e219f8b546ac4dff78e3727297e41e4323cf33b6
[safe/jmp/linux-2.6] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46
47 #include "buffer_head_io.h"
48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50                                    struct buffer_head *bh_result, int create)
51 {
52         int err = -EIO;
53         int status;
54         struct ocfs2_dinode *fe = NULL;
55         struct buffer_head *bh = NULL;
56         struct buffer_head *buffer_cache_bh = NULL;
57         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58         void *kaddr;
59
60         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61                    (unsigned long long)iblock, bh_result, create);
62
63         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67                      (unsigned long long)iblock);
68                 goto bail;
69         }
70
71         status = ocfs2_read_inode_block(inode, &bh);
72         if (status < 0) {
73                 mlog_errno(status);
74                 goto bail;
75         }
76         fe = (struct ocfs2_dinode *) bh->b_data;
77
78         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
79                                                     le32_to_cpu(fe->i_clusters))) {
80                 mlog(ML_ERROR, "block offset is outside the allocated size: "
81                      "%llu\n", (unsigned long long)iblock);
82                 goto bail;
83         }
84
85         /* We don't use the page cache to create symlink data, so if
86          * need be, copy it over from the buffer cache. */
87         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
88                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
89                             iblock;
90                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
91                 if (!buffer_cache_bh) {
92                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
93                         goto bail;
94                 }
95
96                 /* we haven't locked out transactions, so a commit
97                  * could've happened. Since we've got a reference on
98                  * the bh, even if it commits while we're doing the
99                  * copy, the data is still good. */
100                 if (buffer_jbd(buffer_cache_bh)
101                     && ocfs2_inode_is_new(inode)) {
102                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
103                         if (!kaddr) {
104                                 mlog(ML_ERROR, "couldn't kmap!\n");
105                                 goto bail;
106                         }
107                         memcpy(kaddr + (bh_result->b_size * iblock),
108                                buffer_cache_bh->b_data,
109                                bh_result->b_size);
110                         kunmap_atomic(kaddr, KM_USER0);
111                         set_buffer_uptodate(bh_result);
112                 }
113                 brelse(buffer_cache_bh);
114         }
115
116         map_bh(bh_result, inode->i_sb,
117                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
118
119         err = 0;
120
121 bail:
122         brelse(bh);
123
124         mlog_exit(err);
125         return err;
126 }
127
128 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
129                            struct buffer_head *bh_result, int create)
130 {
131         int err = 0;
132         unsigned int ext_flags;
133         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
134         u64 p_blkno, count, past_eof;
135         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
136
137         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
138                    (unsigned long long)iblock, bh_result, create);
139
140         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
141                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
142                      inode, inode->i_ino);
143
144         if (S_ISLNK(inode->i_mode)) {
145                 /* this always does I/O for some reason. */
146                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
147                 goto bail;
148         }
149
150         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
151                                           &ext_flags);
152         if (err) {
153                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
154                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
155                      (unsigned long long)p_blkno);
156                 goto bail;
157         }
158
159         if (max_blocks < count)
160                 count = max_blocks;
161
162         /*
163          * ocfs2 never allocates in this function - the only time we
164          * need to use BH_New is when we're extending i_size on a file
165          * system which doesn't support holes, in which case BH_New
166          * allows block_prepare_write() to zero.
167          *
168          * If we see this on a sparse file system, then a truncate has
169          * raced us and removed the cluster. In this case, we clear
170          * the buffers dirty and uptodate bits and let the buffer code
171          * ignore it as a hole.
172          */
173         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
174                 clear_buffer_dirty(bh_result);
175                 clear_buffer_uptodate(bh_result);
176                 goto bail;
177         }
178
179         /* Treat the unwritten extent as a hole for zeroing purposes. */
180         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
181                 map_bh(bh_result, inode->i_sb, p_blkno);
182
183         bh_result->b_size = count << inode->i_blkbits;
184
185         if (!ocfs2_sparse_alloc(osb)) {
186                 if (p_blkno == 0) {
187                         err = -EIO;
188                         mlog(ML_ERROR,
189                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
190                              (unsigned long long)iblock,
191                              (unsigned long long)p_blkno,
192                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
193                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
194                         dump_stack();
195                 }
196
197                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
198                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
199                      (unsigned long long)past_eof);
200
201                 if (create && (iblock >= past_eof))
202                         set_buffer_new(bh_result);
203         }
204
205 bail:
206         if (err < 0)
207                 err = -EIO;
208
209         mlog_exit(err);
210         return err;
211 }
212
213 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
214                            struct buffer_head *di_bh)
215 {
216         void *kaddr;
217         loff_t size;
218         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
219
220         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
221                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
222                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
223                 return -EROFS;
224         }
225
226         size = i_size_read(inode);
227
228         if (size > PAGE_CACHE_SIZE ||
229             size > ocfs2_max_inline_data(inode->i_sb)) {
230                 ocfs2_error(inode->i_sb,
231                             "Inode %llu has with inline data has bad size: %Lu",
232                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
233                             (unsigned long long)size);
234                 return -EROFS;
235         }
236
237         kaddr = kmap_atomic(page, KM_USER0);
238         if (size)
239                 memcpy(kaddr, di->id2.i_data.id_data, size);
240         /* Clear the remaining part of the page */
241         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
242         flush_dcache_page(page);
243         kunmap_atomic(kaddr, KM_USER0);
244
245         SetPageUptodate(page);
246
247         return 0;
248 }
249
250 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
251 {
252         int ret;
253         struct buffer_head *di_bh = NULL;
254
255         BUG_ON(!PageLocked(page));
256         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
257
258         ret = ocfs2_read_inode_block(inode, &di_bh);
259         if (ret) {
260                 mlog_errno(ret);
261                 goto out;
262         }
263
264         ret = ocfs2_read_inline_data(inode, page, di_bh);
265 out:
266         unlock_page(page);
267
268         brelse(di_bh);
269         return ret;
270 }
271
272 static int ocfs2_readpage(struct file *file, struct page *page)
273 {
274         struct inode *inode = page->mapping->host;
275         struct ocfs2_inode_info *oi = OCFS2_I(inode);
276         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
277         int ret, unlock = 1;
278
279         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
280
281         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
282         if (ret != 0) {
283                 if (ret == AOP_TRUNCATED_PAGE)
284                         unlock = 0;
285                 mlog_errno(ret);
286                 goto out;
287         }
288
289         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
290                 ret = AOP_TRUNCATED_PAGE;
291                 goto out_inode_unlock;
292         }
293
294         /*
295          * i_size might have just been updated as we grabed the meta lock.  We
296          * might now be discovering a truncate that hit on another node.
297          * block_read_full_page->get_block freaks out if it is asked to read
298          * beyond the end of a file, so we check here.  Callers
299          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
300          * and notice that the page they just read isn't needed.
301          *
302          * XXX sys_readahead() seems to get that wrong?
