ocfs2: Remove JBD compatibility layer
[safe/jmp/linux-2.6] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46
47 #include "buffer_head_io.h"
48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50                                    struct buffer_head *bh_result, int create)
51 {
52         int err = -EIO;
53         int status;
54         struct ocfs2_dinode *fe = NULL;
55         struct buffer_head *bh = NULL;
56         struct buffer_head *buffer_cache_bh = NULL;
57         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58         void *kaddr;
59
60         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61                    (unsigned long long)iblock, bh_result, create);
62
63         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67                      (unsigned long long)iblock);
68                 goto bail;
69         }
70
71         status = ocfs2_read_inode_block(inode, &bh);
72         if (status < 0) {
73                 mlog_errno(status);
74                 goto bail;
75         }
76         fe = (struct ocfs2_dinode *) bh->b_data;
77
78         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
79                                                     le32_to_cpu(fe->i_clusters))) {
80                 mlog(ML_ERROR, "block offset is outside the allocated size: "
81                      "%llu\n", (unsigned long long)iblock);
82                 goto bail;
83         }
84
85         /* We don't use the page cache to create symlink data, so if
86          * need be, copy it over from the buffer cache. */
87         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
88                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
89                             iblock;
90                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
91                 if (!buffer_cache_bh) {
92                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
93                         goto bail;
94                 }
95
96                 /* we haven't locked out transactions, so a commit
97                  * could've happened. Since we've got a reference on
98                  * the bh, even if it commits while we're doing the
99                  * copy, the data is still good. */
100                 if (buffer_jbd(buffer_cache_bh)
101                     && ocfs2_inode_is_new(inode)) {
102                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
103                         if (!kaddr) {
104                                 mlog(ML_ERROR, "couldn't kmap!\n");
105                                 goto bail;
106                         }
107                         memcpy(kaddr + (bh_result->b_size * iblock),
108                                buffer_cache_bh->b_data,
109                                bh_result->b_size);
110                         kunmap_atomic(kaddr, KM_USER0);
111                         set_buffer_uptodate(bh_result);
112                 }
113                 brelse(buffer_cache_bh);
114         }
115
116         map_bh(bh_result, inode->i_sb,
117                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
118
119         err = 0;
120
121 bail:
122         brelse(bh);
123
124         mlog_exit(err);
125         return err;
126 }
127
128 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
129                            struct buffer_head *bh_result, int create)
130 {
131         int err = 0;
132         unsigned int ext_flags;
133         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
134         u64 p_blkno, count, past_eof;
135         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
136
137         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
138                    (unsigned long long)iblock, bh_result, create);
139
140         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
141                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
142                      inode, inode->i_ino);
143
144         if (S_ISLNK(inode->i_mode)) {
145                 /* this always does I/O for some reason. */
146                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
147                 goto bail;
148         }
149
150         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
151                                           &ext_flags);
152         if (err) {
153                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
154                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
155                      (unsigned long long)p_blkno);
156                 goto bail;
157         }
158
159         if (max_blocks < count)
160                 count = max_blocks;
161
162         /*
163          * ocfs2 never allocates in this function - the only time we
164          * need to use BH_New is when we're extending i_size on a file
165          * system which doesn't support holes, in which case BH_New
166          * allows block_prepare_write() to zero.
167          *
168          * If we see this on a sparse file system, then a truncate has
169          * raced us and removed the cluster. In this case, we clear
170          * the buffers dirty and uptodate bits and let the buffer code
171          * ignore it as a hole.
172          */
173         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
174                 clear_buffer_dirty(bh_result);
175                 clear_buffer_uptodate(bh_result);
176                 goto bail;
177         }
178
179         /* Treat the unwritten extent as a hole for zeroing purposes. */
180         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
181                 map_bh(bh_result, inode->i_sb, p_blkno);
182
183         bh_result->b_size = count << inode->i_blkbits;
184
185         if (!ocfs2_sparse_alloc(osb)) {
186                 if (p_blkno == 0) {
187                         err = -EIO;
188                         mlog(ML_ERROR,
189                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
190                              (unsigned long long)iblock,
191                              (unsigned long long)p_blkno,
192                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
193                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
194                         dump_stack();
195                 }
196
197                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
198                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
199                      (unsigned long long)past_eof);
200
201                 if (create && (iblock >= past_eof))
202                         set_buffer_new(bh_result);
203         }
204
205 bail:
206         if (err < 0)
207                 err = -EIO;
208
209         mlog_exit(err);
210         return err;
211 }
212
213 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
214                            struct buffer_head *di_bh)
215 {
216         void *kaddr;
217         loff_t size;
218         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
219
220         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
221                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
222                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
223                 return -EROFS;
224         }
225
226         size = i_size_read(inode);
227
228         if (size > PAGE_CACHE_SIZE ||
229             size > ocfs2_max_inline_data(inode->i_sb)) {
230                 ocfs2_error(inode->i_sb,
231                             "Inode %llu has with inline data has bad size: %Lu",
232                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
233                             (unsigned long long)size);
234                 return -EROFS;
235         }
236
237         kaddr = kmap_atomic(page, KM_USER0);
238         if (size)
239                 memcpy(kaddr, di->id2.i_data.id_data, size);
240         /* Clear the remaining part of the page */
241         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
242         flush_dcache_page(page);
243         kunmap_atomic(kaddr, KM_USER0);
244
245         SetPageUptodate(page);
246
247         return 0;
248 }
249
250 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
251 {
252         int ret;
253         struct buffer_head *di_bh = NULL;
254
255         BUG_ON(!PageLocked(page));
256         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
257
258         ret = ocfs2_read_inode_block(inode, &di_bh);
259         if (ret) {
260                 mlog_errno(ret);
261                 goto out;
262         }
263
264         ret = ocfs2_read_inline_data(inode, page, di_bh);
265 out:
266         unlock_page(page);
267
268         brelse(di_bh);
269         return ret;
270 }
271
272 static int ocfs2_readpage(struct file *file, struct page *page)
273 {
274         struct inode *inode = page->mapping->host;
275         struct ocfs2_inode_info *oi = OCFS2_I(inode);
276         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
277         int ret, unlock = 1;
278
279         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
280
281         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
282         if (ret != 0) {
283                 if (ret == AOP_TRUNCATED_PAGE)
284                         unlock = 0;
285                 mlog_errno(ret);
286                 goto out;
287         }
288
289         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
290                 ret = AOP_TRUNCATED_PAGE;
291                 goto out_inode_unlock;
292         }
293
294         /*
295          * i_size might have just been updated as we grabed the meta lock.  We
296          * might now be discovering a truncate that hit on another node.
297          * block_read_full_page->get_block freaks out if it is asked to read
298          * beyond the end of a file, so we check here.  Callers
299          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
300          * and notice that the page they just read isn't needed.
