ocfs2: CoW a reflinked cluster when it is truncated.
[safe/jmp/linux-2.6] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63                    (unsigned long long)iblock, bh_result, create);
64
65         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69                      (unsigned long long)iblock);
70                 goto bail;
71         }
72
73         status = ocfs2_read_inode_block(inode, &bh);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81                                                     le32_to_cpu(fe->i_clusters))) {
82                 mlog(ML_ERROR, "block offset is outside the allocated size: "
83                      "%llu\n", (unsigned long long)iblock);
84                 goto bail;
85         }
86
87         /* We don't use the page cache to create symlink data, so if
88          * need be, copy it over from the buffer cache. */
89         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91                             iblock;
92                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93                 if (!buffer_cache_bh) {
94                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95                         goto bail;
96                 }
97
98                 /* we haven't locked out transactions, so a commit
99                  * could've happened. Since we've got a reference on
100                  * the bh, even if it commits while we're doing the
101                  * copy, the data is still good. */
102                 if (buffer_jbd(buffer_cache_bh)
103                     && ocfs2_inode_is_new(inode)) {
104                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105                         if (!kaddr) {
106                                 mlog(ML_ERROR, "couldn't kmap!\n");
107                                 goto bail;
108                         }
109                         memcpy(kaddr + (bh_result->b_size * iblock),
110                                buffer_cache_bh->b_data,
111                                bh_result->b_size);
112                         kunmap_atomic(kaddr, KM_USER0);
113                         set_buffer_uptodate(bh_result);
114                 }
115                 brelse(buffer_cache_bh);
116         }
117
118         map_bh(bh_result, inode->i_sb,
119                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121         err = 0;
122
123 bail:
124         brelse(bh);
125
126         mlog_exit(err);
127         return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131                     struct buffer_head *bh_result, int create)
132 {
133         int err = 0;
134         unsigned int ext_flags;
135         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136         u64 p_blkno, count, past_eof;
137         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140                    (unsigned long long)iblock, bh_result, create);
141
142         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144                      inode, inode->i_ino);
145
146         if (S_ISLNK(inode->i_mode)) {
147                 /* this always does I/O for some reason. */
148                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149                 goto bail;
150         }
151
152         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153                                           &ext_flags);
154         if (err) {
155                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157                      (unsigned long long)p_blkno);
158                 goto bail;
159         }
160
161         if (max_blocks < count)
162                 count = max_blocks;
163
164         /*
165          * ocfs2 never allocates in this function - the only time we
166          * need to use BH_New is when we're extending i_size on a file
167          * system which doesn't support holes, in which case BH_New
168          * allows block_prepare_write() to zero.
169          *
170          * If we see this on a sparse file system, then a truncate has
171          * raced us and removed the cluster. In this case, we clear
172          * the buffers dirty and uptodate bits and let the buffer code
173          * ignore it as a hole.
174          */
175         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176                 clear_buffer_dirty(bh_result);
177                 clear_buffer_uptodate(bh_result);
178                 goto bail;
179         }
180
181         /* Treat the unwritten extent as a hole for zeroing purposes. */
182         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183                 map_bh(bh_result, inode->i_sb, p_blkno);
184
185         bh_result->b_size = count << inode->i_blkbits;
186
187         if (!ocfs2_sparse_alloc(osb)) {
188                 if (p_blkno == 0) {
189                         err = -EIO;
190                         mlog(ML_ERROR,
191                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192                              (unsigned long long)iblock,
193                              (unsigned long long)p_blkno,
194                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
195                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196                         dump_stack();
197                         goto bail;
198                 }
199
200                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202                      (unsigned long long)past_eof);
203
204                 if (create && (iblock >= past_eof))
205                         set_buffer_new(bh_result);
206         }
207
208 bail:
209         if (err < 0)
210                 err = -EIO;
211
212         mlog_exit(err);
213         return err;
214 }
215
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217                            struct buffer_head *di_bh)
218 {
219         void *kaddr;
220         loff_t size;
221         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222
223         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
226                 return -EROFS;
227         }
228
229         size = i_size_read(inode);
230
231         if (size > PAGE_CACHE_SIZE ||
232             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233                 ocfs2_error(inode->i_sb,
234                             "Inode %llu has with inline data has bad size: %Lu",
235                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
236                             (unsigned long long)size);
237                 return -EROFS;
238         }
239
240         kaddr = kmap_atomic(page, KM_USER0);
241         if (size)
242                 memcpy(kaddr, di->id2.i_data.id_data, size);
243         /* Clear the remaining part of the page */
244         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245         flush_dcache_page(page);
246         kunmap_atomic(kaddr, KM_USER0);
247
248         SetPageUptodate(page);
249
250         return 0;
251 }
252
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 {
255         int ret;
256         struct buffer_head *di_bh = NULL;
257
258         BUG_ON(!PageLocked(page));
259         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260
261         ret = ocfs2_read_inode_block(inode, &di_bh);
262         if (ret) {
263                 mlog_errno(ret);
264                 goto out;
265         }
266
267         ret = ocfs2_read_inline_data(inode, page, di_bh);
268 out:
269         unlock_page(page);
270
271         brelse(di_bh);
272         return ret;
273 }
274
275 static int ocfs2_readpage(struct file *file, struct page *page)
276 {
277         struct inode *inode = page->mapping->host;
278         struct ocfs2_inode_info *oi = OCFS2_I(inode);
279         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280         int ret, unlock = 1;
281
282         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283
284         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285         if (ret != 0) {
286                 if (ret == AOP_TRUNCATED_PAGE)
287                         unlock = 0;
288                 mlog_errno(ret);
289                 goto out;
290         }
291
292         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293                 ret = AOP_TRUNCATED_PAGE;
294                 goto out_inode_unlock;
295         }
296
297         /*
298          * i_size might have just been updated as we grabed the meta lock.  We
299          * might now be discovering a truncate that hit on another node.
300          * block_read_full_page->get_block freaks out if it is asked to read
301          * beyond the end of a file, so we check here.  Callers
302          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303          * and notice that the page they just read isn't needed.
304          *
305          * XXX sys_readahead() seems to get that wrong?
306          */
307         if (start >= i_size_read(inode)) {
308                 zero_user(page, 0, PAGE_SIZE);
309                 SetPageUptodate(page);
310                 ret = 0;
311                 goto out_alloc;
312         }
313
314         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315                 ret = ocfs2_readpage_inline(inode, page);
316         else
317                 ret = block_read_full_page(page, ocfs2_get_block);
318         unlock = 0;
319
320 out_alloc:
321         up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323         ocfs2_inode_unlock(inode, 0);
324 out:
325         if (unlock)
326                 unlock_page(page);
327         mlog_exit(ret);
328         return ret;
329 }
330
331 /*
332  * This is used only for read-ahead. Failures or difficult to handle
333  * situations are safe to ignore.
