1851  * Parameters:
1852  *
1853  *      tb      tree_balance structure:
1854  *
1855  *              tb is a large structure that must be read about in the header file
1856  *              at the same time as this procedure if the reader is to successfully
1857  *              understand this procedure
1858  *
1859  *      h       current level of the node;
1860  *      inum    item number in S[h];
1861  *      mode    i - insert, p - paste, d - delete, c - cut.
1862  * Returns:     1 - schedule occurred;
1863  *              0 - balancing for higher levels needed;
1864  *             -1 - no balancing for higher levels needed;
1865  *             -2 - no disk space.
1866  */
1867 static int check_balance(int mode,
1868                          struct tree_balance *tb,
1869                          int h,
1870                          int inum,
1871                          int pos_in_item,
1872                          struct item_head *ins_ih, const void *data)
1873 {
1874         struct virtual_node *vn;
1875
1876         vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1877         vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1878         vn->vn_mode = mode;
1879         vn->vn_affected_item_num = inum;
1880         vn->vn_pos_in_item = pos_in_item;
1881         vn->vn_ins_ih = ins_ih;
1882         vn->vn_data = data;
1883
1884         RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1885                "vs-8255: ins_ih can not be 0 in insert mode");
1886
1887         if (tb->insert_size[h] > 0)
1888                 /* Calculate balance parameters when size of node is increasing. */
1889                 return ip_check_balance(tb, h);
1890
1891         /* Calculate balance parameters when  size of node is decreasing. */
1892         return dc_check_balance(tb, h);
1893 }
1894
1895 /* Check whether parent at the path is the really parent of the current node.*/
1896 static int get_direct_parent(struct tree_balance *tb, int h)
1897 {
1898         struct buffer_head *bh;
1899         struct treepath *path = tb->tb_path;
1900         int position,
1901             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1902
1903         /* We are in the root or in the new root. */
1904         if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1905
1906                 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1907                        "PAP-8260: invalid offset in the path");
1908
1909                 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
1910                     b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
1911                         /* Root is not changed. */
1912                         PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1913                         PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
1914                         return CARRY_ON;
1915                 }
1916                 return REPEAT_SEARCH;   /* Root is changed and we must recalculate the path. */
1917         }
1918
1919         if (!B_IS_IN_TREE
1920             (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
1921                 return REPEAT_SEARCH;   /* Parent in the path is not in the tree. */
1922
1923         if ((position =
1924              PATH_OFFSET_POSITION(path,
1925                                   path_offset - 1)) > B_NR_ITEMS(bh))
1926                 return REPEAT_SEARCH;
1927
1928         if (B_N_CHILD_NUM(bh, position) !=
1929             PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
1930                 /* Parent in the path is not parent of the current node in the tree. */
1931                 return REPEAT_SEARCH;
1932
1933         if (buffer_locked(bh)) {
1934                 reiserfs_write_unlock(tb->tb_sb);
1935                 __wait_on_buffer(bh);
1936                 reiserfs_write_lock(tb->tb_sb);
1937                 if (FILESYSTEM_CHANGED_TB(tb))
1938                         return REPEAT_SEARCH;
1939         }
1940
1941         return CARRY_ON;        /* Parent in the path is unlocked and really parent of the current node.  */
1942 }
1943
1944 /* Using lnum[h] and rnum[h] we should determine what neighbors
1945  * of S[h] we
1946  * need in order to balance S[h], and get them if necessary.
