489f736d0f5d3bdfd5f7ac6e5da777262ed87796
[safe/jmp/linux-2.6] / fs / nfs / direct.c
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts) 
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets 
13  * considerably larger than the client's memory do not always benefit 
14  * from a local cache.  A streaming video server, for instance, has no 
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001  Initial implementation for 2.4  --cel
33  * 08 Jul 2002  Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003  Port to 2.5 APIs  --cel
35  * 31 Mar 2004  Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004  Parallel async reads  --cel
37  *
38  */
39
40 #include <linux/config.h>
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
52
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56
57 #include "iostat.h"
58
59 #define NFSDBG_FACILITY         NFSDBG_VFS
60 #define MAX_DIRECTIO_SIZE       (4096UL << PAGE_SHIFT)
61
62 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
63 static kmem_cache_t *nfs_direct_cachep;
64
65 /*
66  * This represents a set of asynchronous requests that we're waiting on
67  */
68 struct nfs_direct_req {
69         struct kref             kref;           /* release manager */
70         struct list_head        list;           /* nfs_read_data structs */
71         struct file *           filp;           /* file descriptor */
72         struct kiocb *          iocb;           /* controlling i/o request */
73         wait_queue_head_t       wait;           /* wait for i/o completion */
74         struct inode *          inode;          /* target file of I/O */
75         struct page **          pages;          /* pages in our buffer */
76         unsigned int            npages;         /* count of pages */
77         atomic_t                complete,       /* i/os we're waiting for */
78                                 count,          /* bytes actually processed */
79                                 error;          /* any reported error */
80 };
81
82
83 /**
84  * nfs_direct_IO - NFS address space operation for direct I/O
85  * @rw: direction (read or write)
86  * @iocb: target I/O control block
87  * @iov: array of vectors that define I/O buffer
88  * @pos: offset in file to begin the operation
89  * @nr_segs: size of iovec array
90  *
91  * The presence of this routine in the address space ops vector means
92  * the NFS client supports direct I/O.  However, we shunt off direct
93  * read and write requests before the VFS gets them, so this method
94  * should never be called.
95  */
96 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
97 {
98         struct dentry *dentry = iocb->ki_filp->f_dentry;
99
100         dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
101                         dentry->d_name.name, (long long) pos, nr_segs);
102
103         return -EINVAL;
104 }
105
106 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
107 {
108         int result = -ENOMEM;
109         unsigned long page_count;
110         size_t array_size;
111
112         /* set an arbitrary limit to prevent type overflow */
113         /* XXX: this can probably be as large as INT_MAX */
114         if (size > MAX_DIRECTIO_SIZE) {
115                 *pages = NULL;
116                 return -EFBIG;
117         }
118
119         page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
120         page_count -= user_addr >> PAGE_SHIFT;
121
122         array_size = (page_count * sizeof(struct page *));
123         *pages = kmalloc(array_size, GFP_KERNEL);
124         if (*pages) {
125                 down_read(&current->mm->mmap_sem);
126                 result = get_user_pages(current, current->mm, user_addr,
127                                         page_count, (rw == READ), 0,
128                                         *pages, NULL);
129                 up_read(&current->mm->mmap_sem);
130                 /*
131                  * If we got fewer pages than expected from get_user_pages(),
132                  * the user buffer runs off the end of a mapping; return EFAULT.
133                  */
134                 if (result >= 0 && result < page_count) {
135                         nfs_free_user_pages(*pages, result, 0);
136                         *pages = NULL;
137                         result = -EFAULT;
138                 }
139         }
140         return result;
141 }
142
143 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
144 {
145         int i;
146         for (i = 0; i < npages; i++) {
147                 struct page *page = pages[i];
148                 if (do_dirty && !PageCompound(page))
149                         set_page_dirty_lock(page);
150                 page_cache_release(page);
151         }
152         kfree(pages);
153 }
154
155 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
156 {
157         struct nfs_direct_req *dreq;
158
159         dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
160         if (!dreq)
161                 return NULL;
162
163         kref_init(&dreq->kref);
164         init_waitqueue_head(&dreq->wait);
165         INIT_LIST_HEAD(&dreq->list);
166         dreq->iocb = NULL;
167         atomic_set(&dreq->count, 0);
168         atomic_set(&dreq->error, 0);
169
170         return dreq;
171 }
172
173 static void nfs_direct_req_release(struct kref *kref)
174 {
175         struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
176         kmem_cache_free(nfs_direct_cachep, dreq);
177 }
178
179 /*
180  * Collects and returns the final error value/byte-count.
