NFS: Separate functions for counting outstanding NFS direct I/Os
[safe/jmp/linux-2.6] / fs / nfs / direct.c
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001  Initial implementation for 2.4  --cel
33  * 08 Jul 2002  Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003  Port to 2.5 APIs  --cel
35  * 31 Mar 2004  Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004  Parallel async reads  --cel
37  * 04 May 2005  support O_DIRECT with aio  --cel
38  *
39  */
40
41 #include <linux/config.h>
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/pagemap.h>
48 #include <linux/kref.h>
49
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53
54 #include <asm/system.h>
55 #include <asm/uaccess.h>
56 #include <asm/atomic.h>
57
58 #include "iostat.h"
59
60 #define NFSDBG_FACILITY         NFSDBG_VFS
61
62 static kmem_cache_t *nfs_direct_cachep;
63
64 /*
65  * This represents a set of asynchronous requests that we're waiting on
66  */
67 struct nfs_direct_req {
68         struct kref             kref;           /* release manager */
69
70         /* I/O parameters */
71         struct list_head        list,           /* nfs_read/write_data structs */
72                                 rewrite_list;   /* saved nfs_write_data structs */
73         struct nfs_open_context *ctx;           /* file open context info */
74         struct kiocb *          iocb;           /* controlling i/o request */
75         struct inode *          inode;          /* target file of i/o */
76         unsigned long           user_addr;      /* location of user's buffer */
77         size_t                  user_count;     /* total bytes to move */
78         loff_t                  pos;            /* starting offset in file */
79         struct page **          pages;          /* pages in our buffer */
80         unsigned int            npages;         /* count of pages */
81
82         /* completion state */
83         atomic_t                io_count;       /* i/os we're waiting for */
84         spinlock_t              lock;           /* protect completion state */
85         ssize_t                 count,          /* bytes actually processed */
86                                 error;          /* any reported error */
87         struct completion       completion;     /* wait for i/o completion */
88
89         /* commit state */
90         struct nfs_write_data * commit_data;    /* special write_data for commits */
91         int                     flags;
92 #define NFS_ODIRECT_DO_COMMIT           (1)     /* an unstable reply was received */
93 #define NFS_ODIRECT_RESCHED_WRITES      (2)     /* write verification failed */
94         struct nfs_writeverf    verf;           /* unstable write verifier */
95 };
96
97 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync);
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99
100 static inline void get_dreq(struct nfs_direct_req *dreq)
101 {
102         atomic_inc(&dreq->io_count);
103 }
104
105 static inline int put_dreq(struct nfs_direct_req *dreq)
106 {
107         return atomic_dec_and_test(&dreq->io_count);
108 }
109
110 /**
111  * nfs_direct_IO - NFS address space operation for direct I/O
112  * @rw: direction (read or write)
113  * @iocb: target I/O control block
114  * @iov: array of vectors that define I/O buffer
115  * @pos: offset in file to begin the operation
116  * @nr_segs: size of iovec array
117  *
118  * The presence of this routine in the address space ops vector means
119  * the NFS client supports direct I/O.  However, we shunt off direct
120  * read and write requests before the VFS gets them, so this method
121  * should never be called.
122  */
123 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
124 {
125         dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
126                         iocb->ki_filp->f_dentry->d_name.name,
127                         (long long) pos, nr_segs);
128
129         return -EINVAL;
130 }
131
132 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
133 {
134         int i;
135         for (i = 0; i < npages; i++) {
136                 struct page *page = pages[i];
137                 if (do_dirty && !PageCompound(page))
138                         set_page_dirty_lock(page);
139                 page_cache_release(page);
140         }
141         kfree(pages);
142 }
143
144 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
145 {
146         int result = -ENOMEM;
147         unsigned long page_count;
148         size_t array_size;
149
150         page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
151         page_count -= user_addr >> PAGE_SHIFT;
152
153         array_size = (page_count * sizeof(struct page *));
154         *pages = kmalloc(array_size, GFP_KERNEL);
155         if (*pages) {
156                 down_read(&current->mm->mmap_sem);
157                 result = get_user_pages(current, current->mm, user_addr,
158                                         page_count, (rw == READ), 0,
159                                         *pages, NULL);
160                 up_read(&current->mm->mmap_sem);
161                 if (result != page_count) {
162                         /*
163                          * If we got fewer pages than expected from
164                          * get_user_pages(), the user buffer runs off the
165                          * end of a mapping; return EFAULT.