1947  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
1948  *              CARRY_ON - schedule didn't occur while the function worked;
1949  */
1950 static int get_neighbors(struct tree_balance *tb, int h)
1951 {
1952         int child_position,
1953             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1954         unsigned long son_number;
1955         struct super_block *sb = tb->tb_sb;
1956         struct buffer_head *bh;
1957
1958         PROC_INFO_INC(sb, get_neighbors[h]);
1959
1960         if (tb->lnum[h]) {
1961                 /* We need left neighbor to balance S[h]. */
1962                 PROC_INFO_INC(sb, need_l_neighbor[h]);
1963                 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
1964
1965                 RFALSE(bh == tb->FL[h] &&
1966                        !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
1967                        "PAP-8270: invalid position in the parent");
1968
1969                 child_position =
1970                     (bh ==
1971                      tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1972                                                                        FL[h]);
1973                 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
1974                 reiserfs_write_unlock(sb);
1975                 bh = sb_bread(sb, son_number);
1976                 reiserfs_write_lock(sb);
1977                 if (!bh)
1978                         return IO_ERROR;
1979                 if (FILESYSTEM_CHANGED_TB(tb)) {
1980                         brelse(bh);
1981                         PROC_INFO_INC(sb, get_neighbors_restart[h]);
1982                         return REPEAT_SEARCH;
1983                 }
1984
1985                 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1986                        child_position > B_NR_ITEMS(tb->FL[h]) ||
1987                        B_N_CHILD_NUM(tb->FL[h], child_position) !=
1988                        bh->b_blocknr, "PAP-8275: invalid parent");
1989                 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
1990                 RFALSE(!h &&
1991                        B_FREE_SPACE(bh) !=
1992                        MAX_CHILD_SIZE(bh) -
1993                        dc_size(B_N_CHILD(tb->FL[0], child_position)),
1994                        "PAP-8290: invalid child size of left neighbor");
1995
1996                 brelse(tb->L[h]);
1997                 tb->L[h] = bh;
1998         }
1999
2000         /* We need right neighbor to balance S[path_offset]. */
2001         if (tb->rnum[h]) {      /* We need right neighbor to balance S[path_offset]. */
2002                 PROC_INFO_INC(sb, need_r_neighbor[h]);
2003                 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2004
2005                 RFALSE(bh == tb->FR[h] &&
2006                        PATH_OFFSET_POSITION(tb->tb_path,
2007                                             path_offset) >=
2008                        B_NR_ITEMS(bh),
2009                        "PAP-8295: invalid position in the parent");
2010
2011                 child_position =
2012                     (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2013                 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2014                 reiserfs_write_unlock(sb);
2015                 bh = sb_bread(sb, son_number);
2016                 reiserfs_write_lock(sb);
2017                 if (!bh)
2018                         return IO_ERROR;
2019                 if (FILESYSTEM_CHANGED_TB(tb)) {
2020                         brelse(bh);
2021                         PROC_INFO_INC(sb, get_neighbors_restart[h]);
2022                         return REPEAT_SEARCH;
2023                 }
2024                 brelse(tb->R[h]);
2025                 tb->R[h] = bh;
2026
2027                 RFALSE(!h
2028                        && B_FREE_SPACE(bh) !=
2029                        MAX_CHILD_SIZE(bh) -
2030                        dc_size(B_N_CHILD(tb->FR[0], child_position)),
2031                        "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2032                        B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2033                        dc_size(B_N_CHILD(tb->FR[0], child_position)));
2034
2035         }
2036         return CARRY_ON;
2037 }
2038
2039 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2040 {
2041         int max_num_of_items;
2042         int max_num_of_entries;
2043         unsigned long blocksize = sb->s_blocksize;
2044
2045 #define MIN_NAME_LEN 1
2046
2047         max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2048         max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2049             (DEH_SIZE + MIN_NAME_LEN);
2050
2051         return sizeof(struct virtual_node) +
2052             max(max_num_of_items * sizeof(struct virtual_item),
2053                 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2054                 (max_num_of_entries - 1) * sizeof(__u16));
2055 }
2056
2057 /* maybe we should fail balancing we are going to perform when kmalloc
2058    fails several times. But now it will loop until kmalloc gets
2059    required memory */
2060 static int get_mem_for_virtual_node(struct tree_balance *tb)
2061 {
2062         int check_fs = 0;
2063         int size;
2064         char *buf;
2065
2066         size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2067
2068         if (size > tb->vn_buf_size) {
2069                 /* we have to allocate more memory for virtual node */
2070                 if (tb->vn_buf) {
2071                         /* free memory allocated before */
2072                         kfree(tb->vn_buf);
2073                         /* this is not needed if kfree is atomic */
2074                         check_fs = 1;
2075                 }
2076
2077                 /* virtual node requires now more memory */
2078                 tb->vn_buf_size = size;
2079
2080                 /* get memory for virtual item */
2081                 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2082                 if (!buf) {
2083                         /* getting memory with GFP_KERNEL priority may involve
2084                            balancing now (due to indirect_to_direct conversion on
2085                            dcache shrinking). So, release path and collected
2086                            resources here */
2087                         free_buffers_in_tb(tb);