334  *
335  * Right now, we don't bother with BH_Boundary - in-inode extent lists
336  * are quite large (243 extents on 4k blocks), so most inodes don't
337  * grow out to a tree. If need be, detecting boundary extents could
338  * trivially be added in a future version of ocfs2_get_block().
339  */
340 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341                            struct list_head *pages, unsigned nr_pages)
342 {
343         int ret, err = -EIO;
344         struct inode *inode = mapping->host;
345         struct ocfs2_inode_info *oi = OCFS2_I(inode);
346         loff_t start;
347         struct page *last;
348
349         /*
350          * Use the nonblocking flag for the dlm code to avoid page
351          * lock inversion, but don't bother with retrying.
352          */
353         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354         if (ret)
355                 return err;
356
357         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358                 ocfs2_inode_unlock(inode, 0);
359                 return err;
360         }
361
362         /*
363          * Don't bother with inline-data. There isn't anything
364          * to read-ahead in that case anyway...
365          */
366         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367                 goto out_unlock;
368
369         /*
370          * Check whether a remote node truncated this file - we just
371          * drop out in that case as it's not worth handling here.
372          */
373         last = list_entry(pages->prev, struct page, lru);
374         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375         if (start >= i_size_read(inode))
376                 goto out_unlock;
377
378         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379
380 out_unlock:
381         up_read(&oi->ip_alloc_sem);
382         ocfs2_inode_unlock(inode, 0);
383
384         return err;
385 }
386
387 /* Note: Because we don't support holes, our allocation has
388  * already happened (allocation writes zeros to the file data)
389  * so we don't have to worry about ordered writes in
390  * ocfs2_writepage.
391  *
392  * ->writepage is called during the process of invalidating the page cache
393  * during blocked lock processing.  It can't block on any cluster locks
394  * to during block mapping.  It's relying on the fact that the block
395  * mapping can't have disappeared under the dirty pages that it is
396  * being asked to write back.
397  */
398 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399 {
400         int ret;
401
402         mlog_entry("(0x%p)\n", page);
403
404         ret = block_write_full_page(page, ocfs2_get_block, wbc);
405
406         mlog_exit(ret);
407
408         return ret;
409 }
410
411 /*
412  * This is called from ocfs2_write_zero_page() which has handled it's
413  * own cluster locking and has ensured allocation exists for those
414  * blocks to be written.
415  */
416 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417                                unsigned from, unsigned to)
418 {
419         int ret;
420
421         ret = block_prepare_write(page, from, to, ocfs2_get_block);
422
423         return ret;
424 }
425
426 /* Taken from ext3. We don't necessarily need the full blown
427  * functionality yet, but IMHO it's better to cut and paste the whole
428  * thing so we can avoid introducing our own bugs (and easily pick up
429  * their fixes when they happen) --Mark */
430 int walk_page_buffers(  handle_t *handle,
431                         struct buffer_head *head,
432                         unsigned from,
433                         unsigned to,
434                         int *partial,
435                         int (*fn)(      handle_t *handle,
436                                         struct buffer_head *bh))
437 {
438         struct buffer_head *bh;
439         unsigned block_start, block_end;
440         unsigned blocksize = head->b_size;
441         int err, ret = 0;
442         struct buffer_head *next;
443
444         for (   bh = head, block_start = 0;
445                 ret == 0 && (bh != head || !block_start);
446                 block_start = block_end, bh = next)
447         {
448                 next = bh->b_this_page;
449                 block_end = block_start + blocksize;
450                 if (block_end <= from || block_start >= to) {
451                         if (partial && !buffer_uptodate(bh))
452                                 *partial = 1;
453                         continue;
454                 }
455                 err = (*fn)(handle, bh);
456                 if (!ret)
457                         ret = err;
458         }
459         return ret;
460 }
461
462 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463                                                          struct page *page,
464                                                          unsigned from,
465                                                          unsigned to)
466 {
467         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468         handle_t *handle;
469         int ret = 0;
470
471         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472         if (IS_ERR(handle)) {
473                 ret = -ENOMEM;
474                 mlog_errno(ret);
475                 goto out;
476         }
477
478         if (ocfs2_should_order_data(inode)) {
479                 ret = ocfs2_jbd2_file_inode(handle, inode);
480                 if (ret < 0)
481                         mlog_errno(ret);
482         }
483 out:
484         if (ret) {
485                 if (!IS_ERR(handle))
486                         ocfs2_commit_trans(osb, handle);
487                 handle = ERR_PTR(ret);
488         }
489         return handle;
490 }
491
492 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493 {
494         sector_t status;
495         u64 p_blkno = 0;
496         int err = 0;
497         struct inode *inode = mapping->host;
498
499         mlog_entry("(block = %llu)\n", (unsigned long long)block);
500
501         /* We don't need to lock journal system files, since they aren't
502          * accessed concurrently from multiple nodes.
503          */
504         if (!INODE_JOURNAL(inode)) {
505                 err = ocfs2_inode_lock(inode, NULL, 0);
506                 if (err) {
507                         if (err != -ENOENT)
508                                 mlog_errno(err);
509                         goto bail;
510                 }
511                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
512         }
513
514         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516                                                   NULL);
517
518         if (!INODE_JOURNAL(inode)) {
519                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
520                 ocfs2_inode_unlock(inode, 0);
521         }
522
523         if (err) {
524                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525                      (unsigned long long)block);
526                 mlog_errno(err);
527                 goto bail;
528         }
529
530 bail:
531         status = err ? 0 : p_blkno;
532
533         mlog_exit((int)status);
534
535         return status;
536 }
537
538 /*
539  * TODO: Make this into a generic get_blocks function.
540  *
541  * From do_direct_io in direct-io.c:
542  *  "So what we do is to permit the ->get_blocks function to populate
543  *   bh.b_size with the size of IO which is permitted at this offset and
544  *   this i_blkbits."
545  *
546  * This function is called directly from get_more_blocks in direct-io.c.
547  *
548  * called like this: dio->get_blocks(dio->inode, fs_startblk,
549  *                                      fs_count, map_bh, dio->rw == WRITE);
550  */
551 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
552                                      struct buffer_head *bh_result, int create)
553 {
554         int ret;
555         u64 p_blkno, inode_blocks, contig_blocks;
556         unsigned int ext_flags;
557         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
558         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
559
560         /* This function won't even be called if the request isn't all
561          * nicely aligned and of the right size, so there's no need
562          * for us to check any of that. */
563
564         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
565
566         /*
567          * Any write past EOF is not allowed because we'd be extending.