303          */
304         if (start >= i_size_read(inode)) {
305                 zero_user(page, 0, PAGE_SIZE);
306                 SetPageUptodate(page);
307                 ret = 0;
308                 goto out_alloc;
309         }
310
311         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
312                 ret = ocfs2_readpage_inline(inode, page);
313         else
314                 ret = block_read_full_page(page, ocfs2_get_block);
315         unlock = 0;
316
317 out_alloc:
318         up_read(&OCFS2_I(inode)->ip_alloc_sem);
319 out_inode_unlock:
320         ocfs2_inode_unlock(inode, 0);
321 out:
322         if (unlock)
323                 unlock_page(page);
324         mlog_exit(ret);
325         return ret;
326 }
327
328 /*
329  * This is used only for read-ahead. Failures or difficult to handle
330  * situations are safe to ignore.
331  *
332  * Right now, we don't bother with BH_Boundary - in-inode extent lists
333  * are quite large (243 extents on 4k blocks), so most inodes don't
334  * grow out to a tree. If need be, detecting boundary extents could
335  * trivially be added in a future version of ocfs2_get_block().
336  */
337 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
338                            struct list_head *pages, unsigned nr_pages)
339 {
340         int ret, err = -EIO;
341         struct inode *inode = mapping->host;
342         struct ocfs2_inode_info *oi = OCFS2_I(inode);
343         loff_t start;
344         struct page *last;
345
346         /*
347          * Use the nonblocking flag for the dlm code to avoid page
348          * lock inversion, but don't bother with retrying.
349          */
350         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
351         if (ret)
352                 return err;
353
354         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
355                 ocfs2_inode_unlock(inode, 0);
356                 return err;
357         }
358
359         /*
360          * Don't bother with inline-data. There isn't anything
361          * to read-ahead in that case anyway...
362          */
363         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
364                 goto out_unlock;
365
366         /*
367          * Check whether a remote node truncated this file - we just
368          * drop out in that case as it's not worth handling here.
369          */
370         last = list_entry(pages->prev, struct page, lru);
371         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
372         if (start >= i_size_read(inode))
373                 goto out_unlock;
374
375         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
376
377 out_unlock:
378         up_read(&oi->ip_alloc_sem);
379         ocfs2_inode_unlock(inode, 0);
380
381         return err;
382 }
383
384 /* Note: Because we don't support holes, our allocation has
385  * already happened (allocation writes zeros to the file data)
386  * so we don't have to worry about ordered writes in
387  * ocfs2_writepage.
388  *
389  * ->writepage is called during the process of invalidating the page cache
390  * during blocked lock processing.  It can't block on any cluster locks
391  * to during block mapping.  It's relying on the fact that the block
392  * mapping can't have disappeared under the dirty pages that it is
393  * being asked to write back.
394  */
395 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
396 {
397         int ret;
398
399         mlog_entry("(0x%p)\n", page);
400
401         ret = block_write_full_page(page, ocfs2_get_block, wbc);
402
403         mlog_exit(ret);
404
405         return ret;
406 }
407
408 /*
409  * This is called from ocfs2_write_zero_page() which has handled it's
410  * own cluster locking and has ensured allocation exists for those
411  * blocks to be written.
412  */
413 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
414                                unsigned from, unsigned to)
415 {
416         int ret;
417
418         ret = block_prepare_write(page, from, to, ocfs2_get_block);
419
420         return ret;
421 }
422
423 /* Taken from ext3. We don't necessarily need the full blown
424  * functionality yet, but IMHO it's better to cut and paste the whole
425  * thing so we can avoid introducing our own bugs (and easily pick up
426  * their fixes when they happen) --Mark */
427 int walk_page_buffers(  handle_t *handle,
428                         struct buffer_head *head,
429                         unsigned from,
430                         unsigned to,
431                         int *partial,
432                         int (*fn)(      handle_t *handle,
433                                         struct buffer_head *bh))
434 {
435         struct buffer_head *bh;
436         unsigned block_start, block_end;
437         unsigned blocksize = head->b_size;
438         int err, ret = 0;
439         struct buffer_head *next;
440
441         for (   bh = head, block_start = 0;
442                 ret == 0 && (bh != head || !block_start);
443                 block_start = block_end, bh = next)
444         {
445                 next = bh->b_this_page;
446                 block_end = block_start + blocksize;
447                 if (block_end <= from || block_start >= to) {
448                         if (partial && !buffer_uptodate(bh))
449                                 *partial = 1;
450                         continue;
451                 }
452                 err = (*fn)(handle, bh);
453                 if (!ret)
454                         ret = err;
455         }
456         return ret;
457 }
458
459 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
460                                                          struct page *page,
461                                                          unsigned from,
462                                                          unsigned to)
463 {
464         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
465         handle_t *handle;
466         int ret = 0;
467
468         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
469         if (IS_ERR(handle)) {
470                 ret = -ENOMEM;
471                 mlog_errno(ret);
472                 goto out;
473         }
474
475         if (ocfs2_should_order_data(inode)) {
476                 ret = ocfs2_jbd2_file_inode(handle, inode);
477 #ifdef CONFIG_OCFS2_COMPAT_JBD
478                 ret = walk_page_buffers(handle,
479                                         page_buffers(page),
480                                         from, to, NULL,
481                                         ocfs2_journal_dirty_data);
482 #endif
483                 if (ret < 0)
484                         mlog_errno(ret);
485         }
486 out:
487         if (ret) {
488                 if (!IS_ERR(handle))
489                         ocfs2_commit_trans(osb, handle);
490                 handle = ERR_PTR(ret);
491         }
492         return handle;
493 }
494
495 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
496 {
497         sector_t status;
498         u64 p_blkno = 0;
499         int err = 0;
500         struct inode *inode = mapping->host;
501
502         mlog_entry("(block = %llu)\n", (unsigned long long)block);
503
504         /* We don't need to lock journal system files, since they aren't
505          * accessed concurrently from multiple nodes.
506          */
507         if (!INODE_JOURNAL(inode)) {
508                 err = ocfs2_inode_lock(inode, NULL, 0);
509                 if (err) {
510                         if (err != -ENOENT)
511                                 mlog_errno(err);
512                         goto bail;
513                 }
514                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
515         }
516
517         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
518                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
519                                                   NULL);
520
521         if (!INODE_JOURNAL(inode)) {
522                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
523                 ocfs2_inode_unlock(inode, 0);
524         }
525
526         if (err) {
527                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
528                      (unsigned long long)block);
529                 mlog_errno(err);
530                 goto bail;
531         }
532
533 bail:
534         status = err ? 0 : p_blkno;
535
536         mlog_exit((int)status);
537
538         return status;
539 }
540
541 /*
542  * TODO: Make this into a generic get_blocks function.
543  *
544  * From do_direct_io in direct-io.c:
545  *  "So what we do is to permit the ->get_blocks function to populate
546  *   bh.b_size with the size of IO which is permitted at this offset and
547  *   this i_blkbits."