2088                         buf = kmalloc(size, GFP_NOFS);
2089                         if (!buf) {
2090                                 tb->vn_buf_size = 0;
2091                         }
2092                         tb->vn_buf = buf;
2093                         schedule();
2094                         return REPEAT_SEARCH;
2095                 }
2096
2097                 tb->vn_buf = buf;
2098         }
2099
2100         if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2101                 return REPEAT_SEARCH;
2102
2103         return CARRY_ON;
2104 }
2105
2106 #ifdef CONFIG_REISERFS_CHECK
2107 static void tb_buffer_sanity_check(struct super_block *sb,
2108                                    struct buffer_head *bh,
2109                                    const char *descr, int level)
2110 {
2111         if (bh) {
2112                 if (atomic_read(&(bh->b_count)) <= 0)
2113
2114                         reiserfs_panic(sb, "jmacd-1", "negative or zero "
2115                                        "reference counter for buffer %s[%d] "
2116                                        "(%b)", descr, level, bh);
2117
2118                 if (!buffer_uptodate(bh))
2119                         reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2120                                        "to date %s[%d] (%b)",
2121                                        descr, level, bh);
2122
2123                 if (!B_IS_IN_TREE(bh))
2124                         reiserfs_panic(sb, "jmacd-3", "buffer is not "
2125                                        "in tree %s[%d] (%b)",
2126                                        descr, level, bh);
2127
2128                 if (bh->b_bdev != sb->s_bdev)
2129                         reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2130                                        "device %s[%d] (%b)",
2131                                        descr, level, bh);
2132
2133                 if (bh->b_size != sb->s_blocksize)
2134                         reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2135                                        "blocksize %s[%d] (%b)",
2136                                        descr, level, bh);
2137
2138                 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2139                         reiserfs_panic(sb, "jmacd-6", "buffer block "
2140                                        "number too high %s[%d] (%b)",
2141                                        descr, level, bh);
2142         }
2143 }
2144 #else
2145 static void tb_buffer_sanity_check(struct super_block *sb,
2146                                    struct buffer_head *bh,
2147                                    const char *descr, int level)
2148 {;
2149 }
2150 #endif
2151
2152 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2153 {
2154         return reiserfs_prepare_for_journal(s, bh, 0);
2155 }
2156
2157 static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2158 {
2159         struct buffer_head *locked;
2160 #ifdef CONFIG_REISERFS_CHECK
2161         int repeat_counter = 0;
2162 #endif
2163         int i;
2164
2165         do {
2166
2167                 locked = NULL;
2168
2169                 for (i = tb->tb_path->path_length;
2170                      !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2171                         if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2172                                 /* if I understand correctly, we can only be sure the last buffer
2173                                  ** in the path is in the tree --clm
2174                                  */
2175 #ifdef CONFIG_REISERFS_CHECK
2176                                 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2177                                     PATH_OFFSET_PBUFFER(tb->tb_path, i))
2178                                         tb_buffer_sanity_check(tb->tb_sb,
2179                                                                PATH_OFFSET_PBUFFER
2180                                                                (tb->tb_path,
2181                                                                 i), "S",
2182                                                                tb->tb_path->
2183                                                                path_length - i);
2184 #endif
2185                                 if (!clear_all_dirty_bits(tb->tb_sb,
2186                                                           PATH_OFFSET_PBUFFER
2187                                                           (tb->tb_path,
2188                                                            i))) {
2189                                         locked =
2190                                             PATH_OFFSET_PBUFFER(tb->tb_path,
2191                                                                 i);
2192                                 }
2193                         }
2194                 }
2195
2196                 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2197                      i++) {
2198
2199                         if (tb->lnum[i]) {
2200
2201                                 if (tb->L[i]) {
2202                                         tb_buffer_sanity_check(tb->tb_sb,
2203                                                                tb->L[i],
2204                                                                "L", i);
2205                                         if (!clear_all_dirty_bits
2206                                             (tb->tb_sb, tb->L[i]))
2207                                                 locked = tb->L[i];
2208                                 }
2209
2210                                 if (!locked && tb->FL[i]) {
2211                                         tb_buffer_sanity_check(tb->tb_sb,
2212                                                                tb->FL[i],
2213                                                                "FL", i);
2214                                         if (!clear_all_dirty_bits
2215                                             (tb->tb_sb, tb->FL[i]))
2216                                                 locked = tb->FL[i];
2217                                 }
2218
2219                                 if (!locked && tb->CFL[i]) {
2220                                         tb_buffer_sanity_check(tb->tb_sb,
2221                                                                tb->CFL[i],
2222                                                                "CFL", i);