568          */
569         if (create && (iblock + max_blocks) > inode_blocks) {
570                 ret = -EIO;
571                 goto bail;
572         }
573
574         /* This figures out the size of the next contiguous block, and
575          * our logical offset */
576         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577                                           &contig_blocks, &ext_flags);
578         if (ret) {
579                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580                      (unsigned long long)iblock);
581                 ret = -EIO;
582                 goto bail;
583         }
584
585         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
586                 ocfs2_error(inode->i_sb,
587                             "Inode %llu has a hole at block %llu\n",
588                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
589                             (unsigned long long)iblock);
590                 ret = -EROFS;
591                 goto bail;
592         }
593
594         /* We should already CoW the refcounted extent. */
595         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
596         /*
597          * get_more_blocks() expects us to describe a hole by clearing
598          * the mapped bit on bh_result().
599          *
600          * Consider an unwritten extent as a hole.
601          */
602         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603                 map_bh(bh_result, inode->i_sb, p_blkno);
604         else {
605                 /*
606                  * ocfs2_prepare_inode_for_write() should have caught
607                  * the case where we'd be filling a hole and triggered
608                  * a buffered write instead.
609                  */
610                 if (create) {
611                         ret = -EIO;
612                         mlog_errno(ret);
613                         goto bail;
614                 }
615
616                 clear_buffer_mapped(bh_result);
617         }
618
619         /* make sure we don't map more than max_blocks blocks here as
620            that's all the kernel will handle at this point. */
621         if (max_blocks < contig_blocks)
622                 contig_blocks = max_blocks;
623         bh_result->b_size = contig_blocks << blocksize_bits;
624 bail:
625         return ret;
626 }
627
628 /* 
629  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
630  * particularly interested in the aio/dio case.  Like the core uses
631  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
632  * truncation on another.
633  */
634 static void ocfs2_dio_end_io(struct kiocb *iocb,
635                              loff_t offset,
636                              ssize_t bytes,
637                              void *private)
638 {
639         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
640         int level;
641
642         /* this io's submitter should not have unlocked this before we could */
643         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
644
645         ocfs2_iocb_clear_rw_locked(iocb);
646
647         level = ocfs2_iocb_rw_locked_level(iocb);
648         if (!level)
649                 up_read(&inode->i_alloc_sem);
650         ocfs2_rw_unlock(inode, level);
651 }
652
653 /*
654  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
655  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
656  * do journalled data.
657  */
658 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
659 {
660         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
661
662         jbd2_journal_invalidatepage(journal, page, offset);
663 }
664
665 static int ocfs2_releasepage(struct page *page, gfp_t wait)
666 {
667         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
668
669         if (!page_has_buffers(page))
670                 return 0;
671         return jbd2_journal_try_to_free_buffers(journal, page, wait);
672 }
673
674 static ssize_t ocfs2_direct_IO(int rw,
675                                struct kiocb *iocb,
676                                const struct iovec *iov,
677                                loff_t offset,
678                                unsigned long nr_segs)
679 {
680         struct file *file = iocb->ki_filp;
681         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
682         int ret;
683
684         mlog_entry_void();
685
686         /*
687          * Fallback to buffered I/O if we see an inode without
688          * extents.
689          */
690         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
691                 return 0;
692
693         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
694                                             inode->i_sb->s_bdev, iov, offset,
695                                             nr_segs, 
696                                             ocfs2_direct_IO_get_blocks,
697                                             ocfs2_dio_end_io);
698
699         mlog_exit(ret);
700         return ret;
701 }
702
703 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
704                                             u32 cpos,
705                                             unsigned int *start,
706                                             unsigned int *end)
707 {
708         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
709
710         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
711                 unsigned int cpp;
712
713                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
714
715                 cluster_start = cpos % cpp;
716                 cluster_start = cluster_start << osb->s_clustersize_bits;
717
718                 cluster_end = cluster_start + osb->s_clustersize;
719         }
720
721         BUG_ON(cluster_start > PAGE_SIZE);
722         BUG_ON(cluster_end > PAGE_SIZE);
723
724         if (start)
725                 *start = cluster_start;
726         if (end)
727                 *end = cluster_end;
728 }
729
730 /*
731  * 'from' and 'to' are the region in the page to avoid zeroing.
732  *
733  * If pagesize > clustersize, this function will avoid zeroing outside
734  * of the cluster boundary.
735  *
736  * from == to == 0 is code for "zero the entire cluster region"
737  */
738 static void ocfs2_clear_page_regions(struct page *page,
739                                      struct ocfs2_super *osb, u32 cpos,
740                                      unsigned from, unsigned to)
741 {
742         void *kaddr;
743         unsigned int cluster_start, cluster_end;
744
745         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
746
747         kaddr = kmap_atomic(page, KM_USER0);
748
749         if (from || to) {
750                 if (from > cluster_start)
751                         memset(kaddr + cluster_start, 0, from - cluster_start);
752                 if (to < cluster_end)
753                         memset(kaddr + to, 0, cluster_end - to);
754         } else {
755                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
756         }
757
758         kunmap_atomic(kaddr, KM_USER0);
759 }
760
761 /*
762  * Nonsparse file systems fully allocate before we get to the write
763  * code. This prevents ocfs2_write() from tagging the write as an
764  * allocating one, which means ocfs2_map_page_blocks() might try to
765  * read-in the blocks at the tail of our file. Avoid reading them by
766  * testing i_size against each block offset.
767  */
768 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
769                                  unsigned int block_start)
770 {
771         u64 offset = page_offset(page) + block_start;
772
773         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
774                 return 1;
775
776         if (i_size_read(inode) > offset)
777                 return 1;
778
779         return 0;
780 }
781
782 /*
783  * Some of this taken from block_prepare_write(). We already have our
784  * mapping by now though, and the entire write will be allocating or
785  * it won't, so not much need to use BH_New.
786  *
787  * This will also skip zeroing, which is handled externally.
788  */
789 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
790                           struct inode *inode, unsigned int from,
791                           unsigned int to, int new)
792 {
793         int ret = 0;
794         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
795         unsigned int block_end, block_start;
796         unsigned int bsize = 1 << inode->i_blkbits;
797
798         if (!page_has_buffers(page))
799                 create_empty_buffers(page, bsize, 0);
800
801         head = page_buffers(page);
802         for (bh = head, block_start = 0; bh != head || !block_start;
803              bh = bh->b_this_page, block_start += bsize) {
804                 block_end = block_start + bsize;
805
806                 clear_buffer_new(bh);
807
808                 /*
809                  * Ignore blocks outside of our i/o range -
810                  * they may belong to unallocated clusters.
811                  */
812                 if (block_start >= to || block_end <= from) {
813                         if (PageUptodate(page))
814                                 set_buffer_uptodate(bh);
815                         continue;
816                 }
817
818                 /*
819                  * For an allocating write with cluster size >= page
820                  * size, we always write the entire page.
821                  */
822                 if (new)
823                         set_buffer_new(bh);
824
825                 if (!buffer_mapped(bh)) {
826                         map_bh(bh, inode->i_sb, *p_blkno);
827                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
828                 }
829
830                 if (PageUptodate(page)) {
831                         if (!buffer_uptodate(bh))
832                                 set_buffer_uptodate(bh);
833                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
834                            !buffer_new(bh) &&
835                            ocfs2_should_read_blk(inode, page, block_start) &&
836                            (block_start < from || block_end > to)) {
837                         ll_rw_block(READ, 1, &bh);
838                         *wait_bh++=bh;
839                 }
840
841                 *p_blkno = *p_blkno + 1;
842         }
843
844         /*
845          * If we issued read requests - let them complete.