301          *
302          * XXX sys_readahead() seems to get that wrong?
303          */
304         if (start >= i_size_read(inode)) {
305                 zero_user(page, 0, PAGE_SIZE);
306                 SetPageUptodate(page);
307                 ret = 0;
308                 goto out_alloc;
309         }
310
311         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
312                 ret = ocfs2_readpage_inline(inode, page);
313         else
314                 ret = block_read_full_page(page, ocfs2_get_block);
315         unlock = 0;
316
317 out_alloc:
318         up_read(&OCFS2_I(inode)->ip_alloc_sem);
319 out_inode_unlock:
320         ocfs2_inode_unlock(inode, 0);
321 out:
322         if (unlock)
323                 unlock_page(page);
324         mlog_exit(ret);
325         return ret;
326 }
327
328 /*
329  * This is used only for read-ahead. Failures or difficult to handle
330  * situations are safe to ignore.
331  *
332  * Right now, we don't bother with BH_Boundary - in-inode extent lists
333  * are quite large (243 extents on 4k blocks), so most inodes don't
334  * grow out to a tree. If need be, detecting boundary extents could
335  * trivially be added in a future version of ocfs2_get_block().
336  */
337 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
338                            struct list_head *pages, unsigned nr_pages)
339 {
340         int ret, err = -EIO;
341         struct inode *inode = mapping->host;
342         struct ocfs2_inode_info *oi = OCFS2_I(inode);
343         loff_t start;
344         struct page *last;
345
346         /*
347          * Use the nonblocking flag for the dlm code to avoid page
348          * lock inversion, but don't bother with retrying.
349          */
350         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
351         if (ret)
352                 return err;
353
354         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
355                 ocfs2_inode_unlock(inode, 0);
356                 return err;
357         }
358
359         /*
360          * Don't bother with inline-data. There isn't anything
361          * to read-ahead in that case anyway...
362          */
363         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
364                 goto out_unlock;
365
366         /*
367          * Check whether a remote node truncated this file - we just
368          * drop out in that case as it's not worth handling here.
369          */
370         last = list_entry(pages->prev, struct page, lru);
371         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
372         if (start >= i_size_read(inode))
373                 goto out_unlock;
374
375         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
376
377 out_unlock:
378         up_read(&oi->ip_alloc_sem);
379         ocfs2_inode_unlock(inode, 0);
380
381         return err;
382 }
383
384 /* Note: Because we don't support holes, our allocation has
385  * already happened (allocation writes zeros to the file data)
386  * so we don't have to worry about ordered writes in
387  * ocfs2_writepage.
388  *
389  * ->writepage is called during the process of invalidating the page cache
390  * during blocked lock processing.  It can't block on any cluster locks
391  * to during block mapping.  It's relying on the fact that the block
392  * mapping can't have disappeared under the dirty pages that it is
393  * being asked to write back.
394  */
395 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
396 {
397         int ret;
398
399         mlog_entry("(0x%p)\n", page);
400
401         ret = block_write_full_page(page, ocfs2_get_block, wbc);
402
403         mlog_exit(ret);
404
405         return ret;
406 }
407
408 /*
409  * This is called from ocfs2_write_zero_page() which has handled it's
410  * own cluster locking and has ensured allocation exists for those
411  * blocks to be written.
412  */
413 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
414                                unsigned from, unsigned to)
415 {
416         int ret;
417
418         ret = block_prepare_write(page, from, to, ocfs2_get_block);
419
420         return ret;
421 }
422
423 /* Taken from ext3. We don't necessarily need the full blown
424  * functionality yet, but IMHO it's better to cut and paste the whole
425  * thing so we can avoid introducing our own bugs (and easily pick up
426  * their fixes when they happen) --Mark */
427 int walk_page_buffers(  handle_t *handle,
428                         struct buffer_head *head,
429                         unsigned from,
430                         unsigned to,
431                         int *partial,
432                         int (*fn)(      handle_t *handle,
433                                         struct buffer_head *bh))
434 {
435         struct buffer_head *bh;
436         unsigned block_start, block_end;
437         unsigned blocksize = head->b_size;
438         int err, ret = 0;
439         struct buffer_head *next;
440
441         for (   bh = head, block_start = 0;
442                 ret == 0 && (bh != head || !block_start);
443                 block_start = block_end, bh = next)
444         {
445                 next = bh->b_this_page;
446                 block_end = block_start + blocksize;
447                 if (block_end <= from || block_start >= to) {
448                         if (partial && !buffer_uptodate(bh))
449                                 *partial = 1;
450                         continue;
451                 }
452                 err = (*fn)(handle, bh);
453                 if (!ret)
454                         ret = err;
455         }
456         return ret;
457 }
458
459 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
460                                                          struct page *page,
461                                                          unsigned from,
462                                                          unsigned to)
463 {
464         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
465         handle_t *handle;
466         int ret = 0;
467
468         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
469         if (IS_ERR(handle)) {
470                 ret = -ENOMEM;
471                 mlog_errno(ret);
472                 goto out;
473         }
474
475         if (ocfs2_should_order_data(inode)) {
476                 ret = ocfs2_jbd2_file_inode(handle, inode);
477                 if (ret < 0)
478                         mlog_errno(ret);
479         }
480 out:
481         if (ret) {
482                 if (!IS_ERR(handle))
483                         ocfs2_commit_trans(osb, handle);
484                 handle = ERR_PTR(ret);
485         }
486         return handle;
487 }
488
489 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
490 {
491         sector_t status;
492         u64 p_blkno = 0;
493         int err = 0;
494         struct inode *inode = mapping->host;
495
496         mlog_entry("(block = %llu)\n", (unsigned long long)block);
497
498         /* We don't need to lock journal system files, since they aren't
499          * accessed concurrently from multiple nodes.
500          */
501         if (!INODE_JOURNAL(inode)) {
502                 err = ocfs2_inode_lock(inode, NULL, 0);
503                 if (err) {
504                         if (err != -ENOENT)
505                                 mlog_errno(err);
506                         goto bail;
507                 }
508                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
509         }
510
511         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
512                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
513                                                   NULL);
514
515         if (!INODE_JOURNAL(inode)) {
516                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
517                 ocfs2_inode_unlock(inode, 0);
518         }
519
520         if (err) {
521                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
522                      (unsigned long long)block);
523                 mlog_errno(err);
524                 goto bail;
525         }
526
527 bail:
528         status = err ? 0 : p_blkno;
529
530         mlog_exit((int)status);
531
532         return status;
533 }
534
535 /*
536  * TODO: Make this into a generic get_blocks function.
537  *
538  * From do_direct_io in direct-io.c:
539  *  "So what we do is to permit the ->get_blocks function to populate
540  *   bh.b_size with the size of IO which is permitted at this offset and
541  *   this i_blkbits."