548  *
549  * This function is called directly from get_more_blocks in direct-io.c.
550  *
551  * called like this: dio->get_blocks(dio->inode, fs_startblk,
552  *                                      fs_count, map_bh, dio->rw == WRITE);
553  */
554 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
555                                      struct buffer_head *bh_result, int create)
556 {
557         int ret;
558         u64 p_blkno, inode_blocks, contig_blocks;
559         unsigned int ext_flags;
560         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
561         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
562
563         /* This function won't even be called if the request isn't all
564          * nicely aligned and of the right size, so there's no need
565          * for us to check any of that. */
566
567         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
568
569         /*
570          * Any write past EOF is not allowed because we'd be extending.
571          */
572         if (create && (iblock + max_blocks) > inode_blocks) {
573                 ret = -EIO;
574                 goto bail;
575         }
576
577         /* This figures out the size of the next contiguous block, and
578          * our logical offset */
579         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
580                                           &contig_blocks, &ext_flags);
581         if (ret) {
582                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
583                      (unsigned long long)iblock);
584                 ret = -EIO;
585                 goto bail;
586         }
587
588         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
589                 ocfs2_error(inode->i_sb,
590                             "Inode %llu has a hole at block %llu\n",
591                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
592                             (unsigned long long)iblock);
593                 ret = -EROFS;
594                 goto bail;
595         }
596
597         /*
598          * get_more_blocks() expects us to describe a hole by clearing
599          * the mapped bit on bh_result().
600          *
601          * Consider an unwritten extent as a hole.
602          */
603         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
604                 map_bh(bh_result, inode->i_sb, p_blkno);
605         else {
606                 /*
607                  * ocfs2_prepare_inode_for_write() should have caught
608                  * the case where we'd be filling a hole and triggered
609                  * a buffered write instead.
610                  */
611                 if (create) {
612                         ret = -EIO;
613                         mlog_errno(ret);
614                         goto bail;
615                 }
616
617                 clear_buffer_mapped(bh_result);
618         }
619
620         /* make sure we don't map more than max_blocks blocks here as
621            that's all the kernel will handle at this point. */
622         if (max_blocks < contig_blocks)
623                 contig_blocks = max_blocks;
624         bh_result->b_size = contig_blocks << blocksize_bits;
625 bail:
626         return ret;
627 }
628
629 /* 
630  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
631  * particularly interested in the aio/dio case.  Like the core uses
632  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
633  * truncation on another.
634  */
635 static void ocfs2_dio_end_io(struct kiocb *iocb,
636                              loff_t offset,
637                              ssize_t bytes,
638                              void *private)
639 {
640         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
641         int level;
642
643         /* this io's submitter should not have unlocked this before we could */
644         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
645
646         ocfs2_iocb_clear_rw_locked(iocb);
647
648         level = ocfs2_iocb_rw_locked_level(iocb);
649         if (!level)
650                 up_read(&inode->i_alloc_sem);
651         ocfs2_rw_unlock(inode, level);
652 }
653
654 /*
655  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
656  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
657  * do journalled data.
658  */
659 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
660 {
661         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
662
663         jbd2_journal_invalidatepage(journal, page, offset);
664 }
665
666 static int ocfs2_releasepage(struct page *page, gfp_t wait)
667 {
668         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
669
670         if (!page_has_buffers(page))
671                 return 0;
672         return jbd2_journal_try_to_free_buffers(journal, page, wait);
673 }
674
675 static ssize_t ocfs2_direct_IO(int rw,
676                                struct kiocb *iocb,
677                                const struct iovec *iov,
678                                loff_t offset,
679                                unsigned long nr_segs)
680 {
681         struct file *file = iocb->ki_filp;
682         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
683         int ret;
684
685         mlog_entry_void();
686
687         /*
688          * Fallback to buffered I/O if we see an inode without
689          * extents.
690          */
691         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
692                 return 0;
693
694         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
695                                             inode->i_sb->s_bdev, iov, offset,
696                                             nr_segs, 
697                                             ocfs2_direct_IO_get_blocks,
698                                             ocfs2_dio_end_io);
699
700         mlog_exit(ret);
701         return ret;
702 }
703
704 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
705                                             u32 cpos,
706                                             unsigned int *start,
707                                             unsigned int *end)
708 {
709         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
710
711         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
712                 unsigned int cpp;
713
714                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
715
716                 cluster_start = cpos % cpp;
717                 cluster_start = cluster_start << osb->s_clustersize_bits;
718
719                 cluster_end = cluster_start + osb->s_clustersize;
720         }
721
722         BUG_ON(cluster_start > PAGE_SIZE);
723         BUG_ON(cluster_end > PAGE_SIZE);
724
725         if (start)
726                 *start = cluster_start;
727         if (end)
728                 *end = cluster_end;
729 }
730
731 /*
732  * 'from' and 'to' are the region in the page to avoid zeroing.
733  *
734  * If pagesize > clustersize, this function will avoid zeroing outside
735  * of the cluster boundary.
736  *
737  * from == to == 0 is code for "zero the entire cluster region"
738  */
739 static void ocfs2_clear_page_regions(struct page *page,
740                                      struct ocfs2_super *osb, u32 cpos,
741                                      unsigned from, unsigned to)
742 {
743         void *kaddr;
744         unsigned int cluster_start, cluster_end;
745
746         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
747
748         kaddr = kmap_atomic(page, KM_USER0);
749
750         if (from || to) {
751                 if (from > cluster_start)
752                         memset(kaddr + cluster_start, 0, from - cluster_start);
753                 if (to < cluster_end)
754                         memset(kaddr + to, 0, cluster_end - to);
755         } else {
756                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
757         }
758
759         kunmap_atomic(kaddr, KM_USER0);
760 }
761
762 /*
763  * Nonsparse file systems fully allocate before we get to the write
764  * code. This prevents ocfs2_write() from tagging the write as an
765  * allocating one, which means ocfs2_map_page_blocks() might try to
766  * read-in the blocks at the tail of our file. Avoid reading them by
767  * testing i_size against each block offset.
768  */
769 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
770                                  unsigned int block_start)
771 {
772         u64 offset = page_offset(page) + block_start;
773
774         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
775                 return 1;
776
777         if (i_size_read(inode) > offset)
778                 return 1;
779
780         return 0;
781 }
782
783 /*
784  * Some of this taken from block_prepare_write(). We already have our
785  * mapping by now though, and the entire write will be allocating or
786  * it won't, so not much need to use BH_New.
787  *
788  * This will also skip zeroing, which is handled externally.