181  */
182 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
183 {
184         int result = -EIOCBQUEUED;
185
186         /* Async requests don't wait here */
187         if (dreq->iocb)
188                 goto out;
189
190         result = wait_event_interruptible(dreq->wait,
191                                         (atomic_read(&dreq->complete) == 0));
192
193         if (!result)
194                 result = atomic_read(&dreq->error);
195         if (!result)
196                 result = atomic_read(&dreq->count);
197
198 out:
199         kref_put(&dreq->kref, nfs_direct_req_release);
200         return (ssize_t) result;
201 }
202
203 /*
204  * Note we also set the number of requests we have in the dreq when we are
205  * done.  This prevents races with I/O completion so we will always wait
206  * until all requests have been dispatched and completed.
207  */
208 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
209 {
210         struct list_head *list;
211         struct nfs_direct_req *dreq;
212         unsigned int reads = 0;
213         unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
214
215         dreq = nfs_direct_req_alloc();
216         if (!dreq)
217                 return NULL;
218
219         list = &dreq->list;
220         for(;;) {
221                 struct nfs_read_data *data = nfs_readdata_alloc(rpages);
222
223                 if (unlikely(!data)) {
224                         while (!list_empty(list)) {
225                                 data = list_entry(list->next,
226                                                   struct nfs_read_data, pages);
227                                 list_del(&data->pages);
228                                 nfs_readdata_free(data);
229                         }
230                         kref_put(&dreq->kref, nfs_direct_req_release);
231                         return NULL;
232                 }
233
234                 INIT_LIST_HEAD(&data->pages);
235                 list_add(&data->pages, list);
236
237                 data->req = (struct nfs_page *) dreq;
238                 reads++;
239                 if (nbytes <= rsize)
240                         break;
241                 nbytes -= rsize;
242         }
243         kref_get(&dreq->kref);
244         atomic_set(&dreq->complete, reads);
245         return dreq;
246 }
247
248 /*
249  * We must hold a reference to all the pages in this direct read request
250  * until the RPCs complete.  This could be long *after* we are woken up in
251  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
252  *
253  * In addition, synchronous I/O uses a stack-allocated iocb.  Thus we
254  * can't trust the iocb is still valid here if this is a synchronous
255  * request.  If the waiter is woken prematurely, the iocb is long gone.
256  */
257 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
258 {
259         struct nfs_read_data *data = calldata;
260         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
261
262         if (nfs_readpage_result(task, data) != 0)
263                 return;
264         if (likely(task->tk_status >= 0))
265                 atomic_add(data->res.count, &dreq->count);
266         else
267                 atomic_set(&dreq->error, task->tk_status);
268
269         if (unlikely(atomic_dec_and_test(&dreq->complete))) {
270                 nfs_free_user_pages(dreq->pages, dreq->npages, 1);
271                 if (dreq->iocb) {
272                         long res = atomic_read(&dreq->error);
273                         if (!res)
274                                 res = atomic_read(&dreq->count);
275                         aio_complete(dreq->iocb, res, 0);
276                 } else
277                         wake_up(&dreq->wait);
278                 kref_put(&dreq->kref, nfs_direct_req_release);
279         }
280 }
281
282 static const struct rpc_call_ops nfs_read_direct_ops = {
283         .rpc_call_done = nfs_direct_read_result,
284         .rpc_release = nfs_readdata_release,
285 };
286
287 /*
288  * For each nfs_read_data struct that was allocated on the list, dispatch
289  * an NFS READ operation
290  */
291 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
292 {
293         struct file *file = dreq->filp;
294         struct inode *inode = file->f_mapping->host;
295         struct nfs_open_context *ctx = (struct nfs_open_context *)
296                                                         file->private_data;
297         struct list_head *list = &dreq->list;
298         struct page **pages = dreq->pages;
299         size_t rsize = NFS_SERVER(inode)->rsize;
300         unsigned int curpage, pgbase;
301
302         curpage = 0;
303         pgbase = user_addr & ~PAGE_MASK;
304         do {
305                 struct nfs_read_data *data;
306                 size_t bytes;
307
308                 bytes = rsize;