166                          */
167                         if (result >= 0) {
168                                 nfs_free_user_pages(*pages, result, 0);
169                                 result = -EFAULT;
170                         } else
171                                 kfree(*pages);
172                         *pages = NULL;
173                 }
174         }
175         return result;
176 }
177
178 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
179 {
180         struct nfs_direct_req *dreq;
181
182         dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
183         if (!dreq)
184                 return NULL;
185
186         kref_init(&dreq->kref);
187         init_completion(&dreq->completion);
188         INIT_LIST_HEAD(&dreq->list);
189         INIT_LIST_HEAD(&dreq->rewrite_list);
190         dreq->iocb = NULL;
191         dreq->ctx = NULL;
192         spin_lock_init(&dreq->lock);
193         atomic_set(&dreq->io_count, 0);
194         dreq->count = 0;
195         dreq->error = 0;
196         dreq->flags = 0;
197
198         return dreq;
199 }
200
201 static void nfs_direct_req_release(struct kref *kref)
202 {
203         struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
204
205         if (dreq->ctx != NULL)
206                 put_nfs_open_context(dreq->ctx);
207         kmem_cache_free(nfs_direct_cachep, dreq);
208 }
209
210 /*
211  * Collects and returns the final error value/byte-count.
212  */
213 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
214 {
215         ssize_t result = -EIOCBQUEUED;
216
217         /* Async requests don't wait here */
218         if (dreq->iocb)
219                 goto out;
220
221         result = wait_for_completion_interruptible(&dreq->completion);
222
223         if (!result)
224                 result = dreq->error;
225         if (!result)
226                 result = dreq->count;
227
228 out:
229         kref_put(&dreq->kref, nfs_direct_req_release);
230         return (ssize_t) result;
231 }
232
233 /*
234  * We must hold a reference to all the pages in this direct read request
235  * until the RPCs complete.  This could be long *after* we are woken up in
236  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
237  *
238  * In addition, synchronous I/O uses a stack-allocated iocb.  Thus we
239  * can't trust the iocb is still valid here if this is a synchronous
240  * request.  If the waiter is woken prematurely, the iocb is long gone.
241  */
242 static void nfs_direct_complete(struct nfs_direct_req *dreq)
243 {
244         nfs_free_user_pages(dreq->pages, dreq->npages, 1);
245
246         if (dreq->iocb) {
247                 long res = (long) dreq->error;
248                 if (!res)
249                         res = (long) dreq->count;
250                 aio_complete(dreq->iocb, res, 0);
251         }
252         complete_all(&dreq->completion);
253
254         kref_put(&dreq->kref, nfs_direct_req_release);
255 }
256
257 /*
258  * Note we also set the number of requests we have in the dreq when we are
259  * done.  This prevents races with I/O completion so we will always wait
260  * until all requests have been dispatched and completed.