846          */
847         while(wait_bh > wait) {
848                 wait_on_buffer(*--wait_bh);
849                 if (!buffer_uptodate(*wait_bh))
850                         ret = -EIO;
851         }
852
853         if (ret == 0 || !new)
854                 return ret;
855
856         /*
857          * If we get -EIO above, zero out any newly allocated blocks
858          * to avoid exposing stale data.
859          */
860         bh = head;
861         block_start = 0;
862         do {
863                 block_end = block_start + bsize;
864                 if (block_end <= from)
865                         goto next_bh;
866                 if (block_start >= to)
867                         break;
868
869                 zero_user(page, block_start, bh->b_size);
870                 set_buffer_uptodate(bh);
871                 mark_buffer_dirty(bh);
872
873 next_bh:
874                 block_start = block_end;
875                 bh = bh->b_this_page;
876         } while (bh != head);
877
878         return ret;
879 }
880
881 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
882 #define OCFS2_MAX_CTXT_PAGES    1
883 #else
884 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
885 #endif
886
887 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
888
889 /*
890  * Describe the state of a single cluster to be written to.
891  */
892 struct ocfs2_write_cluster_desc {
893         u32             c_cpos;
894         u32             c_phys;
895         /*
896          * Give this a unique field because c_phys eventually gets
897          * filled.
898          */
899         unsigned        c_new;
900         unsigned        c_unwritten;
901         unsigned        c_needs_zero;
902 };
903
904 struct ocfs2_write_ctxt {
905         /* Logical cluster position / len of write */
906         u32                             w_cpos;
907         u32                             w_clen;
908
909         /* First cluster allocated in a nonsparse extend */
910         u32                             w_first_new_cpos;
911
912         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
913
914         /*
915          * This is true if page_size > cluster_size.
916          *
917          * It triggers a set of special cases during write which might
918          * have to deal with allocating writes to partial pages.
919          */
920         unsigned int                    w_large_pages;
921
922         /*
923          * Pages involved in this write.
924          *
925          * w_target_page is the page being written to by the user.
926          *
927          * w_pages is an array of pages which always contains
928          * w_target_page, and in the case of an allocating write with
929          * page_size < cluster size, it will contain zero'd and mapped
930          * pages adjacent to w_target_page which need to be written
931          * out in so that future reads from that region will get
932          * zero's.
933          */
934         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
935         unsigned int                    w_num_pages;
936         struct page                     *w_target_page;
937
938         /*
939          * ocfs2_write_end() uses this to know what the real range to
940          * write in the target should be.
941          */
942         unsigned int                    w_target_from;
943         unsigned int                    w_target_to;
944
945         /*
946          * We could use journal_current_handle() but this is cleaner,
947          * IMHO -Mark
948          */
949         handle_t                        *w_handle;
950
951         struct buffer_head              *w_di_bh;
952
953         struct ocfs2_cached_dealloc_ctxt w_dealloc;
954 };
955
956 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
957 {
958         int i;
959
960         for(i = 0; i < num_pages; i++) {
961                 if (pages[i]) {
962                         unlock_page(pages[i]);
963                         mark_page_accessed(pages[i]);
964                         page_cache_release(pages[i]);
965                 }
966         }
967 }
968
969 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
970 {
971         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
972
973         brelse(wc->w_di_bh);
974         kfree(wc);
975 }
976
977 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
978                                   struct ocfs2_super *osb, loff_t pos,
979                                   unsigned len, struct buffer_head *di_bh)
980 {
981         u32 cend;
982         struct ocfs2_write_ctxt *wc;
983
984         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
985         if (!wc)
986                 return -ENOMEM;
987
988         wc->w_cpos = pos >> osb->s_clustersize_bits;
989         wc->w_first_new_cpos = UINT_MAX;
990         cend = (pos + len - 1) >> osb->s_clustersize_bits;
991         wc->w_clen = cend - wc->w_cpos + 1;
992         get_bh(di_bh);
993         wc->w_di_bh = di_bh;
994
995         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
996                 wc->w_large_pages = 1;
997         else
998                 wc->w_large_pages = 0;
999
1000         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1001
1002         *wcp = wc;
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * If a page has any new buffers, zero them out here, and mark them uptodate
1009  * and dirty so they'll be written out (in order to prevent uninitialised
1010  * block data from leaking). And clear the new bit.
1011  */
1012 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1013 {
1014         unsigned int block_start, block_end;
1015         struct buffer_head *head, *bh;
1016
1017         BUG_ON(!PageLocked(page));
1018         if (!page_has_buffers(page))
1019                 return;
1020
1021         bh = head = page_buffers(page);
1022         block_start = 0;
1023         do {
1024                 block_end = block_start + bh->b_size;
1025
1026                 if (buffer_new(bh)) {
1027                         if (block_end > from && block_start < to) {
1028                                 if (!PageUptodate(page)) {
1029                                         unsigned start, end;
1030
1031                                         start = max(from, block_start);
1032                                         end = min(to, block_end);
1033
1034                                         zero_user_segment(page, start, end);
1035                                         set_buffer_uptodate(bh);
1036                                 }
1037
1038                                 clear_buffer_new(bh);
1039                                 mark_buffer_dirty(bh);
1040                         }
1041                 }
1042
1043                 block_start = block_end;
1044                 bh = bh->b_this_page;
1045         } while (bh != head);
1046 }
1047
1048 /*
1049  * Only called when we have a failure during allocating write to write
1050  * zero's to the newly allocated region.
1051  */
1052 static void ocfs2_write_failure(struct inode *inode,
1053                                 struct ocfs2_write_ctxt *wc,
1054                                 loff_t user_pos, unsigned user_len)
1055 {
1056         int i;
1057         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1058                 to = user_pos + user_len;
1059         struct page *tmppage;
1060
1061         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1062
1063         for(i = 0; i < wc->w_num_pages; i++) {
1064                 tmppage = wc->w_pages[i];
1065
1066                 if (page_has_buffers(tmppage)) {
1067                         if (ocfs2_should_order_data(inode))
1068                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1069
1070                         block_commit_write(tmppage, from, to);
1071                 }
1072         }
1073 }
1074
1075 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1076                                         struct ocfs2_write_ctxt *wc,
1077                                         struct page *page, u32 cpos,
1078                                         loff_t user_pos, unsigned user_len,
1079                                         int new)
1080 {
1081         int ret;
1082         unsigned int map_from = 0, map_to = 0;
1083         unsigned int cluster_start, cluster_end;
1084         unsigned int user_data_from = 0, user_data_to = 0;
1085
1086         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1087                                         &cluster_start, &cluster_end);
1088
1089         if (page == wc->w_target_page) {
1090                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1091                 map_to = map_from + user_len;
1092
1093                 if (new)
1094                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1095                                                     cluster_start, cluster_end,
1096                                                     new);
1097                 else
1098                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1099                                                     map_from, map_to, new);
1100                 if (ret) {
1101                         mlog_errno(ret);
1102                         goto out;
1103                 }
1104
1105                 user_data_from = map_from;
1106                 user_data_to = map_to;
1107                 if (new) {
1108                         map_from = cluster_start;
1109                         map_to = cluster_end;
1110                 }
1111         } else {
1112                 /*
1113                  * If we haven't allocated the new page yet, we
1114                  * shouldn't be writing it out without copying user
1115                  * data. This is likely a math error from the caller.