789  */
790 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
791                           struct inode *inode, unsigned int from,
792                           unsigned int to, int new)
793 {
794         int ret = 0;
795         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
796         unsigned int block_end, block_start;
797         unsigned int bsize = 1 << inode->i_blkbits;
798
799         if (!page_has_buffers(page))
800                 create_empty_buffers(page, bsize, 0);
801
802         head = page_buffers(page);
803         for (bh = head, block_start = 0; bh != head || !block_start;
804              bh = bh->b_this_page, block_start += bsize) {
805                 block_end = block_start + bsize;
806
807                 clear_buffer_new(bh);
808
809                 /*
810                  * Ignore blocks outside of our i/o range -
811                  * they may belong to unallocated clusters.
812                  */
813                 if (block_start >= to || block_end <= from) {
814                         if (PageUptodate(page))
815                                 set_buffer_uptodate(bh);
816                         continue;
817                 }
818
819                 /*
820                  * For an allocating write with cluster size >= page
821                  * size, we always write the entire page.
822                  */
823                 if (new)
824                         set_buffer_new(bh);
825
826                 if (!buffer_mapped(bh)) {
827                         map_bh(bh, inode->i_sb, *p_blkno);
828                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
829                 }
830
831                 if (PageUptodate(page)) {
832                         if (!buffer_uptodate(bh))
833                                 set_buffer_uptodate(bh);
834                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
835                            !buffer_new(bh) &&
836                            ocfs2_should_read_blk(inode, page, block_start) &&
837                            (block_start < from || block_end > to)) {
838                         ll_rw_block(READ, 1, &bh);
839                         *wait_bh++=bh;
840                 }
841
842                 *p_blkno = *p_blkno + 1;
843         }
844
845         /*
846          * If we issued read requests - let them complete.
847          */
848         while(wait_bh > wait) {
849                 wait_on_buffer(*--wait_bh);
850                 if (!buffer_uptodate(*wait_bh))
851                         ret = -EIO;
852         }
853
854         if (ret == 0 || !new)
855                 return ret;
856
857         /*
858          * If we get -EIO above, zero out any newly allocated blocks
859          * to avoid exposing stale data.
860          */
861         bh = head;
862         block_start = 0;
863         do {
864                 block_end = block_start + bsize;
865                 if (block_end <= from)
866                         goto next_bh;
867                 if (block_start >= to)
868                         break;
869
870                 zero_user(page, block_start, bh->b_size);
871                 set_buffer_uptodate(bh);
872                 mark_buffer_dirty(bh);
873
874 next_bh:
875                 block_start = block_end;
876                 bh = bh->b_this_page;
877         } while (bh != head);
878
879         return ret;
880 }
881
882 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
883 #define OCFS2_MAX_CTXT_PAGES    1
884 #else
885 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
886 #endif
887
888 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
889
890 /*
891  * Describe the state of a single cluster to be written to.
892  */
893 struct ocfs2_write_cluster_desc {
894         u32             c_cpos;
895         u32             c_phys;
896         /*
897          * Give this a unique field because c_phys eventually gets
898          * filled.
899          */
900         unsigned        c_new;
901         unsigned        c_unwritten;
902 };
903
904 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
905 {
906         return d->c_new || d->c_unwritten;
907 }
908
909 struct ocfs2_write_ctxt {
910         /* Logical cluster position / len of write */
911         u32                             w_cpos;
912         u32                             w_clen;
913
914         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
915
916         /*
917          * This is true if page_size > cluster_size.
918          *
919          * It triggers a set of special cases during write which might
920          * have to deal with allocating writes to partial pages.
921          */
922         unsigned int                    w_large_pages;
923
924         /*
925          * Pages involved in this write.
926          *
927          * w_target_page is the page being written to by the user.
928          *
929          * w_pages is an array of pages which always contains
930          * w_target_page, and in the case of an allocating write with
931          * page_size < cluster size, it will contain zero'd and mapped
932          * pages adjacent to w_target_page which need to be written
933          * out in so that future reads from that region will get
934          * zero's.
935          */
936         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
937         unsigned int                    w_num_pages;
938         struct page                     *w_target_page;
939
940         /*
941          * ocfs2_write_end() uses this to know what the real range to
942          * write in the target should be.
943          */
944         unsigned int                    w_target_from;
945         unsigned int                    w_target_to;
946
947         /*
948          * We could use journal_current_handle() but this is cleaner,
949          * IMHO -Mark
950          */
951         handle_t                        *w_handle;
952
953         struct buffer_head              *w_di_bh;
954
955         struct ocfs2_cached_dealloc_ctxt w_dealloc;
956 };
957
958 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
959 {
960         int i;
961
962         for(i = 0; i < num_pages; i++) {
963                 if (pages[i]) {
964                         unlock_page(pages[i]);
965                         mark_page_accessed(pages[i]);
966                         page_cache_release(pages[i]);
967                 }
968         }
969 }
970
971 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
972 {
973         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
974
975         brelse(wc->w_di_bh);
976         kfree(wc);
977 }
978
979 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
980                                   struct ocfs2_super *osb, loff_t pos,
981                                   unsigned len, struct buffer_head *di_bh)
982 {
983         u32 cend;
984         struct ocfs2_write_ctxt *wc;
985
986         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
987         if (!wc)
988                 return -ENOMEM;
989
990         wc->w_cpos = pos >> osb->s_clustersize_bits;
991         cend = (pos + len - 1) >> osb->s_clustersize_bits;
992         wc->w_clen = cend - wc->w_cpos + 1;
993         get_bh(di_bh);
994         wc->w_di_bh = di_bh;
995
996         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
997                 wc->w_large_pages = 1;
998         else
999                 wc->w_large_pages = 0;
1000
1001         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1002
1003         *wcp = wc;
1004
1005         return 0;
1006 }
1007
1008 /*
1009  * If a page has any new buffers, zero them out here, and mark them uptodate
1010  * and dirty so they'll be written out (in order to prevent uninitialised
1011  * block data from leaking). And clear the new bit.
1012  */
1013 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1014 {
1015         unsigned int block_start, block_end;
1016         struct buffer_head *head, *bh;
1017
1018         BUG_ON(!PageLocked(page));
1019         if (!page_has_buffers(page))
1020                 return;
1021
1022         bh = head = page_buffers(page);
1023         block_start = 0;
1024         do {
1025                 block_end = block_start + bh->b_size;
1026
1027                 if (buffer_new(bh)) {
1028                         if (block_end > from && block_start < to) {
1029                                 if (!PageUptodate(page)) {
1030                                         unsigned start, end;
1031
1032                                         start = max(from, block_start);
1033                                         end = min(to, block_end);
1034
1035                                         zero_user_segment(page, start, end);
1036                                         set_buffer_uptodate(bh);
1037                                 }
1038
1039                                 clear_buffer_new(bh);
1040                                 mark_buffer_dirty(bh);
1041                         }
1042                 }
1043
1044                 block_start = block_end;
1045                 bh = bh->b_this_page;
1046         } while (bh != head);
1047 }
1048
1049 /*
1050  * Only called when we have a failure during allocating write to write
1051  * zero's to the newly allocated region.