261  */
262 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
263 {
264         struct list_head *list;
265         struct nfs_direct_req *dreq;
266         unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
267
268         dreq = nfs_direct_req_alloc();
269         if (!dreq)
270                 return NULL;
271
272         list = &dreq->list;
273         for(;;) {
274                 struct nfs_read_data *data = nfs_readdata_alloc(rpages);
275
276                 if (unlikely(!data)) {
277                         while (!list_empty(list)) {
278                                 data = list_entry(list->next,
279                                                   struct nfs_read_data, pages);
280                                 list_del(&data->pages);
281                                 nfs_readdata_free(data);
282                         }
283                         kref_put(&dreq->kref, nfs_direct_req_release);
284                         return NULL;
285                 }
286
287                 INIT_LIST_HEAD(&data->pages);
288                 list_add(&data->pages, list);
289
290                 data->req = (struct nfs_page *) dreq;
291                 get_dreq(dreq);
292                 if (nbytes <= rsize)
293                         break;
294                 nbytes -= rsize;
295         }
296         kref_get(&dreq->kref);
297         return dreq;
298 }
299
300 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
301 {
302         struct nfs_read_data *data = calldata;
303         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
304
305         if (nfs_readpage_result(task, data) != 0)
306                 return;
307
308         spin_lock(&dreq->lock);
309
310         if (likely(task->tk_status >= 0))
311                 dreq->count += data->res.count;
312         else
313                 dreq->error = task->tk_status;
314
315         spin_unlock(&dreq->lock);
316
317         if (put_dreq(dreq))
318                 nfs_direct_complete(dreq);
319 }
320
321 static const struct rpc_call_ops nfs_read_direct_ops = {
322         .rpc_call_done = nfs_direct_read_result,
323         .rpc_release = nfs_readdata_release,
324 };
325
326 /*
327  * For each nfs_read_data struct that was allocated on the list, dispatch
328  * an NFS READ operation
329  */
330 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq)
331 {
332         struct nfs_open_context *ctx = dreq->ctx;
333         struct inode *inode = ctx->dentry->d_inode;
334         struct list_head *list = &dreq->list;
335         struct page **pages = dreq->pages;
336         size_t count = dreq->user_count;
337         loff_t pos = dreq->pos;
338         size_t rsize = NFS_SERVER(inode)->rsize;
339         unsigned int curpage, pgbase;
340
341         curpage = 0;
342         pgbase = dreq->user_addr & ~PAGE_MASK;
343         do {
344                 struct nfs_read_data *data;
345                 size_t bytes;
346
347                 bytes = rsize;
348                 if (count < rsize)
349                         bytes = count;
350
351                 BUG_ON(list_empty(list));
352                 data = list_entry(list->next, struct nfs_read_data, pages);
353                 list_del_init(&data->pages);
354
355                 data->inode = inode;
356                 data->cred = ctx->cred;
357                 data->args.fh = NFS_FH(inode);
358                 data->args.context = ctx;
359                 data->args.offset = pos;
360                 data->args.pgbase = pgbase;
361                 data->args.pages = &pages[curpage];
362                 data->args.count = bytes;
363                 data->res.fattr = &data->fattr;
364                 data->res.eof = 0;
365                 data->res.count = bytes;
366
367                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
368                                 &nfs_read_direct_ops, data);
369                 NFS_PROTO(inode)->read_setup(data);
370
371                 data->task.tk_cookie = (unsigned long) inode;
372
373                 lock_kernel();
374                 rpc_execute(&data->task);
375                 unlock_kernel();
376
377                 dfprintk(VFS, "NFS: %5u initiated direct read call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
378                                 data->task.tk_pid,
379                                 inode->i_sb->s_id,
380                                 (long long)NFS_FILEID(inode),
381                                 bytes,
382                                 (unsigned long long)data->args.offset);
383
384                 pos += bytes;
385                 pgbase += bytes;
386                 curpage += pgbase >> PAGE_SHIFT;
387                 pgbase &= ~PAGE_MASK;