1116                  */
1117                 BUG_ON(!new);
1118
1119                 map_from = cluster_start;
1120                 map_to = cluster_end;
1121
1122                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1123                                             cluster_start, cluster_end, new);
1124                 if (ret) {
1125                         mlog_errno(ret);
1126                         goto out;
1127                 }
1128         }
1129
1130         /*
1131          * Parts of newly allocated pages need to be zero'd.
1132          *
1133          * Above, we have also rewritten 'to' and 'from' - as far as
1134          * the rest of the function is concerned, the entire cluster
1135          * range inside of a page needs to be written.
1136          *
1137          * We can skip this if the page is up to date - it's already
1138          * been zero'd from being read in as a hole.
1139          */
1140         if (new && !PageUptodate(page))
1141                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1142                                          cpos, user_data_from, user_data_to);
1143
1144         flush_dcache_page(page);
1145
1146 out:
1147         return ret;
1148 }
1149
1150 /*
1151  * This function will only grab one clusters worth of pages.
1152  */
1153 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1154                                       struct ocfs2_write_ctxt *wc,
1155                                       u32 cpos, loff_t user_pos, int new,
1156                                       struct page *mmap_page)
1157 {
1158         int ret = 0, i;
1159         unsigned long start, target_index, index;
1160         struct inode *inode = mapping->host;
1161
1162         target_index = user_pos >> PAGE_CACHE_SHIFT;
1163
1164         /*
1165          * Figure out how many pages we'll be manipulating here. For
1166          * non allocating write, we just change the one
1167          * page. Otherwise, we'll need a whole clusters worth.
1168          */
1169         if (new) {
1170                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1171                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1172         } else {
1173                 wc->w_num_pages = 1;
1174                 start = target_index;
1175         }
1176
1177         for(i = 0; i < wc->w_num_pages; i++) {
1178                 index = start + i;
1179
1180                 if (index == target_index && mmap_page) {
1181                         /*
1182                          * ocfs2_pagemkwrite() is a little different
1183                          * and wants us to directly use the page
1184                          * passed in.
1185                          */
1186                         lock_page(mmap_page);
1187
1188                         if (mmap_page->mapping != mapping) {
1189                                 unlock_page(mmap_page);
1190                                 /*
1191                                  * Sanity check - the locking in
1192                                  * ocfs2_pagemkwrite() should ensure
1193                                  * that this code doesn't trigger.
1194                                  */
1195                                 ret = -EINVAL;
1196                                 mlog_errno(ret);
1197                                 goto out;
1198                         }
1199
1200                         page_cache_get(mmap_page);
1201                         wc->w_pages[i] = mmap_page;
1202                 } else {
1203                         wc->w_pages[i] = find_or_create_page(mapping, index,
1204                                                              GFP_NOFS);
1205                         if (!wc->w_pages[i]) {
1206                                 ret = -ENOMEM;
1207                                 mlog_errno(ret);
1208                                 goto out;
1209                         }
1210                 }
1211
1212                 if (index == target_index)
1213                         wc->w_target_page = wc->w_pages[i];
1214         }
1215 out:
1216         return ret;
1217 }
1218
1219 /*
1220  * Prepare a single cluster for write one cluster into the file.
1221  */
1222 static int ocfs2_write_cluster(struct address_space *mapping,
1223                                u32 phys, unsigned int unwritten,
1224                                unsigned int should_zero,
1225                                struct ocfs2_alloc_context *data_ac,
1226                                struct ocfs2_alloc_context *meta_ac,
1227                                struct ocfs2_write_ctxt *wc, u32 cpos,
1228                                loff_t user_pos, unsigned user_len)
1229 {
1230         int ret, i, new;
1231         u64 v_blkno, p_blkno;
1232         struct inode *inode = mapping->host;
1233         struct ocfs2_extent_tree et;
1234
1235         new = phys == 0 ? 1 : 0;
1236         if (new) {
1237                 u32 tmp_pos;
1238
1239                 /*
1240                  * This is safe to call with the page locks - it won't take
1241                  * any additional semaphores or cluster locks.
1242                  */
1243                 tmp_pos = cpos;
1244                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1245                                            &tmp_pos, 1, 0, wc->w_di_bh,
1246                                            wc->w_handle, data_ac,
1247                                            meta_ac, NULL);
1248                 /*
1249                  * This shouldn't happen because we must have already
1250                  * calculated the correct meta data allocation required. The
1251                  * internal tree allocation code should know how to increase
1252                  * transaction credits itself.
1253                  *
1254                  * If need be, we could handle -EAGAIN for a
1255                  * RESTART_TRANS here.
1256                  */
1257                 mlog_bug_on_msg(ret == -EAGAIN,
1258                                 "Inode %llu: EAGAIN return during allocation.\n",
1259                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1260                 if (ret < 0) {
1261                         mlog_errno(ret);
1262                         goto out;
1263                 }
1264         } else if (unwritten) {
1265                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1266                                               wc->w_di_bh);
1267                 ret = ocfs2_mark_extent_written(inode, &et,
1268                                                 wc->w_handle, cpos, 1, phys,
1269                                                 meta_ac, &wc->w_dealloc);
1270                 if (ret < 0) {
1271                         mlog_errno(ret);
1272                         goto out;
1273                 }
1274         }
1275
1276         if (should_zero)
1277                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1278         else
1279                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1280
1281         /*
1282          * The only reason this should fail is due to an inability to
1283          * find the extent added.
1284          */
1285         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1286                                           NULL);
1287         if (ret < 0) {
1288                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1289                             "at logical block %llu",
1290                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1291                             (unsigned long long)v_blkno);
1292                 goto out;
1293         }
1294
1295         BUG_ON(p_blkno == 0);
1296
1297         for(i = 0; i < wc->w_num_pages; i++) {
1298                 int tmpret;
1299
1300                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1301                                                       wc->w_pages[i], cpos,
1302                                                       user_pos, user_len,
1303                                                       should_zero);
1304                 if (tmpret) {
1305                         mlog_errno(tmpret);
1306                         if (ret == 0)
1307                                 ret = tmpret;
1308                 }
1309         }
1310
1311         /*
1312          * We only have cleanup to do in case of allocating write.