1052  */
1053 static void ocfs2_write_failure(struct inode *inode,
1054                                 struct ocfs2_write_ctxt *wc,
1055                                 loff_t user_pos, unsigned user_len)
1056 {
1057         int i;
1058         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1059                 to = user_pos + user_len;
1060         struct page *tmppage;
1061
1062         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1063
1064         for(i = 0; i < wc->w_num_pages; i++) {
1065                 tmppage = wc->w_pages[i];
1066
1067                 if (page_has_buffers(tmppage)) {
1068                         if (ocfs2_should_order_data(inode)) {
1069                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1070 #ifdef CONFIG_OCFS2_COMPAT_JBD
1071                                 walk_page_buffers(wc->w_handle,
1072                                                   page_buffers(tmppage),
1073                                                   from, to, NULL,
1074                                                   ocfs2_journal_dirty_data);
1075 #endif
1076                         }
1077
1078                         block_commit_write(tmppage, from, to);
1079                 }
1080         }
1081 }
1082
1083 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1084                                         struct ocfs2_write_ctxt *wc,
1085                                         struct page *page, u32 cpos,
1086                                         loff_t user_pos, unsigned user_len,
1087                                         int new)
1088 {
1089         int ret;
1090         unsigned int map_from = 0, map_to = 0;
1091         unsigned int cluster_start, cluster_end;
1092         unsigned int user_data_from = 0, user_data_to = 0;
1093
1094         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1095                                         &cluster_start, &cluster_end);
1096
1097         if (page == wc->w_target_page) {
1098                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1099                 map_to = map_from + user_len;
1100
1101                 if (new)
1102                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1103                                                     cluster_start, cluster_end,
1104                                                     new);
1105                 else
1106                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1107                                                     map_from, map_to, new);
1108                 if (ret) {
1109                         mlog_errno(ret);
1110                         goto out;
1111                 }
1112
1113                 user_data_from = map_from;
1114                 user_data_to = map_to;
1115                 if (new) {
1116                         map_from = cluster_start;
1117                         map_to = cluster_end;
1118                 }
1119         } else {
1120                 /*
1121                  * If we haven't allocated the new page yet, we
1122                  * shouldn't be writing it out without copying user
1123                  * data. This is likely a math error from the caller.
1124                  */
1125                 BUG_ON(!new);
1126
1127                 map_from = cluster_start;
1128                 map_to = cluster_end;
1129
1130                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1131                                             cluster_start, cluster_end, new);
1132                 if (ret) {
1133                         mlog_errno(ret);
1134                         goto out;
1135                 }
1136         }
1137
1138         /*
1139          * Parts of newly allocated pages need to be zero'd.
1140          *
1141          * Above, we have also rewritten 'to' and 'from' - as far as
1142          * the rest of the function is concerned, the entire cluster
1143          * range inside of a page needs to be written.
1144          *
1145          * We can skip this if the page is up to date - it's already
1146          * been zero'd from being read in as a hole.
1147          */
1148         if (new && !PageUptodate(page))
1149                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1150                                          cpos, user_data_from, user_data_to);
1151
1152         flush_dcache_page(page);
1153
1154 out:
1155         return ret;
1156 }
1157
1158 /*
1159  * This function will only grab one clusters worth of pages.
1160  */
1161 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1162                                       struct ocfs2_write_ctxt *wc,
1163                                       u32 cpos, loff_t user_pos, int new,
1164                                       struct page *mmap_page)
1165 {
1166         int ret = 0, i;
1167         unsigned long start, target_index, index;
1168         struct inode *inode = mapping->host;
1169
1170         target_index = user_pos >> PAGE_CACHE_SHIFT;
1171
1172         /*
1173          * Figure out how many pages we'll be manipulating here. For
1174          * non allocating write, we just change the one
1175          * page. Otherwise, we'll need a whole clusters worth.
1176          */
1177         if (new) {
1178                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1179                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1180         } else {
1181                 wc->w_num_pages = 1;
1182                 start = target_index;
1183         }
1184
1185         for(i = 0; i < wc->w_num_pages; i++) {
1186                 index = start + i;
1187
1188                 if (index == target_index && mmap_page) {
1189                         /*
1190                          * ocfs2_pagemkwrite() is a little different
1191                          * and wants us to directly use the page
1192                          * passed in.
1193                          */
1194                         lock_page(mmap_page);
1195
1196                         if (mmap_page->mapping != mapping) {
1197                                 unlock_page(mmap_page);
1198                                 /*
1199                                  * Sanity check - the locking in
1200                                  * ocfs2_pagemkwrite() should ensure
1201                                  * that this code doesn't trigger.
1202                                  */
1203                                 ret = -EINVAL;
1204                                 mlog_errno(ret);
1205                                 goto out;
1206                         }
1207
1208                         page_cache_get(mmap_page);
1209                         wc->w_pages[i] = mmap_page;
1210                 } else {
1211                         wc->w_pages[i] = find_or_create_page(mapping, index,
1212                                                              GFP_NOFS);
1213                         if (!wc->w_pages[i]) {
1214                                 ret = -ENOMEM;
1215                                 mlog_errno(ret);
1216                                 goto out;
1217                         }
1218                 }
1219
1220                 if (index == target_index)
1221                         wc->w_target_page = wc->w_pages[i];
1222         }
1223 out:
1224         return ret;
1225 }
1226
1227 /*
1228  * Prepare a single cluster for write one cluster into the file.
1229  */
1230 static int ocfs2_write_cluster(struct address_space *mapping,
1231                                u32 phys, unsigned int unwritten,
1232                                struct ocfs2_alloc_context *data_ac,
1233                                struct ocfs2_alloc_context *meta_ac,
1234                                struct ocfs2_write_ctxt *wc, u32 cpos,
1235                                loff_t user_pos, unsigned user_len)
1236 {
1237         int ret, i, new, should_zero = 0;
1238         u64 v_blkno, p_blkno;
1239         struct inode *inode = mapping->host;
1240         struct ocfs2_extent_tree et;
1241
1242         new = phys == 0 ? 1 : 0;
1243         if (new || unwritten)
1244                 should_zero = 1;
1245
1246         if (new) {
1247                 u32 tmp_pos;
1248
1249                 /*
1250                  * This is safe to call with the page locks - it won't take
1251                  * any additional semaphores or cluster locks.
1252                  */
1253                 tmp_pos = cpos;
1254                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1255                                            &tmp_pos, 1, 0, wc->w_di_bh,
1256                                            wc->w_handle, data_ac,
1257                                            meta_ac, NULL);
1258                 /*
1259                  * This shouldn't happen because we must have already
1260                  * calculated the correct meta data allocation required. The
1261                  * internal tree allocation code should know how to increase
1262                  * transaction credits itself.
1263                  *
1264                  * If need be, we could handle -EAGAIN for a
1265                  * RESTART_TRANS here.
