NFSv4: Add post-op attributes to NFSv4 write and commit callbacks.
[safe/jmp/linux-2.6] / fs / nfs / nfs4proc.c
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54
55 #define NFSDBG_FACILITY         NFSDBG_PROC
56
57 #define NFS4_POLL_RETRY_MIN     (1*HZ)
58 #define NFS4_POLL_RETRY_MAX     (15*HZ)
59
60 static int _nfs4_proc_open_confirm(struct rpc_clnt *clnt, const struct nfs_fh *fh, struct nfs4_state_owner *sp, nfs4_stateid *stateid, struct nfs_seqid *seqid);
61 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
62 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
63 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
64 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
65 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
66 extern struct rpc_procinfo nfs4_procedures[];
67
68 /* Prevent leaks of NFSv4 errors into userland */
69 int nfs4_map_errors(int err)
70 {
71         if (err < -1000) {
72                 dprintk("%s could not handle NFSv4 error %d\n",
73                                 __FUNCTION__, -err);
74                 return -EIO;
75         }
76         return err;
77 }
78
79 /*
80  * This is our standard bitmap for GETATTR requests.
81  */
82 const u32 nfs4_fattr_bitmap[2] = {
83         FATTR4_WORD0_TYPE
84         | FATTR4_WORD0_CHANGE
85         | FATTR4_WORD0_SIZE
86         | FATTR4_WORD0_FSID
87         | FATTR4_WORD0_FILEID,
88         FATTR4_WORD1_MODE
89         | FATTR4_WORD1_NUMLINKS
90         | FATTR4_WORD1_OWNER
91         | FATTR4_WORD1_OWNER_GROUP
92         | FATTR4_WORD1_RAWDEV
93         | FATTR4_WORD1_SPACE_USED
94         | FATTR4_WORD1_TIME_ACCESS
95         | FATTR4_WORD1_TIME_METADATA
96         | FATTR4_WORD1_TIME_MODIFY
97 };
98
99 const u32 nfs4_statfs_bitmap[2] = {
100         FATTR4_WORD0_FILES_AVAIL
101         | FATTR4_WORD0_FILES_FREE
102         | FATTR4_WORD0_FILES_TOTAL,
103         FATTR4_WORD1_SPACE_AVAIL
104         | FATTR4_WORD1_SPACE_FREE
105         | FATTR4_WORD1_SPACE_TOTAL
106 };
107
108 const u32 nfs4_pathconf_bitmap[2] = {
109         FATTR4_WORD0_MAXLINK
110         | FATTR4_WORD0_MAXNAME,
111         0
112 };
113
114 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
115                         | FATTR4_WORD0_MAXREAD
116                         | FATTR4_WORD0_MAXWRITE
117                         | FATTR4_WORD0_LEASE_TIME,
118                         0
119 };
120
121 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
122                 struct nfs4_readdir_arg *readdir)
123 {
124         u32 *start, *p;
125
126         BUG_ON(readdir->count < 80);
127         if (cookie > 2) {
128                 readdir->cookie = cookie;
129                 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
130                 return;
131         }
132
133         readdir->cookie = 0;
134         memset(&readdir->verifier, 0, sizeof(readdir->verifier));
135         if (cookie == 2)
136                 return;
137         
138         /*
139          * NFSv4 servers do not return entries for '.' and '..'
140          * Therefore, we fake these entries here.  We let '.'
141          * have cookie 0 and '..' have cookie 1.  Note that
142          * when talking to the server, we always send cookie 0
143          * instead of 1 or 2.
144          */
145         start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
146         
147         if (cookie == 0) {
148                 *p++ = xdr_one;                                  /* next */
149                 *p++ = xdr_zero;                   /* cookie, first word */
150                 *p++ = xdr_one;                   /* cookie, second word */
151                 *p++ = xdr_one;                             /* entry len */
152                 memcpy(p, ".\0\0\0", 4);                        /* entry */
153                 p++;
154                 *p++ = xdr_one;                         /* bitmap length */
155                 *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
156                 *p++ = htonl(8);              /* attribute buffer length */
157                 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
158         }
159         
160         *p++ = xdr_one;                                  /* next */
161         *p++ = xdr_zero;                   /* cookie, first word */
162         *p++ = xdr_two;                   /* cookie, second word */
163         *p++ = xdr_two;                             /* entry len */
164         memcpy(p, "..\0\0", 4);                         /* entry */
165         p++;
166         *p++ = xdr_one;                         /* bitmap length */
167         *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
168         *p++ = htonl(8);              /* attribute buffer length */
169         p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
170
171         readdir->pgbase = (char *)p - (char *)start;
172         readdir->count -= readdir->pgbase;
173         kunmap_atomic(start, KM_USER0);
174 }
175
176 static void
177 renew_lease(struct nfs_server *server, unsigned long timestamp)
178 {
179         struct nfs4_client *clp = server->nfs4_state;
180         spin_lock(&clp->cl_lock);
181         if (time_before(clp->cl_last_renewal,timestamp))
182                 clp->cl_last_renewal = timestamp;
183         spin_unlock(&clp->cl_lock);
184 }
185
186 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo)
187 {
188         struct nfs_inode *nfsi = NFS_I(inode);
189
190         spin_lock(&inode->i_lock);
191         nfsi->cache_validity |= NFS_INO_INVALID_ATTR;
192         if (cinfo->before == nfsi->change_attr && cinfo->atomic)
193                 nfsi->change_attr = cinfo->after;
194         spin_unlock(&inode->i_lock);
195 }
196
197 /* Helper for asynchronous RPC calls */
198 static int nfs4_call_async(struct rpc_clnt *clnt, rpc_action tk_begin,
199                 rpc_action tk_exit, void *calldata)
200 {
201         struct rpc_task *task;
202
203         if (!(task = rpc_new_task(clnt, tk_exit, RPC_TASK_ASYNC)))
204                 return -ENOMEM;
205
206         task->tk_calldata = calldata;
207         task->tk_action = tk_begin;
208         rpc_execute(task);
209         return 0;
210 }
211
212 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
213 {
214         struct inode *inode = state->inode;
215
216         open_flags &= (FMODE_READ|FMODE_WRITE);
217         /* Protect against nfs4_find_state() */
218         spin_lock(&state->owner->so_lock);
219         spin_lock(&inode->i_lock);
220         state->state |= open_flags;
221         /* NB! List reordering - see the reclaim code for why.  */
222         if ((open_flags & FMODE_WRITE) && 0 == state->nwriters++)
223                 list_move(&state->open_states, &state->owner->so_states);
224         if (open_flags & FMODE_READ)
225                 state->nreaders++;
226         memcpy(&state->stateid, stateid, sizeof(state->stateid));
227         spin_unlock(&inode->i_lock);
228         spin_unlock(&state->owner->so_lock);
229 }
230
231 /*
232  * OPEN_RECLAIM:
233  *      reclaim state on the server after a reboot.
234  */
235 static int _nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
236 {
237         struct inode *inode = state->inode;
238         struct nfs_server *server = NFS_SERVER(inode);
239         struct nfs_delegation *delegation = NFS_I(inode)->delegation;
240         struct nfs_openargs o_arg = {
241                 .fh = NFS_FH(inode),
242                 .id = sp->so_id,
243                 .open_flags = state->state,
244                 .clientid = server->nfs4_state->cl_clientid,
245                 .claim = NFS4_OPEN_CLAIM_PREVIOUS,
246                 .bitmask = server->attr_bitmask,
247         };
248         struct nfs_openres o_res = {
249                 .server = server,       /* Grrr */
250         };
251         struct rpc_message msg = {
252                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR],
253                 .rpc_argp       = &o_arg,
254                 .rpc_resp       = &o_res,
255                 .rpc_cred       = sp->so_cred,
256         };
257         int status;
258
259         if (delegation != NULL) {
260                 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
261                         memcpy(&state->stateid, &delegation->stateid,
262                                         sizeof(state->stateid));
263                         set_bit(NFS_DELEGATED_STATE, &state->flags);
264                         return 0;
265                 }
266                 o_arg.u.delegation_type = delegation->type;
267         }
268         o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
269         if (o_arg.seqid == NULL)
270                 return -ENOMEM;
271         status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
272         /* Confirm the sequence as being established */
273         nfs_confirm_seqid(&sp->so_seqid, status);
274         nfs_increment_open_seqid(status, o_arg.seqid);
275         if (status == 0) {
276                 memcpy(&state->stateid, &o_res.stateid, sizeof(state->stateid));
277                 if (o_res.delegation_type != 0) {
278                         nfs_inode_reclaim_delegation(inode, sp->so_cred, &o_res);
279                         /* Did the server issue an immediate delegation recall? */
280                         if (o_res.do_recall)
281                                 nfs_async_inode_return_delegation(inode, &o_res.stateid);
282                 }
283         }
284         nfs_free_seqid(o_arg.seqid);
285         clear_bit(NFS_DELEGATED_STATE, &state->flags);
286         /* Ensure we update the inode attributes */
287         NFS_CACHEINV(inode);
288         return status;
289 }
290
291 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
292 {
293         struct nfs_server *server = NFS_SERVER(state->inode);
294         struct nfs4_exception exception = { };
295         int err;
296         do {
297                 err = _nfs4_open_reclaim(sp, state);
298                 if (err != -NFS4ERR_DELAY)
299                         break;
300                 nfs4_handle_exception(server, err, &exception);
301         } while (exception.retry);
302         return err;
303 }
304
305 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
306 {
307         struct nfs4_state_owner  *sp  = state->owner;
308         struct inode *inode = dentry->d_inode;
309         struct nfs_server *server = NFS_SERVER(inode);
310         struct dentry *parent = dget_parent(dentry);
311         struct nfs_openargs arg = {
312                 .fh = NFS_FH(parent->d_inode),
313                 .clientid = server->nfs4_state->cl_clientid,
314                 .name = &dentry->d_name,
315                 .id = sp->so_id,
316                 .server = server,
317                 .bitmask = server->attr_bitmask,
318                 .claim = NFS4_OPEN_CLAIM_DELEGATE_CUR,
319         };
320         struct nfs_openres res = {
321                 .server = server,
322         };
323         struct  rpc_message msg = {
324                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR],
325                 .rpc_argp       = &arg,
326                 .rpc_resp       = &res,
327                 .rpc_cred       = sp->so_cred,
328         };
329         int status = 0;
330
331         if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
332                 goto out;
333         if (state->state == 0)
334                 goto out;
335         arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
336         status = -ENOMEM;
337         if (arg.seqid == NULL)
338                 goto out;
339         arg.open_flags = state->state;
340         memcpy(arg.u.delegation.data, state->stateid.data, sizeof(arg.u.delegation.data));
341         status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
342         nfs_increment_open_seqid(status, arg.seqid);
343         if (status != 0)
344                 goto out_free;
345         if(res.rflags & NFS4_OPEN_RESULT_CONFIRM) {
346                 status = _nfs4_proc_open_confirm(server->client, NFS_FH(inode),
347                                 sp, &res.stateid, arg.seqid);
348                 if (status != 0)
349                         goto out_free;
350         }
351         nfs_confirm_seqid(&sp->so_seqid, 0);
352         if (status >= 0) {
353                 memcpy(state->stateid.data, res.stateid.data,
354                                 sizeof(state->stateid.data));
355                 clear_bit(NFS_DELEGATED_STATE, &state->flags);
356         }
357 out_free:
358         nfs_free_seqid(arg.seqid);
359 out:
360         dput(parent);
361         return status;
362 }
363
364 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
365 {
366         struct nfs4_exception exception = { };
367         struct nfs_server *server = NFS_SERVER(dentry->d_inode);
368         int err;
369         do {
370                 err = _nfs4_open_delegation_recall(dentry, state);
371                 switch (err) {
372                         case 0:
373                                 return err;
374                         case -NFS4ERR_STALE_CLIENTID:
375                         case -NFS4ERR_STALE_STATEID:
376                         case -NFS4ERR_EXPIRED:
377                                 /* Don't recall a delegation if it was lost */
378                                 nfs4_schedule_state_recovery(server->nfs4_state);
379                                 return err;
380                 }
381                 err = nfs4_handle_exception(server, err, &exception);
382         } while (exception.retry);
383         return err;
384 }
385
386 static int _nfs4_proc_open_confirm(struct rpc_clnt *clnt, const struct nfs_fh *fh, struct nfs4_state_owner *sp, nfs4_stateid *stateid, struct nfs_seqid *seqid)
387 {
388         struct nfs_open_confirmargs arg = {
389                 .fh             = fh,
390                 .seqid          = seqid,
391                 .stateid        = *stateid,
392         };
393         struct nfs_open_confirmres res;
394         struct  rpc_message msg = {
395                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
396                 .rpc_argp       = &arg,
397                 .rpc_resp       = &res,
398                 .rpc_cred       = sp->so_cred,
399         };
400         int status;
401
402         status = rpc_call_sync(clnt, &msg, RPC_TASK_NOINTR);
403         /* Confirm the sequence as being established */
404         nfs_confirm_seqid(&sp->so_seqid, status);
405         nfs_increment_open_seqid(status, seqid);
406         if (status >= 0)
407                 memcpy(stateid, &res.stateid, sizeof(*stateid));
408         return status;
409 }
410
411 static int _nfs4_proc_open(struct inode *dir, struct nfs4_state_owner  *sp, struct nfs_openargs *o_arg, struct nfs_openres *o_res)
412 {
413         struct nfs_server *server = NFS_SERVER(dir);
414         struct rpc_message msg = {
415                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
416                 .rpc_argp = o_arg,
417                 .rpc_resp = o_res,
418                 .rpc_cred = sp->so_cred,
419         };
420         int status;
421
422         /* Update sequence id. The caller must serialize! */
423         o_arg->id = sp->so_id;
424         o_arg->clientid = sp->so_client->cl_clientid;
425
426         status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
427         if (status == 0) {
428                 /* OPEN on anything except a regular file is disallowed in NFSv4 */
429                 switch (o_res->f_attr->mode & S_IFMT) {
430                         case S_IFREG:
431                                 break;
432                         case S_IFLNK:
433                                 status = -ELOOP;
434                                 break;
435                         case S_IFDIR:
436                                 status = -EISDIR;
437                                 break;
438                         default:
439                                 status = -ENOTDIR;
440                 }
441         }
442
443         nfs_increment_open_seqid(status, o_arg->seqid);
444         if (status != 0)
445                 goto out;
446         if (o_arg->open_flags & O_CREAT) {
447                 update_changeattr(dir, &o_res->cinfo);
448                 nfs_post_op_update_inode(dir, o_res->dir_attr);
449         } else
450                 nfs_refresh_inode(dir, o_res->dir_attr);
451         if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
452                 status = _nfs4_proc_open_confirm(server->client, &o_res->fh,
453                                 sp, &o_res->stateid, o_arg->seqid);
454                 if (status != 0)
455                         goto out;
456         }
457         nfs_confirm_seqid(&sp->so_seqid, 0);
458         if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
459                 status = server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
460 out:
461         return status;
462 }
463
464 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
465 {
466         struct nfs_access_entry cache;
467         int mask = 0;
468         int status;
469
470         if (openflags & FMODE_READ)
471                 mask |= MAY_READ;
472         if (openflags & FMODE_WRITE)
473                 mask |= MAY_WRITE;
474         status = nfs_access_get_cached(inode, cred, &cache);
475         if (status == 0)
476                 goto out;
477
478         /* Be clever: ask server to check for all possible rights */
479         cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
480         cache.cred = cred;
481         cache.jiffies = jiffies;
482         status = _nfs4_proc_access(inode, &cache);
483         if (status != 0)
484                 return status;
485         nfs_access_add_cache(inode, &cache);
486 out:
487         if ((cache.mask & mask) == mask)
488                 return 0;
489         return -EACCES;
490 }
491
492 /*
493  * OPEN_EXPIRED:
494  *      reclaim state on the server after a network partition.