1313          */
1314         if (ret && new)
1315                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1316
1317 out:
1318
1319         return ret;
1320 }
1321
1322 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1323                                        struct ocfs2_alloc_context *data_ac,
1324                                        struct ocfs2_alloc_context *meta_ac,
1325                                        struct ocfs2_write_ctxt *wc,
1326                                        loff_t pos, unsigned len)
1327 {
1328         int ret, i;
1329         loff_t cluster_off;
1330         unsigned int local_len = len;
1331         struct ocfs2_write_cluster_desc *desc;
1332         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1333
1334         for (i = 0; i < wc->w_clen; i++) {
1335                 desc = &wc->w_desc[i];
1336
1337                 /*
1338                  * We have to make sure that the total write passed in
1339                  * doesn't extend past a single cluster.
1340                  */
1341                 local_len = len;
1342                 cluster_off = pos & (osb->s_clustersize - 1);
1343                 if ((cluster_off + local_len) > osb->s_clustersize)
1344                         local_len = osb->s_clustersize - cluster_off;
1345
1346                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1347                                           desc->c_unwritten,
1348                                           desc->c_needs_zero,
1349                                           data_ac, meta_ac,
1350                                           wc, desc->c_cpos, pos, local_len);
1351                 if (ret) {
1352                         mlog_errno(ret);
1353                         goto out;
1354                 }
1355
1356                 len -= local_len;
1357                 pos += local_len;
1358         }
1359
1360         ret = 0;
1361 out:
1362         return ret;
1363 }
1364
1365 /*
1366  * ocfs2_write_end() wants to know which parts of the target page it
1367  * should complete the write on. It's easiest to compute them ahead of
1368  * time when a more complete view of the write is available.
1369  */
1370 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1371                                         struct ocfs2_write_ctxt *wc,
1372                                         loff_t pos, unsigned len, int alloc)
1373 {
1374         struct ocfs2_write_cluster_desc *desc;
1375
1376         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1377         wc->w_target_to = wc->w_target_from + len;
1378
1379         if (alloc == 0)
1380                 return;
1381
1382         /*
1383          * Allocating write - we may have different boundaries based
1384          * on page size and cluster size.
1385          *
1386          * NOTE: We can no longer compute one value from the other as
1387          * the actual write length and user provided length may be
1388          * different.
1389          */
1390
1391         if (wc->w_large_pages) {
1392                 /*
1393                  * We only care about the 1st and last cluster within
1394                  * our range and whether they should be zero'd or not. Either
1395                  * value may be extended out to the start/end of a
1396                  * newly allocated cluster.
1397                  */
1398                 desc = &wc->w_desc[0];
1399                 if (desc->c_needs_zero)
1400                         ocfs2_figure_cluster_boundaries(osb,
1401                                                         desc->c_cpos,
1402                                                         &wc->w_target_from,
1403                                                         NULL);
1404
1405                 desc = &wc->w_desc[wc->w_clen - 1];
1406                 if (desc->c_needs_zero)
1407                         ocfs2_figure_cluster_boundaries(osb,
1408                                                         desc->c_cpos,
1409                                                         NULL,
1410                                                         &wc->w_target_to);
1411         } else {
1412                 wc->w_target_from = 0;
1413                 wc->w_target_to = PAGE_CACHE_SIZE;
1414         }
1415 }
1416
1417 /*
1418  * Populate each single-cluster write descriptor in the write context
1419  * with information about the i/o to be done.
1420  *
1421  * Returns the number of clusters that will have to be allocated, as
1422  * well as a worst case estimate of the number of extent records that
1423  * would have to be created during a write to an unwritten region.
1424  */
1425 static int ocfs2_populate_write_desc(struct inode *inode,
1426                                      struct ocfs2_write_ctxt *wc,
1427                                      unsigned int *clusters_to_alloc,
1428                                      unsigned int *extents_to_split)
1429 {
1430         int ret;
1431         struct ocfs2_write_cluster_desc *desc;
1432         unsigned int num_clusters = 0;
1433         unsigned int ext_flags = 0;
1434         u32 phys = 0;
1435         int i;
1436
1437         *clusters_to_alloc = 0;
1438         *extents_to_split = 0;
1439
1440         for (i = 0; i < wc->w_clen; i++) {
1441                 desc = &wc->w_desc[i];
1442                 desc->c_cpos = wc->w_cpos + i;
1443
1444                 if (num_clusters == 0) {
1445                         /*
1446                          * Need to look up the next extent record.
1447                          */
1448                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1449                                                  &num_clusters, &ext_flags);
1450                         if (ret) {
1451                                 mlog_errno(ret);
1452                                 goto out;
1453                         }
1454
1455                         /* We should already CoW the refcountd extent. */
1456                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1457
1458                         /*
1459                          * Assume worst case - that we're writing in
1460                          * the middle of the extent.
1461                          *
1462                          * We can assume that the write proceeds from
1463                          * left to right, in which case the extent
1464                          * insert code is smart enough to coalesce the
1465                          * next splits into the previous records created.
1466                          */
1467                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1468                                 *extents_to_split = *extents_to_split + 2;
1469                 } else if (phys) {
1470                         /*
1471                          * Only increment phys if it doesn't describe
1472                          * a hole.
1473                          */
1474                         phys++;
1475                 }
1476
1477                 /*
1478                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1479                  * file that got extended.  w_first_new_cpos tells us
1480                  * where the newly allocated clusters are so we can
1481                  * zero them.
1482                  */
1483                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1484                         BUG_ON(phys == 0);
1485                         desc->c_needs_zero = 1;
1486                 }
1487
1488                 desc->c_phys = phys;
1489                 if (phys == 0) {
1490                         desc->c_new = 1;
1491                         desc->c_needs_zero = 1;
1492                         *clusters_to_alloc = *clusters_to_alloc + 1;
1493                 }
1494
1495                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1496                         desc->c_unwritten = 1;
1497                         desc->c_needs_zero = 1;
1498                 }
1499
1500                 num_clusters--;
1501         }
1502
1503         ret = 0;
1504 out:
1505         return ret;
1506 }
1507
1508 static int ocfs2_write_begin_inline(struct address_space *mapping,
1509                                     struct inode *inode,
1510                                     struct ocfs2_write_ctxt *wc)
1511 {
1512         int ret;
1513         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1514         struct page *page;
1515         handle_t *handle;
1516         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1517
1518         page = find_or_create_page(mapping, 0, GFP_NOFS);
1519         if (!page) {
1520                 ret = -ENOMEM;
1521                 mlog_errno(ret);
1522                 goto out;
1523         }
1524         /*
1525          * If we don't set w_num_pages then this page won't get unlocked
1526          * and freed on cleanup of the write context.