542  *
543  * This function is called directly from get_more_blocks in direct-io.c.
544  *
545  * called like this: dio->get_blocks(dio->inode, fs_startblk,
546  *                                      fs_count, map_bh, dio->rw == WRITE);
547  */
548 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
549                                      struct buffer_head *bh_result, int create)
550 {
551         int ret;
552         u64 p_blkno, inode_blocks, contig_blocks;
553         unsigned int ext_flags;
554         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
555         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
556
557         /* This function won't even be called if the request isn't all
558          * nicely aligned and of the right size, so there's no need
559          * for us to check any of that. */
560
561         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
562
563         /*
564          * Any write past EOF is not allowed because we'd be extending.
565          */
566         if (create && (iblock + max_blocks) > inode_blocks) {
567                 ret = -EIO;
568                 goto bail;
569         }
570
571         /* This figures out the size of the next contiguous block, and
572          * our logical offset */
573         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574                                           &contig_blocks, &ext_flags);
575         if (ret) {
576                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577                      (unsigned long long)iblock);
578                 ret = -EIO;
579                 goto bail;
580         }
581
582         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
583                 ocfs2_error(inode->i_sb,
584                             "Inode %llu has a hole at block %llu\n",
585                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
586                             (unsigned long long)iblock);
587                 ret = -EROFS;
588                 goto bail;
589         }
590
591         /*
592          * get_more_blocks() expects us to describe a hole by clearing
593          * the mapped bit on bh_result().
594          *
595          * Consider an unwritten extent as a hole.
596          */
597         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
598                 map_bh(bh_result, inode->i_sb, p_blkno);
599         else {
600                 /*
601                  * ocfs2_prepare_inode_for_write() should have caught
602                  * the case where we'd be filling a hole and triggered
603                  * a buffered write instead.
604                  */
605                 if (create) {
606                         ret = -EIO;
607                         mlog_errno(ret);
608                         goto bail;
609                 }
610
611                 clear_buffer_mapped(bh_result);
612         }
613
614         /* make sure we don't map more than max_blocks blocks here as
615            that's all the kernel will handle at this point. */
616         if (max_blocks < contig_blocks)
617                 contig_blocks = max_blocks;
618         bh_result->b_size = contig_blocks << blocksize_bits;
619 bail:
620         return ret;
621 }
622
623 /* 
624  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
625  * particularly interested in the aio/dio case.  Like the core uses
626  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
627  * truncation on another.
628  */
629 static void ocfs2_dio_end_io(struct kiocb *iocb,
630                              loff_t offset,
631                              ssize_t bytes,
632                              void *private)
633 {
634         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
635         int level;
636
637         /* this io's submitter should not have unlocked this before we could */
638         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
639
640         ocfs2_iocb_clear_rw_locked(iocb);
641
642         level = ocfs2_iocb_rw_locked_level(iocb);
643         if (!level)
644                 up_read(&inode->i_alloc_sem);
645         ocfs2_rw_unlock(inode, level);
646 }
647
648 /*
649  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
650  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
651  * do journalled data.
652  */
653 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
654 {
655         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
656
657         jbd2_journal_invalidatepage(journal, page, offset);
658 }
659
660 static int ocfs2_releasepage(struct page *page, gfp_t wait)
661 {
662         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
663
664         if (!page_has_buffers(page))
665                 return 0;
666         return jbd2_journal_try_to_free_buffers(journal, page, wait);
667 }
668
669 static ssize_t ocfs2_direct_IO(int rw,
670                                struct kiocb *iocb,
671                                const struct iovec *iov,
672                                loff_t offset,
673                                unsigned long nr_segs)
674 {
675         struct file *file = iocb->ki_filp;
676         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
677         int ret;
678
679         mlog_entry_void();
680
681         /*
682          * Fallback to buffered I/O if we see an inode without
683          * extents.
684          */
685         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
686                 return 0;
687
688         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
689                                             inode->i_sb->s_bdev, iov, offset,
690                                             nr_segs, 
691                                             ocfs2_direct_IO_get_blocks,
692                                             ocfs2_dio_end_io);
693
694         mlog_exit(ret);
695         return ret;
696 }
697
698 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
699                                             u32 cpos,
700                                             unsigned int *start,
701                                             unsigned int *end)
702 {
703         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
704
705         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
706                 unsigned int cpp;
707
708                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
709
710                 cluster_start = cpos % cpp;
711                 cluster_start = cluster_start << osb->s_clustersize_bits;
712
713                 cluster_end = cluster_start + osb->s_clustersize;
714         }
715
716         BUG_ON(cluster_start > PAGE_SIZE);
717         BUG_ON(cluster_end > PAGE_SIZE);
718
719         if (start)
720                 *start = cluster_start;
721         if (end)
722                 *end = cluster_end;
723 }
724
725 /*
726  * 'from' and 'to' are the region in the page to avoid zeroing.
727  *
728  * If pagesize > clustersize, this function will avoid zeroing outside
729  * of the cluster boundary.
730  *
731  * from == to == 0 is code for "zero the entire cluster region"
732  */
733 static void ocfs2_clear_page_regions(struct page *page,
734                                      struct ocfs2_super *osb, u32 cpos,
735                                      unsigned from, unsigned to)
736 {
737         void *kaddr;
738         unsigned int cluster_start, cluster_end;
739
740         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
741
742         kaddr = kmap_atomic(page, KM_USER0);
743
744         if (from || to) {
745                 if (from > cluster_start)
746                         memset(kaddr + cluster_start, 0, from - cluster_start);
747                 if (to < cluster_end)
748                         memset(kaddr + to, 0, cluster_end - to);
749         } else {
750                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
751         }
752
753         kunmap_atomic(kaddr, KM_USER0);
754 }
755
756 /*
757  * Nonsparse file systems fully allocate before we get to the write
758  * code. This prevents ocfs2_write() from tagging the write as an
759  * allocating one, which means ocfs2_map_page_blocks() might try to
760  * read-in the blocks at the tail of our file. Avoid reading them by
761  * testing i_size against each block offset.
762  */
763 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
764                                  unsigned int block_start)
765 {
766         u64 offset = page_offset(page) + block_start;
767
768         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
769                 return 1;
770
771         if (i_size_read(inode) > offset)
772                 return 1;
773
774         return 0;
775 }
776
777 /*
778  * Some of this taken from block_prepare_write(). We already have our
779  * mapping by now though, and the entire write will be allocating or
780  * it won't, so not much need to use BH_New.
781  *
782  * This will also skip zeroing, which is handled externally.