495  *      Assumes caller holds the appropriate lock
496  */
497 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
498 {
499         struct dentry *parent = dget_parent(dentry);
500         struct inode *dir = parent->d_inode;
501         struct inode *inode = state->inode;
502         struct nfs_server *server = NFS_SERVER(dir);
503         struct nfs_delegation *delegation = NFS_I(inode)->delegation;
504         struct nfs_fattr f_attr, dir_attr;
505         struct nfs_openargs o_arg = {
506                 .fh = NFS_FH(dir),
507                 .open_flags = state->state,
508                 .name = &dentry->d_name,
509                 .bitmask = server->attr_bitmask,
510                 .claim = NFS4_OPEN_CLAIM_NULL,
511         };
512         struct nfs_openres o_res = {
513                 .f_attr = &f_attr,
514                 .dir_attr = &dir_attr,
515                 .server = server,
516         };
517         int status = 0;
518
519         if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
520                 status = _nfs4_do_access(inode, sp->so_cred, state->state);
521                 if (status < 0)
522                         goto out;
523                 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
524                 set_bit(NFS_DELEGATED_STATE, &state->flags);
525                 goto out;
526         }
527         o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
528         status = -ENOMEM;
529         if (o_arg.seqid == NULL)
530                 goto out;
531         nfs_fattr_init(&f_attr);
532         nfs_fattr_init(&dir_attr);
533         status = _nfs4_proc_open(dir, sp, &o_arg, &o_res);
534         if (status != 0)
535                 goto out_nodeleg;
536         /* Check if files differ */
537         if ((f_attr.mode & S_IFMT) != (inode->i_mode & S_IFMT))
538                 goto out_stale;
539         /* Has the file handle changed? */
540         if (nfs_compare_fh(&o_res.fh, NFS_FH(inode)) != 0) {
541                 /* Verify if the change attributes are the same */
542                 if (f_attr.change_attr != NFS_I(inode)->change_attr)
543                         goto out_stale;
544                 if (nfs_size_to_loff_t(f_attr.size) != inode->i_size)
545                         goto out_stale;
546                 /* Lets just pretend that this is the same file */
547                 nfs_copy_fh(NFS_FH(inode), &o_res.fh);
548                 NFS_I(inode)->fileid = f_attr.fileid;
549         }
550         memcpy(&state->stateid, &o_res.stateid, sizeof(state->stateid));
551         if (o_res.delegation_type != 0) {
552                 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM))
553                         nfs_inode_set_delegation(inode, sp->so_cred, &o_res);
554                 else
555                         nfs_inode_reclaim_delegation(inode, sp->so_cred, &o_res);
556         }
557 out_nodeleg:
558         nfs_free_seqid(o_arg.seqid);
559         clear_bit(NFS_DELEGATED_STATE, &state->flags);
560 out:
561         dput(parent);
562         return status;
563 out_stale:
564         status = -ESTALE;
565         /* Invalidate the state owner so we don't ever use it again */
566         nfs4_drop_state_owner(sp);
567         d_drop(dentry);
568         /* Should we be trying to close that stateid? */
569         goto out_nodeleg;
570 }
571
572 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
573 {
574         struct nfs_server *server = NFS_SERVER(dentry->d_inode);
575         struct nfs4_exception exception = { };
576         int err;
577
578         do {
579                 err = _nfs4_open_expired(sp, state, dentry);
580                 if (err == -NFS4ERR_DELAY)
581                         nfs4_handle_exception(server, err, &exception);
582         } while (exception.retry);
583         return err;
584 }
585
586 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
587 {
588         struct nfs_inode *nfsi = NFS_I(state->inode);
589         struct nfs_open_context *ctx;
590         int status;
591
592         spin_lock(&state->inode->i_lock);
593         list_for_each_entry(ctx, &nfsi->open_files, list) {
594                 if (ctx->state != state)
595                         continue;
596                 get_nfs_open_context(ctx);
597                 spin_unlock(&state->inode->i_lock);
598                 status = nfs4_do_open_expired(sp, state, ctx->dentry);
599                 put_nfs_open_context(ctx);
600                 return status;
601         }
602         spin_unlock(&state->inode->i_lock);
603         return -ENOENT;
604 }
605
606 /*
607  * Returns an nfs4_state + an extra reference to the inode
608  */
609 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
610 {
611         struct nfs_delegation *delegation;
612         struct nfs_server *server = NFS_SERVER(inode);
613         struct nfs4_client *clp = server->nfs4_state;
614         struct nfs_inode *nfsi = NFS_I(inode);
615         struct nfs4_state_owner *sp = NULL;
616         struct nfs4_state *state = NULL;
617         int open_flags = flags & (FMODE_READ|FMODE_WRITE);
618         int err;
619
620         /* Protect against reboot recovery - NOTE ORDER! */
621         down_read(&clp->cl_sem);
622         /* Protect against delegation recall */
623         down_read(&nfsi->rwsem);
624         delegation = NFS_I(inode)->delegation;
625         err = -ENOENT;
626         if (delegation == NULL || (delegation->type & open_flags) != open_flags)
627                 goto out_err;
628         err = -ENOMEM;
629         if (!(sp = nfs4_get_state_owner(server, cred))) {
630                 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
631                 goto out_err;
632         }
633         state = nfs4_get_open_state(inode, sp);
634         if (state == NULL)
635                 goto out_err;
636
637         err = -ENOENT;
638         if ((state->state & open_flags) == open_flags) {
639                 spin_lock(&inode->i_lock);
640                 if (open_flags & FMODE_READ)
641                         state->nreaders++;
642                 if (open_flags & FMODE_WRITE)
643                         state->nwriters++;
644                 spin_unlock(&inode->i_lock);
645                 goto out_ok;
646         } else if (state->state != 0)
647                 goto out_err;
648
649         lock_kernel();
650         err = _nfs4_do_access(inode, cred, open_flags);
651         unlock_kernel();
652         if (err != 0)
653                 goto out_err;
654         set_bit(NFS_DELEGATED_STATE, &state->flags);
655         update_open_stateid(state, &delegation->stateid, open_flags);
656 out_ok:
657         nfs4_put_state_owner(sp);
658         up_read(&nfsi->rwsem);
659         up_read(&clp->cl_sem);
660         igrab(inode);
661         *res = state;
662         return 0; 
663 out_err:
664         if (sp != NULL) {
665                 if (state != NULL)
666                         nfs4_put_open_state(state);
667                 nfs4_put_state_owner(sp);
668         }
669         up_read(&nfsi->rwsem);
670         up_read(&clp->cl_sem);
671         if (err != -EACCES)
672                 nfs_inode_return_delegation(inode);
673         return err;
674 }
675
676 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
677 {
678         struct nfs4_exception exception = { };
679         struct nfs4_state *res;
680         int err;
681
682         do {
683                 err = _nfs4_open_delegated(inode, flags, cred, &res);
684                 if (err == 0)
685                         break;
686                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
687                                         err, &exception));
688         } while (exception.retry);
689         return res;
690 }
691
692 /*
693  * Returns an nfs4_state + an referenced inode
694  */
695 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
696 {
697         struct nfs4_state_owner  *sp;
698         struct nfs4_state     *state = NULL;
699         struct nfs_server       *server = NFS_SERVER(dir);
700         struct nfs4_client *clp = server->nfs4_state;
701         struct inode *inode = NULL;
702         int                     status;
703         struct nfs_fattr f_attr, dir_attr;
704         struct nfs_openargs o_arg = {
705                 .fh             = NFS_FH(dir),
706                 .open_flags     = flags,
707                 .name           = &dentry->d_name,
708                 .server         = server,
709                 .bitmask = server->attr_bitmask,
710                 .claim = NFS4_OPEN_CLAIM_NULL,
711         };
712         struct nfs_openres o_res = {
713                 .f_attr         = &f_attr,
714                 .dir_attr       = &dir_attr,
715                 .server         = server,
716         };
717
718         /* Protect against reboot recovery conflicts */
719         down_read(&clp->cl_sem);
720         status = -ENOMEM;
721         if (!(sp = nfs4_get_state_owner(server, cred))) {
722                 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
723                 goto out_err;
724         }
725         if (flags & O_EXCL) {
726                 u32 *p = (u32 *) o_arg.u.verifier.data;
727                 p[0] = jiffies;
728                 p[1] = current->pid;
729         } else
730                 o_arg.u.attrs = sattr;
731         /* Serialization for the sequence id */
732
733         o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
734         if (o_arg.seqid == NULL)
735                 return -ENOMEM;
736         nfs_fattr_init(&f_attr);
737         nfs_fattr_init(&dir_attr);
738         status = _nfs4_proc_open(dir, sp, &o_arg, &o_res);
739         if (status != 0)
740                 goto out_err;
741
742         status = -ENOMEM;
743         inode = nfs_fhget(dir->i_sb, &o_res.fh, &f_attr);
744         if (!inode)
745                 goto out_err;
746         state = nfs4_get_open_state(inode, sp);
747         if (!state)
748                 goto out_err;
749         update_open_stateid(state, &o_res.stateid, flags);
750         if (o_res.delegation_type != 0)
751                 nfs_inode_set_delegation(inode, cred, &o_res);
752         nfs_free_seqid(o_arg.seqid);
753         nfs4_put_state_owner(sp);
754         up_read(&clp->cl_sem);
755         *res = state;
756         return 0;
757 out_err:
758         if (sp != NULL) {
759                 if (state != NULL)
760                         nfs4_put_open_state(state);
761                 nfs_free_seqid(o_arg.seqid);
762                 nfs4_put_state_owner(sp);
763         }
764         /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
765         up_read(&clp->cl_sem);
766         if (inode != NULL)
767                 iput(inode);
768         *res = NULL;
769         return status;
770 }
771
772
773 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
774 {
775         struct nfs4_exception exception = { };
776         struct nfs4_state *res;
777         int status;
778
779         do {
780                 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
781                 if (status == 0)
782                         break;
783                 /* NOTE: BAD_SEQID means the server and client disagree about the
784                  * book-keeping w.r.t. state-changing operations
785                  * (OPEN/CLOSE/LOCK/LOCKU...)
786                  * It is actually a sign of a bug on the client or on the server.
787                  *
788                  * If we receive a BAD_SEQID error in the particular case of
789                  * doing an OPEN, we assume that nfs_increment_open_seqid() will
790                  * have unhashed the old state_owner for us, and that we can
791                  * therefore safely retry using a new one. We should still warn
792                  * the user though...