388
389                 count -= bytes;
390         } while (count != 0);
391         BUG_ON(!list_empty(list));
392 }
393
394 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, unsigned int nr_pages)
395 {
396         ssize_t result;
397         sigset_t oldset;
398         struct inode *inode = iocb->ki_filp->f_mapping->host;
399         struct rpc_clnt *clnt = NFS_CLIENT(inode);
400         struct nfs_direct_req *dreq;
401
402         dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
403         if (!dreq)
404                 return -ENOMEM;
405
406         dreq->user_addr = user_addr;
407         dreq->user_count = count;
408         dreq->pos = pos;
409         dreq->pages = pages;
410         dreq->npages = nr_pages;
411         dreq->inode = inode;
412         dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
413         if (!is_sync_kiocb(iocb))
414                 dreq->iocb = iocb;
415
416         nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
417         rpc_clnt_sigmask(clnt, &oldset);
418         nfs_direct_read_schedule(dreq);
419         result = nfs_direct_wait(dreq);
420         rpc_clnt_sigunmask(clnt, &oldset);
421
422         return result;
423 }
424
425 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
426 {
427         list_splice_init(&dreq->rewrite_list, &dreq->list);
428         while (!list_empty(&dreq->list)) {
429                 struct nfs_write_data *data = list_entry(dreq->list.next, struct nfs_write_data, pages);
430                 list_del(&data->pages);
431                 nfs_writedata_release(data);
432         }
433 }
434
435 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
436 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
437 {
438         struct list_head *pos;
439
440         list_splice_init(&dreq->rewrite_list, &dreq->list);
441         list_for_each(pos, &dreq->list)
442                 get_dreq(dreq);
443         dreq->count = 0;
444
445         nfs_direct_write_schedule(dreq, FLUSH_STABLE);
446 }
447
448 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
449 {
450         struct nfs_write_data *data = calldata;
451         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
452
453         /* Call the NFS version-specific code */
454         if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
455                 return;
456         if (unlikely(task->tk_status < 0)) {
457                 dreq->error = task->tk_status;
458                 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
459         }
460         if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
461                 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
462                 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
463         }
464
465         dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
466         nfs_direct_write_complete(dreq, data->inode);
467 }
468
469 static const struct rpc_call_ops nfs_commit_direct_ops = {
470         .rpc_call_done = nfs_direct_commit_result,
471         .rpc_release = nfs_commit_release,
472 };
473
474 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
475 {
476         struct nfs_write_data *data = dreq->commit_data;
477
478         data->inode = dreq->inode;
479         data->cred = dreq->ctx->cred;
480
481         data->args.fh = NFS_FH(data->inode);
482         data->args.offset = dreq->pos;
483         data->args.count = dreq->user_count;
484         data->res.count = 0;
485         data->res.fattr = &data->fattr;
486         data->res.verf = &data->verf;
487
488         rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
489                                 &nfs_commit_direct_ops, data);
490         NFS_PROTO(data->inode)->commit_setup(data, 0);
491
492         data->task.tk_priority = RPC_PRIORITY_NORMAL;
493         data->task.tk_cookie = (unsigned long)data->inode;
494         /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
495         dreq->commit_data = NULL;
496
497         dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
498
499         lock_kernel();
500         rpc_execute(&data->task);
501         unlock_kernel();
502 }
503
504 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
505 {
506         int flags = dreq->flags;
507
508         dreq->flags = 0;
509         switch (flags) {
510                 case NFS_ODIRECT_DO_COMMIT:
511                         nfs_direct_commit_schedule(dreq);
512                         break;
513                 case NFS_ODIRECT_RESCHED_WRITES:
514                         nfs_direct_write_reschedule(dreq);
515                         break;
516                 default:
517                         nfs_end_data_update(inode);