783  */
784 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
785                           struct inode *inode, unsigned int from,
786                           unsigned int to, int new)
787 {
788         int ret = 0;
789         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
790         unsigned int block_end, block_start;
791         unsigned int bsize = 1 << inode->i_blkbits;
792
793         if (!page_has_buffers(page))
794                 create_empty_buffers(page, bsize, 0);
795
796         head = page_buffers(page);
797         for (bh = head, block_start = 0; bh != head || !block_start;
798              bh = bh->b_this_page, block_start += bsize) {
799                 block_end = block_start + bsize;
800
801                 clear_buffer_new(bh);
802
803                 /*
804                  * Ignore blocks outside of our i/o range -
805                  * they may belong to unallocated clusters.
806                  */
807                 if (block_start >= to || block_end <= from) {
808                         if (PageUptodate(page))
809                                 set_buffer_uptodate(bh);
810                         continue;
811                 }
812
813                 /*
814                  * For an allocating write with cluster size >= page
815                  * size, we always write the entire page.
816                  */
817                 if (new)
818                         set_buffer_new(bh);
819
820                 if (!buffer_mapped(bh)) {
821                         map_bh(bh, inode->i_sb, *p_blkno);
822                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
823                 }
824
825                 if (PageUptodate(page)) {
826                         if (!buffer_uptodate(bh))
827                                 set_buffer_uptodate(bh);
828                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
829                            !buffer_new(bh) &&
830                            ocfs2_should_read_blk(inode, page, block_start) &&
831                            (block_start < from || block_end > to)) {
832                         ll_rw_block(READ, 1, &bh);
833                         *wait_bh++=bh;
834                 }
835
836                 *p_blkno = *p_blkno + 1;
837         }
838
839         /*
840          * If we issued read requests - let them complete.
841          */
842         while(wait_bh > wait) {
843                 wait_on_buffer(*--wait_bh);
844                 if (!buffer_uptodate(*wait_bh))
845                         ret = -EIO;
846         }
847
848         if (ret == 0 || !new)
849                 return ret;
850
851         /*
852          * If we get -EIO above, zero out any newly allocated blocks
853          * to avoid exposing stale data.
854          */
855         bh = head;
856         block_start = 0;
857         do {
858                 block_end = block_start + bsize;
859                 if (block_end <= from)
860                         goto next_bh;
861                 if (block_start >= to)
862                         break;
863
864                 zero_user(page, block_start, bh->b_size);
865                 set_buffer_uptodate(bh);
866                 mark_buffer_dirty(bh);
867
868 next_bh:
869                 block_start = block_end;
870                 bh = bh->b_this_page;
871         } while (bh != head);
872
873         return ret;
874 }
875
876 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
877 #define OCFS2_MAX_CTXT_PAGES    1
878 #else
879 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
880 #endif
881
882 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
883
884 /*
885  * Describe the state of a single cluster to be written to.
886  */
887 struct ocfs2_write_cluster_desc {
888         u32             c_cpos;
889         u32             c_phys;
890         /*
891          * Give this a unique field because c_phys eventually gets
892          * filled.
893          */
894         unsigned        c_new;
895         unsigned        c_unwritten;
896 };
897
898 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
899 {
900         return d->c_new || d->c_unwritten;
901 }
902
903 struct ocfs2_write_ctxt {
904         /* Logical cluster position / len of write */
905         u32                             w_cpos;
906         u32                             w_clen;
907
908         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
909
910         /*
911          * This is true if page_size > cluster_size.
912          *
913          * It triggers a set of special cases during write which might
914          * have to deal with allocating writes to partial pages.
915          */
916         unsigned int                    w_large_pages;
917
918         /*
919          * Pages involved in this write.
920          *
921          * w_target_page is the page being written to by the user.
922          *
923          * w_pages is an array of pages which always contains
924          * w_target_page, and in the case of an allocating write with
925          * page_size < cluster size, it will contain zero'd and mapped
926          * pages adjacent to w_target_page which need to be written
927          * out in so that future reads from that region will get
928          * zero's.
929          */
930         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
931         unsigned int                    w_num_pages;
932         struct page                     *w_target_page;
933
934         /*
935          * ocfs2_write_end() uses this to know what the real range to
936          * write in the target should be.
937          */
938         unsigned int                    w_target_from;
939         unsigned int                    w_target_to;
940
941         /*
942          * We could use journal_current_handle() but this is cleaner,
943          * IMHO -Mark
944          */
945         handle_t                        *w_handle;
946
947         struct buffer_head              *w_di_bh;
948
949         struct ocfs2_cached_dealloc_ctxt w_dealloc;
950 };
951
952 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
953 {
954         int i;
955
956         for(i = 0; i < num_pages; i++) {
957                 if (pages[i]) {
958                         unlock_page(pages[i]);
959                         mark_page_accessed(pages[i]);
960                         page_cache_release(pages[i]);
961                 }
962         }
963 }
964
965 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
966 {
967         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
968
969         brelse(wc->w_di_bh);
970         kfree(wc);
971 }
972
973 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
974                                   struct ocfs2_super *osb, loff_t pos,
975                                   unsigned len, struct buffer_head *di_bh)
976 {
977         u32 cend;
978         struct ocfs2_write_ctxt *wc;
979
980         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
981         if (!wc)
982                 return -ENOMEM;
983
984         wc->w_cpos = pos >> osb->s_clustersize_bits;
985         cend = (pos + len - 1) >> osb->s_clustersize_bits;
986         wc->w_clen = cend - wc->w_cpos + 1;
987         get_bh(di_bh);
988         wc->w_di_bh = di_bh;
989
990         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
991                 wc->w_large_pages = 1;
992         else
993                 wc->w_large_pages = 0;
994
995         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
996
997         *wcp = wc;
998
999         return 0;
1000 }
1001
1002 /*
1003  * If a page has any new buffers, zero them out here, and mark them uptodate
1004  * and dirty so they'll be written out (in order to prevent uninitialised
1005  * block data from leaking). And clear the new bit.
1006  */
1007 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1008 {
1009         unsigned int block_start, block_end;
1010         struct buffer_head *head, *bh;
1011
1012         BUG_ON(!PageLocked(page));
1013         if (!page_has_buffers(page))
1014                 return;
1015
1016         bh = head = page_buffers(page);
1017         block_start = 0;
1018         do {
1019                 block_end = block_start + bh->b_size;
1020
1021                 if (buffer_new(bh)) {
1022                         if (block_end > from && block_start < to) {
1023                                 if (!PageUptodate(page)) {
1024                                         unsigned start, end;
1025
1026                                         start = max(from, block_start);
1027                                         end = min(to, block_end);
1028
1029                                         zero_user_segment(page, start, end);
1030                                         set_buffer_uptodate(bh);
1031                                 }
1032
1033                                 clear_buffer_new(bh);
1034                                 mark_buffer_dirty(bh);
1035                         }
1036                 }
1037
1038                 block_start = block_end;
1039                 bh = bh->b_this_page;
1040         } while (bh != head);
1041 }
1042
1043 /*
1044  * Only called when we have a failure during allocating write to write
1045  * zero's to the newly allocated region.