793                  */
794                 if (status == -NFS4ERR_BAD_SEQID) {
795                         printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
796                         exception.retry = 1;
797                         continue;
798                 }
799                 /*
800                  * BAD_STATEID on OPEN means that the server cancelled our
801                  * state before it received the OPEN_CONFIRM.
802                  * Recover by retrying the request as per the discussion
803                  * on Page 181 of RFC3530.
804                  */
805                 if (status == -NFS4ERR_BAD_STATEID) {
806                         exception.retry = 1;
807                         continue;
808                 }
809                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
810                                         status, &exception));
811         } while (exception.retry);
812         return res;
813 }
814
815 static int _nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
816                 struct nfs_fh *fhandle, struct iattr *sattr,
817                 struct nfs4_state *state)
818 {
819         struct nfs_setattrargs  arg = {
820                 .fh             = fhandle,
821                 .iap            = sattr,
822                 .server         = server,
823                 .bitmask = server->attr_bitmask,
824         };
825         struct nfs_setattrres  res = {
826                 .fattr          = fattr,
827                 .server         = server,
828         };
829         struct rpc_message msg = {
830                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
831                 .rpc_argp       = &arg,
832                 .rpc_resp       = &res,
833         };
834         int status;
835
836         nfs_fattr_init(fattr);
837
838         if (state != NULL) {
839                 msg.rpc_cred = state->owner->so_cred;
840                 nfs4_copy_stateid(&arg.stateid, state, current->files);
841         } else
842                 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
843
844         status = rpc_call_sync(server->client, &msg, 0);
845         return status;
846 }
847
848 static int nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
849                 struct nfs_fh *fhandle, struct iattr *sattr,
850                 struct nfs4_state *state)
851 {
852         struct nfs4_exception exception = { };
853         int err;
854         do {
855                 err = nfs4_handle_exception(server,
856                                 _nfs4_do_setattr(server, fattr, fhandle, sattr,
857                                         state),
858                                 &exception);
859         } while (exception.retry);
860         return err;
861 }
862
863 struct nfs4_closedata {
864         struct inode *inode;
865         struct nfs4_state *state;
866         struct nfs_closeargs arg;
867         struct nfs_closeres res;
868         struct nfs_fattr fattr;
869 };
870
871 static void nfs4_free_closedata(struct nfs4_closedata *calldata)
872 {
873         struct nfs4_state *state = calldata->state;
874         struct nfs4_state_owner *sp = state->owner;
875
876         nfs4_put_open_state(calldata->state);
877         nfs_free_seqid(calldata->arg.seqid);
878         nfs4_put_state_owner(sp);
879         kfree(calldata);
880 }
881
882 static void nfs4_close_done(struct rpc_task *task)
883 {
884         struct nfs4_closedata *calldata = (struct nfs4_closedata *)task->tk_calldata;
885         struct nfs4_state *state = calldata->state;
886         struct nfs_server *server = NFS_SERVER(calldata->inode);
887
888         /* hmm. we are done with the inode, and in the process of freeing
889          * the state_owner. we keep this around to process errors
890          */
891         nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
892         switch (task->tk_status) {
893                 case 0:
894                         memcpy(&state->stateid, &calldata->res.stateid,
895                                         sizeof(state->stateid));
896                         break;
897                 case -NFS4ERR_STALE_STATEID:
898                 case -NFS4ERR_EXPIRED:
899                         state->state = calldata->arg.open_flags;
900                         nfs4_schedule_state_recovery(server->nfs4_state);
901                         break;
902                 default:
903                         if (nfs4_async_handle_error(task, server) == -EAGAIN) {
904                                 rpc_restart_call(task);
905                                 return;
906                         }
907         }
908         nfs_refresh_inode(calldata->inode, calldata->res.fattr);
909         state->state = calldata->arg.open_flags;
910         nfs4_free_closedata(calldata);
911 }
912
913 static void nfs4_close_begin(struct rpc_task *task)
914 {
915         struct nfs4_closedata *calldata = (struct nfs4_closedata *)task->tk_calldata;
916         struct nfs4_state *state = calldata->state;
917         struct rpc_message msg = {
918                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
919                 .rpc_argp = &calldata->arg,
920                 .rpc_resp = &calldata->res,
921                 .rpc_cred = state->owner->so_cred,
922         };
923         int mode = 0;
924         int status;
925
926         status = nfs_wait_on_sequence(calldata->arg.seqid, task);
927         if (status != 0)
928                 return;
929         /* Don't reorder reads */
930         smp_rmb();
931         /* Recalculate the new open mode in case someone reopened the file
932          * while we were waiting in line to be scheduled.
933          */
934         if (state->nreaders != 0)
935                 mode |= FMODE_READ;
936         if (state->nwriters != 0)
937                 mode |= FMODE_WRITE;
938         if (test_bit(NFS_DELEGATED_STATE, &state->flags))
939                 state->state = mode;
940         if (mode == state->state) {
941                 nfs4_free_closedata(calldata);
942                 task->tk_exit = NULL;
943                 rpc_exit(task, 0);
944                 return;
945         }
946         nfs_fattr_init(calldata->res.fattr);
947         if (mode != 0)
948                 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
949         calldata->arg.open_flags = mode;
950         rpc_call_setup(task, &msg, 0);
951 }
952
953 /* 
954  * It is possible for data to be read/written from a mem-mapped file 
955  * after the sys_close call (which hits the vfs layer as a flush).
956  * This means that we can't safely call nfsv4 close on a file until 
957  * the inode is cleared. This in turn means that we are not good
958  * NFSv4 citizens - we do not indicate to the server to update the file's 
959  * share state even when we are done with one of the three share 
960  * stateid's in the inode.
961  *
962  * NOTE: Caller must be holding the sp->so_owner semaphore!
963  */
964 int nfs4_do_close(struct inode *inode, struct nfs4_state *state, mode_t mode) 
965 {
966         struct nfs_server *server = NFS_SERVER(inode);
967         struct nfs4_closedata *calldata;
968         int status = -ENOMEM;
969
970         calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
971         if (calldata == NULL)
972                 goto out;
973         calldata->inode = inode;
974         calldata->state = state;
975         calldata->arg.fh = NFS_FH(inode);
976         calldata->arg.stateid = &state->stateid;
977         /* Serialization for the sequence id */
978         calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
979         if (calldata->arg.seqid == NULL)
980                 goto out_free_calldata;
981         calldata->arg.bitmask = server->attr_bitmask;
982         calldata->res.fattr = &calldata->fattr;
983         calldata->res.server = server;
984
985         status = nfs4_call_async(server->client, nfs4_close_begin,
986                         nfs4_close_done, calldata);
987         if (status == 0)
988                 goto out;
989
990         nfs_free_seqid(calldata->arg.seqid);
991 out_free_calldata:
992         kfree(calldata);
993 out:
994         return status;
995 }
996
997 static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
998 {
999         struct file *filp;
1000
1001         filp = lookup_instantiate_filp(nd, dentry, NULL);
1002         if (!IS_ERR(filp)) {
1003                 struct nfs_open_context *ctx;
1004                 ctx = (struct nfs_open_context *)filp->private_data;
1005                 ctx->state = state;
1006         } else
1007                 nfs4_close_state(state, nd->intent.open.flags);
1008 }
1009
1010 struct dentry *
1011 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1012 {
1013         struct iattr attr;
1014         struct rpc_cred *cred;
1015         struct nfs4_state *state;
1016         struct dentry *res;
1017
1018         if (nd->flags & LOOKUP_CREATE) {
1019                 attr.ia_mode = nd->intent.open.create_mode;
1020                 attr.ia_valid = ATTR_MODE;
1021                 if (!IS_POSIXACL(dir))
1022                         attr.ia_mode &= ~current->fs->umask;
1023         } else {
1024                 attr.ia_valid = 0;
1025                 BUG_ON(nd->intent.open.flags & O_CREAT);
1026         }
1027
1028         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1029         if (IS_ERR(cred))
1030                 return (struct dentry *)cred;
1031         state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1032         put_rpccred(cred);
1033         if (IS_ERR(state)) {
1034                 if (PTR_ERR(state) == -ENOENT)
1035                         d_add(dentry, NULL);
1036                 return (struct dentry *)state;
1037         }
1038         res = d_add_unique(dentry, state->inode);
1039         if (res != NULL)
1040                 dentry = res;
1041         nfs4_intent_set_file(nd, dentry, state);
1042         return res;
1043 }
1044
1045 int
1046 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1047 {
1048         struct rpc_cred *cred;
1049         struct nfs4_state *state;
1050         struct inode *inode;
1051
1052         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1053         if (IS_ERR(cred))
1054                 return PTR_ERR(cred);
1055         state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1056         if (IS_ERR(state))
1057                 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1058         put_rpccred(cred);
1059         if (IS_ERR(state)) {
1060                 switch (PTR_ERR(state)) {
1061                         case -EPERM:
1062                         case -EACCES:
1063                         case -EDQUOT:
1064                         case -ENOSPC:
1065                         case -EROFS:
1066                                 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1067                                 return 1;
1068                         case -ENOENT:
1069                                 if (dentry->d_inode == NULL)
1070                                         return 1;
1071                 }
1072                 goto out_drop;
1073         }
1074         inode = state->inode;
1075         iput(inode);
1076         if (inode == dentry->d_inode) {
1077                 nfs4_intent_set_file(nd, dentry, state);
1078                 return 1;
1079         }
1080         nfs4_close_state(state, openflags);
1081 out_drop:
1082         d_drop(dentry);
1083         return 0;
1084 }
1085
1086
1087 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1088 {
1089         struct nfs4_server_caps_res res = {};
1090         struct rpc_message msg = {
1091                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1092                 .rpc_argp = fhandle,
1093                 .rpc_resp = &res,
1094         };
1095         int status;
1096
1097         status = rpc_call_sync(server->client, &msg, 0);
1098         if (status == 0) {
1099                 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1100                 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1101                         server->caps |= NFS_CAP_ACLS;
1102                 if (res.has_links != 0)
1103                         server->caps |= NFS_CAP_HARDLINKS;
1104                 if (res.has_symlinks != 0)
1105                         server->caps |= NFS_CAP_SYMLINKS;
1106                 server->acl_bitmask = res.acl_bitmask;
1107         }
1108         return status;
1109 }
1110
1111 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1112 {
1113         struct nfs4_exception exception = { };
1114         int err;
1115         do {
1116                 err = nfs4_handle_exception(server,
1117                                 _nfs4_server_capabilities(server, fhandle),
1118                                 &exception);
1119         } while (exception.retry);
1120         return err;
1121 }
1122
1123 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1124                 struct nfs_fsinfo *info)
1125 {
1126         struct nfs4_lookup_root_arg args = {
1127                 .bitmask = nfs4_fattr_bitmap,
1128         };
1129         struct nfs4_lookup_res res = {
1130                 .server = server,
1131                 .fattr = info->fattr,
1132                 .fh = fhandle,
1133         };
1134         struct rpc_message msg = {
1135                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1136                 .rpc_argp = &args,
1137                 .rpc_resp = &res,
1138         };
1139         nfs_fattr_init(info->fattr);
1140         return rpc_call_sync(server->client, &msg, 0);
1141 }
1142
1143 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1144                 struct nfs_fsinfo *info)
1145 {
1146         struct nfs4_exception exception = { };
1147         int err;
1148         do {
1149                 err = nfs4_handle_exception(server,
1150                                 _nfs4_lookup_root(server, fhandle, info),
1151                                 &exception);
1152         } while (exception.retry);
1153         return err;
1154 }
1155
1156 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1157                 struct nfs_fsinfo *info)
1158 {
1159         struct nfs_fattr *      fattr = info->fattr;
1160         unsigned char *         p;
1161         struct qstr             q;
1162         struct nfs4_lookup_arg args = {
1163                 .dir_fh = fhandle,
1164                 .name = &q,
1165                 .bitmask = nfs4_fattr_bitmap,
1166         };
1167         struct nfs4_lookup_res res = {
1168                 .server = server,
1169                 .fattr = fattr,
1170                 .fh = fhandle,
1171         };
1172         struct rpc_message msg = {
1173                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1174                 .rpc_argp = &args,
1175                 .rpc_resp = &res,
1176         };
1177         int status;
1178
1179         /*
1180          * Now we do a separate LOOKUP for each component of the mount path.
1181          * The LOOKUPs are done separately so that we can conveniently
1182          * catch an ERR_WRONGSEC if it occurs along the way...