518                         if (dreq->commit_data != NULL)
519                                 nfs_commit_free(dreq->commit_data);
520                         nfs_direct_free_writedata(dreq);
521                         nfs_direct_complete(dreq);
522         }
523 }
524
525 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
526 {
527         dreq->commit_data = nfs_commit_alloc(0);
528         if (dreq->commit_data != NULL)
529                 dreq->commit_data->req = (struct nfs_page *) dreq;
530 }
531 #else
532 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
533 {
534         dreq->commit_data = NULL;
535 }
536
537 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
538 {
539         nfs_end_data_update(inode);
540         nfs_direct_free_writedata(dreq);
541         nfs_direct_complete(dreq);
542 }
543 #endif
544
545 static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
546 {
547         struct list_head *list;
548         struct nfs_direct_req *dreq;
549         unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
550
551         dreq = nfs_direct_req_alloc();
552         if (!dreq)
553                 return NULL;
554
555         list = &dreq->list;
556         for(;;) {
557                 struct nfs_write_data *data = nfs_writedata_alloc(wpages);
558
559                 if (unlikely(!data)) {
560                         while (!list_empty(list)) {
561                                 data = list_entry(list->next,
562                                                   struct nfs_write_data, pages);
563                                 list_del(&data->pages);
564                                 nfs_writedata_free(data);
565                         }
566                         kref_put(&dreq->kref, nfs_direct_req_release);
567                         return NULL;
568                 }
569
570                 INIT_LIST_HEAD(&data->pages);
571                 list_add(&data->pages, list);
572
573                 data->req = (struct nfs_page *) dreq;
574                 get_dreq(dreq);
575                 if (nbytes <= wsize)
576                         break;
577                 nbytes -= wsize;
578         }
579
580         nfs_alloc_commit_data(dreq);
581
582         kref_get(&dreq->kref);
583         return dreq;
584 }
585
586 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
587 {
588         struct nfs_write_data *data = calldata;
589         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
590         int status = task->tk_status;
591
592         if (nfs_writeback_done(task, data) != 0)
593                 return;
594
595         spin_lock(&dreq->lock);
596
597         if (likely(status >= 0))
598                 dreq->count += data->res.count;
599         else
600                 dreq->error = task->tk_status;
601
602         if (data->res.verf->committed != NFS_FILE_SYNC) {
603                 switch (dreq->flags) {
604                         case 0:
605                                 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
606                                 dreq->flags = NFS_ODIRECT_DO_COMMIT;
607                                 break;
608                         case NFS_ODIRECT_DO_COMMIT:
609                                 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
610                                         dprintk("NFS: %5u write verify failed\n", task->tk_pid);
611                                         dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
612                                 }
613                 }
614         }
615         /* In case we have to resend */
616         data->args.stable = NFS_FILE_SYNC;
617
618         spin_unlock(&dreq->lock);
619 }
620
621 /*
622  * NB: Return the value of the first error return code.  Subsequent
623  *     errors after the first one are ignored.
624  */
625 static void nfs_direct_write_release(void *calldata)
626 {
627         struct nfs_write_data *data = calldata;
628         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
629
630         if (put_dreq(dreq))
631                 nfs_direct_write_complete(dreq, data->inode);
632 }
633
634 static const struct rpc_call_ops nfs_write_direct_ops = {
635         .rpc_call_done = nfs_direct_write_result,
636         .rpc_release = nfs_direct_write_release,
637 };
638
639 /*
640  * For each nfs_write_data struct that was allocated on the list, dispatch
641  * an NFS WRITE operation
642  */
643 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync)
644 {
645         struct nfs_open_context *ctx = dreq->ctx;
646         struct inode *inode = ctx->dentry->d_inode;
647         struct list_head *list = &dreq->list;
648         struct page **pages = dreq->pages;