1046  */
1047 static void ocfs2_write_failure(struct inode *inode,
1048                                 struct ocfs2_write_ctxt *wc,
1049                                 loff_t user_pos, unsigned user_len)
1050 {
1051         int i;
1052         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1053                 to = user_pos + user_len;
1054         struct page *tmppage;
1055
1056         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1057
1058         for(i = 0; i < wc->w_num_pages; i++) {
1059                 tmppage = wc->w_pages[i];
1060
1061                 if (page_has_buffers(tmppage)) {
1062                         if (ocfs2_should_order_data(inode))
1063                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1064
1065                         block_commit_write(tmppage, from, to);
1066                 }
1067         }
1068 }
1069
1070 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1071                                         struct ocfs2_write_ctxt *wc,
1072                                         struct page *page, u32 cpos,
1073                                         loff_t user_pos, unsigned user_len,
1074                                         int new)
1075 {
1076         int ret;
1077         unsigned int map_from = 0, map_to = 0;
1078         unsigned int cluster_start, cluster_end;
1079         unsigned int user_data_from = 0, user_data_to = 0;
1080
1081         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1082                                         &cluster_start, &cluster_end);
1083
1084         if (page == wc->w_target_page) {
1085                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1086                 map_to = map_from + user_len;
1087
1088                 if (new)
1089                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1090                                                     cluster_start, cluster_end,
1091                                                     new);
1092                 else
1093                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1094                                                     map_from, map_to, new);
1095                 if (ret) {
1096                         mlog_errno(ret);
1097                         goto out;
1098                 }
1099
1100                 user_data_from = map_from;
1101                 user_data_to = map_to;
1102                 if (new) {
1103                         map_from = cluster_start;
1104                         map_to = cluster_end;
1105                 }
1106         } else {
1107                 /*
1108                  * If we haven't allocated the new page yet, we
1109                  * shouldn't be writing it out without copying user
1110                  * data. This is likely a math error from the caller.
1111                  */
1112                 BUG_ON(!new);
1113
1114                 map_from = cluster_start;
1115                 map_to = cluster_end;
1116
1117                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1118                                             cluster_start, cluster_end, new);
1119                 if (ret) {
1120                         mlog_errno(ret);
1121                         goto out;
1122                 }
1123         }
1124
1125         /*
1126          * Parts of newly allocated pages need to be zero'd.
1127          *
1128          * Above, we have also rewritten 'to' and 'from' - as far as
1129          * the rest of the function is concerned, the entire cluster
1130          * range inside of a page needs to be written.
1131          *
1132          * We can skip this if the page is up to date - it's already
1133          * been zero'd from being read in as a hole.
1134          */
1135         if (new && !PageUptodate(page))
1136                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1137                                          cpos, user_data_from, user_data_to);
1138
1139         flush_dcache_page(page);
1140
1141 out:
1142         return ret;
1143 }
1144
1145 /*
1146  * This function will only grab one clusters worth of pages.
1147  */
1148 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1149                                       struct ocfs2_write_ctxt *wc,
1150                                       u32 cpos, loff_t user_pos, int new,
1151                                       struct page *mmap_page)
1152 {
1153         int ret = 0, i;
1154         unsigned long start, target_index, index;
1155         struct inode *inode = mapping->host;
1156
1157         target_index = user_pos >> PAGE_CACHE_SHIFT;
1158
1159         /*
1160          * Figure out how many pages we'll be manipulating here. For
1161          * non allocating write, we just change the one
1162          * page. Otherwise, we'll need a whole clusters worth.
1163          */
1164         if (new) {
1165                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1166                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1167         } else {
1168                 wc->w_num_pages = 1;
1169                 start = target_index;
1170         }
1171
1172         for(i = 0; i < wc->w_num_pages; i++) {
1173                 index = start + i;
1174
1175                 if (index == target_index && mmap_page) {
1176                         /*
1177                          * ocfs2_pagemkwrite() is a little different
1178                          * and wants us to directly use the page
1179                          * passed in.
1180                          */
1181                         lock_page(mmap_page);
1182
1183                         if (mmap_page->mapping != mapping) {
1184                                 unlock_page(mmap_page);
1185                                 /*
1186                                  * Sanity check - the locking in
1187                                  * ocfs2_pagemkwrite() should ensure
1188                                  * that this code doesn't trigger.
1189                                  */
1190                                 ret = -EINVAL;
1191                                 mlog_errno(ret);
1192                                 goto out;
1193                         }
1194
1195                         page_cache_get(mmap_page);
1196                         wc->w_pages[i] = mmap_page;
1197                 } else {
1198                         wc->w_pages[i] = find_or_create_page(mapping, index,
1199                                                              GFP_NOFS);
1200                         if (!wc->w_pages[i]) {
1201                                 ret = -ENOMEM;
1202                                 mlog_errno(ret);
1203                                 goto out;
1204                         }
1205                 }
1206
1207                 if (index == target_index)
1208                         wc->w_target_page = wc->w_pages[i];
1209         }
1210 out:
1211         return ret;
1212 }
1213
1214 /*
1215  * Prepare a single cluster for write one cluster into the file.
1216  */
1217 static int ocfs2_write_cluster(struct address_space *mapping,
1218                                u32 phys, unsigned int unwritten,
1219                                struct ocfs2_alloc_context *data_ac,
1220                                struct ocfs2_alloc_context *meta_ac,
1221                                struct ocfs2_write_ctxt *wc, u32 cpos,
1222                                loff_t user_pos, unsigned user_len)
1223 {
1224         int ret, i, new, should_zero = 0;
1225         u64 v_blkno, p_blkno;
1226         struct inode *inode = mapping->host;
1227         struct ocfs2_extent_tree et;
1228
1229         new = phys == 0 ? 1 : 0;
1230         if (new || unwritten)
1231                 should_zero = 1;
1232
1233         if (new) {
1234                 u32 tmp_pos;
1235
1236                 /*
1237                  * This is safe to call with the page locks - it won't take
1238                  * any additional semaphores or cluster locks.
1239                  */
1240                 tmp_pos = cpos;
1241                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1242                                            &tmp_pos, 1, 0, wc->w_di_bh,
1243                                            wc->w_handle, data_ac,
1244                                            meta_ac, NULL);
1245                 /*
1246                  * This shouldn't happen because we must have already
1247                  * calculated the correct meta data allocation required. The
1248                  * internal tree allocation code should know how to increase
1249                  * transaction credits itself.
1250                  *
1251                  * If need be, we could handle -EAGAIN for a
1252                  * RESTART_TRANS here.