2223                                         if (!clear_all_dirty_bits
2224                                             (tb->tb_sb, tb->CFL[i]))
2225                                                 locked = tb->CFL[i];
2226                                 }
2227
2228                         }
2229
2230                         if (!locked && (tb->rnum[i])) {
2231
2232                                 if (tb->R[i]) {
2233                                         tb_buffer_sanity_check(tb->tb_sb,
2234                                                                tb->R[i],
2235                                                                "R", i);
2236                                         if (!clear_all_dirty_bits
2237                                             (tb->tb_sb, tb->R[i]))
2238                                                 locked = tb->R[i];
2239                                 }
2240
2241                                 if (!locked && tb->FR[i]) {
2242                                         tb_buffer_sanity_check(tb->tb_sb,
2243                                                                tb->FR[i],
2244                                                                "FR", i);
2245                                         if (!clear_all_dirty_bits
2246                                             (tb->tb_sb, tb->FR[i]))
2247                                                 locked = tb->FR[i];
2248                                 }
2249
2250                                 if (!locked && tb->CFR[i]) {
2251                                         tb_buffer_sanity_check(tb->tb_sb,
2252                                                                tb->CFR[i],
2253                                                                "CFR", i);
2254                                         if (!clear_all_dirty_bits
2255                                             (tb->tb_sb, tb->CFR[i]))
2256                                                 locked = tb->CFR[i];
2257                                 }
2258                         }
2259                 }
2260                 /* as far as I can tell, this is not required.  The FEB list seems
2261                  ** to be full of newly allocated nodes, which will never be locked,
2262                  ** dirty, or anything else.
2263                  ** To be safe, I'm putting in the checks and waits in.  For the moment,
2264                  ** they are needed to keep the code in journal.c from complaining
2265                  ** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well.
2266                  ** --clm
2267                  */
2268                 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2269                         if (tb->FEB[i]) {
2270                                 if (!clear_all_dirty_bits
2271                                     (tb->tb_sb, tb->FEB[i]))
2272                                         locked = tb->FEB[i];
2273                         }
2274                 }
2275
2276                 if (locked) {
2277 #ifdef CONFIG_REISERFS_CHECK
2278                         repeat_counter++;
2279                         if ((repeat_counter % 10000) == 0) {
2280                                 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2281                                                  "too many iterations waiting "
2282                                                  "for buffer to unlock "
2283                                                  "(%b)", locked);
2284
2285                                 /* Don't loop forever.  Try to recover from possible error. */
2286
2287                                 return (FILESYSTEM_CHANGED_TB(tb)) ?
2288                                     REPEAT_SEARCH : CARRY_ON;
2289                         }
2290 #endif
2291                         reiserfs_write_unlock(tb->tb_sb);
2292                         __wait_on_buffer(locked);
2293                         reiserfs_write_lock(tb->tb_sb);
2294                         if (FILESYSTEM_CHANGED_TB(tb))
2295                                 return REPEAT_SEARCH;
2296                 }
2297
2298         } while (locked);
2299
2300         return CARRY_ON;
2301 }
2302
2303 /* Prepare for balancing, that is
2304  *      get all necessary parents, and neighbors;
2305  *      analyze what and where should be moved;
2306  *      get sufficient number of new nodes;
2307  * Balancing will start only after all resources will be collected at a time.
2308  *
2309  * When ported to SMP kernels, only at the last moment after all needed nodes
2310  * are collected in cache, will the resources be locked using the usual
2311  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2312  * this code neither write locks what it does not need to write lock nor locks out of order
2313  * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans
2314  *
2315  * fix is meant in the sense of render unchanging
2316  *
2317  * Latency might be improved by first gathering a list of what buffers are needed
2318  * and then getting as many of them in parallel as possible? -Hans
2319  *
2320  * Parameters:
2321  *      op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2322  *      tb      tree_balance structure;
2323  *      inum    item number in S[h];
2324  *      pos_in_item - comment this if you can
2325  *      ins_ih  item head of item being inserted
2326  *      data    inserted item or data to be pasted
2327  * Returns:     1 - schedule occurred while the function worked;
2328  *              0 - schedule didn't occur while the function worked;
2329  *             -1 - if no_disk_space
2330  */
2331
2332 int fix_nodes(int op_mode, struct tree_balance *tb,
2333               struct item_head *ins_ih, const void *data)
2334 {
2335         int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2336         int pos_in_item;
2337
2338         /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2339          ** during wait_tb_buffers_run
2340          */
2341         int wait_tb_buffers_run = 0;
2342         struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2343
2344         ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2345
2346         pos_in_item = tb->tb_path->pos_in_item;
2347
2348         tb->fs_gen = get_generation(tb->tb_sb);
2349
2350         /* we prepare and log the super here so it will already be in the
2351          ** transaction when do_balance needs to change it.