649         size_t count = dreq->user_count;
650         loff_t pos = dreq->pos;
651         size_t wsize = NFS_SERVER(inode)->wsize;
652         unsigned int curpage, pgbase;
653
654         curpage = 0;
655         pgbase = dreq->user_addr & ~PAGE_MASK;
656         do {
657                 struct nfs_write_data *data;
658                 size_t bytes;
659
660                 bytes = wsize;
661                 if (count < wsize)
662                         bytes = count;
663
664                 BUG_ON(list_empty(list));
665                 data = list_entry(list->next, struct nfs_write_data, pages);
666                 list_move_tail(&data->pages, &dreq->rewrite_list);
667
668                 data->inode = inode;
669                 data->cred = ctx->cred;
670                 data->args.fh = NFS_FH(inode);
671                 data->args.context = ctx;
672                 data->args.offset = pos;
673                 data->args.pgbase = pgbase;
674                 data->args.pages = &pages[curpage];
675                 data->args.count = bytes;
676                 data->res.fattr = &data->fattr;
677                 data->res.count = bytes;
678                 data->res.verf = &data->verf;
679
680                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
681                                 &nfs_write_direct_ops, data);
682                 NFS_PROTO(inode)->write_setup(data, sync);
683
684                 data->task.tk_priority = RPC_PRIORITY_NORMAL;
685                 data->task.tk_cookie = (unsigned long) inode;
686
687                 lock_kernel();
688                 rpc_execute(&data->task);
689                 unlock_kernel();
690
691                 dfprintk(VFS, "NFS: %5u initiated direct write call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
692                                 data->task.tk_pid,
693                                 inode->i_sb->s_id,
694                                 (long long)NFS_FILEID(inode),
695                                 bytes,
696                                 (unsigned long long)data->args.offset);
697
698                 pos += bytes;
699                 pgbase += bytes;
700                 curpage += pgbase >> PAGE_SHIFT;
701                 pgbase &= ~PAGE_MASK;
702
703                 count -= bytes;
704         } while (count != 0);
705         BUG_ON(!list_empty(list));
706 }
707
708 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, int nr_pages)
709 {
710         ssize_t result;
711         sigset_t oldset;
712         struct inode *inode = iocb->ki_filp->f_mapping->host;
713         struct rpc_clnt *clnt = NFS_CLIENT(inode);
714         struct nfs_direct_req *dreq;
715         size_t wsize = NFS_SERVER(inode)->wsize;
716         int sync = 0;
717
718         dreq = nfs_direct_write_alloc(count, wsize);
719         if (!dreq)
720                 return -ENOMEM;
721         if (dreq->commit_data == NULL || count < wsize)
722                 sync = FLUSH_STABLE;
723
724         dreq->user_addr = user_addr;
725         dreq->user_count = count;
726         dreq->pos = pos;
727         dreq->pages = pages;
728         dreq->npages = nr_pages;
729         dreq->inode = inode;
730         dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
731         if (!is_sync_kiocb(iocb))
732                 dreq->iocb = iocb;
733
734         nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
735
736         nfs_begin_data_update(inode);
737
738         rpc_clnt_sigmask(clnt, &oldset);
739         nfs_direct_write_schedule(dreq, sync);
740         result = nfs_direct_wait(dreq);
741         rpc_clnt_sigunmask(clnt, &oldset);
742
743         return result;
744 }
745
746 /**
747  * nfs_file_direct_read - file direct read operation for NFS files
748  * @iocb: target I/O control block
749  * @buf: user's buffer into which to read data
750  * @count: number of bytes to read
751  * @pos: byte offset in file where reading starts
752  *
753  * We use this function for direct reads instead of calling
754  * generic_file_aio_read() in order to avoid gfar's check to see if
755  * the request starts before the end of the file.  For that check
756  * to work, we must generate a GETATTR before each direct read, and
757  * even then there is a window between the GETATTR and the subsequent
758  * READ where the file size could change.  Our preference is simply
759  * to do all reads the application wants, and the server will take
760  * care of managing the end of file boundary.
761  *
762  * This function also eliminates unnecessarily updating the file's
763  * atime locally, as the NFS server sets the file's atime, and this
764  * client must read the updated atime from the server back into its
765  * cache.