1266                  */
1267                 mlog_bug_on_msg(ret == -EAGAIN,
1268                                 "Inode %llu: EAGAIN return during allocation.\n",
1269                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1270                 if (ret < 0) {
1271                         mlog_errno(ret);
1272                         goto out;
1273                 }
1274         } else if (unwritten) {
1275                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1276                 ret = ocfs2_mark_extent_written(inode, &et,
1277                                                 wc->w_handle, cpos, 1, phys,
1278                                                 meta_ac, &wc->w_dealloc);
1279                 if (ret < 0) {
1280                         mlog_errno(ret);
1281                         goto out;
1282                 }
1283         }
1284
1285         if (should_zero)
1286                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1287         else
1288                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1289
1290         /*
1291          * The only reason this should fail is due to an inability to
1292          * find the extent added.
1293          */
1294         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1295                                           NULL);
1296         if (ret < 0) {
1297                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1298                             "at logical block %llu",
1299                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1300                             (unsigned long long)v_blkno);
1301                 goto out;
1302         }
1303
1304         BUG_ON(p_blkno == 0);
1305
1306         for(i = 0; i < wc->w_num_pages; i++) {
1307                 int tmpret;
1308
1309                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1310                                                       wc->w_pages[i], cpos,
1311                                                       user_pos, user_len,
1312                                                       should_zero);
1313                 if (tmpret) {
1314                         mlog_errno(tmpret);
1315                         if (ret == 0)
1316                                 tmpret = ret;
1317                 }
1318         }
1319
1320         /*
1321          * We only have cleanup to do in case of allocating write.
1322          */
1323         if (ret && new)
1324                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1325
1326 out:
1327
1328         return ret;
1329 }
1330
1331 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1332                                        struct ocfs2_alloc_context *data_ac,
1333                                        struct ocfs2_alloc_context *meta_ac,
1334                                        struct ocfs2_write_ctxt *wc,
1335                                        loff_t pos, unsigned len)
1336 {
1337         int ret, i;
1338         loff_t cluster_off;
1339         unsigned int local_len = len;
1340         struct ocfs2_write_cluster_desc *desc;
1341         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1342
1343         for (i = 0; i < wc->w_clen; i++) {
1344                 desc = &wc->w_desc[i];
1345
1346                 /*
1347                  * We have to make sure that the total write passed in
1348                  * doesn't extend past a single cluster.
1349                  */
1350                 local_len = len;
1351                 cluster_off = pos & (osb->s_clustersize - 1);
1352                 if ((cluster_off + local_len) > osb->s_clustersize)
1353                         local_len = osb->s_clustersize - cluster_off;
1354
1355                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1356                                           desc->c_unwritten, data_ac, meta_ac,
1357                                           wc, desc->c_cpos, pos, local_len);
1358                 if (ret) {
1359                         mlog_errno(ret);
1360                         goto out;
1361                 }
1362
1363                 len -= local_len;
1364                 pos += local_len;
1365         }
1366
1367         ret = 0;
1368 out:
1369         return ret;
1370 }
1371
1372 /*
1373  * ocfs2_write_end() wants to know which parts of the target page it
1374  * should complete the write on. It's easiest to compute them ahead of
1375  * time when a more complete view of the write is available.
1376  */
1377 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1378                                         struct ocfs2_write_ctxt *wc,
1379                                         loff_t pos, unsigned len, int alloc)
1380 {
1381         struct ocfs2_write_cluster_desc *desc;
1382
1383         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1384         wc->w_target_to = wc->w_target_from + len;
1385
1386         if (alloc == 0)
1387                 return;
1388
1389         /*
1390          * Allocating write - we may have different boundaries based
1391          * on page size and cluster size.
1392          *
1393          * NOTE: We can no longer compute one value from the other as
1394          * the actual write length and user provided length may be
1395          * different.
1396          */
1397
1398         if (wc->w_large_pages) {
1399                 /*
1400                  * We only care about the 1st and last cluster within
1401                  * our range and whether they should be zero'd or not. Either
1402                  * value may be extended out to the start/end of a
1403                  * newly allocated cluster.
1404                  */
1405                 desc = &wc->w_desc[0];
1406                 if (ocfs2_should_zero_cluster(desc))
1407                         ocfs2_figure_cluster_boundaries(osb,
1408                                                         desc->c_cpos,
1409                                                         &wc->w_target_from,
1410                                                         NULL);
1411
1412                 desc = &wc->w_desc[wc->w_clen - 1];
1413                 if (ocfs2_should_zero_cluster(desc))
1414                         ocfs2_figure_cluster_boundaries(osb,
1415                                                         desc->c_cpos,
1416                                                         NULL,
1417                                                         &wc->w_target_to);
1418         } else {
1419                 wc->w_target_from = 0;
1420                 wc->w_target_to = PAGE_CACHE_SIZE;
1421         }
1422 }
1423
1424 /*
1425  * Populate each single-cluster write descriptor in the write context
1426  * with information about the i/o to be done.
1427  *
1428  * Returns the number of clusters that will have to be allocated, as
1429  * well as a worst case estimate of the number of extent records that
1430  * would have to be created during a write to an unwritten region.
1431  */
1432 static int ocfs2_populate_write_desc(struct inode *inode,
1433                                      struct ocfs2_write_ctxt *wc,
1434                                      unsigned int *clusters_to_alloc,
1435                                      unsigned int *extents_to_split)
1436 {
1437         int ret;
1438         struct ocfs2_write_cluster_desc *desc;
1439         unsigned int num_clusters = 0;
1440         unsigned int ext_flags = 0;
1441         u32 phys = 0;
1442         int i;
1443
1444         *clusters_to_alloc = 0;
1445         *extents_to_split = 0;
1446
1447         for (i = 0; i < wc->w_clen; i++) {
1448                 desc = &wc->w_desc[i];
1449                 desc->c_cpos = wc->w_cpos + i;
1450
1451                 if (num_clusters == 0) {
1452                         /*
1453                          * Need to look up the next extent record.
1454                          */
1455                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1456                                                  &num_clusters, &ext_flags);
1457                         if (ret) {
1458                                 mlog_errno(ret);
1459                                 goto out;
1460                         }
1461
1462                         /*
1463                          * Assume worst case - that we're writing in
1464                          * the middle of the extent.
1465                          *
1466                          * We can assume that the write proceeds from
1467                          * left to right, in which case the extent
1468                          * insert code is smart enough to coalesce the
1469                          * next splits into the previous records created.
1470                          */
1471                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1472                                 *extents_to_split = *extents_to_split + 2;
1473                 } else if (phys) {
1474                         /*
1475                          * Only increment phys if it doesn't describe
1476                          * a hole.