1527          */
1528         wc->w_pages[0] = wc->w_target_page = page;
1529         wc->w_num_pages = 1;
1530
1531         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1532         if (IS_ERR(handle)) {
1533                 ret = PTR_ERR(handle);
1534                 mlog_errno(ret);
1535                 goto out;
1536         }
1537
1538         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1539                                       OCFS2_JOURNAL_ACCESS_WRITE);
1540         if (ret) {
1541                 ocfs2_commit_trans(osb, handle);
1542
1543                 mlog_errno(ret);
1544                 goto out;
1545         }
1546
1547         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1548                 ocfs2_set_inode_data_inline(inode, di);
1549
1550         if (!PageUptodate(page)) {
1551                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1552                 if (ret) {
1553                         ocfs2_commit_trans(osb, handle);
1554
1555                         goto out;
1556                 }
1557         }
1558
1559         wc->w_handle = handle;
1560 out:
1561         return ret;
1562 }
1563
1564 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1565 {
1566         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1567
1568         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1569                 return 1;
1570         return 0;
1571 }
1572
1573 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1574                                           struct inode *inode, loff_t pos,
1575                                           unsigned len, struct page *mmap_page,
1576                                           struct ocfs2_write_ctxt *wc)
1577 {
1578         int ret, written = 0;
1579         loff_t end = pos + len;
1580         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1581         struct ocfs2_dinode *di = NULL;
1582
1583         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1584              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1585              oi->ip_dyn_features);
1586
1587         /*
1588          * Handle inodes which already have inline data 1st.
1589          */
1590         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1591                 if (mmap_page == NULL &&
1592                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1593                         goto do_inline_write;
1594
1595                 /*
1596                  * The write won't fit - we have to give this inode an
1597                  * inline extent list now.
1598                  */
1599                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1600                 if (ret)
1601                         mlog_errno(ret);
1602                 goto out;
1603         }
1604
1605         /*
1606          * Check whether the inode can accept inline data.
1607          */
1608         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1609                 return 0;
1610
1611         /*
1612          * Check whether the write can fit.
1613          */
1614         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1615         if (mmap_page ||
1616             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1617                 return 0;
1618
1619 do_inline_write:
1620         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1621         if (ret) {
1622                 mlog_errno(ret);
1623                 goto out;
1624         }
1625
1626         /*
1627          * This signals to the caller that the data can be written
1628          * inline.
1629          */
1630         written = 1;
1631 out:
1632         return written ? written : ret;
1633 }
1634
1635 /*
1636  * This function only does anything for file systems which can't
1637  * handle sparse files.
1638  *
1639  * What we want to do here is fill in any hole between the current end
1640  * of allocation and the end of our write. That way the rest of the
1641  * write path can treat it as an non-allocating write, which has no
1642  * special case code for sparse/nonsparse files.
1643  */
1644 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1645                                         unsigned len,
1646                                         struct ocfs2_write_ctxt *wc)
1647 {
1648         int ret;
1649         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1650         loff_t newsize = pos + len;
1651
1652         if (ocfs2_sparse_alloc(osb))
1653                 return 0;
1654
1655         if (newsize <= i_size_read(inode))
1656                 return 0;
1657
1658         ret = ocfs2_extend_no_holes(inode, newsize, pos);
1659         if (ret)
1660                 mlog_errno(ret);
1661
1662         wc->w_first_new_cpos =
1663                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1664
1665         return ret;
1666 }
1667
1668 int ocfs2_write_begin_nolock(struct address_space *mapping,
1669                              loff_t pos, unsigned len, unsigned flags,
1670                              struct page **pagep, void **fsdata,
1671                              struct buffer_head *di_bh, struct page *mmap_page)
1672 {
1673         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1674         unsigned int clusters_to_alloc, extents_to_split;
1675         struct ocfs2_write_ctxt *wc;
1676         struct inode *inode = mapping->host;
1677         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1678         struct ocfs2_dinode *di;
1679         struct ocfs2_alloc_context *data_ac = NULL;
1680         struct ocfs2_alloc_context *meta_ac = NULL;
1681         handle_t *handle;
1682         struct ocfs2_extent_tree et;
1683
1684         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1685         if (ret) {
1686                 mlog_errno(ret);
1687                 return ret;
1688         }
1689
1690         if (ocfs2_supports_inline_data(osb)) {
1691                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1692                                                      mmap_page, wc);
1693                 if (ret == 1) {
1694                         ret = 0;
1695                         goto success;
1696                 }
1697                 if (ret < 0) {
1698                         mlog_errno(ret);
1699                         goto out;
1700                 }
1701         }
1702
1703         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1704         if (ret) {
1705                 mlog_errno(ret);
1706                 goto out;
1707         }
1708
1709         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1710         if (ret < 0) {
1711                 mlog_errno(ret);
1712                 goto out;
1713         } else if (ret == 1) {
1714                 ret = ocfs2_refcount_cow(inode, di_bh,
1715                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1716                 if (ret) {
1717                         mlog_errno(ret);
1718                         goto out;
1719                 }
1720         }
1721
1722         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1723                                         &extents_to_split);
1724         if (ret) {
1725                 mlog_errno(ret);
1726                 goto out;
1727         }
1728
1729         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1730
1731         /*
1732          * We set w_target_from, w_target_to here so that
1733          * ocfs2_write_end() knows which range in the target page to
1734          * write out. An allocation requires that we write the entire
1735          * cluster range.
1736          */
1737         if (clusters_to_alloc || extents_to_split) {
1738                 /*
1739                  * XXX: We are stretching the limits of
1740                  * ocfs2_lock_allocators(). It greatly over-estimates
1741                  * the work to be done.
1742                  */
1743                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1744                      " clusters_to_add = %u, extents_to_split = %u\n",
1745                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1746                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1747                      clusters_to_alloc, extents_to_split);
1748
1749                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1750                                               wc->w_di_bh);
1751                 ret = ocfs2_lock_allocators(inode, &et,
1752                                             clusters_to_alloc, extents_to_split,
1753                                             &data_ac, &meta_ac);
1754                 if (ret) {
1755                         mlog_errno(ret);
1756                         goto out;
1757                 }
1758
1759                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1760                                                     &di->id2.i_list,
1761                                                     clusters_to_alloc);
1762
1763         }
1764
1765         /*
1766          * We have to zero sparse allocated clusters, unwritten extent clusters,
1767          * and non-sparse clusters we just extended.  For non-sparse writes,
1768          * we know zeros will only be needed in the first and/or last cluster.
1769          */
1770         if (clusters_to_alloc || extents_to_split ||
1771             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1772                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1773                 cluster_of_pages = 1;
1774         else
1775                 cluster_of_pages = 0;
1776
1777         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1778
1779         handle = ocfs2_start_trans(osb, credits);
1780         if (IS_ERR(handle)) {
1781                 ret = PTR_ERR(handle);
1782                 mlog_errno(ret);
1783                 goto out;
1784         }
1785
1786         wc->w_handle = handle;
1787
1788         if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1789                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1790                 ret = -EDQUOT;
1791                 goto out_commit;
1792         }
1793         /*
1794          * We don't want this to fail in ocfs2_write_end(), so do it
1795          * here.