1183          */
1184         status = nfs4_lookup_root(server, fhandle, info);
1185         if (status)
1186                 goto out;
1187
1188         p = server->mnt_path;
1189         for (;;) {
1190                 struct nfs4_exception exception = { };
1191
1192                 while (*p == '/')
1193                         p++;
1194                 if (!*p)
1195                         break;
1196                 q.name = p;
1197                 while (*p && (*p != '/'))
1198                         p++;
1199                 q.len = p - q.name;
1200
1201                 do {
1202                         nfs_fattr_init(fattr);
1203                         status = nfs4_handle_exception(server,
1204                                         rpc_call_sync(server->client, &msg, 0),
1205                                         &exception);
1206                 } while (exception.retry);
1207                 if (status == 0)
1208                         continue;
1209                 if (status == -ENOENT) {
1210                         printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1211                         printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1212                 }
1213                 break;
1214         }
1215         if (status == 0)
1216                 status = nfs4_server_capabilities(server, fhandle);
1217         if (status == 0)
1218                 status = nfs4_do_fsinfo(server, fhandle, info);
1219 out:
1220         return status;
1221 }
1222
1223 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1224 {
1225         struct nfs4_getattr_arg args = {
1226                 .fh = fhandle,
1227                 .bitmask = server->attr_bitmask,
1228         };
1229         struct nfs4_getattr_res res = {
1230                 .fattr = fattr,
1231                 .server = server,
1232         };
1233         struct rpc_message msg = {
1234                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1235                 .rpc_argp = &args,
1236                 .rpc_resp = &res,
1237         };
1238         
1239         nfs_fattr_init(fattr);
1240         return rpc_call_sync(server->client, &msg, 0);
1241 }
1242
1243 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1244 {
1245         struct nfs4_exception exception = { };
1246         int err;
1247         do {
1248                 err = nfs4_handle_exception(server,
1249                                 _nfs4_proc_getattr(server, fhandle, fattr),
1250                                 &exception);
1251         } while (exception.retry);
1252         return err;
1253 }
1254
1255 /* 
1256  * The file is not closed if it is opened due to the a request to change
1257  * the size of the file. The open call will not be needed once the
1258  * VFS layer lookup-intents are implemented.
1259  *
1260  * Close is called when the inode is destroyed.
1261  * If we haven't opened the file for O_WRONLY, we
1262  * need to in the size_change case to obtain a stateid.
1263  *
1264  * Got race?
1265  * Because OPEN is always done by name in nfsv4, it is
1266  * possible that we opened a different file by the same
1267  * name.  We can recognize this race condition, but we
1268  * can't do anything about it besides returning an error.
1269  *
1270  * This will be fixed with VFS changes (lookup-intent).
1271  */
1272 static int
1273 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1274                   struct iattr *sattr)
1275 {
1276         struct rpc_cred *cred;
1277         struct inode *inode = dentry->d_inode;
1278         struct nfs4_state *state;
1279         int status;
1280
1281         nfs_fattr_init(fattr);
1282         
1283         cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1284         if (IS_ERR(cred))
1285                 return PTR_ERR(cred);
1286         /* Search for an existing WRITE delegation first */
1287         state = nfs4_open_delegated(inode, FMODE_WRITE, cred);
1288         if (!IS_ERR(state)) {
1289                 /* NB: nfs4_open_delegated() bumps the inode->i_count */
1290                 iput(inode);
1291         } else {
1292                 /* Search for an existing open(O_WRITE) stateid */
1293                 state = nfs4_find_state(inode, cred, FMODE_WRITE);
1294         }
1295
1296         status = nfs4_do_setattr(NFS_SERVER(inode), fattr,
1297                         NFS_FH(inode), sattr, state);
1298         if (status == 0)
1299                 nfs_setattr_update_inode(inode, sattr);
1300         if (state != NULL)
1301                 nfs4_close_state(state, FMODE_WRITE);
1302         put_rpccred(cred);
1303         return status;
1304 }
1305
1306 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1307                 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1308 {
1309         int                    status;
1310         struct nfs_server *server = NFS_SERVER(dir);
1311         struct nfs4_lookup_arg args = {
1312                 .bitmask = server->attr_bitmask,
1313                 .dir_fh = NFS_FH(dir),
1314                 .name = name,
1315         };
1316         struct nfs4_lookup_res res = {
1317                 .server = server,
1318                 .fattr = fattr,
1319                 .fh = fhandle,
1320         };
1321         struct rpc_message msg = {
1322                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1323                 .rpc_argp = &args,
1324                 .rpc_resp = &res,
1325         };
1326         
1327         nfs_fattr_init(fattr);
1328         
1329         dprintk("NFS call  lookup %s\n", name->name);
1330         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1331         dprintk("NFS reply lookup: %d\n", status);
1332         return status;
1333 }
1334
1335 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1336 {
1337         struct nfs4_exception exception = { };
1338         int err;
1339         do {
1340                 err = nfs4_handle_exception(NFS_SERVER(dir),
1341                                 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1342                                 &exception);
1343         } while (exception.retry);
1344         return err;
1345 }
1346
1347 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1348 {
1349         struct nfs4_accessargs args = {
1350                 .fh = NFS_FH(inode),
1351         };
1352         struct nfs4_accessres res = { 0 };
1353         struct rpc_message msg = {
1354                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1355                 .rpc_argp = &args,
1356                 .rpc_resp = &res,
1357                 .rpc_cred = entry->cred,
1358         };
1359         int mode = entry->mask;
1360         int status;
1361
1362         /*
1363          * Determine which access bits we want to ask for...
1364          */
1365         if (mode & MAY_READ)
1366                 args.access |= NFS4_ACCESS_READ;
1367         if (S_ISDIR(inode->i_mode)) {
1368                 if (mode & MAY_WRITE)
1369                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1370                 if (mode & MAY_EXEC)
1371                         args.access |= NFS4_ACCESS_LOOKUP;
1372         } else {
1373                 if (mode & MAY_WRITE)
1374                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1375                 if (mode & MAY_EXEC)
1376                         args.access |= NFS4_ACCESS_EXECUTE;
1377         }
1378         status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1379         if (!status) {
1380                 entry->mask = 0;
1381                 if (res.access & NFS4_ACCESS_READ)
1382                         entry->mask |= MAY_READ;
1383                 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1384                         entry->mask |= MAY_WRITE;
1385                 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1386                         entry->mask |= MAY_EXEC;
1387         }
1388         return status;
1389 }
1390
1391 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1392 {
1393         struct nfs4_exception exception = { };
1394         int err;
1395         do {
1396                 err = nfs4_handle_exception(NFS_SERVER(inode),
1397                                 _nfs4_proc_access(inode, entry),
1398                                 &exception);
1399         } while (exception.retry);
1400         return err;
1401 }
1402
1403 /*
1404  * TODO: For the time being, we don't try to get any attributes
1405  * along with any of the zero-copy operations READ, READDIR,
1406  * READLINK, WRITE.
1407  *
1408  * In the case of the first three, we want to put the GETATTR
1409  * after the read-type operation -- this is because it is hard
1410  * to predict the length of a GETATTR response in v4, and thus
1411  * align the READ data correctly.  This means that the GETATTR
1412  * may end up partially falling into the page cache, and we should
1413  * shift it into the 'tail' of the xdr_buf before processing.
1414  * To do this efficiently, we need to know the total length
1415  * of data received, which doesn't seem to be available outside
1416  * of the RPC layer.
1417  *
1418  * In the case of WRITE, we also want to put the GETATTR after
1419  * the operation -- in this case because we want to make sure
1420  * we get the post-operation mtime and size.  This means that
1421  * we can't use xdr_encode_pages() as written: we need a variant
1422  * of it which would leave room in the 'tail' iovec.
1423  *
1424  * Both of these changes to the XDR layer would in fact be quite
1425  * minor, but I decided to leave them for a subsequent patch.
1426  */
1427 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1428                 unsigned int pgbase, unsigned int pglen)
1429 {
1430         struct nfs4_readlink args = {
1431                 .fh       = NFS_FH(inode),
1432                 .pgbase   = pgbase,
1433                 .pglen    = pglen,
1434                 .pages    = &page,
1435         };
1436         struct rpc_message msg = {
1437                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1438                 .rpc_argp = &args,
1439                 .rpc_resp = NULL,
1440         };
1441
1442         return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1443 }
1444
1445 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1446                 unsigned int pgbase, unsigned int pglen)
1447 {
1448         struct nfs4_exception exception = { };
1449         int err;
1450         do {
1451                 err = nfs4_handle_exception(NFS_SERVER(inode),
1452                                 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1453                                 &exception);
1454         } while (exception.retry);
1455         return err;
1456 }
1457
1458 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1459 {
1460         int flags = rdata->flags;
1461         struct inode *inode = rdata->inode;
1462         struct nfs_fattr *fattr = rdata->res.fattr;
1463         struct nfs_server *server = NFS_SERVER(inode);
1464         struct rpc_message msg = {
1465                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_READ],
1466                 .rpc_argp       = &rdata->args,
1467                 .rpc_resp       = &rdata->res,
1468                 .rpc_cred       = rdata->cred,
1469         };
1470         unsigned long timestamp = jiffies;
1471         int status;
1472
1473         dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1474                         (long long) rdata->args.offset);
1475
1476         nfs_fattr_init(fattr);
1477         status = rpc_call_sync(server->client, &msg, flags);
1478         if (!status)
1479                 renew_lease(server, timestamp);
1480         dprintk("NFS reply read: %d\n", status);
1481         return status;
1482 }
1483
1484 static int nfs4_proc_read(struct nfs_read_data *rdata)
1485 {
1486         struct nfs4_exception exception = { };
1487         int err;
1488         do {
1489                 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1490                                 _nfs4_proc_read(rdata),
1491                                 &exception);
1492         } while (exception.retry);
1493         return err;
1494 }
1495
1496 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1497 {
1498         int rpcflags = wdata->flags;
1499         struct inode *inode = wdata->inode;
1500         struct nfs_fattr *fattr = wdata->res.fattr;
1501         struct nfs_server *server = NFS_SERVER(inode);
1502         struct rpc_message msg = {
1503                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1504                 .rpc_argp       = &wdata->args,
1505                 .rpc_resp       = &wdata->res,
1506                 .rpc_cred       = wdata->cred,
1507         };
1508         int status;
1509
1510         dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1511                         (long long) wdata->args.offset);
1512
1513         nfs_fattr_init(fattr);
1514         status = rpc_call_sync(server->client, &msg, rpcflags);
1515         dprintk("NFS reply write: %d\n", status);
1516         return status;
1517 }
1518
1519 static int nfs4_proc_write(struct nfs_write_data *wdata)
1520 {
1521         struct nfs4_exception exception = { };
1522         int err;
1523         do {
1524                 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1525                                 _nfs4_proc_write(wdata),
1526                                 &exception);
1527         } while (exception.retry);
1528         return err;
1529 }
1530
1531 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1532 {
1533         struct inode *inode = cdata->inode;
1534         struct nfs_fattr *fattr = cdata->res.fattr;
1535         struct nfs_server *server = NFS_SERVER(inode);
1536         struct rpc_message msg = {
1537                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1538                 .rpc_argp       = &cdata->args,
1539                 .rpc_resp       = &cdata->res,
1540                 .rpc_cred       = cdata->cred,
1541         };
1542         int status;
1543
1544         dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1545                         (long long) cdata->args.offset);
1546
1547         nfs_fattr_init(fattr);
1548         status = rpc_call_sync(server->client, &msg, 0);
1549         dprintk("NFS reply commit: %d\n", status);
1550         return status;
1551 }
1552
1553 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1554 {
1555         struct nfs4_exception exception = { };
1556         int err;
1557         do {
1558                 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1559                                 _nfs4_proc_commit(cdata),
1560                                 &exception);
1561         } while (exception.retry);
1562         return err;
1563 }
1564
1565 /*
1566  * Got race?
1567  * We will need to arrange for the VFS layer to provide an atomic open.
1568  * Until then, this create/open method is prone to inefficiency and race
1569  * conditions due to the lookup, create, and open VFS calls from sys_open()
1570  * placed on the wire.
1571  *
1572  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1573  * The file will be opened again in the subsequent VFS open call
1574  * (nfs4_proc_file_open).