1477                          */
1478                         phys++;
1479                 }
1480
1481                 desc->c_phys = phys;
1482                 if (phys == 0) {
1483                         desc->c_new = 1;
1484                         *clusters_to_alloc = *clusters_to_alloc + 1;
1485                 }
1486                 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1487                         desc->c_unwritten = 1;
1488
1489                 num_clusters--;
1490         }
1491
1492         ret = 0;
1493 out:
1494         return ret;
1495 }
1496
1497 static int ocfs2_write_begin_inline(struct address_space *mapping,
1498                                     struct inode *inode,
1499                                     struct ocfs2_write_ctxt *wc)
1500 {
1501         int ret;
1502         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1503         struct page *page;
1504         handle_t *handle;
1505         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1506
1507         page = find_or_create_page(mapping, 0, GFP_NOFS);
1508         if (!page) {
1509                 ret = -ENOMEM;
1510                 mlog_errno(ret);
1511                 goto out;
1512         }
1513         /*
1514          * If we don't set w_num_pages then this page won't get unlocked
1515          * and freed on cleanup of the write context.
1516          */
1517         wc->w_pages[0] = wc->w_target_page = page;
1518         wc->w_num_pages = 1;
1519
1520         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1521         if (IS_ERR(handle)) {
1522                 ret = PTR_ERR(handle);
1523                 mlog_errno(ret);
1524                 goto out;
1525         }
1526
1527         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1528                                    OCFS2_JOURNAL_ACCESS_WRITE);
1529         if (ret) {
1530                 ocfs2_commit_trans(osb, handle);
1531
1532                 mlog_errno(ret);
1533                 goto out;
1534         }
1535
1536         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1537                 ocfs2_set_inode_data_inline(inode, di);
1538
1539         if (!PageUptodate(page)) {
1540                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1541                 if (ret) {
1542                         ocfs2_commit_trans(osb, handle);
1543
1544                         goto out;
1545                 }
1546         }
1547
1548         wc->w_handle = handle;
1549 out:
1550         return ret;
1551 }
1552
1553 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554 {
1555         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556
1557         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1558                 return 1;
1559         return 0;
1560 }
1561
1562 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1563                                           struct inode *inode, loff_t pos,
1564                                           unsigned len, struct page *mmap_page,
1565                                           struct ocfs2_write_ctxt *wc)
1566 {
1567         int ret, written = 0;
1568         loff_t end = pos + len;
1569         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1570
1571         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1572              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1573              oi->ip_dyn_features);
1574
1575         /*
1576          * Handle inodes which already have inline data 1st.
1577          */
1578         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579                 if (mmap_page == NULL &&
1580                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581                         goto do_inline_write;
1582
1583                 /*
1584                  * The write won't fit - we have to give this inode an
1585                  * inline extent list now.
1586                  */
1587                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588                 if (ret)
1589                         mlog_errno(ret);
1590                 goto out;
1591         }
1592
1593         /*
1594          * Check whether the inode can accept inline data.
1595          */
1596         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597                 return 0;
1598
1599         /*
1600          * Check whether the write can fit.
1601          */
1602         if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1603                 return 0;
1604
1605 do_inline_write:
1606         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1607         if (ret) {
1608                 mlog_errno(ret);
1609                 goto out;
1610         }
1611
1612         /*
1613          * This signals to the caller that the data can be written
1614          * inline.
1615          */
1616         written = 1;
1617 out:
1618         return written ? written : ret;
1619 }
1620
1621 /*
1622  * This function only does anything for file systems which can't
1623  * handle sparse files.
1624  *
1625  * What we want to do here is fill in any hole between the current end
1626  * of allocation and the end of our write. That way the rest of the
1627  * write path can treat it as an non-allocating write, which has no
1628  * special case code for sparse/nonsparse files.
1629  */
1630 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1631                                         unsigned len,
1632                                         struct ocfs2_write_ctxt *wc)
1633 {
1634         int ret;
1635         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1636         loff_t newsize = pos + len;
1637
1638         if (ocfs2_sparse_alloc(osb))
1639                 return 0;
1640
1641         if (newsize <= i_size_read(inode))
1642                 return 0;
1643
1644         ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1645         if (ret)
1646                 mlog_errno(ret);
1647
1648         return ret;
1649 }
1650
1651 int ocfs2_write_begin_nolock(struct address_space *mapping,
1652                              loff_t pos, unsigned len, unsigned flags,
1653                              struct page **pagep, void **fsdata,
1654                              struct buffer_head *di_bh, struct page *mmap_page)
1655 {
1656         int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1657         unsigned int clusters_to_alloc, extents_to_split;
1658         struct ocfs2_write_ctxt *wc;
1659         struct inode *inode = mapping->host;
1660         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1661         struct ocfs2_dinode *di;
1662         struct ocfs2_alloc_context *data_ac = NULL;
1663         struct ocfs2_alloc_context *meta_ac = NULL;
1664         handle_t *handle;
1665         struct ocfs2_extent_tree et;
1666
1667         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1668         if (ret) {
1669                 mlog_errno(ret);
1670                 return ret;
1671         }
1672
1673         if (ocfs2_supports_inline_data(osb)) {
1674                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1675                                                      mmap_page, wc);
1676                 if (ret == 1) {
1677                         ret = 0;
1678                         goto success;
1679                 }
1680                 if (ret < 0) {
1681                         mlog_errno(ret);
1682                         goto out;
1683                 }
1684         }
1685
1686         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1687         if (ret) {
1688                 mlog_errno(ret);
1689                 goto out;
1690         }
1691
1692         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1693                                         &extents_to_split);
1694         if (ret) {
1695                 mlog_errno(ret);
1696                 goto out;
1697         }
1698
1699         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1700
1701         /*
1702          * We set w_target_from, w_target_to here so that
1703          * ocfs2_write_end() knows which range in the target page to
1704          * write out. An allocation requires that we write the entire
1705          * cluster range.
1706          */
1707         if (clusters_to_alloc || extents_to_split) {
1708                 /*
1709                  * XXX: We are stretching the limits of
1710                  * ocfs2_lock_allocators(). It greatly over-estimates
1711                  * the work to be done.
1712                  */
1713                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1714                      " clusters_to_add = %u, extents_to_split = %u\n",
1715                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1716                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1717                      clusters_to_alloc, extents_to_split);
1718
1719                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1720                 ret = ocfs2_lock_allocators(inode, &et,
1721                                             clusters_to_alloc, extents_to_split,
1722                                             &data_ac, &meta_ac);
1723                 if (ret) {
1724                         mlog_errno(ret);
1725                         goto out;
1726                 }
1727
1728                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1729                                                     &di->id2.i_list,
1730                                                     clusters_to_alloc);
1731
1732         }
1733
1734         ocfs2_set_target_boundaries(osb, wc, pos, len,
1735                                     clusters_to_alloc + extents_to_split);
1736
1737         handle = ocfs2_start_trans(osb, credits);
1738         if (IS_ERR(handle)) {
1739                 ret = PTR_ERR(handle);
1740                 mlog_errno(ret);
1741                 goto out;
1742         }
1743
1744         wc->w_handle = handle;
1745
1746         /*
1747          * We don't want this to fail in ocfs2_write_end(), so do it
1748          * here.