1253                  */
1254                 mlog_bug_on_msg(ret == -EAGAIN,
1255                                 "Inode %llu: EAGAIN return during allocation.\n",
1256                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1257                 if (ret < 0) {
1258                         mlog_errno(ret);
1259                         goto out;
1260                 }
1261         } else if (unwritten) {
1262                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1263                 ret = ocfs2_mark_extent_written(inode, &et,
1264                                                 wc->w_handle, cpos, 1, phys,
1265                                                 meta_ac, &wc->w_dealloc);
1266                 if (ret < 0) {
1267                         mlog_errno(ret);
1268                         goto out;
1269                 }
1270         }
1271
1272         if (should_zero)
1273                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1274         else
1275                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1276
1277         /*
1278          * The only reason this should fail is due to an inability to
1279          * find the extent added.
1280          */
1281         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1282                                           NULL);
1283         if (ret < 0) {
1284                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1285                             "at logical block %llu",
1286                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1287                             (unsigned long long)v_blkno);
1288                 goto out;
1289         }
1290
1291         BUG_ON(p_blkno == 0);
1292
1293         for(i = 0; i < wc->w_num_pages; i++) {
1294                 int tmpret;
1295
1296                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1297                                                       wc->w_pages[i], cpos,
1298                                                       user_pos, user_len,
1299                                                       should_zero);
1300                 if (tmpret) {
1301                         mlog_errno(tmpret);
1302                         if (ret == 0)
1303                                 tmpret = ret;
1304                 }
1305         }
1306
1307         /*
1308          * We only have cleanup to do in case of allocating write.
1309          */
1310         if (ret && new)
1311                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1312
1313 out:
1314
1315         return ret;
1316 }
1317
1318 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1319                                        struct ocfs2_alloc_context *data_ac,
1320                                        struct ocfs2_alloc_context *meta_ac,
1321                                        struct ocfs2_write_ctxt *wc,
1322                                        loff_t pos, unsigned len)
1323 {
1324         int ret, i;
1325         loff_t cluster_off;
1326         unsigned int local_len = len;
1327         struct ocfs2_write_cluster_desc *desc;
1328         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1329
1330         for (i = 0; i < wc->w_clen; i++) {
1331                 desc = &wc->w_desc[i];
1332
1333                 /*
1334                  * We have to make sure that the total write passed in
1335                  * doesn't extend past a single cluster.
1336                  */
1337                 local_len = len;
1338                 cluster_off = pos & (osb->s_clustersize - 1);
1339                 if ((cluster_off + local_len) > osb->s_clustersize)
1340                         local_len = osb->s_clustersize - cluster_off;
1341
1342                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1343                                           desc->c_unwritten, data_ac, meta_ac,
1344                                           wc, desc->c_cpos, pos, local_len);
1345                 if (ret) {
1346                         mlog_errno(ret);
1347                         goto out;
1348                 }
1349
1350                 len -= local_len;
1351                 pos += local_len;
1352         }
1353
1354         ret = 0;
1355 out:
1356         return ret;
1357 }
1358
1359 /*
1360  * ocfs2_write_end() wants to know which parts of the target page it
1361  * should complete the write on. It's easiest to compute them ahead of
1362  * time when a more complete view of the write is available.
1363  */
1364 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1365                                         struct ocfs2_write_ctxt *wc,
1366                                         loff_t pos, unsigned len, int alloc)
1367 {
1368         struct ocfs2_write_cluster_desc *desc;
1369
1370         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1371         wc->w_target_to = wc->w_target_from + len;
1372
1373         if (alloc == 0)
1374                 return;
1375
1376         /*
1377          * Allocating write - we may have different boundaries based
1378          * on page size and cluster size.
1379          *
1380          * NOTE: We can no longer compute one value from the other as
1381          * the actual write length and user provided length may be
1382          * different.
1383          */
1384
1385         if (wc->w_large_pages) {
1386                 /*
1387                  * We only care about the 1st and last cluster within
1388                  * our range and whether they should be zero'd or not. Either
1389                  * value may be extended out to the start/end of a
1390                  * newly allocated cluster.
1391                  */
1392                 desc = &wc->w_desc[0];
1393                 if (ocfs2_should_zero_cluster(desc))
1394                         ocfs2_figure_cluster_boundaries(osb,
1395                                                         desc->c_cpos,
1396                                                         &wc->w_target_from,
1397                                                         NULL);
1398
1399                 desc = &wc->w_desc[wc->w_clen - 1];
1400                 if (ocfs2_should_zero_cluster(desc))
1401                         ocfs2_figure_cluster_boundaries(osb,
1402                                                         desc->c_cpos,
1403                                                         NULL,
1404                                                         &wc->w_target_to);
1405         } else {
1406                 wc->w_target_from = 0;
1407                 wc->w_target_to = PAGE_CACHE_SIZE;
1408         }
1409 }
1410
1411 /*
1412  * Populate each single-cluster write descriptor in the write context
1413  * with information about the i/o to be done.
1414  *
1415  * Returns the number of clusters that will have to be allocated, as
1416  * well as a worst case estimate of the number of extent records that
1417  * would have to be created during a write to an unwritten region.
1418  */
1419 static int ocfs2_populate_write_desc(struct inode *inode,
1420                                      struct ocfs2_write_ctxt *wc,
1421                                      unsigned int *clusters_to_alloc,
1422                                      unsigned int *extents_to_split)
1423 {
1424         int ret;
1425         struct ocfs2_write_cluster_desc *desc;
1426         unsigned int num_clusters = 0;
1427         unsigned int ext_flags = 0;
1428         u32 phys = 0;
1429         int i;
1430
1431         *clusters_to_alloc = 0;
1432         *extents_to_split = 0;
1433
1434         for (i = 0; i < wc->w_clen; i++) {
1435                 desc = &wc->w_desc[i];
1436                 desc->c_cpos = wc->w_cpos + i;
1437
1438                 if (num_clusters == 0) {
1439                         /*
1440                          * Need to look up the next extent record.
1441                          */
1442                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1443                                                  &num_clusters, &ext_flags);
1444                         if (ret) {
1445                                 mlog_errno(ret);
1446                                 goto out;
1447                         }
1448
1449                         /*
1450                          * Assume worst case - that we're writing in
1451                          * the middle of the extent.
1452                          *
1453                          * We can assume that the write proceeds from
1454                          * left to right, in which case the extent
1455                          * insert code is smart enough to coalesce the
1456                          * next splits into the previous records created.
1457                          */
1458                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1459                                 *extents_to_split = *extents_to_split + 2;
1460                 } else if (phys) {
1461                         /*
1462                          * Only increment phys if it doesn't describe
1463                          * a hole.