1575  *
1576  * The open for read will just hang around to be used by any process that
1577  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1578  */
1579
1580 static int
1581 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1582                  int flags, struct nameidata *nd)
1583 {
1584         struct nfs4_state *state;
1585         struct rpc_cred *cred;
1586         int status = 0;
1587
1588         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1589         if (IS_ERR(cred)) {
1590                 status = PTR_ERR(cred);
1591                 goto out;
1592         }
1593         state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1594         put_rpccred(cred);
1595         if (IS_ERR(state)) {
1596                 status = PTR_ERR(state);
1597                 goto out;
1598         }
1599         d_instantiate(dentry, state->inode);
1600         if (flags & O_EXCL) {
1601                 struct nfs_fattr fattr;
1602                 status = nfs4_do_setattr(NFS_SERVER(dir), &fattr,
1603                                      NFS_FH(state->inode), sattr, state);
1604                 if (status == 0)
1605                         nfs_setattr_update_inode(state->inode, sattr);
1606         }
1607         if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1608                 nfs4_intent_set_file(nd, dentry, state);
1609         else
1610                 nfs4_close_state(state, flags);
1611 out:
1612         return status;
1613 }
1614
1615 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1616 {
1617         struct nfs_server *server = NFS_SERVER(dir);
1618         struct nfs4_remove_arg args = {
1619                 .fh = NFS_FH(dir),
1620                 .name = name,
1621                 .bitmask = server->attr_bitmask,
1622         };
1623         struct nfs_fattr dir_attr;
1624         struct nfs4_remove_res  res = {
1625                 .server = server,
1626                 .dir_attr = &dir_attr,
1627         };
1628         struct rpc_message msg = {
1629                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1630                 .rpc_argp       = &args,
1631                 .rpc_resp       = &res,
1632         };
1633         int                     status;
1634
1635         nfs_fattr_init(res.dir_attr);
1636         status = rpc_call_sync(server->client, &msg, 0);
1637         if (status == 0) {
1638                 update_changeattr(dir, &res.cinfo);
1639                 nfs_post_op_update_inode(dir, res.dir_attr);
1640         }
1641         return status;
1642 }
1643
1644 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1645 {
1646         struct nfs4_exception exception = { };
1647         int err;
1648         do {
1649                 err = nfs4_handle_exception(NFS_SERVER(dir),
1650                                 _nfs4_proc_remove(dir, name),
1651                                 &exception);
1652         } while (exception.retry);
1653         return err;
1654 }
1655
1656 struct unlink_desc {
1657         struct nfs4_remove_arg  args;
1658         struct nfs4_remove_res  res;
1659         struct nfs_fattr dir_attr;
1660 };
1661
1662 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1663                 struct qstr *name)
1664 {
1665         struct nfs_server *server = NFS_SERVER(dir->d_inode);
1666         struct unlink_desc *up;
1667
1668         up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1669         if (!up)
1670                 return -ENOMEM;
1671         
1672         up->args.fh = NFS_FH(dir->d_inode);
1673         up->args.name = name;
1674         up->args.bitmask = server->attr_bitmask;
1675         up->res.server = server;
1676         up->res.dir_attr = &up->dir_attr;
1677         
1678         msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1679         msg->rpc_argp = &up->args;
1680         msg->rpc_resp = &up->res;
1681         return 0;
1682 }
1683
1684 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1685 {
1686         struct rpc_message *msg = &task->tk_msg;
1687         struct unlink_desc *up;
1688         
1689         if (msg->rpc_resp != NULL) {
1690                 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1691                 update_changeattr(dir->d_inode, &up->res.cinfo);
1692                 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1693                 kfree(up);
1694                 msg->rpc_resp = NULL;
1695                 msg->rpc_argp = NULL;
1696         }
1697         return 0;
1698 }
1699
1700 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1701                 struct inode *new_dir, struct qstr *new_name)
1702 {
1703         struct nfs_server *server = NFS_SERVER(old_dir);
1704         struct nfs4_rename_arg arg = {
1705                 .old_dir = NFS_FH(old_dir),
1706                 .new_dir = NFS_FH(new_dir),
1707                 .old_name = old_name,
1708                 .new_name = new_name,
1709                 .bitmask = server->attr_bitmask,
1710         };
1711         struct nfs_fattr old_fattr, new_fattr;
1712         struct nfs4_rename_res res = {
1713                 .server = server,
1714                 .old_fattr = &old_fattr,
1715                 .new_fattr = &new_fattr,
1716         };
1717         struct rpc_message msg = {
1718                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1719                 .rpc_argp = &arg,
1720                 .rpc_resp = &res,
1721         };
1722         int                     status;
1723         
1724         nfs_fattr_init(res.old_fattr);
1725         nfs_fattr_init(res.new_fattr);
1726         status = rpc_call_sync(server->client, &msg, 0);
1727
1728         if (!status) {
1729                 update_changeattr(old_dir, &res.old_cinfo);
1730                 nfs_post_op_update_inode(old_dir, res.old_fattr);
1731                 update_changeattr(new_dir, &res.new_cinfo);
1732                 nfs_post_op_update_inode(new_dir, res.new_fattr);
1733         }
1734         return status;
1735 }
1736
1737 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1738                 struct inode *new_dir, struct qstr *new_name)
1739 {
1740         struct nfs4_exception exception = { };
1741         int err;
1742         do {
1743                 err = nfs4_handle_exception(NFS_SERVER(old_dir),
1744                                 _nfs4_proc_rename(old_dir, old_name,
1745                                         new_dir, new_name),
1746                                 &exception);
1747         } while (exception.retry);
1748         return err;
1749 }
1750
1751 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1752 {
1753         struct nfs_server *server = NFS_SERVER(inode);
1754         struct nfs4_link_arg arg = {
1755                 .fh     = NFS_FH(inode),
1756                 .dir_fh = NFS_FH(dir),
1757                 .name   = name,
1758                 .bitmask = server->attr_bitmask,
1759         };
1760         struct nfs_fattr fattr, dir_attr;
1761         struct nfs4_link_res res = {
1762                 .server = server,
1763                 .fattr = &fattr,
1764                 .dir_attr = &dir_attr,
1765         };
1766         struct rpc_message msg = {
1767                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1768                 .rpc_argp = &arg,
1769                 .rpc_resp = &res,
1770         };
1771         int                     status;
1772
1773         nfs_fattr_init(res.fattr);
1774         nfs_fattr_init(res.dir_attr);
1775         status = rpc_call_sync(server->client, &msg, 0);
1776         if (!status) {
1777                 update_changeattr(dir, &res.cinfo);
1778                 nfs_post_op_update_inode(dir, res.dir_attr);
1779                 nfs_refresh_inode(inode, res.fattr);
1780         }
1781
1782         return status;
1783 }
1784
1785 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1786 {
1787         struct nfs4_exception exception = { };
1788         int err;
1789         do {
1790                 err = nfs4_handle_exception(NFS_SERVER(inode),
1791                                 _nfs4_proc_link(inode, dir, name),
1792                                 &exception);
1793         } while (exception.retry);
1794         return err;
1795 }
1796
1797 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
1798                 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
1799                 struct nfs_fattr *fattr)
1800 {
1801         struct nfs_server *server = NFS_SERVER(dir);
1802         struct nfs_fattr dir_fattr;
1803         struct nfs4_create_arg arg = {
1804                 .dir_fh = NFS_FH(dir),
1805                 .server = server,
1806                 .name = name,
1807                 .attrs = sattr,
1808                 .ftype = NF4LNK,
1809                 .bitmask = server->attr_bitmask,
1810         };
1811         struct nfs4_create_res res = {
1812                 .server = server,
1813                 .fh = fhandle,
1814                 .fattr = fattr,
1815                 .dir_fattr = &dir_fattr,
1816         };
1817         struct rpc_message msg = {
1818                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
1819                 .rpc_argp = &arg,
1820                 .rpc_resp = &res,
1821         };
1822         int                     status;
1823
1824         if (path->len > NFS4_MAXPATHLEN)
1825                 return -ENAMETOOLONG;
1826         arg.u.symlink = path;
1827         nfs_fattr_init(fattr);
1828         nfs_fattr_init(&dir_fattr);
1829         
1830         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1831         if (!status)
1832                 update_changeattr(dir, &res.dir_cinfo);
1833         nfs_post_op_update_inode(dir, res.dir_fattr);
1834         return status;
1835 }
1836
1837 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
1838                 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
1839                 struct nfs_fattr *fattr)
1840 {
1841         struct nfs4_exception exception = { };
1842         int err;
1843         do {
1844                 err = nfs4_handle_exception(NFS_SERVER(dir),
1845                                 _nfs4_proc_symlink(dir, name, path, sattr,
1846                                         fhandle, fattr),
1847                                 &exception);
1848         } while (exception.retry);
1849         return err;
1850 }
1851
1852 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
1853                 struct iattr *sattr)
1854 {
1855         struct nfs_server *server = NFS_SERVER(dir);
1856         struct nfs_fh fhandle;
1857         struct nfs_fattr fattr, dir_fattr;
1858         struct nfs4_create_arg arg = {
1859                 .dir_fh = NFS_FH(dir),
1860                 .server = server,
1861                 .name = &dentry->d_name,
1862                 .attrs = sattr,
1863                 .ftype = NF4DIR,
1864                 .bitmask = server->attr_bitmask,
1865         };
1866         struct nfs4_create_res res = {
1867                 .server = server,
1868                 .fh = &fhandle,
1869                 .fattr = &fattr,
1870                 .dir_fattr = &dir_fattr,
1871         };
1872         struct rpc_message msg = {
1873                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
1874                 .rpc_argp = &arg,
1875                 .rpc_resp = &res,
1876         };
1877         int                     status;
1878
1879         nfs_fattr_init(&fattr);
1880         nfs_fattr_init(&dir_fattr);
1881         
1882         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1883         if (!status) {
1884                 update_changeattr(dir, &res.dir_cinfo);
1885                 nfs_post_op_update_inode(dir, res.dir_fattr);
1886                 status = nfs_instantiate(dentry, &fhandle, &fattr);
1887         }
1888         return status;
1889 }
1890
1891 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
1892                 struct iattr *sattr)
1893 {
1894         struct nfs4_exception exception = { };
1895         int err;
1896         do {
1897                 err = nfs4_handle_exception(NFS_SERVER(dir),
1898                                 _nfs4_proc_mkdir(dir, dentry, sattr),
1899                                 &exception);
1900         } while (exception.retry);
1901         return err;
1902 }
1903
1904 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
1905                   u64 cookie, struct page *page, unsigned int count, int plus)
1906 {
1907         struct inode            *dir = dentry->d_inode;
1908         struct nfs4_readdir_arg args = {
1909                 .fh = NFS_FH(dir),
1910                 .pages = &page,
1911                 .pgbase = 0,
1912                 .count = count,
1913                 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
1914         };
1915         struct nfs4_readdir_res res;
1916         struct rpc_message msg = {
1917                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
1918                 .rpc_argp = &args,
1919                 .rpc_resp = &res,
1920                 .rpc_cred = cred,
1921         };
1922         int                     status;
1923
1924         dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
1925                         dentry->d_parent->d_name.name,
1926                         dentry->d_name.name,
1927                         (unsigned long long)cookie);
1928         lock_kernel();
1929         nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
1930         res.pgbase = args.pgbase;
1931         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1932         if (status == 0)
1933                 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
1934         unlock_kernel();
1935         dprintk("%s: returns %d\n", __FUNCTION__, status);
1936         return status;
1937 }
1938
1939 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
1940                   u64 cookie, struct page *page, unsigned int count, int plus)
1941 {
1942         struct nfs4_exception exception = { };
1943         int err;
1944         do {
1945                 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
1946                                 _nfs4_proc_readdir(dentry, cred, cookie,
1947                                         page, count, plus),
1948                                 &exception);
1949         } while (exception.retry);
1950         return err;
1951 }
1952
1953 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
1954                 struct iattr *sattr, dev_t rdev)
1955 {
1956         struct nfs_server *server = NFS_SERVER(dir);
1957         struct nfs_fh fh;
1958         struct nfs_fattr fattr, dir_fattr;
1959         struct nfs4_create_arg arg = {
1960                 .dir_fh = NFS_FH(dir),
1961                 .server = server,
1962                 .name = &dentry->d_name,
1963                 .attrs = sattr,
1964                 .bitmask = server->attr_bitmask,
1965         };
1966         struct nfs4_create_res res = {
1967                 .server = server,
1968                 .fh = &fh,
1969                 .fattr = &fattr,
1970                 .dir_fattr = &dir_fattr,
1971         };
1972         struct rpc_message msg = {
1973                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
1974                 .rpc_argp = &arg,
1975                 .rpc_resp = &res,
1976         };
1977         int                     status;
1978         int                     mode = sattr->ia_mode;
1979
1980         nfs_fattr_init(&fattr);
1981         nfs_fattr_init(&dir_fattr);
1982
1983         BUG_ON(!(sattr->ia_valid & ATTR_MODE));
1984         BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
1985         if (S_ISFIFO(mode))
1986                 arg.ftype = NF4FIFO;
1987         else if (S_ISBLK(mode)) {
1988                 arg.ftype = NF4BLK;
1989                 arg.u.device.specdata1 = MAJOR(rdev);
1990                 arg.u.device.specdata2 = MINOR(rdev);
1991         }
1992         else if (S_ISCHR(mode)) {
1993                 arg.ftype = NF4CHR;
1994                 arg.u.device.specdata1 = MAJOR(rdev);
1995                 arg.u.device.specdata2 = MINOR(rdev);
1996         }
1997         else
1998                 arg.ftype = NF4SOCK;
1999         
2000         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2001         if (status == 0) {
2002                 update_changeattr(dir, &res.dir_cinfo);
2003                 nfs_post_op_update_inode(dir, res.dir_fattr);
2004                 status = nfs_instantiate(dentry, &fh, &fattr);
2005         }
2006         return status;
2007 }
2008
2009 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2010                 struct iattr *sattr, dev_t rdev)
2011 {
2012         struct nfs4_exception exception = { };
2013         int err;
2014         do {
2015                 err = nfs4_handle_exception(NFS_SERVER(dir),
2016                                 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2017                                 &exception);
2018         } while (exception.retry);
2019         return err;
2020 }
2021
2022 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2023                  struct nfs_fsstat *fsstat)
2024 {
2025         struct nfs4_statfs_arg args = {
2026                 .fh = fhandle,
2027                 .bitmask = server->attr_bitmask,
2028         };
2029         struct rpc_message msg = {
2030                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2031                 .rpc_argp = &args,
2032                 .rpc_resp = fsstat,
2033         };
2034
2035         nfs_fattr_init(fsstat->fattr);
2036         return rpc_call_sync(server->client, &msg, 0);
2037 }
2038
2039 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2040 {
2041         struct nfs4_exception exception = { };
2042         int err;
2043         do {
2044                 err = nfs4_handle_exception(server,
2045                                 _nfs4_proc_statfs(server, fhandle, fsstat),
2046                                 &exception);
2047         } while (exception.retry);
2048         return err;
2049 }
2050
2051 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2052                 struct nfs_fsinfo *fsinfo)
2053 {
2054         struct nfs4_fsinfo_arg args = {
2055                 .fh = fhandle,
2056                 .bitmask = server->attr_bitmask,
2057         };
2058         struct rpc_message msg = {
2059                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2060                 .rpc_argp = &args,
2061                 .rpc_resp = fsinfo,
2062         };
2063
2064         return rpc_call_sync(server->client, &msg, 0);