2352          ** This way do_balance won't have to schedule when trying to prepare
2353          ** the super for logging
2354          */
2355         reiserfs_prepare_for_journal(tb->tb_sb,
2356                                      SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2357         journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2358                            SB_BUFFER_WITH_SB(tb->tb_sb));
2359         if (FILESYSTEM_CHANGED_TB(tb))
2360                 return REPEAT_SEARCH;
2361
2362         /* if it possible in indirect_to_direct conversion */
2363         if (buffer_locked(tbS0)) {
2364                 reiserfs_write_unlock(tb->tb_sb);
2365                 __wait_on_buffer(tbS0);
2366                 reiserfs_write_lock(tb->tb_sb);
2367                 if (FILESYSTEM_CHANGED_TB(tb))
2368                         return REPEAT_SEARCH;
2369         }
2370 #ifdef CONFIG_REISERFS_CHECK
2371         if (cur_tb) {
2372                 print_cur_tb("fix_nodes");
2373                 reiserfs_panic(tb->tb_sb, "PAP-8305",
2374                                "there is pending do_balance");
2375         }
2376
2377         if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2378                 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2379                                "not uptodate at the beginning of fix_nodes "
2380                                "or not in tree (mode %c)",
2381                                tbS0, tbS0, op_mode);
2382
2383         /* Check parameters. */
2384         switch (op_mode) {
2385         case M_INSERT:
2386                 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2387                         reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2388                                        "item number %d (in S0 - %d) in case "
2389                                        "of insert", item_num,
2390                                        B_NR_ITEMS(tbS0));
2391                 break;
2392         case M_PASTE:
2393         case M_DELETE:
2394         case M_CUT:
2395                 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2396                         print_block(tbS0, 0, -1, -1);
2397                         reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2398                                        "item number(%d); mode = %c "
2399                                        "insert_size = %d",
2400                                        item_num, op_mode,
2401                                        tb->insert_size[0]);
2402                 }
2403                 break;
2404         default:
2405                 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2406                                "of operation");
2407         }
2408 #endif
2409
2410         if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2411                 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2412                 return REPEAT_SEARCH;
2413
2414         /* Starting from the leaf level; for all levels h of the tree. */
2415         for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2416                 ret = get_direct_parent(tb, h);
2417                 if (ret != CARRY_ON)
2418                         goto repeat;
2419
2420                 ret = check_balance(op_mode, tb, h, item_num,
2421                                     pos_in_item, ins_ih, data);
2422                 if (ret != CARRY_ON) {
2423                         if (ret == NO_BALANCING_NEEDED) {
2424                                 /* No balancing for higher levels needed. */
2425                                 ret = get_neighbors(tb, h);
2426                                 if (ret != CARRY_ON)
2427                                         goto repeat;
2428                                 if (h != MAX_HEIGHT - 1)
2429                                         tb->insert_size[h + 1] = 0;
2430                                 /* ok, analysis and resource gathering are complete */
2431                                 break;
2432                         }
2433                         goto repeat;
2434                 }
2435
2436                 ret = get_neighbors(tb, h);
2437                 if (ret != CARRY_ON)
2438                         goto repeat;
2439
2440                 /* No disk space, or schedule occurred and analysis may be
2441                  * invalid and needs to be redone. */
2442                 ret = get_empty_nodes(tb, h);
2443                 if (ret != CARRY_ON)
2444                         goto repeat;
2445
2446                 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2447                         /* We have a positive insert size but no nodes exist on this
2448                            level, this means that we are creating a new root. */
2449
2450                         RFALSE(tb->blknum[h] != 1,
2451                                "PAP-8350: creating new empty root");
2452
2453                         if (h < MAX_HEIGHT - 1)
2454                                 tb->insert_size[h + 1] = 0;
2455                 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2456                         if (tb->blknum[h] > 1) {
2457                                 /* The tree needs to be grown, so this node S[h]
2458                                    which is the root node is split into two nodes,
2459                                    and a new node (S[h+1]) will be created to
2460                                    become the root node.  */
2461
2462                                 RFALSE(h == MAX_HEIGHT - 1,
2463                                        "PAP-8355: attempt to create too high of a tree");
2464
2465                                 tb->insert_size[h + 1] =
2466                                     (DC_SIZE +
2467                                      KEY_SIZE) * (tb->blknum[h] - 1) +