309                 if (count < rsize)
310                         bytes = count;
311
312                 data = list_entry(list->next, struct nfs_read_data, pages);
313                 list_del_init(&data->pages);
314
315                 data->inode = inode;
316                 data->cred = ctx->cred;
317                 data->args.fh = NFS_FH(inode);
318                 data->args.context = ctx;
319                 data->args.offset = file_offset;
320                 data->args.pgbase = pgbase;
321                 data->args.pages = &pages[curpage];
322                 data->args.count = bytes;
323                 data->res.fattr = &data->fattr;
324                 data->res.eof = 0;
325                 data->res.count = bytes;
326
327                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
328                                 &nfs_read_direct_ops, data);
329                 NFS_PROTO(inode)->read_setup(data);
330
331                 data->task.tk_cookie = (unsigned long) inode;
332
333                 lock_kernel();
334                 rpc_execute(&data->task);
335                 unlock_kernel();
336
337                 dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
338                                 data->task.tk_pid,
339                                 inode->i_sb->s_id,
340                                 (long long)NFS_FILEID(inode),
341                                 bytes,
342                                 (unsigned long long)data->args.offset);
343
344                 file_offset += bytes;
345                 pgbase += bytes;
346                 curpage += pgbase >> PAGE_SHIFT;
347                 pgbase &= ~PAGE_MASK;
348
349                 count -= bytes;
350         } while (count != 0);
351 }
352
353 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, unsigned int nr_pages)
354 {
355         ssize_t result;
356         sigset_t oldset;
357         struct inode *inode = iocb->ki_filp->f_mapping->host;
358         struct rpc_clnt *clnt = NFS_CLIENT(inode);
359         struct nfs_direct_req *dreq;
360
361         dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
362         if (!dreq)
363                 return -ENOMEM;
364
365         dreq->pages = pages;
366         dreq->npages = nr_pages;
367         dreq->inode = inode;
368         dreq->filp = iocb->ki_filp;
369         if (!is_sync_kiocb(iocb))
370                 dreq->iocb = iocb;
371
372         nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
373         rpc_clnt_sigmask(clnt, &oldset);
374         nfs_direct_read_schedule(dreq, user_addr, count, file_offset);
375         result = nfs_direct_wait(dreq);
376         rpc_clnt_sigunmask(clnt, &oldset);
377
378         return result;
379 }
380
381 static ssize_t nfs_direct_write_seg(struct inode *inode, struct nfs_open_context *ctx, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages)
382 {
383         const unsigned int wsize = NFS_SERVER(inode)->wsize;
384         size_t request;
385         int curpage, need_commit;
386         ssize_t result, tot_bytes;
387         struct nfs_writeverf first_verf;
388         struct nfs_write_data *wdata;
389
390         wdata = nfs_writedata_alloc(NFS_SERVER(inode)->wpages);
391         if (!wdata)
392                 return -ENOMEM;
393
394         wdata->inode = inode;
395         wdata->cred = ctx->cred;
396         wdata->args.fh = NFS_FH(inode);
397         wdata->args.context = ctx;
398         wdata->args.stable = NFS_UNSTABLE;
399         if (IS_SYNC(inode) || NFS_PROTO(inode)->version == 2 || count <= wsize)
400                 wdata->args.stable = NFS_FILE_SYNC;
401         wdata->res.fattr = &wdata->fattr;
402         wdata->res.verf = &wdata->verf;
403
404         nfs_begin_data_update(inode);
405 retry:
406         need_commit = 0;
407         tot_bytes = 0;
408         curpage = 0;
409         request = count;
410         wdata->args.pgbase = user_addr & ~PAGE_MASK;
411         wdata->args.offset = file_offset;
412         do {
413                 wdata->args.count = request;
414                 if (wdata->args.count > wsize)
415                         wdata->args.count = wsize;
416                 wdata->args.pages = &pages[curpage];
417
418                 dprintk("NFS: direct write: c=%u o=%Ld ua=%lu, pb=%u, cp=%u\n",
419                         wdata->args.count, (long long) wdata->args.offset,
420                         user_addr + tot_bytes, wdata->args.pgbase, curpage);
421
422                 lock_kernel();
423                 result = NFS_PROTO(inode)->write(wdata);
424                 unlock_kernel();
425
426                 if (result <= 0) {
427                         if (tot_bytes > 0)
428                                 break;
429                         goto out;
430                 }
431
432                 if (tot_bytes == 0)