2065 }
2066
2067 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2068 {
2069         struct nfs4_exception exception = { };
2070         int err;
2071
2072         do {
2073                 err = nfs4_handle_exception(server,
2074                                 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2075                                 &exception);
2076         } while (exception.retry);
2077         return err;
2078 }
2079
2080 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2081 {
2082         nfs_fattr_init(fsinfo->fattr);
2083         return nfs4_do_fsinfo(server, fhandle, fsinfo);
2084 }
2085
2086 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2087                 struct nfs_pathconf *pathconf)
2088 {
2089         struct nfs4_pathconf_arg args = {
2090                 .fh = fhandle,
2091                 .bitmask = server->attr_bitmask,
2092         };
2093         struct rpc_message msg = {
2094                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2095                 .rpc_argp = &args,
2096                 .rpc_resp = pathconf,
2097         };
2098
2099         /* None of the pathconf attributes are mandatory to implement */
2100         if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2101                 memset(pathconf, 0, sizeof(*pathconf));
2102                 return 0;
2103         }
2104
2105         nfs_fattr_init(pathconf->fattr);
2106         return rpc_call_sync(server->client, &msg, 0);
2107 }
2108
2109 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2110                 struct nfs_pathconf *pathconf)
2111 {
2112         struct nfs4_exception exception = { };
2113         int err;
2114
2115         do {
2116                 err = nfs4_handle_exception(server,
2117                                 _nfs4_proc_pathconf(server, fhandle, pathconf),
2118                                 &exception);
2119         } while (exception.retry);
2120         return err;
2121 }
2122
2123 static void
2124 nfs4_read_done(struct rpc_task *task)
2125 {
2126         struct nfs_read_data *data = (struct nfs_read_data *) task->tk_calldata;
2127         struct inode *inode = data->inode;
2128
2129         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2130                 rpc_restart_call(task);
2131                 return;
2132         }
2133         if (task->tk_status > 0)
2134                 renew_lease(NFS_SERVER(inode), data->timestamp);
2135         /* Call back common NFS readpage processing */
2136         nfs_readpage_result(task);
2137 }
2138
2139 static void
2140 nfs4_proc_read_setup(struct nfs_read_data *data)
2141 {
2142         struct rpc_task *task = &data->task;
2143         struct rpc_message msg = {
2144                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2145                 .rpc_argp = &data->args,
2146                 .rpc_resp = &data->res,
2147                 .rpc_cred = data->cred,
2148         };
2149         struct inode *inode = data->inode;
2150         int flags;
2151
2152         data->timestamp   = jiffies;
2153
2154         /* N.B. Do we need to test? Never called for swapfile inode */
2155         flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
2156
2157         /* Finalize the task. */
2158         rpc_init_task(task, NFS_CLIENT(inode), nfs4_read_done, flags);
2159         rpc_call_setup(task, &msg, 0);
2160 }
2161
2162 static void
2163 nfs4_write_done(struct rpc_task *task)
2164 {
2165         struct nfs_write_data *data = (struct nfs_write_data *) task->tk_calldata;
2166         struct inode *inode = data->inode;
2167         
2168         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2169                 rpc_restart_call(task);
2170                 return;
2171         }
2172         if (task->tk_status >= 0) {
2173                 renew_lease(NFS_SERVER(inode), data->timestamp);
2174                 nfs_post_op_update_inode(inode, data->res.fattr);
2175         }
2176         /* Call back common NFS writeback processing */
2177         nfs_writeback_done(task);
2178 }
2179
2180 static void
2181 nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2182 {
2183         struct rpc_task *task = &data->task;
2184         struct rpc_message msg = {
2185                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2186                 .rpc_argp = &data->args,
2187                 .rpc_resp = &data->res,
2188                 .rpc_cred = data->cred,
2189         };
2190         struct inode *inode = data->inode;
2191         struct nfs_server *server = NFS_SERVER(inode);
2192         int stable;
2193         int flags;
2194         
2195         if (how & FLUSH_STABLE) {
2196                 if (!NFS_I(inode)->ncommit)
2197                         stable = NFS_FILE_SYNC;
2198                 else
2199                         stable = NFS_DATA_SYNC;
2200         } else
2201                 stable = NFS_UNSTABLE;
2202         data->args.stable = stable;
2203         data->args.bitmask = server->attr_bitmask;
2204         data->res.server = server;
2205
2206         data->timestamp   = jiffies;
2207
2208         /* Set the initial flags for the task.  */
2209         flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
2210
2211         /* Finalize the task. */
2212         rpc_init_task(task, NFS_CLIENT(inode), nfs4_write_done, flags);
2213         rpc_call_setup(task, &msg, 0);
2214 }
2215
2216 static void
2217 nfs4_commit_done(struct rpc_task *task)
2218 {
2219         struct nfs_write_data *data = (struct nfs_write_data *) task->tk_calldata;
2220         struct inode *inode = data->inode;
2221         
2222         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2223                 rpc_restart_call(task);
2224                 return;
2225         }
2226         if (task->tk_status >= 0)
2227                 nfs_post_op_update_inode(inode, data->res.fattr);
2228         /* Call back common NFS writeback processing */
2229         nfs_commit_done(task);
2230 }
2231
2232 static void
2233 nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2234 {
2235         struct rpc_task *task = &data->task;
2236         struct rpc_message msg = {
2237                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2238                 .rpc_argp = &data->args,
2239                 .rpc_resp = &data->res,
2240                 .rpc_cred = data->cred,
2241         };      
2242         struct inode *inode = data->inode;
2243         struct nfs_server *server = NFS_SERVER(inode);
2244         int flags;
2245         
2246         data->args.bitmask = server->attr_bitmask;
2247         data->res.server = server;
2248
2249         /* Set the initial flags for the task.  */
2250         flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
2251
2252         /* Finalize the task. */
2253         rpc_init_task(task, NFS_CLIENT(inode), nfs4_commit_done, flags);
2254         rpc_call_setup(task, &msg, 0);  
2255 }
2256
2257 /*
2258  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2259  * standalone procedure for queueing an asynchronous RENEW.
2260  */
2261 static void
2262 renew_done(struct rpc_task *task)
2263 {
2264         struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2265         unsigned long timestamp = (unsigned long)task->tk_calldata;
2266
2267         if (task->tk_status < 0) {
2268                 switch (task->tk_status) {
2269                         case -NFS4ERR_STALE_CLIENTID:
2270                         case -NFS4ERR_EXPIRED:
2271                         case -NFS4ERR_CB_PATH_DOWN:
2272                                 nfs4_schedule_state_recovery(clp);
2273                 }
2274                 return;
2275         }
2276         spin_lock(&clp->cl_lock);
2277         if (time_before(clp->cl_last_renewal,timestamp))
2278                 clp->cl_last_renewal = timestamp;
2279         spin_unlock(&clp->cl_lock);
2280 }
2281
2282 int
2283 nfs4_proc_async_renew(struct nfs4_client *clp)
2284 {
2285         struct rpc_message msg = {
2286                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2287                 .rpc_argp       = clp,
2288                 .rpc_cred       = clp->cl_cred,
2289         };
2290
2291         return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2292                         renew_done, (void *)jiffies);
2293 }
2294
2295 int
2296 nfs4_proc_renew(struct nfs4_client *clp)
2297 {
2298         struct rpc_message msg = {
2299                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2300                 .rpc_argp       = clp,
2301                 .rpc_cred       = clp->cl_cred,
2302         };
2303         unsigned long now = jiffies;
2304         int status;
2305
2306         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2307         if (status < 0)
2308                 return status;
2309         spin_lock(&clp->cl_lock);
2310         if (time_before(clp->cl_last_renewal,now))
2311                 clp->cl_last_renewal = now;
2312         spin_unlock(&clp->cl_lock);
2313         return 0;
2314 }
2315
2316 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2317 {
2318         return (server->caps & NFS_CAP_ACLS)
2319                 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2320                 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2321 }
2322
2323 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2324  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2325  * the stack.
2326  */
2327 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2328
2329 static void buf_to_pages(const void *buf, size_t buflen,
2330                 struct page **pages, unsigned int *pgbase)
2331 {
2332         const void *p = buf;
2333
2334         *pgbase = offset_in_page(buf);
2335         p -= *pgbase;
2336         while (p < buf + buflen) {
2337                 *(pages++) = virt_to_page(p);
2338                 p += PAGE_CACHE_SIZE;
2339         }
2340 }
2341
2342 struct nfs4_cached_acl {
2343         int cached;
2344         size_t len;
2345         char data[0];
2346 };
2347
2348 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2349 {
2350         struct nfs_inode *nfsi = NFS_I(inode);
2351
2352         spin_lock(&inode->i_lock);
2353         kfree(nfsi->nfs4_acl);
2354         nfsi->nfs4_acl = acl;
2355         spin_unlock(&inode->i_lock);
2356 }
2357
2358 static void nfs4_zap_acl_attr(struct inode *inode)
2359 {
2360         nfs4_set_cached_acl(inode, NULL);
2361 }
2362
2363 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2364 {
2365         struct nfs_inode *nfsi = NFS_I(inode);
2366         struct nfs4_cached_acl *acl;
2367         int ret = -ENOENT;
2368
2369         spin_lock(&inode->i_lock);
2370         acl = nfsi->nfs4_acl;
2371         if (acl == NULL)
2372                 goto out;
2373         if (buf == NULL) /* user is just asking for length */
2374                 goto out_len;
2375         if (acl->cached == 0)
2376                 goto out;
2377         ret = -ERANGE; /* see getxattr(2) man page */
2378         if (acl->len > buflen)
2379                 goto out;
2380         memcpy(buf, acl->data, acl->len);
2381 out_len:
2382         ret = acl->len;
2383 out:
2384         spin_unlock(&inode->i_lock);
2385         return ret;
2386 }
2387
2388 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2389 {
2390         struct nfs4_cached_acl *acl;
2391
2392         if (buf && acl_len <= PAGE_SIZE) {
2393                 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2394                 if (acl == NULL)
2395                         goto out;
2396                 acl->cached = 1;
2397                 memcpy(acl->data, buf, acl_len);
2398         } else {
2399                 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2400                 if (acl == NULL)
2401                         goto out;
2402                 acl->cached = 0;
2403         }
2404         acl->len = acl_len;
2405 out:
2406         nfs4_set_cached_acl(inode, acl);
2407 }
2408
2409 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2410 {
2411         struct page *pages[NFS4ACL_MAXPAGES];
2412         struct nfs_getaclargs args = {
2413                 .fh = NFS_FH(inode),
2414                 .acl_pages = pages,
2415                 .acl_len = buflen,
2416         };
2417         size_t resp_len = buflen;
2418         void *resp_buf;
2419         struct rpc_message msg = {
2420                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2421                 .rpc_argp = &args,
2422                 .rpc_resp = &resp_len,
2423         };
2424         struct page *localpage = NULL;
2425         int ret;
2426
2427         if (buflen < PAGE_SIZE) {
2428                 /* As long as we're doing a round trip to the server anyway,
2429                  * let's be prepared for a page of acl data. */
2430                 localpage = alloc_page(GFP_KERNEL);
2431                 resp_buf = page_address(localpage);
2432                 if (localpage == NULL)
2433                         return -ENOMEM;
2434                 args.acl_pages[0] = localpage;
2435                 args.acl_pgbase = 0;
2436                 resp_len = args.acl_len = PAGE_SIZE;
2437         } else {
2438                 resp_buf = buf;
2439                 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2440         }
2441         ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2442         if (ret)
2443                 goto out_free;
2444         if (resp_len > args.acl_len)
2445                 nfs4_write_cached_acl(inode, NULL, resp_len);
2446         else
2447                 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2448         if (buf) {
2449                 ret = -ERANGE;
2450                 if (resp_len > buflen)
2451                         goto out_free;
2452                 if (localpage)
2453                         memcpy(buf, resp_buf, resp_len);
2454         }
2455         ret = resp_len;
2456 out_free:
2457         if (localpage)
2458                 __free_page(localpage);
2459         return ret;
2460 }
2461
2462 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2463 {
2464         struct nfs_server *server = NFS_SERVER(inode);
2465         int ret;
2466
2467         if (!nfs4_server_supports_acls(server))
2468                 return -EOPNOTSUPP;
2469         ret = nfs_revalidate_inode(server, inode);
2470         if (ret < 0)
2471                 return ret;
2472         ret = nfs4_read_cached_acl(inode, buf, buflen);
2473         if (ret != -ENOENT)
2474                 return ret;
2475         return nfs4_get_acl_uncached(inode, buf, buflen);
2476 }
2477
2478 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2479 {
2480         struct nfs_server *server = NFS_SERVER(inode);
2481         struct page *pages[NFS4ACL_MAXPAGES];
2482         struct nfs_setaclargs arg = {
2483                 .fh             = NFS_FH(inode),
2484                 .acl_pages      = pages,
2485                 .acl_len        = buflen,
2486         };
2487         struct rpc_message msg = {
2488                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2489                 .rpc_argp       = &arg,
2490                 .rpc_resp       = NULL,
2491         };
2492         int ret;
2493
2494         if (!nfs4_server_supports_acls(server))
2495                 return -EOPNOTSUPP;
2496         nfs_inode_return_delegation(inode);
2497         buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2498         ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2499         if (ret == 0)
2500                 nfs4_write_cached_acl(inode, buf, buflen);
2501         return ret;
2502 }
2503
2504 static int
2505 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2506 {
2507         struct nfs4_client *clp = server->nfs4_state;
2508
2509         if (!clp || task->tk_status >= 0)
2510                 return 0;
2511         switch(task->tk_status) {
2512                 case -NFS4ERR_STALE_CLIENTID:
2513                 case -NFS4ERR_STALE_STATEID:
2514                 case -NFS4ERR_EXPIRED:
2515                         rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2516                         nfs4_schedule_state_recovery(clp);
2517                         if (test_bit(NFS4CLNT_OK, &clp->cl_state))
2518                                 rpc_wake_up_task(task);
2519                         task->tk_status = 0;
2520                         return -EAGAIN;
2521                 case -NFS4ERR_GRACE:
2522                 case -NFS4ERR_DELAY:
2523                         rpc_delay(task, NFS4_POLL_RETRY_MAX);
2524                         task->tk_status = 0;
2525                         return -EAGAIN;
2526                 case -NFS4ERR_OLD_STATEID:
2527                         task->tk_status = 0;
2528                         return -EAGAIN;
2529         }
2530         task->tk_status = nfs4_map_errors(task->tk_status);
2531         return 0;
2532 }
2533
2534 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2535 {
2536         DEFINE_WAIT(wait);
2537         sigset_t oldset;
2538         int interruptible, res = 0;
2539
2540         might_sleep();
2541
2542         rpc_clnt_sigmask(clnt, &oldset);
2543         interruptible = TASK_UNINTERRUPTIBLE;
2544         if (clnt->cl_intr)
2545                 interruptible = TASK_INTERRUPTIBLE;
2546         prepare_to_wait(&clp->cl_waitq, &wait, interruptible);
2547         nfs4_schedule_state_recovery(clp);
2548         if (clnt->cl_intr && signalled())
2549                 res = -ERESTARTSYS;
2550         else if (!test_bit(NFS4CLNT_OK, &clp->cl_state))
2551                 schedule();
2552         finish_wait(&clp->cl_waitq, &wait);
2553         rpc_clnt_sigunmask(clnt, &oldset);
2554         return res;
2555 }
2556
2557 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2558 {
2559         sigset_t oldset;
2560         int res = 0;
2561
2562         might_sleep();
2563
2564         if (*timeout <= 0)
2565                 *timeout = NFS4_POLL_RETRY_MIN;
2566         if (*timeout > NFS4_POLL_RETRY_MAX)
2567                 *timeout = NFS4_POLL_RETRY_MAX;
2568         rpc_clnt_sigmask(clnt, &oldset);
2569         if (clnt->cl_intr) {
2570                 schedule_timeout_interruptible(*timeout);
2571                 if (signalled())
2572                         res = -ERESTARTSYS;
2573         } else
2574                 schedule_timeout_uninterruptible(*timeout);
2575         rpc_clnt_sigunmask(clnt, &oldset);
2576         *timeout <<= 1;
2577         return res;
2578 }
2579
2580 /* This is the error handling routine for processes that are allowed
2581  * to sleep.