2468                                     DC_SIZE;
2469                         } else if (h < MAX_HEIGHT - 1)
2470                                 tb->insert_size[h + 1] = 0;
2471                 } else
2472                         tb->insert_size[h + 1] =
2473                             (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2474         }
2475
2476         ret = wait_tb_buffers_until_unlocked(tb);
2477         if (ret == CARRY_ON) {
2478                 if (FILESYSTEM_CHANGED_TB(tb)) {
2479                         wait_tb_buffers_run = 1;
2480                         ret = REPEAT_SEARCH;
2481                         goto repeat;
2482                 } else {
2483                         return CARRY_ON;
2484                 }
2485         } else {
2486                 wait_tb_buffers_run = 1;
2487                 goto repeat;
2488         }
2489
2490       repeat:
2491         // fix_nodes was unable to perform its calculation due to
2492         // filesystem got changed under us, lack of free disk space or i/o
2493         // failure. If the first is the case - the search will be
2494         // repeated. For now - free all resources acquired so far except
2495         // for the new allocated nodes
2496         {
2497                 int i;
2498
2499                 /* Release path buffers. */
2500                 if (wait_tb_buffers_run) {
2501                         pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2502                 } else {
2503                         pathrelse(tb->tb_path);
2504                 }
2505                 /* brelse all resources collected for balancing */
2506                 for (i = 0; i < MAX_HEIGHT; i++) {
2507                         if (wait_tb_buffers_run) {
2508                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2509                                                                  tb->L[i]);
2510                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2511                                                                  tb->R[i]);
2512                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2513                                                                  tb->FL[i]);
2514                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2515                                                                  tb->FR[i]);
2516                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2517                                                                  tb->
2518                                                                  CFL[i]);
2519                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2520                                                                  tb->
2521                                                                  CFR[i]);
2522                         }
2523
2524                         brelse(tb->L[i]);
2525                         brelse(tb->R[i]);
2526                         brelse(tb->FL[i]);
2527                         brelse(tb->FR[i]);
2528                         brelse(tb->CFL[i]);
2529                         brelse(tb->CFR[i]);
2530
2531                         tb->L[i] = NULL;
2532                         tb->R[i] = NULL;
2533                         tb->FL[i] = NULL;
2534                         tb->FR[i] = NULL;
2535                         tb->CFL[i] = NULL;
2536                         tb->CFR[i] = NULL;
2537                 }
2538
2539                 if (wait_tb_buffers_run) {
2540                         for (i = 0; i < MAX_FEB_SIZE; i++) {
2541                                 if (tb->FEB[i])
2542                                         reiserfs_restore_prepared_buffer
2543                                             (tb->tb_sb, tb->FEB[i]);
2544                         }
2545                 }
2546                 return ret;
2547         }
2548
2549 }
2550
2551 /* Anatoly will probably forgive me renaming tb to tb. I just
2552    wanted to make lines shorter */
2553 void unfix_nodes(struct tree_balance *tb)
2554 {
2555         int i;
2556
2557         /* Release path buffers. */
2558         pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2559
2560         /* brelse all resources collected for balancing */
2561         for (i = 0; i < MAX_HEIGHT; i++) {
2562                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2563                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2564                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2565                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2566                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2567                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2568
2569                 brelse(tb->L[i]);
2570                 brelse(tb->R[i]);
2571                 brelse(tb->FL[i]);
2572                 brelse(tb->FR[i]);
2573                 brelse(tb->CFL[i]);
2574                 brelse(tb->CFR[i]);
2575         }
2576
2577         /* deal with list of allocated (used and unused) nodes */
2578         for (i = 0; i < MAX_FEB_SIZE; i++) {
2579                 if (tb->FEB[i]) {
2580                         b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2581                         /* de-allocated block which was not used by balancing and
2582                            bforget about buffer for it */
2583                         brelse(tb->FEB[i]);
2584                         reiserfs_free_block(tb->transaction_handle, NULL,
2585                                             blocknr, 0);
2586                 }
2587                 if (tb->used[i]) {
2588                         /* release used as new nodes including a new root */
2589                         brelse(tb->used[i]);
2590                 }
2591         }
2592
2593         kfree(tb->vn_buf);
2594
2595 }