1796          */
1797         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1798                                       OCFS2_JOURNAL_ACCESS_WRITE);
1799         if (ret) {
1800                 mlog_errno(ret);
1801                 goto out_quota;
1802         }
1803
1804         /*
1805          * Fill our page array first. That way we've grabbed enough so
1806          * that we can zero and flush if we error after adding the
1807          * extent.
1808          */
1809         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1810                                          cluster_of_pages, mmap_page);
1811         if (ret) {
1812                 mlog_errno(ret);
1813                 goto out_quota;
1814         }
1815
1816         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1817                                           len);
1818         if (ret) {
1819                 mlog_errno(ret);
1820                 goto out_quota;
1821         }
1822
1823         if (data_ac)
1824                 ocfs2_free_alloc_context(data_ac);
1825         if (meta_ac)
1826                 ocfs2_free_alloc_context(meta_ac);
1827
1828 success:
1829         *pagep = wc->w_target_page;
1830         *fsdata = wc;
1831         return 0;
1832 out_quota:
1833         if (clusters_to_alloc)
1834                 vfs_dq_free_space(inode,
1835                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836 out_commit:
1837         ocfs2_commit_trans(osb, handle);
1838
1839 out:
1840         ocfs2_free_write_ctxt(wc);
1841
1842         if (data_ac)
1843                 ocfs2_free_alloc_context(data_ac);
1844         if (meta_ac)
1845                 ocfs2_free_alloc_context(meta_ac);
1846         return ret;
1847 }
1848
1849 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1850                              loff_t pos, unsigned len, unsigned flags,
1851                              struct page **pagep, void **fsdata)
1852 {
1853         int ret;
1854         struct buffer_head *di_bh = NULL;
1855         struct inode *inode = mapping->host;
1856
1857         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1858         if (ret) {
1859                 mlog_errno(ret);
1860                 return ret;
1861         }
1862
1863         /*
1864          * Take alloc sem here to prevent concurrent lookups. That way
1865          * the mapping, zeroing and tree manipulation within
1866          * ocfs2_write() will be safe against ->readpage(). This
1867          * should also serve to lock out allocation from a shared
1868          * writeable region.
1869          */
1870         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1871
1872         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1873                                        fsdata, di_bh, NULL);
1874         if (ret) {
1875                 mlog_errno(ret);
1876                 goto out_fail;
1877         }
1878
1879         brelse(di_bh);
1880
1881         return 0;
1882
1883 out_fail:
1884         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1885
1886         brelse(di_bh);
1887         ocfs2_inode_unlock(inode, 1);
1888
1889         return ret;
1890 }
1891
1892 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1893                                    unsigned len, unsigned *copied,
1894                                    struct ocfs2_dinode *di,
1895                                    struct ocfs2_write_ctxt *wc)
1896 {
1897         void *kaddr;
1898
1899         if (unlikely(*copied < len)) {
1900                 if (!PageUptodate(wc->w_target_page)) {
1901                         *copied = 0;
1902                         return;
1903                 }
1904         }
1905
1906         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1907         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1908         kunmap_atomic(kaddr, KM_USER0);
1909
1910         mlog(0, "Data written to inode at offset %llu. "
1911              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1912              (unsigned long long)pos, *copied,
1913              le16_to_cpu(di->id2.i_data.id_count),
1914              le16_to_cpu(di->i_dyn_features));
1915 }
1916
1917 int ocfs2_write_end_nolock(struct address_space *mapping,
1918                            loff_t pos, unsigned len, unsigned copied,
1919                            struct page *page, void *fsdata)
1920 {
1921         int i;
1922         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1923         struct inode *inode = mapping->host;
1924         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1925         struct ocfs2_write_ctxt *wc = fsdata;
1926         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1927         handle_t *handle = wc->w_handle;
1928         struct page *tmppage;
1929
1930         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1931                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1932                 goto out_write_size;
1933         }
1934
1935         if (unlikely(copied < len)) {
1936                 if (!PageUptodate(wc->w_target_page))
1937                         copied = 0;
1938
1939                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1940                                        start+len);
1941         }
1942         flush_dcache_page(wc->w_target_page);
1943
1944         for(i = 0; i < wc->w_num_pages; i++) {
1945                 tmppage = wc->w_pages[i];
1946
1947                 if (tmppage == wc->w_target_page) {
1948                         from = wc->w_target_from;
1949                         to = wc->w_target_to;
1950
1951                         BUG_ON(from > PAGE_CACHE_SIZE ||
1952                                to > PAGE_CACHE_SIZE ||
1953                                to < from);
1954                 } else {
1955                         /*
1956                          * Pages adjacent to the target (if any) imply
1957                          * a hole-filling write in which case we want
1958                          * to flush their entire range.
1959                          */
1960                         from = 0;
1961                         to = PAGE_CACHE_SIZE;
1962                 }
1963
1964                 if (page_has_buffers(tmppage)) {
1965                         if (ocfs2_should_order_data(inode))
1966                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1967                         block_commit_write(tmppage, from, to);
1968                 }
1969         }
1970
1971 out_write_size:
1972         pos += copied;
1973         if (pos > inode->i_size) {
1974                 i_size_write(inode, pos);
1975                 mark_inode_dirty(inode);
1976         }
1977         inode->i_blocks = ocfs2_inode_sector_count(inode);
1978         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1979         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1980         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1981         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1982         ocfs2_journal_dirty(handle, wc->w_di_bh);
1983
1984         ocfs2_commit_trans(osb, handle);
1985
1986         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1987
1988         ocfs2_free_write_ctxt(wc);
1989
1990         return copied;
1991 }
1992
1993 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1994                            loff_t pos, unsigned len, unsigned copied,
1995                            struct page *page, void *fsdata)
1996 {
1997         int ret;
1998         struct inode *inode = mapping->host;
1999
2000         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2001
2002         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2003         ocfs2_inode_unlock(inode, 1);
2004
2005         return ret;
2006 }
2007
2008 const struct address_space_operations ocfs2_aops = {
2009         .readpage               = ocfs2_readpage,
2010         .readpages              = ocfs2_readpages,
2011         .writepage              = ocfs2_writepage,
2012         .write_begin            = ocfs2_write_begin,
2013         .write_end              = ocfs2_write_end,
2014         .bmap                   = ocfs2_bmap,
2015         .sync_page              = block_sync_page,
2016         .direct_IO              = ocfs2_direct_IO,
2017         .invalidatepage         = ocfs2_invalidatepage,
2018         .releasepage            = ocfs2_releasepage,
2019         .migratepage            = buffer_migrate_page,
2020         .is_partially_uptodate  = block_is_partially_uptodate,
2021 };