2582  */
2583 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2584 {
2585         struct nfs4_client *clp = server->nfs4_state;
2586         int ret = errorcode;
2587
2588         exception->retry = 0;
2589         switch(errorcode) {
2590                 case 0:
2591                         return 0;
2592                 case -NFS4ERR_STALE_CLIENTID:
2593                 case -NFS4ERR_STALE_STATEID:
2594                 case -NFS4ERR_EXPIRED:
2595                         ret = nfs4_wait_clnt_recover(server->client, clp);
2596                         if (ret == 0)
2597                                 exception->retry = 1;
2598                         break;
2599                 case -NFS4ERR_GRACE:
2600                 case -NFS4ERR_DELAY:
2601                         ret = nfs4_delay(server->client, &exception->timeout);
2602                         if (ret == 0)
2603                                 exception->retry = 1;
2604                         break;
2605                 case -NFS4ERR_OLD_STATEID:
2606                         if (ret == 0)
2607                                 exception->retry = 1;
2608         }
2609         /* We failed to handle the error */
2610         return nfs4_map_errors(ret);
2611 }
2612
2613 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port)
2614 {
2615         nfs4_verifier sc_verifier;
2616         struct nfs4_setclientid setclientid = {
2617                 .sc_verifier = &sc_verifier,
2618                 .sc_prog = program,
2619         };
2620         struct rpc_message msg = {
2621                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2622                 .rpc_argp = &setclientid,
2623                 .rpc_resp = clp,
2624                 .rpc_cred = clp->cl_cred,
2625         };
2626         u32 *p;
2627         int loop = 0;
2628         int status;
2629
2630         p = (u32*)sc_verifier.data;
2631         *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2632         *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2633
2634         for(;;) {
2635                 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2636                                 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2637                                 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2638                                 clp->cl_cred->cr_ops->cr_name,
2639                                 clp->cl_id_uniquifier);
2640                 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2641                                 sizeof(setclientid.sc_netid), "tcp");
2642                 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2643                                 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2644                                 clp->cl_ipaddr, port >> 8, port & 255);
2645
2646                 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2647                 if (status != -NFS4ERR_CLID_INUSE)
2648                         break;
2649                 if (signalled())
2650                         break;
2651                 if (loop++ & 1)
2652                         ssleep(clp->cl_lease_time + 1);
2653                 else
2654                         if (++clp->cl_id_uniquifier == 0)
2655                                 break;
2656         }
2657         return status;
2658 }
2659
2660 int
2661 nfs4_proc_setclientid_confirm(struct nfs4_client *clp)
2662 {
2663         struct nfs_fsinfo fsinfo;
2664         struct rpc_message msg = {
2665                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2666                 .rpc_argp = clp,
2667                 .rpc_resp = &fsinfo,
2668                 .rpc_cred = clp->cl_cred,
2669         };
2670         unsigned long now;
2671         int status;
2672
2673         now = jiffies;
2674         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2675         if (status == 0) {
2676                 spin_lock(&clp->cl_lock);
2677                 clp->cl_lease_time = fsinfo.lease_time * HZ;
2678                 clp->cl_last_renewal = now;
2679                 spin_unlock(&clp->cl_lock);
2680         }
2681         return status;
2682 }
2683
2684 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2685 {
2686         struct nfs4_delegreturnargs args = {
2687                 .fhandle = NFS_FH(inode),
2688                 .stateid = stateid,
2689         };
2690         struct rpc_message msg = {
2691                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2692                 .rpc_argp = &args,
2693                 .rpc_cred = cred,
2694         };
2695
2696         return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2697 }
2698
2699 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2700 {
2701         struct nfs_server *server = NFS_SERVER(inode);
2702         struct nfs4_exception exception = { };
2703         int err;
2704         do {
2705                 err = _nfs4_proc_delegreturn(inode, cred, stateid);
2706                 switch (err) {
2707                         case -NFS4ERR_STALE_STATEID:
2708                         case -NFS4ERR_EXPIRED:
2709                                 nfs4_schedule_state_recovery(server->nfs4_state);
2710                         case 0:
2711                                 return 0;
2712                 }
2713                 err = nfs4_handle_exception(server, err, &exception);
2714         } while (exception.retry);
2715         return err;
2716 }
2717
2718 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
2719 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
2720
2721 /* 
2722  * sleep, with exponential backoff, and retry the LOCK operation. 
2723  */
2724 static unsigned long
2725 nfs4_set_lock_task_retry(unsigned long timeout)
2726 {
2727         schedule_timeout_interruptible(timeout);
2728         timeout <<= 1;
2729         if (timeout > NFS4_LOCK_MAXTIMEOUT)
2730                 return NFS4_LOCK_MAXTIMEOUT;
2731         return timeout;
2732 }
2733
2734 static inline int
2735 nfs4_lck_type(int cmd, struct file_lock *request)
2736 {
2737         /* set lock type */
2738         switch (request->fl_type) {
2739                 case F_RDLCK:
2740                         return IS_SETLKW(cmd) ? NFS4_READW_LT : NFS4_READ_LT;
2741                 case F_WRLCK:
2742                         return IS_SETLKW(cmd) ? NFS4_WRITEW_LT : NFS4_WRITE_LT;
2743                 case F_UNLCK:
2744                         return NFS4_WRITE_LT; 
2745         }
2746         BUG();
2747         return 0;
2748 }
2749
2750 static inline uint64_t
2751 nfs4_lck_length(struct file_lock *request)
2752 {
2753         if (request->fl_end == OFFSET_MAX)
2754                 return ~(uint64_t)0;
2755         return request->fl_end - request->fl_start + 1;
2756 }
2757
2758 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
2759 {
2760         struct inode *inode = state->inode;
2761         struct nfs_server *server = NFS_SERVER(inode);
2762         struct nfs4_client *clp = server->nfs4_state;
2763         struct nfs_lockargs arg = {
2764                 .fh = NFS_FH(inode),
2765                 .type = nfs4_lck_type(cmd, request),
2766                 .offset = request->fl_start,
2767                 .length = nfs4_lck_length(request),
2768         };
2769         struct nfs_lockres res = {
2770                 .server = server,
2771         };
2772         struct rpc_message msg = {
2773                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
2774                 .rpc_argp       = &arg,
2775                 .rpc_resp       = &res,
2776                 .rpc_cred       = state->owner->so_cred,
2777         };
2778         struct nfs_lowner nlo;
2779         struct nfs4_lock_state *lsp;
2780         int status;
2781
2782         down_read(&clp->cl_sem);
2783         nlo.clientid = clp->cl_clientid;
2784         status = nfs4_set_lock_state(state, request);
2785         if (status != 0)
2786                 goto out;
2787         lsp = request->fl_u.nfs4_fl.owner;
2788         nlo.id = lsp->ls_id; 
2789         arg.u.lockt = &nlo;
2790         status = rpc_call_sync(server->client, &msg, 0);
2791         if (!status) {
2792                 request->fl_type = F_UNLCK;
2793         } else if (status == -NFS4ERR_DENIED) {
2794                 int64_t len, start, end;
2795                 start = res.u.denied.offset;
2796                 len = res.u.denied.length;
2797                 end = start + len - 1;
2798                 if (end < 0 || len == 0)
2799                         request->fl_end = OFFSET_MAX;
2800                 else
2801                         request->fl_end = (loff_t)end;
2802                 request->fl_start = (loff_t)start;
2803                 request->fl_type = F_WRLCK;
2804                 if (res.u.denied.type & 1)
2805                         request->fl_type = F_RDLCK;
2806                 request->fl_pid = 0;
2807                 status = 0;
2808         }
2809 out:
2810         up_read(&clp->cl_sem);
2811         return status;
2812 }
2813
2814 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
2815 {
2816         struct nfs4_exception exception = { };
2817         int err;
2818
2819         do {
2820                 err = nfs4_handle_exception(NFS_SERVER(state->inode),
2821                                 _nfs4_proc_getlk(state, cmd, request),
2822                                 &exception);
2823         } while (exception.retry);
2824         return err;
2825 }
2826
2827 static int do_vfs_lock(struct file *file, struct file_lock *fl)
2828 {
2829         int res = 0;
2830         switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2831                 case FL_POSIX:
2832                         res = posix_lock_file_wait(file, fl);
2833                         break;
2834                 case FL_FLOCK:
2835                         res = flock_lock_file_wait(file, fl);
2836                         break;
2837                 default:
2838                         BUG();
2839         }
2840         if (res < 0)
2841                 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
2842                                 __FUNCTION__);
2843         return res;
2844 }
2845
2846 struct nfs4_unlockdata {
2847         struct nfs_lockargs arg;
2848         struct nfs_locku_opargs luargs;
2849         struct nfs_lockres res;
2850         struct nfs4_lock_state *lsp;
2851         struct nfs_open_context *ctx;
2852         atomic_t refcount;
2853         struct completion completion;
2854 };
2855
2856 static void nfs4_locku_release_calldata(struct nfs4_unlockdata *calldata)
2857 {
2858         if (atomic_dec_and_test(&calldata->refcount)) {
2859                 nfs_free_seqid(calldata->luargs.seqid);
2860                 nfs4_put_lock_state(calldata->lsp);
2861                 put_nfs_open_context(calldata->ctx);
2862                 kfree(calldata);
2863         }
2864 }
2865
2866 static void nfs4_locku_complete(struct nfs4_unlockdata *calldata)
2867 {
2868         complete(&calldata->completion);
2869         nfs4_locku_release_calldata(calldata);
2870 }
2871
2872 static void nfs4_locku_done(struct rpc_task *task)
2873 {
2874         struct nfs4_unlockdata *calldata = (struct nfs4_unlockdata *)task->tk_calldata;
2875
2876         nfs_increment_lock_seqid(task->tk_status, calldata->luargs.seqid);
2877         switch (task->tk_status) {
2878                 case 0:
2879                         memcpy(calldata->lsp->ls_stateid.data,
2880                                         calldata->res.u.stateid.data,
2881                                         sizeof(calldata->lsp->ls_stateid.data));
2882                         break;
2883                 case -NFS4ERR_STALE_STATEID:
2884                 case -NFS4ERR_EXPIRED:
2885                         nfs4_schedule_state_recovery(calldata->res.server->nfs4_state);
2886                         break;
2887                 default:
2888                         if (nfs4_async_handle_error(task, calldata->res.server) == -EAGAIN) {
2889                                 rpc_restart_call(task);
2890                                 return;
2891                         }
2892         }
2893         nfs4_locku_complete(calldata);
2894 }
2895
2896 static void nfs4_locku_begin(struct rpc_task *task)
2897 {
2898         struct nfs4_unlockdata *calldata = (struct nfs4_unlockdata *)task->tk_calldata;
2899         struct rpc_message msg = {
2900                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
2901                 .rpc_argp       = &calldata->arg,
2902                 .rpc_resp       = &calldata->res,
2903                 .rpc_cred       = calldata->lsp->ls_state->owner->so_cred,
2904         };
2905         int status;
2906
2907         status = nfs_wait_on_sequence(calldata->luargs.seqid, task);
2908         if (status != 0)
2909                 return;
2910         if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
2911                 nfs4_locku_complete(calldata);
2912                 task->tk_exit = NULL;
2913                 rpc_exit(task, 0);