1464                          */
1465                         phys++;
1466                 }
1467
1468                 desc->c_phys = phys;
1469                 if (phys == 0) {
1470                         desc->c_new = 1;
1471                         *clusters_to_alloc = *clusters_to_alloc + 1;
1472                 }
1473                 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1474                         desc->c_unwritten = 1;
1475
1476                 num_clusters--;
1477         }
1478
1479         ret = 0;
1480 out:
1481         return ret;
1482 }
1483
1484 static int ocfs2_write_begin_inline(struct address_space *mapping,
1485                                     struct inode *inode,
1486                                     struct ocfs2_write_ctxt *wc)
1487 {
1488         int ret;
1489         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1490         struct page *page;
1491         handle_t *handle;
1492         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1493
1494         page = find_or_create_page(mapping, 0, GFP_NOFS);
1495         if (!page) {
1496                 ret = -ENOMEM;
1497                 mlog_errno(ret);
1498                 goto out;
1499         }
1500         /*
1501          * If we don't set w_num_pages then this page won't get unlocked
1502          * and freed on cleanup of the write context.
1503          */
1504         wc->w_pages[0] = wc->w_target_page = page;
1505         wc->w_num_pages = 1;
1506
1507         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1508         if (IS_ERR(handle)) {
1509                 ret = PTR_ERR(handle);
1510                 mlog_errno(ret);
1511                 goto out;
1512         }
1513
1514         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1515                                    OCFS2_JOURNAL_ACCESS_WRITE);
1516         if (ret) {
1517                 ocfs2_commit_trans(osb, handle);
1518
1519                 mlog_errno(ret);
1520                 goto out;
1521         }
1522
1523         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1524                 ocfs2_set_inode_data_inline(inode, di);
1525
1526         if (!PageUptodate(page)) {
1527                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1528                 if (ret) {
1529                         ocfs2_commit_trans(osb, handle);
1530
1531                         goto out;
1532                 }
1533         }
1534
1535         wc->w_handle = handle;
1536 out:
1537         return ret;
1538 }
1539
1540 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1541 {
1542         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1543
1544         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1545                 return 1;
1546         return 0;
1547 }
1548
1549 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1550                                           struct inode *inode, loff_t pos,
1551                                           unsigned len, struct page *mmap_page,
1552                                           struct ocfs2_write_ctxt *wc)
1553 {
1554         int ret, written = 0;
1555         loff_t end = pos + len;
1556         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1557
1558         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1559              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1560              oi->ip_dyn_features);
1561
1562         /*
1563          * Handle inodes which already have inline data 1st.
1564          */
1565         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1566                 if (mmap_page == NULL &&
1567                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1568                         goto do_inline_write;
1569
1570                 /*
1571                  * The write won't fit - we have to give this inode an
1572                  * inline extent list now.
1573                  */
1574                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1575                 if (ret)
1576                         mlog_errno(ret);
1577                 goto out;
1578         }
1579
1580         /*
1581          * Check whether the inode can accept inline data.
1582          */
1583         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1584                 return 0;
1585
1586         /*
1587          * Check whether the write can fit.
1588          */
1589         if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1590                 return 0;
1591
1592 do_inline_write:
1593         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1594         if (ret) {
1595                 mlog_errno(ret);
1596                 goto out;
1597         }
1598
1599         /*
1600          * This signals to the caller that the data can be written
1601          * inline.
1602          */
1603         written = 1;
1604 out:
1605         return written ? written : ret;
1606 }
1607
1608 /*
1609  * This function only does anything for file systems which can't
1610  * handle sparse files.
1611  *
1612  * What we want to do here is fill in any hole between the current end
1613  * of allocation and the end of our write. That way the rest of the
1614  * write path can treat it as an non-allocating write, which has no
1615  * special case code for sparse/nonsparse files.
1616  */
1617 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1618                                         unsigned len,
1619                                         struct ocfs2_write_ctxt *wc)
1620 {
1621         int ret;
1622         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1623         loff_t newsize = pos + len;
1624
1625         if (ocfs2_sparse_alloc(osb))
1626                 return 0;
1627
1628         if (newsize <= i_size_read(inode))
1629                 return 0;
1630
1631         ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1632         if (ret)
1633                 mlog_errno(ret);
1634
1635         return ret;
1636 }
1637
1638 int ocfs2_write_begin_nolock(struct address_space *mapping,
1639                              loff_t pos, unsigned len, unsigned flags,
1640                              struct page **pagep, void **fsdata,
1641                              struct buffer_head *di_bh, struct page *mmap_page)
1642 {
1643         int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1644         unsigned int clusters_to_alloc, extents_to_split;
1645         struct ocfs2_write_ctxt *wc;
1646         struct inode *inode = mapping->host;
1647         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1648         struct ocfs2_dinode *di;
1649         struct ocfs2_alloc_context *data_ac = NULL;
1650         struct ocfs2_alloc_context *meta_ac = NULL;
1651         handle_t *handle;
1652         struct ocfs2_extent_tree et;
1653
1654         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1655         if (ret) {
1656                 mlog_errno(ret);
1657                 return ret;
1658         }
1659
1660         if (ocfs2_supports_inline_data(osb)) {
1661                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1662                                                      mmap_page, wc);
1663                 if (ret == 1) {
1664                         ret = 0;
1665                         goto success;
1666                 }
1667                 if (ret < 0) {
1668                         mlog_errno(ret);
1669                         goto out;
1670                 }
1671         }
1672
1673         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1674         if (ret) {
1675                 mlog_errno(ret);
1676                 goto out;
1677         }
1678
1679         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1680                                         &extents_to_split);
1681         if (ret) {
1682                 mlog_errno(ret);
1683                 goto out;
1684         }
1685
1686         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1687
1688         /*
1689          * We set w_target_from, w_target_to here so that
1690          * ocfs2_write_end() knows which range in the target page to
1691          * write out. An allocation requires that we write the entire
1692          * cluster range.
1693          */
1694         if (clusters_to_alloc || extents_to_split) {
1695                 /*
1696                  * XXX: We are stretching the limits of
1697                  * ocfs2_lock_allocators(). It greatly over-estimates
1698                  * the work to be done.
1699                  */
1700                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1701                      " clusters_to_add = %u, extents_to_split = %u\n",
1702                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1703                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1704                      clusters_to_alloc, extents_to_split);
1705
1706                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1707                 ret = ocfs2_lock_allocators(inode, &et,
1708                                             clusters_to_alloc, extents_to_split,
1709                                             &data_ac, &meta_ac);
1710                 if (ret) {
1711                         mlog_errno(ret);
1712                         goto out;
1713                 }
1714
1715                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1716                                                     &di->id2.i_list,
1717                                                     clusters_to_alloc);
1718
1719         }
1720
1721         ocfs2_set_target_boundaries(osb, wc, pos, len,
1722                                     clusters_to_alloc + extents_to_split);
1723
1724         handle = ocfs2_start_trans(osb, credits);
1725         if (IS_ERR(handle)) {
1726                 ret = PTR_ERR(handle);
1727                 mlog_errno(ret);
1728                 goto out;
1729         }
1730
1731         wc->w_handle = handle;
1732
1733         /*
1734          * We don't want this to fail in ocfs2_write_end(), so do it
1735          * here.