433                         memcpy(&first_verf.verifier, &wdata->verf.verifier,
434                                                 sizeof(first_verf.verifier));
435                 if (wdata->verf.committed != NFS_FILE_SYNC) {
436                         need_commit = 1;
437                         if (memcmp(&first_verf.verifier, &wdata->verf.verifier,
438                                         sizeof(first_verf.verifier)))
439                                 goto sync_retry;
440                 }
441
442                 tot_bytes += result;
443
444                 /* in case of a short write: stop now, let the app recover */
445                 if (result < wdata->args.count)
446                         break;
447
448                 wdata->args.offset += result;
449                 wdata->args.pgbase += result;
450                 curpage += wdata->args.pgbase >> PAGE_SHIFT;
451                 wdata->args.pgbase &= ~PAGE_MASK;
452                 request -= result;
453         } while (request != 0);
454
455         /*
456          * Commit data written so far, even in the event of an error
457          */
458         if (need_commit) {
459                 wdata->args.count = tot_bytes;
460                 wdata->args.offset = file_offset;
461
462                 lock_kernel();
463                 result = NFS_PROTO(inode)->commit(wdata);
464                 unlock_kernel();
465
466                 if (result < 0 || memcmp(&first_verf.verifier,
467                                          &wdata->verf.verifier,
468                                          sizeof(first_verf.verifier)) != 0)
469                         goto sync_retry;
470         }
471         result = tot_bytes;
472
473 out:
474         nfs_end_data_update(inode);
475         nfs_writedata_free(wdata);
476         return result;
477
478 sync_retry:
479         wdata->args.stable = NFS_FILE_SYNC;
480         goto retry;
481 }
482
483 /*
484  * Upon return, generic_file_direct_IO invalidates any cached pages
485  * that non-direct readers might access, so they will pick up these
486  * writes immediately.
487  */
488 static ssize_t nfs_direct_write(struct inode *inode, struct nfs_open_context *ctx, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs)
489 {
490         ssize_t tot_bytes = 0;
491         unsigned long seg = 0;
492
493         while ((seg < nr_segs) && (tot_bytes >= 0)) {
494                 ssize_t result;
495                 int page_count;
496                 struct page **pages;
497                 const struct iovec *vec = &iov[seg++];
498                 unsigned long user_addr = (unsigned long) vec->iov_base;
499                 size_t size = vec->iov_len;
500
501                 page_count = nfs_get_user_pages(WRITE, user_addr, size, &pages);
502                 if (page_count < 0) {
503                         nfs_free_user_pages(pages, 0, 0);
504                         if (tot_bytes > 0)
505                                 break;
506                         return page_count;
507                 }
508
509                 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, size);
510                 result = nfs_direct_write_seg(inode, ctx, user_addr, size,
511                                 file_offset, pages, page_count);
512                 nfs_free_user_pages(pages, page_count, 0);
513
514                 if (result <= 0) {
515                         if (tot_bytes > 0)
516                                 break;
517                         return result;
518                 }
519                 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result);
520                 tot_bytes += result;
521                 file_offset += result;
522                 if (result < size)
523                         break;
524         }
525         return tot_bytes;
526 }
527
528 /**
529  * nfs_file_direct_read - file direct read operation for NFS files
530  * @iocb: target I/O control block
531  * @buf: user's buffer into which to read data
532  * count: number of bytes to read
533  * pos: byte offset in file where reading starts
534  *
535  * We use this function for direct reads instead of calling
536  * generic_file_aio_read() in order to avoid gfar's check to see if
537  * the request starts before the end of the file.  For that check
538  * to work, we must generate a GETATTR before each direct read, and
539  * even then there is a window between the GETATTR and the subsequent
540  * READ where the file size could change.  So our preference is simply
541  * to do all reads the application wants, and the server will take
542  * care of managing the end of file boundary.
543  * 
544  * This function also eliminates unnecessarily updating the file's
545  * atime locally, as the NFS server sets the file's atime, and this
546  * client must read the updated atime from the server back into its
547  * cache.