2914                 return;
2915         }
2916         rpc_call_setup(task, &msg, 0);
2917 }
2918
2919 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
2920 {
2921         struct nfs4_unlockdata *calldata;
2922         struct inode *inode = state->inode;
2923         struct nfs_server *server = NFS_SERVER(inode);
2924         struct nfs4_lock_state *lsp;
2925         int status;
2926
2927         status = nfs4_set_lock_state(state, request);
2928         if (status != 0)
2929                 return status;
2930         lsp = request->fl_u.nfs4_fl.owner;
2931         /* We might have lost the locks! */
2932         if ((lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0)
2933                 return 0;
2934         calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
2935         if (calldata == NULL)
2936                 return -ENOMEM;
2937         calldata->luargs.seqid = nfs_alloc_seqid(&lsp->ls_seqid);
2938         if (calldata->luargs.seqid == NULL) {
2939                 kfree(calldata);
2940                 return -ENOMEM;
2941         }
2942         calldata->luargs.stateid = &lsp->ls_stateid;
2943         calldata->arg.fh = NFS_FH(inode);
2944         calldata->arg.type = nfs4_lck_type(cmd, request);
2945         calldata->arg.offset = request->fl_start;
2946         calldata->arg.length = nfs4_lck_length(request);
2947         calldata->arg.u.locku = &calldata->luargs;
2948         calldata->res.server = server;
2949         calldata->lsp = lsp;
2950         atomic_inc(&lsp->ls_count);
2951
2952         /* Ensure we don't close file until we're done freeing locks! */
2953         calldata->ctx = get_nfs_open_context((struct nfs_open_context*)request->fl_file->private_data);
2954
2955         atomic_set(&calldata->refcount, 2);
2956         init_completion(&calldata->completion);
2957
2958         status = nfs4_call_async(NFS_SERVER(inode)->client, nfs4_locku_begin,
2959                         nfs4_locku_done, calldata);
2960         if (status == 0)
2961                 wait_for_completion_interruptible(&calldata->completion);
2962         do_vfs_lock(request->fl_file, request);
2963         nfs4_locku_release_calldata(calldata);
2964         return status;
2965 }
2966
2967 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *request, int reclaim)
2968 {
2969         struct inode *inode = state->inode;
2970         struct nfs_server *server = NFS_SERVER(inode);
2971         struct nfs4_lock_state *lsp = request->fl_u.nfs4_fl.owner;
2972         struct nfs_lock_opargs largs = {
2973                 .lock_stateid = &lsp->ls_stateid,
2974                 .open_stateid = &state->stateid,
2975                 .lock_owner = {
2976                         .clientid = server->nfs4_state->cl_clientid,
2977                         .id = lsp->ls_id,
2978                 },
2979                 .reclaim = reclaim,
2980         };
2981         struct nfs_lockargs arg = {
2982                 .fh = NFS_FH(inode),
2983                 .type = nfs4_lck_type(cmd, request),
2984                 .offset = request->fl_start,
2985                 .length = nfs4_lck_length(request),
2986                 .u = {
2987                         .lock = &largs,
2988                 },
2989         };
2990         struct nfs_lockres res = {
2991                 .server = server,
2992         };
2993         struct rpc_message msg = {
2994                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
2995                 .rpc_argp       = &arg,
2996                 .rpc_resp       = &res,
2997                 .rpc_cred       = state->owner->so_cred,
2998         };
2999         int status = -ENOMEM;
3000
3001         largs.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3002         if (largs.lock_seqid == NULL)
3003                 return -ENOMEM;
3004         if (!(lsp->ls_seqid.flags & NFS_SEQID_CONFIRMED)) {
3005                 struct nfs4_state_owner *owner = state->owner;
3006
3007                 largs.open_seqid = nfs_alloc_seqid(&owner->so_seqid);
3008                 if (largs.open_seqid == NULL)
3009                         goto out;
3010                 largs.new_lock_owner = 1;
3011                 status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
3012                 /* increment open seqid on success, and seqid mutating errors */
3013                 if (largs.new_lock_owner != 0) {
3014                         nfs_increment_open_seqid(status, largs.open_seqid);
3015                         if (status == 0)
3016                                 nfs_confirm_seqid(&lsp->ls_seqid, 0);
3017                 }
3018                 nfs_free_seqid(largs.open_seqid);
3019         } else
3020                 status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
3021         /* increment lock seqid on success, and seqid mutating errors*/
3022         nfs_increment_lock_seqid(status, largs.lock_seqid);
3023         /* save the returned stateid. */
3024         if (status == 0) {
3025                 memcpy(lsp->ls_stateid.data, res.u.stateid.data,
3026                                 sizeof(lsp->ls_stateid.data));
3027                 lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3028         } else if (status == -NFS4ERR_DENIED)
3029                 status = -EAGAIN;
3030 out:
3031         nfs_free_seqid(largs.lock_seqid);
3032         return status;
3033 }
3034
3035 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3036 {
3037         struct nfs_server *server = NFS_SERVER(state->inode);
3038         struct nfs4_exception exception = { };
3039         int err;
3040
3041         do {
3042                 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3043                 if (err != -NFS4ERR_DELAY)
3044                         break;
3045                 nfs4_handle_exception(server, err, &exception);
3046         } while (exception.retry);
3047         return err;
3048 }
3049
3050 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3051 {
3052         struct nfs_server *server = NFS_SERVER(state->inode);
3053         struct nfs4_exception exception = { };
3054         int err;
3055
3056         do {
3057                 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3058                 if (err != -NFS4ERR_DELAY)
3059                         break;
3060                 nfs4_handle_exception(server, err, &exception);
3061         } while (exception.retry);
3062         return err;
3063 }
3064
3065 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3066 {
3067         struct nfs4_client *clp = state->owner->so_client;
3068         int status;
3069
3070         down_read(&clp->cl_sem);
3071         status = nfs4_set_lock_state(state, request);
3072         if (status == 0)
3073                 status = _nfs4_do_setlk(state, cmd, request, 0);
3074         if (status == 0) {
3075                 /* Note: we always want to sleep here! */
3076                 request->fl_flags |= FL_SLEEP;
3077                 if (do_vfs_lock(request->fl_file, request) < 0)
3078                         printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3079         }
3080         up_read(&clp->cl_sem);
3081         return status;
3082 }
3083
3084 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3085 {
3086         struct nfs4_exception exception = { };
3087         int err;
3088
3089         do {
3090                 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3091                                 _nfs4_proc_setlk(state, cmd, request),
3092                                 &exception);
3093         } while (exception.retry);
3094         return err;
3095 }
3096
3097 static int
3098 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3099 {
3100         struct nfs_open_context *ctx;
3101         struct nfs4_state *state;
3102         unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3103         int status;
3104
3105         /* verify open state */
3106         ctx = (struct nfs_open_context *)filp->private_data;
3107         state = ctx->state;
3108
3109         if (request->fl_start < 0 || request->fl_end < 0)
3110                 return -EINVAL;
3111
3112         if (IS_GETLK(cmd))
3113                 return nfs4_proc_getlk(state, F_GETLK, request);
3114
3115         if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3116                 return -EINVAL;
3117
3118         if (request->fl_type == F_UNLCK)
3119                 return nfs4_proc_unlck(state, cmd, request);
3120
3121         do {
3122                 status = nfs4_proc_setlk(state, cmd, request);
3123                 if ((status != -EAGAIN) || IS_SETLK(cmd))
3124                         break;
3125                 timeout = nfs4_set_lock_task_retry(timeout);
3126                 status = -ERESTARTSYS;
3127                 if (signalled())
3128                         break;
3129         } while(status < 0);
3130         return status;
3131 }
3132
3133
3134 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3135
3136 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3137                 size_t buflen, int flags)
3138 {
3139         struct inode *inode = dentry->d_inode;
3140
3141         if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3142                 return -EOPNOTSUPP;
3143
3144         if (!S_ISREG(inode->i_mode) &&
3145             (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3146                 return -EPERM;
3147
3148         return nfs4_proc_set_acl(inode, buf, buflen);
3149 }
3150
3151 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3152  * and that's what we'll do for e.g. user attributes that haven't been set.
3153  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3154  * attributes in kernel-managed attribute namespaces. */
3155 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3156                 size_t buflen)
3157 {
3158         struct inode *inode = dentry->d_inode;
3159
3160         if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3161                 return -EOPNOTSUPP;
3162
3163         return nfs4_proc_get_acl(inode, buf, buflen);
3164 }
3165
3166 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3167 {
3168         size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3169
3170         if (buf && buflen < len)
3171                 return -ERANGE;
3172         if (buf)
3173                 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3174         return len;
3175 }
3176
3177 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3178         .recover_open   = nfs4_open_reclaim,
3179         .recover_lock   = nfs4_lock_reclaim,
3180 };
3181
3182 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3183         .recover_open   = nfs4_open_expired,
3184         .recover_lock   = nfs4_lock_expired,
3185 };
3186
3187 static struct inode_operations nfs4_file_inode_operations = {
3188         .permission     = nfs_permission,
3189         .getattr        = nfs_getattr,
3190         .setattr        = nfs_setattr,
3191         .getxattr       = nfs4_getxattr,
3192         .setxattr       = nfs4_setxattr,
3193         .listxattr      = nfs4_listxattr,
3194 };
3195
3196 struct nfs_rpc_ops      nfs_v4_clientops = {
3197         .version        = 4,                    /* protocol version */
3198         .dentry_ops     = &nfs4_dentry_operations,
3199         .dir_inode_ops  = &nfs4_dir_inode_operations,
3200         .file_inode_ops = &nfs4_file_inode_operations,
3201         .getroot        = nfs4_proc_get_root,
3202         .getattr        = nfs4_proc_getattr,
3203         .setattr        = nfs4_proc_setattr,
3204         .lookup         = nfs4_proc_lookup,
3205         .access         = nfs4_proc_access,
3206         .readlink       = nfs4_proc_readlink,
3207         .read           = nfs4_proc_read,
3208         .write          = nfs4_proc_write,
3209         .commit         = nfs4_proc_commit,
3210         .create         = nfs4_proc_create,
3211         .remove         = nfs4_proc_remove,
3212         .unlink_setup   = nfs4_proc_unlink_setup,
3213         .unlink_done    = nfs4_proc_unlink_done,
3214         .rename         = nfs4_proc_rename,
3215         .link           = nfs4_proc_link,
3216         .symlink        = nfs4_proc_symlink,
3217         .mkdir          = nfs4_proc_mkdir,
3218         .rmdir          = nfs4_proc_remove,
3219         .readdir        = nfs4_proc_readdir,
3220         .mknod          = nfs4_proc_mknod,
3221         .statfs         = nfs4_proc_statfs,
3222         .fsinfo         = nfs4_proc_fsinfo,
3223         .pathconf       = nfs4_proc_pathconf,
3224         .decode_dirent  = nfs4_decode_dirent,
3225         .read_setup     = nfs4_proc_read_setup,
3226         .write_setup    = nfs4_proc_write_setup,
3227         .commit_setup   = nfs4_proc_commit_setup,
3228         .file_open      = nfs_open,
3229         .file_release   = nfs_release,
3230         .lock           = nfs4_proc_lock,
3231         .clear_acl_cache = nfs4_zap_acl_attr,
3232 };
3233
3234 /*
3235  * Local variables:
3236  *  c-basic-offset: 8
3237  * End:
3238  */