766  */
767 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
768 {
769         ssize_t retval = -EINVAL;
770         int page_count;
771         struct page **pages;
772         struct file *file = iocb->ki_filp;
773         struct address_space *mapping = file->f_mapping;
774
775         dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
776                 file->f_dentry->d_parent->d_name.name,
777                 file->f_dentry->d_name.name,
778                 (unsigned long) count, (long long) pos);
779
780         if (count < 0)
781                 goto out;
782         retval = -EFAULT;
783         if (!access_ok(VERIFY_WRITE, buf, count))
784                 goto out;
785         retval = 0;
786         if (!count)
787                 goto out;
788
789         retval = nfs_sync_mapping(mapping);
790         if (retval)
791                 goto out;
792
793         retval = nfs_get_user_pages(READ, (unsigned long) buf,
794                                                 count, &pages);
795         if (retval < 0)
796                 goto out;
797         page_count = retval;
798
799         retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
800                                                 pages, page_count);
801         if (retval > 0)
802                 iocb->ki_pos = pos + retval;
803
804 out:
805         return retval;
806 }
807
808 /**
809  * nfs_file_direct_write - file direct write operation for NFS files
810  * @iocb: target I/O control block
811  * @buf: user's buffer from which to write data
812  * @count: number of bytes to write
813  * @pos: byte offset in file where writing starts
814  *
815  * We use this function for direct writes instead of calling
816  * generic_file_aio_write() in order to avoid taking the inode
817  * semaphore and updating the i_size.  The NFS server will set
818  * the new i_size and this client must read the updated size
819  * back into its cache.  We let the server do generic write
820  * parameter checking and report problems.
821  *
822  * We also avoid an unnecessary invocation of generic_osync_inode(),
823  * as it is fairly meaningless to sync the metadata of an NFS file.
824  *
825  * We eliminate local atime updates, see direct read above.
826  *
827  * We avoid unnecessary page cache invalidations for normal cached
828  * readers of this file.
829  *
830  * Note that O_APPEND is not supported for NFS direct writes, as there
831  * is no atomic O_APPEND write facility in the NFS protocol.
832  */
833 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
834 {
835         ssize_t retval;
836         int page_count;
837         struct page **pages;
838         struct file *file = iocb->ki_filp;
839         struct address_space *mapping = file->f_mapping;
840
841         dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
842                 file->f_dentry->d_parent->d_name.name,
843                 file->f_dentry->d_name.name,
844                 (unsigned long) count, (long long) pos);
845
846         retval = generic_write_checks(file, &pos, &count, 0);
847         if (retval)
848                 goto out;
849
850         retval = -EINVAL;
851         if ((ssize_t) count < 0)
852                 goto out;
853         retval = 0;
854         if (!count)
855                 goto out;
856
857         retval = -EFAULT;
858         if (!access_ok(VERIFY_READ, buf, count))
859                 goto out;
860
861         retval = nfs_sync_mapping(mapping);
862         if (retval)
863                 goto out;
864
865         retval = nfs_get_user_pages(WRITE, (unsigned long) buf,
866                                                 count, &pages);
867         if (retval < 0)
868                 goto out;
869         page_count = retval;
870
871         retval = nfs_direct_write(iocb, (unsigned long) buf, count,
872                                         pos, pages, page_count);
873
874         /*
875          * XXX: nfs_end_data_update() already ensures this file's
876          *      cached data is subsequently invalidated.  Do we really
877          *      need to call invalidate_inode_pages2() again here?
878          *
879          *      For aio writes, this invalidation will almost certainly
880          *      occur before the writes complete.  Kind of racey.
881          */
882         if (mapping->nrpages)
883                 invalidate_inode_pages2(mapping);
884
885         if (retval > 0)
886                 iocb->ki_pos = pos + retval;
887
888 out:
889         return retval;
890 }
891
892 /**
893  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
894  *
895  */
896 int __init nfs_init_directcache(void)
897 {
898         nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
899                                                 sizeof(struct nfs_direct_req),
900                                                 0, (SLAB_RECLAIM_ACCOUNT|
901                                                         SLAB_MEM_SPREAD),
902                                                 NULL, NULL);
903         if (nfs_direct_cachep == NULL)
904                 return -ENOMEM;
905
906         return 0;
907 }
908
909 /**
910  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
911  *
912  */
913 void __exit nfs_destroy_directcache(void)
914 {
915         if (kmem_cache_destroy(nfs_direct_cachep))
916                 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
917 }