1736          */
1737         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1738                                    OCFS2_JOURNAL_ACCESS_WRITE);
1739         if (ret) {
1740                 mlog_errno(ret);
1741                 goto out_commit;
1742         }
1743
1744         /*
1745          * Fill our page array first. That way we've grabbed enough so
1746          * that we can zero and flush if we error after adding the
1747          * extent.
1748          */
1749         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1750                                          clusters_to_alloc + extents_to_split,
1751                                          mmap_page);
1752         if (ret) {
1753                 mlog_errno(ret);
1754                 goto out_commit;
1755         }
1756
1757         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1758                                           len);
1759         if (ret) {
1760                 mlog_errno(ret);
1761                 goto out_commit;
1762         }
1763
1764         if (data_ac)
1765                 ocfs2_free_alloc_context(data_ac);
1766         if (meta_ac)
1767                 ocfs2_free_alloc_context(meta_ac);
1768
1769 success:
1770         *pagep = wc->w_target_page;
1771         *fsdata = wc;
1772         return 0;
1773 out_commit:
1774         ocfs2_commit_trans(osb, handle);
1775
1776 out:
1777         ocfs2_free_write_ctxt(wc);
1778
1779         if (data_ac)
1780                 ocfs2_free_alloc_context(data_ac);
1781         if (meta_ac)
1782                 ocfs2_free_alloc_context(meta_ac);
1783         return ret;
1784 }
1785
1786 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1787                              loff_t pos, unsigned len, unsigned flags,
1788                              struct page **pagep, void **fsdata)
1789 {
1790         int ret;
1791         struct buffer_head *di_bh = NULL;
1792         struct inode *inode = mapping->host;
1793
1794         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1795         if (ret) {
1796                 mlog_errno(ret);
1797                 return ret;
1798         }
1799
1800         /*
1801          * Take alloc sem here to prevent concurrent lookups. That way
1802          * the mapping, zeroing and tree manipulation within
1803          * ocfs2_write() will be safe against ->readpage(). This
1804          * should also serve to lock out allocation from a shared
1805          * writeable region.
1806          */
1807         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1808
1809         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1810                                        fsdata, di_bh, NULL);
1811         if (ret) {
1812                 mlog_errno(ret);
1813                 goto out_fail;
1814         }
1815
1816         brelse(di_bh);
1817
1818         return 0;
1819
1820 out_fail:
1821         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1822
1823         brelse(di_bh);
1824         ocfs2_inode_unlock(inode, 1);
1825
1826         return ret;
1827 }
1828
1829 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1830                                    unsigned len, unsigned *copied,
1831                                    struct ocfs2_dinode *di,
1832                                    struct ocfs2_write_ctxt *wc)
1833 {
1834         void *kaddr;
1835
1836         if (unlikely(*copied < len)) {
1837                 if (!PageUptodate(wc->w_target_page)) {
1838                         *copied = 0;
1839                         return;
1840                 }
1841         }
1842
1843         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1844         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1845         kunmap_atomic(kaddr, KM_USER0);
1846
1847         mlog(0, "Data written to inode at offset %llu. "
1848              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1849              (unsigned long long)pos, *copied,
1850              le16_to_cpu(di->id2.i_data.id_count),
1851              le16_to_cpu(di->i_dyn_features));
1852 }
1853
1854 int ocfs2_write_end_nolock(struct address_space *mapping,
1855                            loff_t pos, unsigned len, unsigned copied,
1856                            struct page *page, void *fsdata)
1857 {
1858         int i;
1859         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1860         struct inode *inode = mapping->host;
1861         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1862         struct ocfs2_write_ctxt *wc = fsdata;
1863         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1864         handle_t *handle = wc->w_handle;
1865         struct page *tmppage;
1866
1867         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1868                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1869                 goto out_write_size;
1870         }
1871
1872         if (unlikely(copied < len)) {
1873                 if (!PageUptodate(wc->w_target_page))
1874                         copied = 0;
1875
1876                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1877                                        start+len);
1878         }
1879         flush_dcache_page(wc->w_target_page);
1880
1881         for(i = 0; i < wc->w_num_pages; i++) {
1882                 tmppage = wc->w_pages[i];
1883
1884                 if (tmppage == wc->w_target_page) {
1885                         from = wc->w_target_from;
1886                         to = wc->w_target_to;
1887
1888                         BUG_ON(from > PAGE_CACHE_SIZE ||
1889                                to > PAGE_CACHE_SIZE ||
1890                                to < from);
1891                 } else {
1892                         /*
1893                          * Pages adjacent to the target (if any) imply
1894                          * a hole-filling write in which case we want
1895                          * to flush their entire range.
1896                          */
1897                         from = 0;
1898                         to = PAGE_CACHE_SIZE;
1899                 }
1900
1901                 if (page_has_buffers(tmppage)) {
1902                         if (ocfs2_should_order_data(inode))
1903                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1904                         block_commit_write(tmppage, from, to);
1905                 }
1906         }
1907
1908 out_write_size:
1909         pos += copied;
1910         if (pos > inode->i_size) {
1911                 i_size_write(inode, pos);
1912                 mark_inode_dirty(inode);
1913         }
1914         inode->i_blocks = ocfs2_inode_sector_count(inode);
1915         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1916         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1917         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1918         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1919         ocfs2_journal_dirty(handle, wc->w_di_bh);
1920
1921         ocfs2_commit_trans(osb, handle);
1922
1923         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1924
1925         ocfs2_free_write_ctxt(wc);
1926
1927         return copied;
1928 }
1929
1930 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1931                            loff_t pos, unsigned len, unsigned copied,
1932                            struct page *page, void *fsdata)
1933 {
1934         int ret;
1935         struct inode *inode = mapping->host;
1936
1937         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1938
1939         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1940         ocfs2_inode_unlock(inode, 1);
1941
1942         return ret;
1943 }
1944
1945 const struct address_space_operations ocfs2_aops = {
1946         .readpage       = ocfs2_readpage,
1947         .readpages      = ocfs2_readpages,
1948         .writepage      = ocfs2_writepage,
1949         .write_begin    = ocfs2_write_begin,
1950         .write_end      = ocfs2_write_end,
1951         .bmap           = ocfs2_bmap,
1952         .sync_page      = block_sync_page,
1953         .direct_IO      = ocfs2_direct_IO,
1954         .invalidatepage = ocfs2_invalidatepage,
1955         .releasepage    = ocfs2_releasepage,
1956         .migratepage    = buffer_migrate_page,
1957 };