1749          */
1750         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1751                                    OCFS2_JOURNAL_ACCESS_WRITE);
1752         if (ret) {
1753                 mlog_errno(ret);
1754                 goto out_commit;
1755         }
1756
1757         /*
1758          * Fill our page array first. That way we've grabbed enough so
1759          * that we can zero and flush if we error after adding the
1760          * extent.
1761          */
1762         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1763                                          clusters_to_alloc + extents_to_split,
1764                                          mmap_page);
1765         if (ret) {
1766                 mlog_errno(ret);
1767                 goto out_commit;
1768         }
1769
1770         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1771                                           len);
1772         if (ret) {
1773                 mlog_errno(ret);
1774                 goto out_commit;
1775         }
1776
1777         if (data_ac)
1778                 ocfs2_free_alloc_context(data_ac);
1779         if (meta_ac)
1780                 ocfs2_free_alloc_context(meta_ac);
1781
1782 success:
1783         *pagep = wc->w_target_page;
1784         *fsdata = wc;
1785         return 0;
1786 out_commit:
1787         ocfs2_commit_trans(osb, handle);
1788
1789 out:
1790         ocfs2_free_write_ctxt(wc);
1791
1792         if (data_ac)
1793                 ocfs2_free_alloc_context(data_ac);
1794         if (meta_ac)
1795                 ocfs2_free_alloc_context(meta_ac);
1796         return ret;
1797 }
1798
1799 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1800                              loff_t pos, unsigned len, unsigned flags,
1801                              struct page **pagep, void **fsdata)
1802 {
1803         int ret;
1804         struct buffer_head *di_bh = NULL;
1805         struct inode *inode = mapping->host;
1806
1807         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1808         if (ret) {
1809                 mlog_errno(ret);
1810                 return ret;
1811         }
1812
1813         /*
1814          * Take alloc sem here to prevent concurrent lookups. That way
1815          * the mapping, zeroing and tree manipulation within
1816          * ocfs2_write() will be safe against ->readpage(). This
1817          * should also serve to lock out allocation from a shared
1818          * writeable region.
1819          */
1820         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1821
1822         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1823                                        fsdata, di_bh, NULL);
1824         if (ret) {
1825                 mlog_errno(ret);
1826                 goto out_fail;
1827         }
1828
1829         brelse(di_bh);
1830
1831         return 0;
1832
1833 out_fail:
1834         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1835
1836         brelse(di_bh);
1837         ocfs2_inode_unlock(inode, 1);
1838
1839         return ret;
1840 }
1841
1842 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1843                                    unsigned len, unsigned *copied,
1844                                    struct ocfs2_dinode *di,
1845                                    struct ocfs2_write_ctxt *wc)
1846 {
1847         void *kaddr;
1848
1849         if (unlikely(*copied < len)) {
1850                 if (!PageUptodate(wc->w_target_page)) {
1851                         *copied = 0;
1852                         return;
1853                 }
1854         }
1855
1856         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1857         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1858         kunmap_atomic(kaddr, KM_USER0);
1859
1860         mlog(0, "Data written to inode at offset %llu. "
1861              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1862              (unsigned long long)pos, *copied,
1863              le16_to_cpu(di->id2.i_data.id_count),
1864              le16_to_cpu(di->i_dyn_features));
1865 }
1866
1867 int ocfs2_write_end_nolock(struct address_space *mapping,
1868                            loff_t pos, unsigned len, unsigned copied,
1869                            struct page *page, void *fsdata)
1870 {
1871         int i;
1872         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1873         struct inode *inode = mapping->host;
1874         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1875         struct ocfs2_write_ctxt *wc = fsdata;
1876         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1877         handle_t *handle = wc->w_handle;
1878         struct page *tmppage;
1879
1880         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1881                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1882                 goto out_write_size;
1883         }
1884
1885         if (unlikely(copied < len)) {
1886                 if (!PageUptodate(wc->w_target_page))
1887                         copied = 0;
1888
1889                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1890                                        start+len);
1891         }
1892         flush_dcache_page(wc->w_target_page);
1893
1894         for(i = 0; i < wc->w_num_pages; i++) {
1895                 tmppage = wc->w_pages[i];
1896
1897                 if (tmppage == wc->w_target_page) {
1898                         from = wc->w_target_from;
1899                         to = wc->w_target_to;
1900
1901                         BUG_ON(from > PAGE_CACHE_SIZE ||
1902                                to > PAGE_CACHE_SIZE ||
1903                                to < from);
1904                 } else {
1905                         /*
1906                          * Pages adjacent to the target (if any) imply
1907                          * a hole-filling write in which case we want
1908                          * to flush their entire range.
1909                          */
1910                         from = 0;
1911                         to = PAGE_CACHE_SIZE;
1912                 }
1913
1914                 if (page_has_buffers(tmppage)) {
1915                         if (ocfs2_should_order_data(inode)) {
1916                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1917 #ifdef CONFIG_OCFS2_COMPAT_JBD
1918                                 walk_page_buffers(wc->w_handle,
1919                                                   page_buffers(tmppage),
1920                                                   from, to, NULL,
1921                                                   ocfs2_journal_dirty_data);
1922 #endif
1923                         }
1924                         block_commit_write(tmppage, from, to);
1925                 }
1926         }
1927
1928 out_write_size:
1929         pos += copied;
1930         if (pos > inode->i_size) {
1931                 i_size_write(inode, pos);
1932                 mark_inode_dirty(inode);
1933         }
1934         inode->i_blocks = ocfs2_inode_sector_count(inode);
1935         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1936         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1937         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1938         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1939         ocfs2_journal_dirty(handle, wc->w_di_bh);
1940
1941         ocfs2_commit_trans(osb, handle);
1942
1943         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1944
1945         ocfs2_free_write_ctxt(wc);
1946
1947         return copied;
1948 }
1949
1950 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1951                            loff_t pos, unsigned len, unsigned copied,
1952                            struct page *page, void *fsdata)
1953 {
1954         int ret;
1955         struct inode *inode = mapping->host;
1956
1957         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1958
1959         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1960         ocfs2_inode_unlock(inode, 1);
1961
1962         return ret;
1963 }
1964
1965 const struct address_space_operations ocfs2_aops = {
1966         .readpage       = ocfs2_readpage,
1967         .readpages      = ocfs2_readpages,
1968         .writepage      = ocfs2_writepage,
1969         .write_begin    = ocfs2_write_begin,
1970         .write_end      = ocfs2_write_end,
1971         .bmap           = ocfs2_bmap,
1972         .sync_page      = block_sync_page,
1973         .direct_IO      = ocfs2_direct_IO,
1974         .invalidatepage = ocfs2_invalidatepage,
1975         .releasepage    = ocfs2_releasepage,
1976         .migratepage    = buffer_migrate_page,
1977 };