548  */
549 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
550 {
551         ssize_t retval = -EINVAL;
552         int page_count;
553         struct page **pages;
554         struct file *file = iocb->ki_filp;
555         struct address_space *mapping = file->f_mapping;
556
557         dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
558                 file->f_dentry->d_parent->d_name.name,
559                 file->f_dentry->d_name.name,
560                 (unsigned long) count, (long long) pos);
561
562         if (count < 0)
563                 goto out;
564         retval = -EFAULT;
565         if (!access_ok(VERIFY_WRITE, buf, count))
566                 goto out;
567         retval = 0;
568         if (!count)
569                 goto out;
570
571         retval = nfs_sync_mapping(mapping);
572         if (retval)
573                 goto out;
574
575         page_count = nfs_get_user_pages(READ, (unsigned long) buf,
576                                                 count, &pages);
577         if (page_count < 0) {
578                 nfs_free_user_pages(pages, 0, 0);
579                 retval = page_count;
580                 goto out;
581         }
582
583         retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
584                                                 pages, page_count);
585         if (retval > 0)
586                 iocb->ki_pos = pos + retval;
587
588 out:
589         return retval;
590 }
591
592 /**
593  * nfs_file_direct_write - file direct write operation for NFS files
594  * @iocb: target I/O control block
595  * @buf: user's buffer from which to write data
596  * count: number of bytes to write
597  * pos: byte offset in file where writing starts
598  *
599  * We use this function for direct writes instead of calling
600  * generic_file_aio_write() in order to avoid taking the inode
601  * semaphore and updating the i_size.  The NFS server will set
602  * the new i_size and this client must read the updated size
603  * back into its cache.  We let the server do generic write
604  * parameter checking and report problems.
605  *
606  * We also avoid an unnecessary invocation of generic_osync_inode(),
607  * as it is fairly meaningless to sync the metadata of an NFS file.
608  *
609  * We eliminate local atime updates, see direct read above.
610  *
611  * We avoid unnecessary page cache invalidations for normal cached
612  * readers of this file.
613  *
614  * Note that O_APPEND is not supported for NFS direct writes, as there
615  * is no atomic O_APPEND write facility in the NFS protocol.
616  */
617 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
618 {
619         ssize_t retval;
620         struct file *file = iocb->ki_filp;
621         struct nfs_open_context *ctx =
622                         (struct nfs_open_context *) file->private_data;
623         struct address_space *mapping = file->f_mapping;
624         struct inode *inode = mapping->host;
625         struct iovec iov = {
626                 .iov_base = (char __user *)buf,
627         };
628
629         dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
630                 file->f_dentry->d_parent->d_name.name,
631                 file->f_dentry->d_name.name,
632                 (unsigned long) count, (long long) pos);
633
634         retval = -EINVAL;
635         if (!is_sync_kiocb(iocb))
636                 goto out;
637
638         retval = generic_write_checks(file, &pos, &count, 0);
639         if (retval)
640                 goto out;
641
642         retval = -EINVAL;
643         if ((ssize_t) count < 0)
644                 goto out;
645         retval = 0;
646         if (!count)
647                 goto out;
648         iov.iov_len = count,
649
650         retval = -EFAULT;
651         if (!access_ok(VERIFY_READ, iov.iov_base, iov.iov_len))
652                 goto out;
653
654         retval = nfs_sync_mapping(mapping);
655         if (retval)
656                 goto out;
657
658         retval = nfs_direct_write(inode, ctx, &iov, pos, 1);
659         if (mapping->nrpages)
660                 invalidate_inode_pages2(mapping);
661         if (retval > 0)
662                 iocb->ki_pos = pos + retval;
663
664 out:
665         return retval;
666 }
667
668 int nfs_init_directcache(void)
669 {
670         nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
671                                                 sizeof(struct nfs_direct_req),
672                                                 0, SLAB_RECLAIM_ACCOUNT,
673                                                 NULL, NULL);
674         if (nfs_direct_cachep == NULL)
675                 return -ENOMEM;
676
677         return 0;
678 }
679
680 void nfs_destroy_directcache(void)
681 {
682         if (kmem_cache_destroy(nfs_direct_cachep))
683                 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
684 }